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Abstract. We first present an algorithm that uses membership and equivalence queries to
exactly identify a discretized geometric concept defined by the union of m axis-parallel boxes in
d-dimensional discretized Euclidean space where each coordinate can have n discrete values. This
algorithm receives at most md counterexamples and uses time and membership queries polynomial
in m and logn for any constant d. Furthermore, all equivalence queries can be formulated as the
union of O(md logm) axis-parallel boxes.

Next, we show how to extend our algorithm to efficiently learn, from only equivalence queries, any
discretized geometric concept generated from any number of halfspaces with any number of known
(to the learner) slopes in a constant dimensional space. In particular, our algorithm exactly learns
(from equivalence queries only) unions of discretized axis-parallel boxes in constant dimensional space
in polynomial time. Furthermore, this equivalence query only algorithm can be modified to handle
a polynomial number of lies in the counterexamples provided by the environment.

Finally, we introduce a new complexity measure that better captures the complexity of the union
of m boxes than simply the number of boxes and the dimension. Our new measure, σ, is the number
of segments in the target, where a segment is a maximum portion of one of the sides of the target that
lies entirely inside or entirely outside each of the other halfspaces defining the target. We present a
modification of our first algorithm that uses time and queries polynomial in σ and logn. In fact, the
time and queries (both membership and equivalence) used by this single algorithm are polynomial
for either m or d constant.
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1. Introduction. Recently, learning geometric concepts in d-dimensional Eu-
clidean space has been the subject of much research [6, 15, 17, 28, 30, 31, 32, 34]. We
study the problem of learning geometric concepts under the model of learning with
queries [1] in which the learner is required to output a final hypothesis that correctly
classifies every point in the domain. To apply such a learning model to a geometric
domain, it is necessary to look at a discretized (or digitalized) version of the domain.
We use d to denote the number of dimensions and n to denote the number of discrete
values that exist in each dimension. Thus a discretized geometric concept G is a set of
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integer points G ⊆ N d
n , where Nn = {1, . . . , n}. In this paper we consider discretized

geometric concepts whose boundaries are defined by hyperplanes of known slope.
We begin by studying a special case: the well-studied class of unions of axis-

parallel boxes. (By a “box,” we mean an axis-aligned hypercuboid.) The algorithm
for this special case is easily extended to learn discretized geometric concepts defined
by axis-parallel hyperplanes. We use boxdn to denote the class of axis-parallel boxes1

over N d
n , and

⋃

≤m boxdn to denote the class of the union of at most m concepts from

boxdn. Let c be a concept in
⋃

≤m boxdn. We say that c is defined by s ≤ m boxes from

boxdn if s is the minimum number of boxes whose union is equivalent to c. We note
that it is easy to show that this class is a generalization of disjunctive normal form
(DNF) formulas and a special case of the class of unions of intersections of halfspaces
over N d

n .
We first present a query algorithm that exactly learns

⋃

≤m boxdn with at most

md + 1 equivalence queries2 and O((4m)d + md(log n + d)) membership queries and
computation time. Thus our algorithm exactly learns the union of m discretized
axis-parallel boxes over N d

n in polynomial time for any constant d.
The hypothesis class used by this algorithm can be evaluated in timeO(d logm log n).

Furthermore, in O((2m)2d) time we can transform our hypothesis to the union of at
most O(md logm) boxes. Thus we obtain the stronger result that our algorithm can
exactly learn the union of m axis-parallel boxes over N d

n while making at most md+1
equivalence queries, where each equivalence query is simply the union of O(md logm)
concepts from boxdn; making O((4m)d+md(log n+d)) membership queries, and using
O((md)2 logm · (2m)2d + md log n) computation time. Thus for any constant d, this
algorithm still uses time and queries polynomial in m and log n. We also describe a
variation of this basic algorithm that uses only equivalence queries and still has com-
plexity polynomial in m for time and queries and log n for d constant. Our algorithm
uses O((8d2m log n)d) equivalence queries and computation time.

Next we study the problem of learning with only equivalence queries the class of
discretized geometric concepts in which the hyperplanes defining the boundaries of
the concept need not be axis parallel but rather can have any known slopes. That
is, the geometric discretized concepts we study here are those whose boundaries lie
on hyperplanes {x = (x1, . . . , xd) |

∑d

j=1 aijxj = b} for i = 1, . . . , |S|, where S is
the set of slopes of the hyperplanes. The possible slopes of those hyperplanes, i.e.,
ai = (ai1, . . . , aid), are known to the learner, but the same slope with different shifts
b can be used for many hyperplanes in the target concept g. Note that if we choose
the slopes S = {ei}, the standard basis, then we get the special case in which all
hyperplanes are axis parallel.

Let S ⊂ Zd where Z is the set of integers, and let ‖S‖ denote the representation
size of S (the sum of the logarithms of the absolute values of the integers in S). Let
g be a geometric concept whose boundaries lie on m hyperplanes in N d

n with slopes
from S. A key result of this paper is that for any constant d, any such geometric
concept is exactly learnable in poly(l,m, ‖S‖, log n) time and equivalence queries even
if the equivalence oracle lies on l counterexamples. So for example, if the space is the
plane N 2

n and S = {(0, 1), (1, 0), (1, 1), (1,−1), (1, 2), (2, 1), (1,−2), (2,−1)}, then our
algorithm can efficiently learn the geometric concepts generated from lines that make
angles 0, 90, 135, 45, 120, 150, 30, and 60, respectively, with the x-axis, in polynomial

1Note that we include in boxdn boxes with zero size in any dimension.
2The final equivalence query is the correct hypothesis, and thus at most md counterexamples are

received.
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time. (As this example illustrates, the representation that we use for a slope is that
derived from the formula, given above, defining a hyperplane.) In higher constant
dimensional space our algorithm can efficiently learn any geometric concept whose
boundary slopes are known. Another generalization of this result is an algorithm
to exactly learn polynomially sized decision trees over the basis “Is xi � c,” where
�∈ {>,<,≥,≤} in constant dimensional space.

Finally, we reexamine our first algorithm for learning the union of m discretized
boxes. We introduce a new complexity measure that better captures the complexity of
a union of boxes than simply the number of boxes and dimensions. More specifically,
our new measure, σ, is the number of segments in the target concept, where a segment
is a maximum portion of one of the defining hyperplanes of the target that lies entirely
inside or entirely outside each of the other defining hyperplanes. We show that σ ≤
(2m)d. We present an improvement of our first algorithm that uses time and queries
polynomial in σ and log n. The hypothesis class used by this modified algorithm is
that of decision trees of height at most 2md. Thus, observe that the hypothesis output
(and the intermediate hypotheses) can be evaluated in polynomial time without any
restrictions on m or d. We then use an alternate analysis of this algorithm to show
that the time and queries used are polynomial in d and log n for any constant m,
thus generalizing the exact learnability of DNF formulas with a constant number of
terms. Combining these two methods of analysis, we get the interesting result that
this single algorithm is efficient for either m or d constant.

The paper is organized as follows. In section 2 we describe the learning model
that we use. Next, in section 3 we summarize the previous work on learning geometric
concepts. Then in section 4 we give some preliminary definitions. Section 5 describes
our results for learning unions of boxes with membership and equivalence queries. We
present this algorithm, in part, because it introduces the approach used to obtain our
other results and also because it uses very few equivalence queries, which is of interest
if one’s goal is to minimize the number of prediction errors made by the learner [13].
Next, in section 6 we describe a modification of this algorithm that efficiently learns
the union of boxes in constant dimensional space with only equivalence queries. In
section 7 we present our extensions to learning the class of geometric concepts defined
by any hyperplanes of known slopes using only equivalence queries. In section 8 we
describe how to modify this algorithm to handle the situation in which there are lies
in the answers to the equivalence queries. In section 9 we present our new complexity
measure and describe a modification of our first algorithm that runs in polynomial
time with respect to this complexity measure. Finally, in section 10 we conclude
with some open problems. This paper subsumes the results presented by Goldberg,
Goldman, and Mathias [22] and includes several results given by Bshouty [11].

2. Learning model. The learning model we use in this paper is that of learning
with queries developed by Angluin [1]. When applied to our class of discretized
geometric concepts, the learner’s goal is to learn exactly how an unknown target

concept, g, drawn from the concept class G ⊆ 2N
d

n , classifies as positive or negative
all instances from the instance space N d

n . Thus each concept is the set of instances
from N d

n that it classifies as positive. We say that y ∈ N d
n is a positive instance for

target concept g if y ∈ g (also denoted g(y) = 1) and say that y is a negative instance
otherwise (also denoted g(y) = 0). It is often convenient to view the target concept
g as the Boolean function g : N d

n → {0, 1}. A hypothesis h is a polynomial-time
algorithm that, given any y ∈ N d

n , outputs a prediction for g(y). Throughout we
use y to denote an instance (i.e., a point in N d

n ) and x = (x1, . . . , xd) to denote the
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variables associated with the d axes. For example, for d = 2, 2x1 + 3x2 = 7 defines a
two-dimensional hyperplane. For the point y = (2, 1), y is on this hyperplane.

