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Abstract We consider markets consisting of a set of indivisible items, and buyers that
have sharp multi-unit demand. This means that each buyer i wants a specific number
di of items; a bundle of size less than di has no value. We consider the objective of
setting prices and allocations in order to maximize the total revenue of the market
maker. The pricing problem with sharp multi-unit demand buyers has a number of
properties that the unit-demand model does not possess, and is an important question
in algorithmic pricing. We consider the problem of computing a revenue maximizing
solution for two solution concepts: competitive equilibrium and envy-free pricing.
For unrestricted valuations, these problems are NP-complete; we focus on a realistic
special case of “correlated values” where each buyer i has a valuation vi q j for item j ,
where vi and q j are positive quantities associated with buyer i and item j respectively.
We present a polynomial time algorithm to solve the revenue-maximizing competitive
equilibrium problem. For envy-free pricing, if the demand of each buyer is bounded
by a constant, a revenue maximizing solution can be found efficiently; the general
demand case is shown to be NP-hard.
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1 Introduction

The problems considered in this paper are motivated by applications illustrated by the
following examples. A publisher (e.g., a TV network) has some items (such as adver-
tising slots) that are provided to potential customers (the advertisers). Each customer
i has a demand that specifies the number of items that i needs. Given the demand
requests from different customers, as well as the values that they are willing to pay,
the problem that the publisher faces is how to allocate the items to customers at which
prices. Demand is a practical consideration and has occurred in a number of applica-
tions. For instance, in TV (or radio) advertising (Nisan et al. 2009), advertisers may
request different lengths of advertising slots for their ads programs. In banner adver-
tising, advertisers may request different sizes or areas for their displayed ads, which
may be decomposed into a number of base units. A notable application of our model
is where advertisers choose to display their advertisement using rich media (video,
audio, animation) (Bezjian-Avery et al. 1998; Rosenkrans 2009) that would usually
need a fixed number of positions while text ads would need only one position each.
It has been formulated as a ‘consecutive’ sharp-demand model in sponsored search
in recent works (Ghosh et al. 2007; Deng et al. 2010, 2013). Hatfield (2009) studies
mechanisms (that do not use money) in this context: each agent has a “quota”, a fixed
number of items required, and has additive valuations for bundles of the items. Exam-
ples of this kind of situation include allocation of (multiple) projects to employees,
items among heirs, allocating equipment time to scientists, tutorial sessions to stu-
dents and players to sports teams. Our model contrasts with Hatfield (2009) in that we
consider mechanisms with money (market prices arise), and our valuation functions
are less general: for us, the matrix of buyer/item values has rank 1.

We study the economic problem as a two-sided market where the supply side is
composed of m indivisible items and each item j has a parameter q j , measuring the
quality of the item. For example, in TV advertising, inventories of a commercial break
are usually divided into slots of five seconds each, and every slot has an expected
number of viewers. The other side of the market has n potential buyers where each
buyer i has a demand di (the number of items that i requests) and a value vi (the benefit
to i for an itemof unit quality). Thus, the valuation that i obtains from item j is given by
vi j = vi q j . We suppose the valuation function is also additive by standard assumption
in position auction. The vi q j valuation model has been considered by Edelman et al.
(2005) and Varian (2007) in their seminal work for keywords advertising. We will
focus on the sharp demand case, where every buyer requests exactly di items. This
scenario captures some similarity but is still quite different from single-minded buyers
(i.e., each one desires a fixed combination of items) and is distinct from the relaxed
demand case, where every buyer requests at most di items. In the practical setting
of rich media advertisement, one slot can be sold as a single text ad, or some given
number of slots for one rich media ad. In practice, these slots would normally have to
be adjacent. Here we do not explicitly impose that as a requirement, but it turns out to
be satisfied by our solution, provided that slots are ordered by quality value.
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Given the valuations and demands from the buyers, the market maker decides on a
price vector p = (p j ) for all items and an allocation of items to buyers, as an output
of the market. The question is one of which output the market maker should choose to
achieve certain objectives. In this paper, we assume that the market maker would like
to maximize his own revenue, which is defined to be the total payment collected from
the buyers. While revenue maximization is a natural goal from the market maker’s
perspective, buyers may have their own objectives as well. We aim to model a “free
market” where consumers are price takers; thus, in a robust solution concept, one has
to consider the performance of the whole market and the interests of the buyers.