As mentioned above, the learning criterion in this paper is that of exact identifi-
cation. In order to achieve exact identification, the learner’s final hypothesis, h, must
be such that h(y) = g(y) for all instances y ∈ N d

n . To achieve this goal the learner is
provided with two types of queries with which to learn about g. A membership query,
MQ(y), returns “yes” if g(y) = 1 and returns “no” if g(y) = 0. We note that learning
using only membership queries is quite difficult for many concept classes. For exam-
ple, to learn a single positive point in an nd discrete grid requires O(nd) membership
queries. An equivalence query, EQ(h), returns “yes” if h is logically equivalent to g
or returns a counterexample otherwise. A positive counterexample y is an instance
such that g(y) = 1 and h(y) = 0. Similarly, a negative counterexample is such that
g(y) = 0 and h(y) = 1. Equivalence queries are answered by a computationally un-
bounded adversary with knowledge of the target concept and the learning algorithm.
Several of the algorithms we present use only equivalence queries. The others use
both membership and equivalence queries. In some domains, presenting the learner
with a single positive instance (as a counterexample to an equivalence query) makes
learning with membership queries feasible (see the discussion of geometric probing in
section 3).

An exact learning algorithm is said to run in polynomial time if the computa-
tion time and the number of queries are polynomial in both the size3 of an example
(whether it is for a membership query or a counterexample from an equivalence query)
and the size of the target concept. Here an example is one of the nd points in N d

n and
thus it can be represented with ddlg ne bits. Each box in the target concept can be en-
coded with 2ddlg ne bits, and thus encoding the entire target concept uses 2dmdlg ne
bits. Thus for the problems studied here, a polynomial-time algorithm must use time
and queries polynomial in d, log n, and m.

An l-liar equivalence oracle is an oracle that is allowed to lie at most l times
during the learning session when providing counterexamples to equivalence queries.
The teacher is allowed at most l lies total even if multiple lies are for the same instance.
This definition seeks to capture a notion of erroneous data and robust, error-tolerant
algorithms. We seek a more efficient approach than testing each counterexample we
receive using a membership query, especially in view of the fact that we are interested
in algorithms that may use only equivalence queries.

Another important learning model is the PAC model introduced by Valiant [38].
In this model the learner is presented with labeled examples chosen at random accord-
ing to an unknown, arbitrary distribution D over the instance space. Given values
for parameters ε and δ, the learner’s goal is to output a hypothesis that with high
probability, at least (1 − δ), correctly classifies most of the instance space. That is,
the weight, under D, of misclassified instances must be at most ε. This is in contrast
to the query learning model in which the learner is required to classify correctly every
instance in the instance space. The learner is permitted time polynomial in 1/ε, 1/δ,
the size of an example, and the size of the target concept to formulate a hypothesis.
The relationship between the PAC model and the query model is well understood.
Angluin [1] showed that any class that is learnable using only equivalence queries is
also PAC learnable. The relationship is unchanged by the addition of membership
queries to each model. Blum [8] showed that PAC learnability does not imply query
learnability. The concept class studied here has also been considered in the PAC

3By size we mean the number of bits to encode the example.
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model, as summarized in the next section.

3. Previous work. The problem of learning geometric concepts over a discrete
domain was extensively studied by Maass and Turán [31, 32]. One of the geometric
concepts that they studied was the class boxdn. They showed that if the learner
is restricted to make only equivalence queries in which each hypothesis was drawn
from boxdn then Ω(d log n) queries are needed to achieve exact identification [28, 31].

Auer [6] improves this lower bound to Ω( d2

log d log n).
If one always makes an equivalence query using the simple hypothesis that pro-

duces the smallest box consistent with the previously seen examples, then the resulting
algorithm makes O(dn) equivalence queries. An algorithm making O(2d log n) equiv-
alence queries was given by Maass and Turán [30]. The best result known for learning
the class boxdn was provided by Chen and Maass [17]. They gave an algorithm making
O(d2 log n) equivalence queries. They also provide an algorithm to learn the union
of two axis-parallel rectangles in the discretized space {1, . . . , n}× {1, . . . ,m} in time
polynomial in log n and logm, where one rectangle has a corner at (0,m) and the
other has a corner at (n, 0). More recently, Chen [15] gave an algorithm that used
equivalence queries to learn general unions of two boxes in the (discretized) plane.
The algorithm uses O(log2 n) equivalence queries and involves a detailed case analysis
of the shapes formed by the two rectangles.

Homer and Chen [25] presented an algorithm to learn the union of m rectan-
gles in the plane using O(m3 log n) queries (both membership and equivalence) and
O(m5 log n) time. The hypothesis class of their algorithm is the union of 8m2 − 2
rectangles. In work independent of ours, Chen and Homer [16] have improved upon
their earlier result by giving an algorithm that learns any concept from

⋃

≤m boxdn

using O(m2(d+1)d2 log2d+1 n) equivalence queries by efficiently applying the bounded
injury method from recursive function theory. This algorithm appears in [11] along
with the equivalence-query algorithms presented here in sections 6 and 7. While the
Chen and Homer result is very similar to our result of section 6, they use a very dif-
ferent technique to obtain the result. Also, our algorithm uses only O((8d2m log n)d)
equivalence queries.

Finally, in other independent work, Maass and Warmuth [34] have developed, as
part of a more general result, an algorithm to learn any concept from

⋃

≤m boxdn using

O(md log n) equivalence queries and O
(

(md log n)O(d)
)

computation time. In addition
their technique enables them to efficiently learn a single box in a constant dimensional
space that is not axis parallel but uses slopes from a known set of slopes. Their
algorithm improves upon our result of section 6, in that the number of equivalence
queries has polynomial dependence on m, d, and log n. However, their work does not
give results comparable to the other results presented in this paper. Most notably,
in section 7 we give an algorithm that can learn the union of non-axis-parallel boxes
(using slopes from a known set of slopes) versus just learning a single box.

Closely related to the problem of learning the union of discretized boxes, is the
problem of learning the union of nondiscretized boxes in the PAC model [38]. Blumer
et al. [10] present an algorithm to PAC-learn an m-fold union of boxes in Ed by draw-
ing a sufficiently large sample of size m′ = poly

(

1
ε
, lg 1

δ
,m, d

)

and then performing a

greedy covering over the at most ( em
′

2d )2d boxes defined by the sample. Thus for d
constant this algorithm runs in polynomial time. Long and Warmuth [29] present an
algorithm to PAC-learn this same class by again drawing a sufficiently large sample
and constructing a hypothesis that consists of at most m(2d)m boxes consistent with
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the sample. Thus both the time and the sample complexity of their algorithm de-
pend polynomially on m, dm, 1

ε
, and lg 1

δ
. For m constant this yields an efficient PAC

algorithm.
We note that either of these PAC algorithms can be applied to the class

⋃

≤m boxdn
giving efficient PAC algorithms for this class for either d constant or m constant. As
discussed by Maass and Turán [31], the task of a concept learning algorithm is to pro-
vide a “smart” hypothesis based on the data available. In other words, the hypothesis
must be carefully chosen so that as much information as possible is obtained from each
counterexample. To illustrate this point consider the task of learning a concept of a
half interval over {1, . . . n} (so an example x ∈ {1, . . . , n} is positive iff x ≤ r where
0 ≤ r ≤ n is not known). Within the PAC model a satisfactory hypothesis would be
r = h, where h is the maximum positive example (0 if no positive examples have been
seen). However, in the exact learning model when using only equivalence queries this
hypothesis performs very poorly in that each counterexample could just be one to the
right of the last one. Thus n counterexamples may be needed. However, if one uses the
“smarter” hypothesis of r = (h+g)/2, where h is the maximum positive example seen
and g is the minimum negative example seen (n+1 if no negative examples have been
seen), then at most dlog ne counterexamples are needed. More generally, the results
from Blumer et al. [10] show that under the PAC model any concise hypothesis that
is consistent with the data is satisfactory. In other words, the PAC model provides
no suitable basis for distinction among different consistent hypotheses. On the other
hand, a criterion for defining a “smart” hypothesis is implicitly contained within the
query learning model. One must select hypotheses for the equivalence queries so that
sufficient progress is made with each counterexample. This requirement of selecting
a “smart” hypothesis makes the problem of obtaining an efficient algorithm to learn
exactly the class

⋃

≤m boxdn significantly harder than obtaining the corresponding
PAC result. Also Blum [8] has shown that if one-way functions exist, then there exist
functions that are PAC-learnable but not exactly learnable.

Finally, under a variation of the PAC model in which membership queries can be
made, Frazier et al. [21] have given an algorithm to PAC-learn the m-fold union of
boxes in Ed for which each box is entirely contained within the positive quadrant and
contains the origin. Furthermore, their algorithm learns this subclass of general unions
of boxes in time polynomial in both m and d. Recall that since

⋃

≤m boxdn generalizes
DNF, a polynomial-time algorithm for arbitrary d and m would solve the problem of
learning DNF. Observe that the class considered by Frazier et al. is a generalization
of the class of DNF formulas in which all variables only appear negated.

While there has been some work addressing the general issue of mislabeled training
examples in the PAC model [3, 27, 37, 26], there has been little research on learning
geometric concepts with noise. Auer [6] investigates exact learning of boxes where
some of the counterexamples, given in response to equivalence queries, are noisy. Auer
shows that boxdn is learnable using hypotheses from boxdn if and only if the fraction of
noisy examples is less than 1/(d+1) and presents an efficient algorithm that handles a
noise rate of 1/(2d+ 1). In the query learning model, Angluin and Kriķis [2] examine
the case in which membership queries can be answered incorrectly under adversarial
control.

There has also been some work on learning discretized geometric concepts defined
by non–axis-parallel hyperplanes. Maass and Turán [33] study the problem of learning
a single discretized halfspace using only equivalence queries. They give an efficient
algorithm using O(d2(log d + log n)) queries and give an information theoretic lower
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bound of
(

d
2

)

on the number of queries when all hypotheses are discretized halfspaces.
There has also been work on learning non–axis-parallel discretized rectangles with
only equivalence queries. Maass and Turán [32] show an Ω(n) information theoretic
lower bound on the number of equivalence queries when the hypotheses must be drawn
from the concept class. Contrasting this lower bound, Bultman and Maass [14] give
an efficient algorithm that uses membership and equivalence queries to learn this class
using O(log n) equivalence queries. Their algorithm returns a hypothesis consisting
of a description of the vertices and edges of the polygon.

Computational geometry researchers have looked at the slightly related problem
of geometric probing (for example, see [36]). Geometric probing studies how to iden-
tify, verify, or determine some property of an unknown geometrical object using a
measuring device known as a probe. In one special case of geometric probing the aim
is to construct (or learn) an unknown convex polygon given a point inside the polygon
along with the ability to make a probe in which the algorithm can “shoot” a ray in a
specified direction to find out the location where the ray hits the polygon. Note that
using a binary search technique, such a probe can be simulated for this problem with a
polynomial number of membership queries (for discretized domains). Thus such work
can be thought of as learning a convex polygon from only membership queries along
with a single positive example. However, when working with nonconvex objects, the
probe used in such work is more powerful than a membership query.

Geometric testing (for example, see [35, 4]) is a subarea of geometric probing
involved with solving verification problems. The work that has been done on this
problem [5, 7, 23, 24] involves determining which of a finite set of models is being
probed, and seems to be the most closely related to this paper among the geometric
probing literature. The restriction to a finite set of models effectively discretizes the
domain of geometric points, as is done here by considering points with bounded integer
coordinates.

4. Preliminaries. Let N ,Z, and R be the set of nonnegative integers, inte-
gers, and reals, respectively. Recall, as discussed in section 2, that we use x1, . . . , xd
to denote the variables associated with the d axes. Let Nn = {1, . . . , n} and S =
{a1, . . . , as} ⊂ Zd be a set of slopes. A d-dimensional hyperplane is {x = (x1, . . . , xd) |
∑d

j=1 aijxj = b} for some aij ∈ Z, b ∈ R. A halfspace is {x = (x1, . . . , xd) |
∑d

j=1 aijxj
� b}, where �∈ {>,≥, <,≤}. A discretized hyperplane (respectively, halfspace) is
H ∩N d

n for some hyperplane (respectively, halfspace) H. A geometric concept gener-
ated from hyperplanes with slopes from S ⊂ Zd is a set ĝ ⊂ Rd whose boundaries are
defined by hyperplanes with slopes from S. A discretized geometric concept generated
from hyperplanes with slopes from S ⊂ Zd is g = ĝ ∩N d

n .
The complexity CS(ĝ) of a geometric concept ĝ is the minimum number of hy-

perplanes with slopes from S such that their union contains the boundary of ĝ. The
complexity CS(g) of a discretized geometric concept g is the minimum CS(ĝ) over
all geometric concepts ĝ that satisfy g = ĝ ∩ N d

n . By a simple information theoretic
argument, it follows that any exact learning algorithm for a nontrivial discretized
geometric concept g cannot run in time less than the complexity CS(g). Also, the
complexity of learning one box in N d

n is at least Ω(d log n). The input for our al-
gorithms is S, together with n and d. We use ‖S‖ to denote the sum of the loga-
rithms of the absolute values of the integers in S and call this the size of S. Thus,
a learning algorithm, for the class of discretized geometric concepts with complexity
measure CS(g), is a polynomial-time algorithm if the time and query complexities are
poly(‖S‖, CS(g), log n, d).
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Observe that if we choose the slopes S = {ei}, the standard basis, then for any
discretized geometric concept g defined by the union of m boxes in d dimensional
space, CS(g) ≤ 2md since at most 2d halfspaces are needed to define the boundaries
of each box.

5. Learning unions of boxes with membership and equivalence queries.

In this section we present an algorithm that exactly identifies any concept from
⋃

≤m boxdn (so S = {ei}, the standard basis) while receiving at most md counterex-
amples and using time and membership queries that are polynomial in m and log n for
any constant d. This section serves two purposes: (1) the other algorithms presented
build upon this basic algorithm, and thus for ease of exposition we present it here,
and (2) it uses very few equivalence queries, which is of interest if one’s goal is to
minimize the number of prediction errors made by the learner [13].

The following definition is used throughout this section.
Definition 1. For a discretized geometric concept g, we define a +/i− pair

to be a positive point y+ = (y1, . . . , yi, . . . , yd) paired with a negative point y− where
y− = (y1, . . . , yi+1, . . . yd) or y− = (y1, . . . , yi−1, . . . , yd), where we implicitly assume
that any point outside N d

n is a negative point.
We define the halfspace associated with a given +/− pair to be the unique, axis-

aligned halfspace H that contains the positive but not the negative point. So for a
+/i− pair where the positive point’s ith coordinate is c, if the negative point’s ith

coordinate is c + 1, then H is given by xi ≤ c. Similarly, if the negative point’s ith
coordinate is c − 1, then H is given by xi ≥ c. We define the associated hyperplane
to be the set of all points satisfying xi = c.

For each of the d dimensions, we maintain a set Hi of hyperplanes discovered for
that dimension that define the boundaries of g. We let H =

⋃d

i=1Hi. Observe that in
dimension i we have decomposed N d

n into up to 2|Hi|+ 1 regions: |Hi| corresponding
to the hyperplanes themselves and |Hi| + 1 corresponding to the “strips” obtained
when N d

n is cut by each of the |Hi| hyperplanes. Recall that |Hi| ≤ 2m, and thus our
final hypothesis divides N d

n into a grid GH of

d
∏

i=1

(2|Hi|+ 1) ≤
d
∏

i=1

(4m+ 1) = (4m+ 1)d(5.1)

regions (or connected components). We say that GH is consistent if for any two
points, with known classification, in any region of GH, the points have the same
classification. Given a consistent GH, a hypothesis is obtained by simply classifying
all points according to the unique classification of all known points in that region
(with negative used as a default).

We now demonstrate that we can represent such a hypothesis so that it is very
efficient to evaluate. For each dimension i we maintain a balanced binary search tree
Ti where each internal node corresponds to one of the hyperplanes in Hi and each
leaf node corresponds to one of the strips created. The ith coordinate of the points
in a hyperplane in Hi is used as the key for the associated node in Ti. For each leaf
node v of Ti we keep a pair (miniv,maxiv), where miniv (respectively, maxiv) holds the
minimum (respectively, maximum) x such that x is the ith coordinate of some point
in the region corresponding to leaf v. (For the internal nodes, the key itself serves the
role of both miniv and maxiv.)

We define Ri = {[miniv,maxiv] | v is a node of Ti and miniv and maxiv are the
minimum and maximum values of the ith coordinates of points in v}. Let T =
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Fig. 1. This shows the final set of regions corresponding to the target concept, formed by a
union of m = 4 boxes, outlined in bold. The classification of each two-dimensional region is shown
inside the region. (The classifications of the one-dimensional and zero-dimensional regions are not
shown but are stored in the prediction matrix A.) The boundary of the target concept is segmented
to illustrate a new complexity measure introduced in section 9.