Competitive equilibrium provides such a solution concept that captures both mar-
ket efficiency and fairness for the buyers. In a competitive equilibrium, every buyer
obtains a best possible allocation that maximizes his own utility and every unallocated
item is priced at zero (i.e., market clearance). Competitive equilibrium is one of the
central solution concepts in economics and has been studied and applied in a vari-
ety of domains (Mas-Colell et al. 1995). Combining the considerations from the two
sides of the market, an ideal solution concept therefore would be revenue maximizing
competitive equilibrium.

For sharp multi-unit demand buyers, when the valuations vi j are arbitrary, even
determining the existence of a competitive equilibrium is NP-complete (see Appen-
dix). For our correlated valuation vi q j model, we have the following results.

Theorem 1 For sharp multi-unit demand, a competitive equilibrium may not exist;
even if an equilibrium is guaranteed to exist, a maximum equilibrium (in which each
price is as high as it can be in any solution, see Definition 2.3 and Example 2.2) may
not exist. Further, there is a polynomial time algorithm that determines the existence
of an equilibrium, and computes a revenue maximizing one if it does.

While (revenue maximizing) competitive equilibrium has a number of nice eco-
nomic properties and has been recognized as an elegant tool for the analysis of com-
petitive markets, its possible non-existence largely ruins its applicability. Such non-
existence is a result of the market clearance condition required in the equilibrium (i.e.,
unallocated items have to be priced at zero). In most applications, however, especially
in advertising markets, market makers are able to manage the amount of supplies. For
instance, in TV advertising, publishers can ‘freely’ adjust the length of a commercial
break. Therefore, the market clearance condition becomes arguably unnecessary in
those applications. This motivates the study of envy-free pricing (that is, envy-free
item pricing Feldman et al. 2012) which only requires the fairness condition in the
competitive equilibrium, where no buyer can get a larger utility from any other alloca-
tion for the given prices. In contrastwith competitive equilibrium, an envy-free solution
always exists (a trivial one is obtained by setting all prices to ∞). Once again, taking
the interests of both sides of the market into account, revenue maximizing envy-free
pricing is a natural solution concept that can be applied in those marketplaces.

The study of algorithmic computation of revenue maximizing envy-free pricing
was initiated by Guruswami et al. (2005), where the authors considered two special
settings with unit demand buyers and single-minded buyers and showed that a revenue
maximizing envy-free pricing is NP-hard to compute. Because envy-free pricing has
applications in various settings and efficient computation is a critical condition for its
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Table 1 Summary of previous work and our results

Competitive
equilibrium

Envy-free pricing

Unit demand
(general values vi j )

Existence Yes (Shapley and Shubik
1971)

Yes (trivial)

Max revenue
computation

P (Shapley and Shubik 1971,
DGS86)

NP-hard (Guruswami et al.
2005)

Sharp multi-unit
demand
(vi j = vi q j )

Existence Not always (P decidable)
(NP-hard for general vi j )

Yes (trivial)

Max revenue
computation

P (if one exists) P (constant demand) NP-hard
(arbitrary demand)

applicability, there is a surge of studies on its computational issues since the pioneering
work of Guruswami et al. (2005), mainly focusing on approximation solutions and
special cases that admit polynomial time algorithms, e.g., Hartline and Koltun (2005),
Balcan and Blum (2006), Briest and Krysta (2006), Balcan et al. (2008), Briest (2008),
Chen et al. (2011), Fiat andWingarten (2009), Elbassioni et al. (2009), Chen and Deng
(2014) and Grandoni and Rothvoß (2011).

The NP-hardness result of Guruswami et al. (2005) for unit demand buyers implies
that we cannot hope for a polynomial time algorithm for general vi j valuations in the
multi-unit demand setting, even for the very special case when one has positive values
for at most three items (Chen and Deng 2014). However, it does not rule out positive
computational results for special, but important, cases of multi-unit demand. For vi q j

valuations with multi-unit demand, where the hardness reductions of Guruswami et
al. (2005) and Chen and Deng (2014) does not apply, we have the following results.

Theorem 2 There is a polynomial time algorithm that computes a revenuemaximizing
envy-free solution in the sharp multi-unit demand model with vi q j valuations if the
demand of every buyer is bounded by a constant. On the other hand, the problem is
NP-hard if the sharp demand is arbitrary, even if there are only three buyers.

For relaxed multi-unit demand, a standard technique can reduce the problem to the
unit-demand version: each buyer i with demand di can be replaced by di copies of
buyer i , each of whom requests one item. Note that under the sharp demand constraint,
this trick is no longer applicable.

We summarize our results in the following table.Here,we have a complete overview
of the existence and computation of competitive equilibriumand envy-free pricingwith
multi-unit demand buyers.Most of our results are positive, suggesting that competitive
equilibrium and envy-free pricing are candidate solution concepts to be applicable in
the domains where the valuations are correlated with respect to the quality of the items
(Table 1).