{T1, . . . , Td}. Thus GH = R1 × R2 × · · · × Rd. For r ∈ GH, corresponding to nodes
vi ∈ Ti, we shall refer to the point (min1

v1
, . . . ,mindvd) as the lower corner of r and

(max1
v1
, . . . ,maxdvd) as the upper corner of r.

In addition to the trees T1, . . . , Td, our hypothesis also maintains a prediction
array A with |GH| entries where, for r ∈ GH, A[r] gives the classification for region
r. For a consistent region (i.e., all known points have the same classification) A
will contain either a 0 (for negative) or a 1 (for positive). However, for regions in
which there is an inconsistency, there will be a pointer into a queue Q of inconsistent
regions. In addition, for each region r ∈ Q we store points y+ and y− giving a pair
of inconsistent points in r. We use h(GH, A) to denote the hypothesis defined by the
regions in GH with the classifications given in A. Note that the hypothesis is well-
defined only if all regions are consistent. Figure 1 shows the set of regions defined by
a target concept once all hyperplanes are discovered, and the classifications of all of
the regions (as stored in A).

Given a hypothesis h(GH, A) (we sometimes denote this simply as h) for which
the queue Q of inconsistent regions is empty, and a point y, we can compute h(y),
the prediction made by hypothesis h on point y, as follows. For 1 ≤ i ≤ d we
perform a search for yi in tree Ti to find the node having yi in its range. Combining
the ranges of the d nodes found defines the region r ∈ GH that contains y. Finally
h(y) = A[j1, . . . , jd], where ji is contained in the node found in Ti during the search for
y and denotes the dimension i index for A corresponding to the region that contains y.
Then combining the indices obtained from each of the trees provides an index into A.
Since we know an upper bound on the number of nodes in each tree, we can initially
allocate enough space for A.

5.1. The membership and equivalence query algorithm. Our algorithm
works by repeatedly building a consistent hypothesis that incorporates all known
halfspaces. The hypothesis is represented as a decision tree rather than as a union of
boxes; subsequently we show how to express it as a union of (not too many) boxes.
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Given an inconsistent hypothesis h(GH, A) and the queue Q of inconsistent regions
from GH, we refine h(GH, A) so that it is consistent using the following procedure that
uses membership queries to find new hyperplanes with which to modify the hypothesis.
We never remove any hyperplane from H and search for a new hyperplane only in
such a way that we are certain that an existing hyperplane will not be rediscovered in
the process. We also maintain the invariant that Q always contains exactly one entry
for each inconsistent region of GH. Note that we never make an equivalence query
using an inconsistent hypothesis.

Our procedure to build a consistent hypothesis repeatedly does the following until
Q is empty (and thus the hypothesis is consistent). Let r be the region at the front
of the queue. Since r is not a consistent region, we know that there must be some
unknown hyperplane of g that goes between y+ (a known positive point in r) and
y− (a known negative point in r). Thus we can perform a binary search between
y+ and y− (where the comparisons are replaced by membership queries) to find a
+/− pair contained within region r using only d + dlog ne membership queries. We
use dlog ne queries to find a positive point and a negative point whose positions
differ by at most one in each coordinate by performing a single binary search on all
d dimensions. (Query points are chosen by bisecting the range in each dimension;
noninteger coordinates may be rounded arbitrarily.) We then use d additional queries
to determine the slope of the separating hyperplane. Furthermore, the hyperplane
defined by this +/− pair is guaranteed to be a hyperplane that has not yet been
discovered (by the definition of a region).

The full details of procedure add-hyperplane, which modifies h(GH, A) to in-
corporate the new hyperplane found, is given in Figure 2. The learner begins by using
a standard tree insertion procedure to insert the new hyperplane into the search tree
for the appropriate dimension. Then the set of regions that have been split by the
hyperplane are deleted from H, and each is replaced by three new regions (one of
them being a degenerate region corresponding to the hyperplane itself). For each new
region of r we make a membership query on the lower and/or upper opposing corners
if those queries have not already been made. As we shall discuss in section 6, this
step can be replaced by just using 0 as the default value for A[r]. If the classifications
of these two corners are the same, then the classification is entered in A[r]; otherwise
the region is placed in Q with these corners used for y+ and y−.

Our algorithm Learn-With-MQs works as follows. For ease of exposition we
artificially extend the instance space fromN d

n to {0, 1, . . . , n, n+1}d, where it is known
a priori that any example with a coordinate of 0 or n+1 in any dimension is a negative
example. (The pseudocode does not explicitly make this check, but one could imagine
replacing the calls to MQ with a procedure that first checks for such cases.) Initially,
GH just contains the single region corresponding to the entire instance space. Since
the upper and lower corners of this region are negative, the initial hypothesis predicts
0 for all instances.

We then repeat the following process until a successful equivalence query is made.
Let y be the counterexample received from an equivalence query made with a con-
sistent hypothesis. Using membership queries (in the form of a binary search) we
can find two new hyperplanes of the target concept. Without loss of generality, we
assume that y is a positive counterexample in region r of GH. Since the hypothesis
was consistent and y is a positive counterexample, we know that the upper and lower
corners of r are classified as negative. Thus we can use these corners of r (with y) as
the endpoints for binary searches to discover two new hyperplanes. We find a hyper-
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add-hyperplane(h(GH, A), Q, i, c)
Let v be the leaf of Ti for which miniv ≤ c ≤ maxiv
Using a standard balanced tree insertion procedure, update Ti so that

v is an internal node with key c
v has a left child with range [miniv, c− 1]
v has a right child with range [c + 1,maxiv]

Let Rdelete = R1 × · · · ×Ri−1 × {[miniv,maxiv]} ×Ri+1 × · · · ×Rd

Let Radd = R1 × · · · ×Ri−1 × {[miniv, c− 1], [c, c], [c + 1,maxiv]} ×Ri+1 × · · · ×Rd

For each r ∈ Rdelete

Let r=, r<, and r> be the regions in Radd for which (r= ∪ r< ∪ r>) = r
If A[r] = b (for b = 0 or b = 1)

Let A[r=] = A[r<] = A[r>] = b
Else (so A[r] is a pointer to element q of Q)

Generate new queue nodes for r=, r<, and r>
Set the corresponding entries of A to point to these new nodes
Copy y− and y+ in the appropriate queue entries for r< and r>
Remove q from Q

For each r′ ∈ {r=, r<, r>}
Let yu (respectively, y`) be the upper (respectively, lower) corner of r′

Make a membership query to determine yu and y` if not already known
If g(yu) = g(y`) then let A[r′] = g(yu)
Else (r′ is inconsistent)

Assign yu and y` to y− and y+ as appropriate
Q.enqueue(r′)

Fig. 2. Our subroutine to update h(GH, A) to incorporate the newly discovered hyperplane
xi = c. The new hyperplane is added to tree Ti. Then all regions in GH that are split are removed
from Q. Finally this procedure initializes the new entries of GH in the prediction matrix A. Note
that in the for loop that adds new regions, we could choose not to perform membership queries on the
upper and lower corners of r, as is done in section 6. Instead, we could just use the known points
in r=, r<, and r> to determine their labels (with 0 as a default if there are no points in the region).
The advantage of doing this step is that the number of equivalence queries is reduced by a factor of 2
since two hyperplanes of the target are guaranteed to be found for each counterexample (Lemma 1).
If we find that the opposing corners have different classifications then we place that newly created
region on Q, which in turn will cause a binary search to be done to find a new hyperplane and split
that region further.

plane by doing a binary search until we find a +/− pair (two points that are labeled
differently and differ by at most one in each dimension). We know that a side of a
target box must pass between these two points (or through one of the points). We
then use d additional queries to discover the slope of this hyperplane. The hypothesis
is updated using add-hyperplane to incorporate these two hyperplanes. Finally,
we call make-consistent-hypothesis to refine any inconsistent regions. Figure 3
gives the complete algorithm.

5.2. Analysis. We now analyze the time and query complexity of Learn-With-

MQs. As part of this analysis we use the following lemma.
Lemma 1. Every counterexample can be used to discover at least two distinct new

hyperplanes of the target concept.
Proof. Let y be the counterexample and r ∈ GH be the region containing y. Since

h(GH, A) is a consistent hypothesis, we know that the upper and lower corners of r
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Learn-With-MQs:
Let Q← ∅
Let (0, . . . , 0) and (n + 1, . . . , n + 1) be negative corners of single region r
For 1 ≤ i ≤ d

Initialize Ti to be a single leaf covering the range 0 to n + 1
For r the single region of GH, let A[r] = 0

While Equiv(h(GH, A)) 6= “yes”
Let y be the counterexample where y is in region r of h(GH, A)
Let z1 and z2 be the lower and upper opposing corners of r
For 1 ≤ ` ≤ 2

Perform binary search between y and z` to find hyperplane xi = c
add-hyperplane(h(GH, A), Q, i, c)

h(GH, A)←make-consistent-Hypothesis(h(GH, A), Q)
Return h(GH, A)

make-consistent-hypothesis(h(GH, A), Q)
While Q 6= ∅

r ← Q.dequeue

Perform binary search between y− and y+ from r
to find the hyperplane xi = c

add-hyperplane(h(GH, A), Q, i, c)

Fig. 3. Algorithm for learning unions of d-dimensional axis-parallel boxes using membership
and equivalence queries. Note that i, in the calls to add-hyperplane, is the dimension separated
by the hyperplane found in the binary search.

are classified opposite y and all points in r are classified opposite y by the hypothesis.
Since a positive point and a negative point must be separated by some hyperplane of
the target concept, searches between y and each of the upper and lower corners will
find some +/− pair. These will be distinct since the two searches move away from
each other in all dimensions.

We now prove that our first algorithm has the stated complexity.
Theorem 1. Given any g ∈

⋃

≤m boxdn, Learn-With-MQs achieves exact

identification of g making at most md + 1 equivalence queries, and using O((4m)d +
md(log n+ d)) time and membership queries.

Proof. The correctness of Learn-With-MQs is trivial. Since the algorithm
only returns a hypothesis h(GH, A) for which Equiv(h(GH, A)) returns “yes,” the
algorithm is correct upon returning a hypothesis.

We now analyze the query and time complexity of Learn-With-MQs. Recall
that since there are only m boxes in the target concept, there are at most 2md
hyperplanes in the final hypothesis. Clearly, any box can be subdivided into a union
of smaller boxes, unnecessarily increasing the complexity of the target. However, our
algorithm adds hyperplanes only where there is evidence for the existence of a side
of a target box (a +/− pair) and, therefore, does not unnecessarily subdivide boxes
(subdividing does occur due to extending hyperplanes through the entire domain, but
this is already accounted for in our analysis). Furthermore, since no hyperplane is ever
rediscovered and every binary search (which uses O(log n + d) membership queries)
discovers a hyperplane, we know that O(md(log n+ d)) membership queries are used
during all of the binary searches made by the algorithm. Also, as given in (5.1),
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there are at most (4m + 1)d regions in the final hypothesis, and thus the number of
membership queries used for querying the upper and lower opposing corners is at most
2 · (4m + 1)d = O((4m)d). Since these are the only two places in which membership
queries are performed, the total number of membership queries made by our algorithm
is O((4m)d +md(log n+ d)).

From Lemma 1 we know that each counterexample enables Learn-With-MQs

to find at least two new, distinct hyperplanes of the target concept. Since there are
at most 2md hyperplanes comprising the m boxes, at most md counterexamples can
be received and thus at most md+ 1 equivalence queries are made.

The time needed to evaluate h(GH, A)(x) for an unlabeled example y is O(d logm)
since the key operation is performing d searches in balanced search trees of depth
O(logm). Thus, the time complexity of this algorithm is found to be O((4m)d +
md(log n+ d)).

Finally, it is easily seen that this algorithm extends to learning any discretized
geometric concept generated by hyperplanes with slopes from S = {ei} (the stan-
dard basis) while receiving at most CS(g)/2 counterexamples and using time and
membership queries polynomial in CS(g) and log n for d any constant.

5.3. Using a hypothesis class of unions of boxes. We now describe how a
consistent hypothesis can be converted to the union of O(md logm) boxes from boxdn.
Since all equivalence queries are made with consistent hypotheses, such a conversion
enables our algorithm to learn the union of m boxes from boxdn using as a hypothesis
class the union of O(md logm) boxes from boxdn. Note that it is NP-hard to find a
minimum covering of a concept from

⋃

≤m boxdn by individual boxes [19].
Recall that a consistent hypothesis h essentially encodes the set of positive regions.

Thus our goal is to find the union of as few boxes as possible that “cover” all of the
positive regions. We now describe how to formulate this problem as a set covering
problem for which we can then use the standard greedy set covering heuristic [18]
to perform the conversion. The set X of objects to cover will simply contain all
positive regions in h. Thus |X| ≤ (4m + 1)d. Then the set F of subsets of X will
be made as follows. Consider the set B of boxes where each box in B is formed by
picking a minimum and maximum coordinate in each dimension from the hyperplanes
represented in h for that dimension. For any b ∈ B, if b contains any negative region,
then throw it out. Otherwise, place in F the set of regions contained within b.
Thus |F| ≤ (2m)2d since there are at most 2m values in each dimension that can
form the two sides of the box. Furthermore, F contains a subset of size m that
covers all items in X. Finally, we can apply the greedy set covering heuristic to find
a set of at most m(ln |X| + 1) = m(d ln(4m + 1) + 1) = O(md logm) boxes that
cover all positive regions. The time to perform the conversion is O((2m)2dmd logm).
Thus, since at most md + 1 equivalence queries are made, the total time spent in
converting the internal hypotheses into hypotheses that are unions of boxes is at most
O((md)2 logm · (2m)2d).

6. Learning unions of boxes using only equivalence queries. We now
describe a simple method to remove the use of membership queries in Learn-With-

MQs. First observe that the use of membership queries in this algorithm can easily
be reduced to only their use within the binary searches. Instead of querying opposing
corners of new regions created, we can instead use the classification of the single known
point or otherwise a default of negative for the classification of the region. Then the
counterexamples from the equivalence queries can be used to obtain a positive and
negative point in the region that can be used for the binary search. (Of course, this
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modification dramatically increases the number of equivalence queries used.)
Now to remove the use of membership queries in a binary search between y+ and

y− we simply take the midpoint between y+ and y− (i.e., the first point on which a
membership query would be made) and insert a hyperplane going through that point
for each of the d dimensions. There are 2dm hyperplanes defining the target. We
require at most 2dlog ne counterexamples (that cause H to be modified) to find each
hyperplane. Thus, the total number of counterexamples required (that cause H to be
modified) is at most 4dmdlog ne. For each such counterexample (i.e., one that causes
H to be modified) we insert d hyperplanes in the hypothesis. Thus the number of
hyperplanes in the hypothesis is at most 4d2mdlog ne. By (5.1) there are at most
(8d2mdlog ne + 1)d regions in the final hypothesis. There is at most one equivalence
query made for each of the hyperplanes found and at most one equivalence query
made for each region. Thus we obtain the following result.

Theorem 2. Given any g ∈
⋃

≤m boxdn, there is an algorithm that achieves exact

identification of g using O((8d2m log n)d) equivalence queries (and no membership
queries). The time complexity is O((8d2m log n)d).

It is easily seen that for d constant this algorithm exactly learns
⋃

≤m boxdn us-
ing only equivalence queries with both time and the number of equivalence queries
polynomial in m and log n.

7. Extending S to arbitrary known slopes. We now present a modification
of the equivalence query algorithm described in section 6 that handles the situation
in which S can be an arbitrary set of known slopes versus just being the standard
basis. We let s denote the number of distinct slopes in S (i.e., s = |S|).

Let S = {a1, . . . , as} ⊂ Zd be a set of slopes. Thus ai = (ai1, ai2, . . . , aid) (for
1 ≤ i ≤ s) defines a slope for a d-dimensional hyperplane, that is, a hyperplane of

the form
∑d

j=1 aijxj = b (or equivalently aix
T = b) for any real constant b. Let

B = {B1, . . . , Bs}, where Bi ⊂ R defines a set of |Bi| possible values for the constant
term “b” for those hyperplanes with slope given by ai. Thus together S and B define
a set of hyperplanes

H = {aix
T = b | x = (x1, . . . , xd), i = 1, . . . , s, b ∈ Bi}.

The hypothesis h = h(GH, A) is that which classifies each x ∈ N d
n according to the

unique classification of all known points (if any) in the region of GH containing x.
If there are no known points in the region containing x, then negative is used as the
default.

As in our basic equivalence query algorithm, this algorithm begins with the entire
region classified as negative. After the first two equivalence queries are made (the
first with h = ∅ and the second with h = N d

n ), the algorithm will have a positive
counterexample y and a negative counterexample u. Thus the straight line between
y and u must intersect one of the hyperplanes that define g. Let v = (y + u)/2 be
the midpoint of the line between y and u. Without the ability to make membership
queries it is not possible to find a +/− pair. Furthermore, even if we could find a
+/− pair, we would not be able to determine the slope of the hyperplane that created
that +/− pair. As in the previous section, we address this problem by adding to our
set of hyperplanes H a hyperplane passing through the midpoint v for each slope in
S. We repeatedly use this process until an equivalence query made with h(GH, A) is
correct.