Despite the recent surge in the studies of algorithmic pricing, multi-unit demand
models have not received much attention. Most previous work has focused on two
simple special settings: unit demand and single-minded buyers, but arguably multi-
unit demand has much more applicability. While the relaxed demand model shares
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similar properties to unit demand (e.g., existence, solution structure, and computation),
the sharp demand model has a number of features that unit demand does not possess.

• Existence of equilibrium In unit or relaxed demand case, the competitive equi-
librium always exists, moreover, the maximum and minimum equilibrium (an
equilibrium price vector no more than any equilibrium price vector in each coordi-
nates) always exists. As discussed above, a competitive equilibrium may not exist
in the sharp demand model. Further, even if a solution exist, the solution space
may not form a distributive lattice (Any price vector between the minimum equi-
librium price vector and maximum equilibrium price vector in each coordinate is
an equilibrium price vector).

• Over-priced items In unit or relaxed demand, the price p j of any item j is always
at most the value vi j of the corresponding winner i . This no longer holds for
sharp multi-unit demand. Specifically, even if p j > vi j , buyer i may still want to
get j since his net profit from other items may compensate his loss from item j
(see Example 2.3).1 This property enlarges the solution space and adds an extra
challenge to finding a revenue maximizing solution.

Our techniques To compute a competitive equilibrium, we first find a ‘candidate’
winner set (at least one optimal winner set is a candidate winner set, see Definition
4.1 for details), which can be proved to be an equilibrium winner set if a competitive
equilibrium exists; then, with this set, we transform the computation of competitive
equilibria to a linear program of exponential size, which can be solved by the ellipsoid
algorithm in polynomial time. The situation becomes complicated when finding an
optimal envy-free solution. Actually, we prove that it is NP-hard to compute an optimal
envy-free solution even if there are only three buyers. Hence, our efforts focus on the
special, yet very important bounded-demand case. To compute an optimal envy-free
solution for bounded demand, certain ‘candidate’ winner sets (the number of such
sets is polynomial) are defined and found; and crucially, there is at least one optimal
winner set in our selected candidate winner sets. For each ‘candidate’ winner set, if
the demand is bounded by a constant, we present a linear programming to characterize
its optimal solution when the allocation is known. Finally, a dynamic programming
algorithm is provided to find the allocation sets when a ‘candidate’ winner set is fixed.
Both the linear programming and the dynamic programming run in polynomial time.

1.1 Related work

There are extensive studies on multi-unit demand in economics, see, e.g., Ausubel and
Cramton (1996), Engelbrecht-Wiggans andKahn (1998), Cantillon andMartin (2013).
Our study focuses on sharp demand buyers. An alternative model is when buyers have
relaxed multi-unit demand (i.e., one can buy a subset of at most di items), where it is
well known that the set of competitive equilibrium prices is non-empty and forms a

1 This phenomenon does occur in our real life. For example, in most travel packages offered by travel
agencies, they could lose money for some specific programs; but their overall net profit could always be
positive.
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distributive lattice (Shapley and Shubik 1971; Gul and Stacchetti 1999). This imme-
diately implies the existence of an equilibrium with maximum possible prices; hence,
revenue is maximized. Demange et al. (1986) proposed a combinatorial dynamics
which always converges to a revenue maximizing (or minimizing) equilibrium for
unit demand; their algorithm can be easily generalized to relaxed multi-unit demand.

From an algorithmic point of view, the problem of revenue maximization in envy-
free pricing was initiated by Guruswami et al. (2005), who showed that computing an
optimal envy-free pricing is APX-hard for unit-demand bidders and gave an O(log n)

approximation algorithm. Briest (2008) showed that given appropriate complexity
assumptions, the unit-demand envy-free pricing problem in general cannot be approxi-
matedwithinO(logε n) for some ε > 0.Hartline andYan (2011) characterized optimal
envy-free pricing for unit-demand and showed its connection to mechanism design.
For the multi-unit demand setting, Chen et al. (2011) gave an O(log D) approximation
algorithm when there is a metric space behind all items, where D is the maximum
demand, and Briest (2008) showed that the problem is hard to approximate within a
ratio of O(nε) for some ε, unless N P ⊆ ⋂

ε>0 BPT I ME(2n
ε
). For the problem of

maximizing social welfare via truthful mechanisms, Krysta and Ventre (2010) investi-
gates a similar sharp demand model for combinatorial auctions in the case that bidders
all have the same demand d. Krysta and Ventre (2010) obtains positive algorithmic
results for approximation.