For ease of exposition, in this section we will not discuss the details of how to
represent H so that h(GH, A) can be efficiently evaluated (in terms of all parameters).
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Learn-General-Slopes(S = {a1, . . . , as})
H ← ∅
Let r be the single region of GH, let A[r] = 0
While Equiv(h(GH, A)) 6= “yes”

Let y be the counterexample where y is in region r of h(GH, A)
A[r] = 1− h(GH, A)(y)
If there is a known point u in r classified opposite y

v = (y + u)/2
For i = 1 to s
H ← H

⋃

(aix
T = b = (aiv

T ))
Update A to incorporate the new regions created

Return h(GH, A)

Fig. 4. Algorithm for exactly learning a discretized geometric concept defined by slopes in S

using only equivalence queries.

However, the technique of section 5 of using s balanced search trees, one for each
element of S, generalizes in an obvious manner.

Our algorithm, at a high level, is shown in Figure 4. In this algorithm, Learn-

General-Slopes, S is the set of the possible slopes of the hyperplanes. We initialize
H to be the empty set and the classification of the single region to be 0. (And
thus the initial hypothesis, h(GH, A), is simply the always false hypothesis.) We
ask the equivalence query h(GH, A) and use the counterexample y to update A. If
this counterexample is the first counterexample in its region then we just update A.
Otherwise, if this counterexample is in some region for which we have already seen a
point u, then y and u have different classifications in g and the line that passes through
y and u must intersect a defining hyperplane of g. We then define v = (y + u)/2 and
add all possible hyperplanes that pass through v to the set H. We then repeat this
process until h(GH, A) is logically equivalent to g.

7.1. Analysis. We now prove the correctness of our algorithm and analyze its
complexity. We use the following lemma to bound the maximum number of regions
that will be contained in GH.

Lemma 2. Any t d-dimensional hyperplanes in a (d+1)-dimensional space divide
the space into at most td+1 + 1 regions.

This result is well known. See Edelsbrunner [20] for a proof. We are now ready
to analyze our algorithm Learn-General-Slopes.

Theorem 3. Let S be a set of slopes. Then Learn-General-Slopes exactly
learns any target concept g from the class of discretized geometric concepts generated
from hyperplanes with slopes from S using time and equivalence queries polynomial in
‖S‖, CS(g), and log n for any constant d.

Proof. The correctness follows trivially since the algorithm returns only a hy-
pothesis h(GH, A) for which Equiv(h(GH, A)) returns “yes,” hence the algorithm is
correct upon returning a hypothesis.

We now analyze the query and time complexity. Let m = CS(g). Recall that ‖S‖
denotes the sum of the logarithms of the absolute values of the integers in S. Thus, by
the definition of ‖S‖, any ai ∈ S can be represented using at most ‖S‖ bits. Thus there
are at most 2‖S‖ possible values for a slope. Also, any example x ∈ N d

n = {1, . . . , n}d

and thus has nd possible values. Let H1, . . . , Hm be a minimum-size set of hyperplanes
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Fig. 5. Here y is a counterexample to the current hypothesis and b1 = aix
T and b2 = aix

T are
the nearest hyperplanes. The hyperplane b′1 = aix

T is added to H by Learn-General-Slopes.

with slopes from S that generate the boundary of the geometric concept g. Since each
hyperplane defining g is of the form b = aix

T , we have that the maximum number of
values that any b can have is

‖bi‖ ≤ ‖aix
T ‖ ≤ 2‖S‖ · nd = γ.

At any time during execution of our algorithm, for each of H1, . . . , Hm, there
are two closest hyperplanes in H (one for each side) with the given slope. (At the
beginning of execution, imagine two hyperplanes with each slope outside the domain
and anchored at opposing corners of the domain.) We now show that for every
counterexample that causes H to be modified there exists some Hi (i = 1, . . . ,m) for
which the distance between it and one of its closest hyperplanes is reduced by at least
a factor of 2.

Suppose that y is a counterexample to the current hypothesis h(GH, A) and that
the region r of GH that contains y already contains the point u (otherwise H is not
modified). By the definition of h(GH, A) it follows that g(u) 6= g(y). Therefore the line
segment between y and u must intersect some hyperplane—say, H∗ ≡ (aix

T = b∗)—
of g for ai ∈ S and b∗ ∈ Z. Let b1 = aix

T and b2 = aix
T be the two hyperplanes

with slope ai nearest H∗ in H. Let v = (y + u)/2 be the midpoint between y and
u. Without loss of generality we assume that the hyperplane b′1 = aix

T that passes
through v with slope ai is between b1 = aix

T and b∗ = aix
T as illustrated in Figure 5.

We denote the hyperplane that passes through y (respectively, u) with slope ai by
by = aix

T (respectively, bu = aix
T ). Thus we have that b1 ≤ by ≤ b′1 ≤ b∗ ≤ bu ≤ b2.

Let ∆ = b∗ − b1. (Thus ∆ is proportional to the distance between H∗ and b1 =
aix

T .) Observe that Learn-General-Slopes will add the hyperplane b′1 = aix
T to

H, and this will now replace b1 = aix
T as a closest hyperplane of slope ai to H∗. Let

∆′ = b∗−b′1. (Thus ∆′ is proportional to the new distance between H∗ and its closest
hyperplane in H in that direction.) We now show that ∆′ ≤ ∆/2. Observe that

∆′ = b∗ − b′1
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= b∗ −

(

(bu + by)

2

)

≤ b∗ −

(

(b∗ + b1)

2

)

=
b∗ − b1

2
=

∆

2

Thus the distance between H∗ and one of its two nearest hyperplanes is reduced
by a factor of two. Finally, when the distance between H∗ and both of its two nearest
hyperplanes is less than 1, the algorithm has determined the discretized hyperplane
H∗ and no other hyperplanes will be added for H∗.

Since the distance between each of H1, . . . , Hm with both of its closest hyperplanes
in H is at most γ it follows that the number of counterexamples needed to find one
hyperplane is

2dlog(γ)e = 2dlog(2‖S‖ · nd)e = O(‖S‖+ d log n).

The number of hyperplanes is m = CS(g), and at each iteration we add s = |S| ≤ ‖S‖
hyperplanes to the hypothesis. Therefore the number of hyperplanes generated by our
algorithm is O(ms(‖S‖ + d log n)). Thus by Lemma 2 the number of regions of the
hypothesis is

O(ms(‖S‖+ d log n))d.

The number of iterations that do not add any hyperplanes is bounded by the number
of regions; thus the number of equivalence queries made by Learn-General-Slopes

is

O(ms(‖S‖+ d log n))d,

and clearly the time complexity is also polynomial in m, ‖S‖, and log n for any con-
stant d as desired.

Finally, we note that since any slope in the discretized space N d
n can be defined

by two points from the domain, there are at most n2d possible values for any one of
the s slopes and thus ‖S‖ ≤ 2ds log n.

8. Handling lies in the counterexamples. In this section we consider the
case in which the learner is provided with an l-liar teacher. Recall that an l-liar
teacher is a teacher that can provide incorrect counterexamples as answers to at most
l equivalence queries. This noise is not persistent. That is, if the teacher provides
the same incorrect counterexample twice, then it counts as two lies (even if both were
in response to the same query). Note that our learner in this model is not given
access to a membership oracle. Thus, to learn the true classification of the points
about which the environment has lied, it is necessary for the learner to isolate these
instances. That is, the learner must create a region that consists of the single point
that was the counterexample. This will force the teacher to give, eventually (after
its l lies are exhausted), a correct classification for this instance if it is not already
correctly classified by the hypothesis.

A degenerate region (a region consisting of fewer than d dimensions) is created
whenever our algorithm adds to the hypothesis a hyperplane, passing through a given
point, for each slope in S. We want to isolate the counterexample on which the
lie occurred in a region of dimension 0. Notice, however, that given some set of
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slopes, it is possible that the hyperplanes defined by the slopes, passing through the
counterexample, do not create a 0-dimensional region.

Therefore, to ensure that the 0-dimensional region is created, we include in S
the slopes of the elementary vectors {ei}. Then the faulty points will be bounded
by hyperplanes and at the end the oracle must give their real values. Thus, the
main difference between our algorithm in this model and in the noise free model is
the addition of hyperplanes through the counterexamples. Through the midpoints of
+/− pairs we still add only |S| hyperplanes. It is only through the counterexamples
that we add |S| + d hyperplanes. This changes CS(g) to CS(g) + dl, the number of
slopes to |S|+ d, and the complexity to

O((CS(g) + dl)(|S|+ d)(‖S‖+ d+ d log n))d.