Recent work by Feldman et al. (2012) studies envy-free revenue maximization
problem with budget but without demand constraints and presents a 2-approximate
mechanism for the envy-free pricing problem. Another line of research is on single-
minded bidders, including, for example, Guruswami et al. (2005), Balcan et al. (2008),
Balcan and Blum (2006), Briest and Krysta (2006), Cheung and Chaitanya (2008) and
Elbassioni et al. (2009). To the best of our knowledge, this paper is the first to study
algorithmic computation of sharp multi-unit demand. Most related work to this is a
follow-up paper (Bilò et al. 2013), where the authors prove that, based on our work,
the maximum revenue of envy-free solutions for vi q j valuation with sharp multi-unit
demand cannot be approximated within a factor O(m1−ε) for arbitrary demands, for
any ε > 0, unless P = NP, and provide a simple O(m)-approximation algorithm. Bilò
et al. (2013) also studies an interesting subclass of “proper” instances and gives a tight
2-approximation algorithm for this class. Deng et al. (2013) investigates a “consecutive
demand” variant in which items are arranged in a sequence and buyers want items that
are consecutive in the sequence.

2 Preliminaries

2.1 Settings and definitions

We have a market with m indivisible items, M = {1, 2, . . . ,m}, where each item j
has unit supply and a parameter q j > 0, representing the quality or desirability of
j . In the market, there are also n potential buyers, N = {1, 2, . . . , n}, where each
buyer i has a value vi > 0, which gives the benefit that i obtains for each unit of
quality. Hence, the valuation that buyer i has for item j is vi j = vi · q j . We suppose
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the valuation function is also additive. In addition, each buyer i has a demand request
di ∈ Z

+, which specifies the number of items that i would like to get. We assume that
di is a sharp constraint, i.e., i gets either exactly di items2 or nothing at all. Our model
therefore defines a market with multi-unit demand buyers and unit supply items. For
any subset of buyers S ⊆ N , we use d(S) = ∑

i∈S di to denote the total demand of
items by buyers in S.

An outcome of the market is a tuple (p,X), where

• p = (p1, . . . , pm) ≥ 0 is a price vector, where p j is the price charged for item j ;
• X = (X1, . . . , Xn) is an allocation vector, where Xi is the set of items that i wins.
If Xi �= ∅, we say i is a winner and have |Xi | = di due to the demand constraint;
if Xi = ∅, i does not win any items and we say i is a loser. Further, since every
item has unit supply, we require Xi ∩ Xi ′ = ∅ for any i �= i ′.

• If j ∈ Xi , we use i = b( j) to represent the buyer of j ∈ M .

Given an output (p,X), let ui (p,X) denote the utili t y of i . That is, if Xi �= ∅, then
ui (p,X) = ∑

j∈Xi
(vi j − p j ); if Xi = ∅, then ui (p,X) = 0.

Definition 2.1 (Envy-freeness) We say a tuple (p,X) is an envy-free solution if every
buyer is envy-free, where a buyer i is envy-free if the following conditions are satisfied:

• if Xi �= ∅, then (i) ui (p,X) ≥ 0, and (ii) for any other subset of items T with
|T | = di , ui (p,X) ≥ ∑

j∈T (vi j − p j );
• if Xi = ∅ (i.e., i wins nothing), then, for any subset of items T with |T | = di ,∑

j∈T (vi j − p j ) ≤ 0.

Envy-freeness captures fairness in the market — the utility of everyone is maxi-
mized at the corresponding allocation for the given prices. That is, if i wins a subset
Xi , then i cannot obtain a higher utility from any other subset of the same size; if i
does not win anything, then i cannot obtain a positive utility from any subset with size
di . It is easy to see that an envy-free solution always exists (e.g., set all prices to be ∞
and allocate nothing to every buyer).

Another solution concept we will consider is competitive equilibrium, which
requires that, besides envy-freeness, every unsold item must be priced at zero (or
at any given reserve price). Such market clearance condition captures efficiency of the
whole market. The formal definition is given below.

Definition 2.2 (Competitive equilibrium)We say a tuple (p,X) is a competitive equi-
librium if it is envy-free, and for each item j , p j = 0 if no-one wins j in the allocation
X.

For a given output (p,X), the revenue collected by the market maker is defined as∑n
i=1

∑
j∈Xi

p j . Note that by the definition of competitive equilibrium, the revenue
collected from a competitive equilibrium is

∑m
i=1 p j . We are interested in revenue

maximizing solutions, specifically, revenue maximizing competitive equilibrium (if

2 By the nature of the solution concepts considered in the paper, it can be assumedwithout loss of generality
that i will not get more than di items.
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one exists) and revenuemaximizing envy-free pricing. Themain objective of the paper
is algorithmic computations of these two optimization problems.