9. A return to learning unions of boxes. Observe that by extending the
hyperplane defined by a +/− pair across the entire domain, our initial algorithm
Learn-With-MQs may unnecessarily split a consistent region into a large number
of smaller regions all of which make the same prediction. The algorithm we present
here is motivated by the goal of reducing this unnecessary splitting by splitting only
the region in which the counterexample is contained. We show that this algorithm
runs in polynomial time for either m or d constant.

We begin by examining how one might measure the complexity of a concept from
⋃

≤m boxdn. Observe that the minimum number m of boxes used to form the target
concept is not a good measure of the complexity of the target concept. For example,
consider the two examples shown in Figure 6. While both targets are composed of six
boxes, the first is clearly more complex than the second. Thus the complexity of an
algorithm should depend on some quantity other than just the number of boxes and
dimension of the target concept. We now introduce such a new complexity measure,
σ, to better capture the complexity of the target concept. We define a segment of
the target concept g as a maximal portion of one of the sides of g that lies either
entirely inside or entirely outside of each of the other halfspaces defining the target.
(A halfspace defines the target if it labels some +/− pair consistently with the labeling
given by the target. See the definition of +/− pair in Definition 1.) Note that two
adjacent segments will intersect in a region of dimensionality less than the segments.
We observe that there exist other possible measures of complexity besides σ that
are potentially worthy of study. One example is the number of sides of a target
polyhedron, where a side is a maximal connected set of coplanar boundary points of
the polyhedron such that the interior of the polyhedron is on the same side of the set
of boundary points. Sides (as opposed to segments) have the drawback of being of
varying complexity (at least for polyhedra of more than two dimensions), as well as
being apparently harder to work with. That is, we can have 0, 1, . . . , d−1 dimensional
sides.

For example the target concept shown in Figure 1 has 14 sides. The same target
concept has 22 segments. (The heavy black line defining the target concept is split
into 20 clearly visible segments by the thin lines that correspond to the halfspaces
that define the target concept. The final 2 segments come from the fact that the
points (20, 52) and (49, 52) are segments due to the halfspaces y2 ≥ 52 and y2 ≤ 52.)
The polygon in Figure 6(a) has 60 segments, since each of the long edges of the 6
boxes contributes 4 segments. By contrast the polygon in Figure 6(b) (defined by
the same number of boxes) has 24 segments, since none of the sides of the individual
boxes straddles any of the hyperplanes defining the boxes.
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(a) (b)

Fig. 6. These concepts illustrate why “number of boxes” is an inadequate measure of complexity.
(a) is more complex than (b) because of the large number of intersections of the sides of the boxes.
For (a) σ = 60. For (b) σ = 24.

For a concept g ∈
⋃

≤m boxdn but not in
⋃

≤m−1 boxdn, we let σ denote the number
of segments in the target concept corresponding to g. (In other words, suppose that
m is the minimum number of boxes whose union is g.) First, observe that m ≤ σ
since none of the boxes are contained within the union of the other m − 1 boxes
(which follows from the minimality of m). Furthermore, observe that σ ≤ (2m)d

since there are 2m halfspaces per dimension (one corresponding to each of the 2m
sides per dimension) that can intersect to form at most (2m)d connected regions each
of which would be part of at most one segment. Finally, it then follows that for any
g ∈

⋃

≤m boxdn, the number of segments in g ≤ (2m)d since the minimum number of
boxes whose union is g is at most m.

The hypothesis class we use in this algorithm is a decision tree over the halfspaces
defining the target concept. Namely, each hypothesis T is a rooted binary tree where
each internal node is labeled with a halfspace and in which leaves are labeled from
{0, 1}. We evaluate T recursively by starting at the root and evaluating the left subtree
if the root’s halfspace does not contain the point, and the right subtree otherwise.
When a leaf is reached its label is output. Observe that each node of T corresponds
to a subregion of the domain, with the root corresponding to the entire domain. The
halfspace H associated with each internal node divides its region r into two subregions,
with the left child being the subregion given by H ∩ r and the right child being the
subregion given by H ∩ r. The leaves correspond to a set of nonoverlapping boxes
that cover the entire region where the label for a given region is given by the label for
the corresponding leaf. In Observation 1 we show that the height of the final decision
tree will be at most 2md. Thus the hypothesis can be evaluated in time polynomial
in both m and d.

We now describe our algorithm. It has complexity polynomial in σ and log n as
well as being an efficient algorithm for either m or d constant. We initialize T to be a
single 0 leaf node. (Again we implicitly use the instance space {0, 1, . . . , n, n + 1}d.)
When a counterexample is received, we first search T to find the leaf v containing it.
Let r be the subregion corresponding to v. Then as in Learn-With-MQs we use
a binary search to find a +/− pair contained in r that defines a halfspace H. We
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Alt-Learn-With-MQs

Initialize T to be the single 0-leaf
While Equiv(T ) 6= “yes”

Let y be the counterexample
Search in T to find the leaf v corresponding to the region containing y
T ←split-region(T, v, y)

Return T

split-region(T, v, y)
�T is the decision tree that defines the current hypothesis
�y is a counterexample in a region r defined by T
�v is the leaf of T that corresponds to r
Perform binary search between y and a corner of region r
Let H be the hyperplane found
Let vL and vR correspond to the new regions created
Make v an internal node labeled with H and having left child vL and right child vR
Let rL be the region H ∩ r corresponding to vL
Let rR be the region H ∩ r corresponding to vR
For each r′ ∈ {rL, rR}

Let v′ be the leaf corresponding to region r′

Perform a membership query on the upper and lower opposing corners of r′

Call these corners upper and lower
If both corners have classification b ∈ {0, 1} let v′ be a b-leaf of T

Let the predicted label of v′ become b
Else

Let v′ be a leaf of T with v′ having the same classification as lower
split-region(T, v′, upper)

Fig. 7. Alternate algorithm for learning unions of d-dimensional axis-parallel boxes that runs
in polynomial time for either m or d constant. We note that the corner points of regions in the
hypothesis, used throughout the algorithm, are easy to compute given the hypothesis.

replace v with an internal node labeled with H, having left child leaf vL corresponding
to the region given by H ∩ r and right child leaf vR corresponding to the region given
by H ∩ r. At this point we call a procedure that recursively visits all newly created
leaves in a depth-first manner and checks if the corresponding region is a consistent
region. If the region r′ associated with leaf v′ is consistent (a region is consistent if
its opposing corners have the same classification), then the classification field is filled;
otherwise we use a binary search to obtain a halfspace H ′ for r′ and replace v′ with
an internal node labeled with H ′. We generate two new leaves: v′L corresponding to
the region H ′∩ r′ and v′R corresponding to the region H ′∩ r′. Then a recursive call is
made to validate (if necessary) each of these new regions. The algorithm is shown in
Figure 7. One possible final hypothesis that could be constructed by this algorithm,
for the target concept shown in Figure 1, is shown in Figure 8. Figure 9 shows the
decomposition of N d

n that corresponds to the decision tree shown in Figure 8.

9.1. Analysis. We first show that the height of the final decision tree comprising
our hypothesis is at most 2md.

Observation 1. The height of the final decision tree constructed by Alt-Learn-

With-MQs (shown in Figure 7) is at most 2md since each of the at most 2md
halfspaces defining the target polyhedra can appear at most once on any path from
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Fig. 8. This shows the final decision tree that could be constructed by Alt-Learn-With-MQs

for the target geometric concept shown in Figure 1.
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Fig. 9. This shows the decomposition of N d
n corresponding to the decision tree shown in Figure 8.

the root to any leaf.
We now give two separate techniques for analyzing this algorithm. The first

method of analysis gives that this algorithm uses queries and time polynomial in σ
and log n (and thus polynomial in m and log n for d constant). The second method
of analysis shows that our algorithm uses queries and time polynomial in d and log n
for m any constant.

Theorem 4. Given any target concept g ∈
⋃

≤m boxdn, the algorithm Alt-

Learn-With-MQs achieves exact identification of g making at most (σ/2+1) equiv-
alence queries, and using O(σ(σ + log n + d)) time and O(σ(log n + d)) membership
queries.
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Proof. Observe that each segment of g causes at most one region to be split. Thus
the number of leaves in the decision tree created will be at most σ + 1.

By Lemma 1 we get that two segments are found as a result of the counterexample
to each equivalence query (here the second halfspace is implicitly found by the call to
split-region). Thus at most σ

2 + 1 equivalence queries will be made.
Furthermore, since there are at most two membership queries made to query the

upper and lower corners of each leaf, and dlog ne+ d membership queries used in the
binary searches for the σ halfspaces, it follows that the number of membership queries
made is at most 2σ + σ(dlog ne+ d) = O(σ(log n+ d)).

Observe that the depth of T is at most σ since any of the halfspaces defined by
the σ segments in the target concept will appear at most once on any path from the
root to a leaf. Thus the time to locate the region to split is O(σ) and it immediately
follows that the time complexity is O(σ(σ + log n+ d)).

Corollary 5. The algorithm Alt-Learn-With-MQs achieves exact identifi-
cation for any g ∈

⋃

≤m boxdn using time and queries polynomial in m and log n for
d constant.

Proof. This follows immediately from Theorem 4 and the observation that σ ≤
(2m)d.

Finally, observe that just as we described in section 5.3, our final hypothesis can
be converted to the union of O(md logm) boxes from boxdn. Recall that the time to
perform the conversion is O((2m)2dmd logm) and thus, this will be efficient only if d
is constant. Also, using the technique of section 6 we can refine this algorithm to use
only equivalence queries.

We now use a different method of analysis to show that Alt-Learn-With-MQs

uses time and queries polynomial in d and log n for m constant.
We begin by examining the number of regions created by this algorithm. Each

region is represented by a single leaf in the hypothesis decision tree. Thus, we can
find the number of regions by finding the number of leaves in our hypothesis. We
now derive a recurrence relation for the number of leaves in the final decision tree.
Let g ∈

⋃

≤m boxdn be the target concept and T be the final decision tree output by

our algorithm. For each internal node of T there is an associated region of N d
n . For

any node r in T , let hr denote the height of the subtree of T rooted at r (we define
the height of a leaf to be 0), and let mr be the minimum number of boxes needed to
cover the part of g contained in the region of N d

n associated with r. Thus, for the
region r corresponding to the root of T we have that mr ≤ m and hr ≤ 2md since,
by Observation 1, the height of T is at most 2md.

Let L(m,h) denote the maximum number of leaves in a decision tree rooted at
a node r with mr = m and hr = h. Then we have that L(m,h) = L(m,h − 1) +
L(m − 1, h − 1), where, for all m ≥ 0, L(m, 0) = 1, and for all h ≥ 1, L(0, h) = 1.
To see this, observe that when we find, while building the hypothesis, a hyperplane
that splits a node, the two subproblems that correspond to the left and right children
both must have at most h − 1 hyperplanes left to find since in the worst case, all
other hyperplanes are split by this one and thus appear on both sides. Finally, since
the hyperplane just found must be the side of one of the m boxes, that box will not
appear in one of the recursive calls. (In the worst case all other boxes will be split).

Consider the “largest possible” decision tree, according to the upper bound L(m,h).
(Note that a tree constructed from a problem instance will generally have fewer leaves.)
Notice that in such a “largest” decision tree, there are no leaves in the decision tree
on levels 0 (i.e., the root level) to m− 1. On each level from m to h there are leaves
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caused by the base case m = 0 of the recurrence. The total number of these leaves is
given by

h
∑

j=m

(

j − 1

m− 1

)

since the number of nodes, in the recursion tree, with m = 0 at level j is equal to the
number of nodes with m = 1 at level j − 1. There are also leaf nodes caused by the
other base case of the recurrence, h = 0. Note that this is the last level of the tree.
The number of leaves here is given by

m−1
∑

j=0

(

h

j

)

since this gives the number of nodes for each nonzero value of m (the m = 0 nodes on
this level were already counted in the previous expression). Thus, the total number
of leaves is

h
∑

j=m

(

j − 1

m− 1

)

+

m−1
∑

j=0

(

h

j

)

=

h−1
∑

j=m−1

(

j

m− 1

)

+

m−1
∑

j=0

(

h

j

)

=

h−1
∑

j=0

(

j

m− 1

)

+

m−1
∑

j=0

(

h

j

)

=

(

h

m

)

+

m−1
∑

j=0

(

h

j

)

=

m
∑

j=0

(

h

j

)

.(9.1)

Recall that h ≤ 2md. In the following lemma we show that (2md)m is an upper bound
on the summation in (9.1).

Lemma 3. The number of leaves in any hypothesis decision tree constructed by
Alt-Learn-With-MQs is bounded above by (2md)m for m > 1 and is 2d + 1 for
m = 1.

Proof. Let n = md and k = m for m > 1. Then the expression we have derived
for the number of leaves is

∑k

j=0

(

2n
j

)

. It is easily shown by induction on k that
∑k

j=0

(

2n
j

)

≤ (2n)k for n ≥ k > 1, and thus the result follows for m > 1. Finally, for
m = 1 the number of leaves in the hypothesis is 2d+ 1.

We are now ready to prove the running time of our algorithm using this method
of analysis. For ease of exposition we assume m > 1 in the remainder of this paper.

Theorem 6. Given any target concept g ∈
⋃

≤m boxdn, the algorithm
Alt-Learn-With-MQs achieves exact identification of g, making at most (2md)m

equivalence queries, making O((2md)m · (log n + d)) membership queries, and using
O((2md)m+1 · (log n+ d)) time.

Proof. Observe that the number of counterexamples received by Alt-Learn-

With-MQs is at most the number of internal nodes in our final decision tree. Thus
the number of equivalence queries made by Alt-Learn-With-MQs is at most the
number of leaves in the final decision tree.
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Equation (9.1) shows that L(m,h) =
∑m

j=0

(

h
j

)

, and Lemma 3 proves a bound for

the number of leaves of T of at most
∑m

j=0

(

2md
j

)

≤ (2md)m. Thus it immediately

follows that at most (2md)m equivalence queries are made. Since at most dlog ne+ d
membership queries are used by the binary search procedure when splitting a node,
it follows that the number of membership queries made by Alt-Learn-With-MQs

is O((2md)m · (log n+ d)). Finally, since it takes O(md) time to find the node corre-
sponding to the region containing the counterexample and at most O(log n+ d) time
for each binary search, it follows that the time complexity of Alt-Learn-With-MQs

is O((2md)m+1 · (log n+ d)).
Thus Alt-Learn-With-MQs achieves exact identification for any g ∈

⋃

≤m boxdn
using time and queries polynomial in d and log n for m constant. We note that for
m ≥ 6 we can remove a factor of 2m in the complexity by using the tighter upperbound
that

∑m

j=0

(

2md
m

)

≤ (md)m.

10. Concluding remarks. We have given an efficient algorithm that uses mem-
bership and equivalence queries to exactly identify any concept from

⋃

≤m boxdn for
d constant. Furthermore, this algorithm makes at most md + 1 equivalence queries,
all of which can be formulated as the union of O(md logm) axis-parallel boxes.

We have also shown how to extend our basic algorithm to learn efficiently, us-
ing only equivalence queries, any discretized geometric concept generated from any
number of halfspaces with any number of known (to the learner) slopes in a con-
stant dimensional space. In particular, our algorithm exactly learns (from equivalence
queries only) unions of discretized axis-parallel boxes in constant dimensional space
in polynomial time. Further, this algorithm can be modified to handle a polynomial
number of lies in the counterexamples provided by the environment.

Finally, we have introduced a new complexity measure, σ, that better captures
the complexity of the union of m boxes than simply the number of boxes and the
dimension. We presented an algorithm that uses time and queries polynomial in σ
and log n. In fact, the time and queries (both membership and equivalence) used by
this single algorithm are polynomial for either m or d constant.

A number of important open questions that we have not answered concern the
necessity of membership queries to exactly learn the class

⋃

≤m boxdn (or the more
general class of a discretized geometric concept) in time polynomial in d and log n
when the number of boxes (or defining hyperplanes) is constant.

While we have provided an algorithm to efficiently learn geometric concepts de-
fined by hyperplanes that are not axis parallel, to achieve this goal it was necessary
that the learner be given a priori knowledge as to the slopes of the hyperplanes. An
interesting direction is to explore the learnability (even for fixed dimensions) of ge-
ometric concepts defined by hyperplanes whose exact slopes are not known to the
learner.

Finally, it would be interesting to see if
⋃

≤m boxdn can be efficiently learned
in time polynomial in m and log n for d = O(logm) or in time polynomial in d
and log n for m = O(log d) (i.e., a generalization of the Blum and Rudich [9] result
that O(log n)-term DNF formulas are exactly learnable). Of course, since

⋃

≤m boxdn
generalizes the class of DNF formulas, it seems very unlikely that one could develop
an algorithm for the unrestricted case of

⋃

≤m boxdn that is polynomial in m, log n,
and d. It may be possible, however, to obtain a truly polynomial algorithm for some
subclass of

⋃

≤m boxdn.
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