To simplify the following discussions,we sort all buyers and items in non-increasing
order of their unit values and qualities, respectively, i.e., v1 ≥ v2 ≥ · · · ≥ vn and
q1 ≥ q2 ≥ · · · ≥ qm . Let K be the number of distinct values in the set {v1, . . . , vn}.
Let A1, . . . , AK be a partition of all buyers where each Ak , k = 1, 2, . . . , K , contains
the set of buyers that have the kth largest value.

2.2 Examples

It is well known that a competitive equilibrium always exists for unit demand buyers
(even for general vi j valuations) (Shapley and Shubik 1971); for our sharp multi-unit
demand model, however, a competitive equilibrium may not exist, as the following
example shows.

Example 2.1 (Competitive equilibrium need not exist) There are two buyers i1, i2
with values vi1 = 10 and vi2 = 9, and demands di1 = 1 and di2 = 2, respectively,
and two items j1, j2 with unit quality q j1 = q j2 = 1. If i1 wins an item, without
loss of generality, say j1, then j2 is unsold and p j2 = 0; by envy-freeness of i1,
we have p j1 = 0. Thus, i2 envies the bundle { j1, j2}. If i2 wins both items, then
p j1 + p j2 ≤ vi2 j1 + vi2 j2 = 18, implying that p j1 ≤ 9 or p j2 ≤ 9; thus, i1 is not
envy-free. Hence, there is no competitive equilibrium in the given instance.

In the unit demand case, it is well-known that the set of equilibrium prices forms a
distributive lattice; hence, there exist extremes which correspond to the maximum and
the minimum equilibrium price vectors. In our multi-unit demand model, however,
even if a competitive equilibrium exists, maximum equilibrium prices may not exist.

Definition 2.3 (Maximum equilibrium) A price vector p is called a maximum equi-
librium price vector if for any other equilibrium price vector q, p j ≥ q j for every item
j . An equilibrium (p,X) is called a relaxed maximum equilibrium if p is a maximum
price vector.

Example 2.2 (Maximum equilibrium need not exist) There are two buyers i1, i2 with
values vi1 = 10, vi2 = 1 and demands di1 = 2, di2 = 1, and two items j1, j2 with
unit quality q j1 = q j2 = 1. It can be seen that allocating the two items to i1 at prices
(19,1) or (1,19) are both revenue maximizing equilibria; but there is no equilibrium
price vector which is at least both (19,1) and (1,19).

2.3 Over-priced items

Because of the sharp multi-unit demand, an interesting and important property is that
it is possible that some items are ‘over-priced’; this is a significant difference between
sharp multi-unit and unit demand models. Formally, in a solution (p,X), we say an
item j is over-priced if there is a buyer i such that j ∈ Xi and p j > vi q j . That is, the
price charged for item j is larger than its contribution to the utility of its winner.
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Example 2.3 (Over-priced items in a revenue maximizing solution) There are two
buyers i1, i2 with values vi1 = 20, vi2 = 10 and demands di1 = 1 and di2 = 2,
and three items j1, j2, j3 with qualities q j1 = 3, q j2 = 2, q j3 = 1. We can see that
the allocations Xi1 = { j1}, Xi2 = { j2, j3} and prices (45,25,5) constitute a revenue
maximizing envy-free solution with total revenue 75, where item j2 is over-priced.
If no items are over-priced, the maximum possible prices are (40,20,10) with total
revenue 70.

We have the following characterization for over-priced items in an equilibrium
solution.

Lemma 2.1 For any given competitive equilibrium (p,X), the following claims hold:

• If there is any unallocated item, then there are no over-priced items.
• At most one winner can have over-priced items; further, that winner, say i , must
be the one with the smallest value among all winners in the equilibrium (p,X).
That is, for any other winner i ′ �= i , we have vi ′ > vi .

Proof The first claim is obvious since any unallocated item j ′ is priced at 0; thus if
there is a winner i and item j ∈ Xi such that p j > vi q j , then i would envy the subset
Xi ∪ { j ′}\{ j}.

To prove the second claim, suppose there are two winners i, i ′ where vi ≥ vi ′ , and
suppose that i has over-priced item j . Since i ′ is envy-free, his own utility must be
non-negative; we know there is an item j ′ ∈ Xi ′ such that vi ′q j ′ ≥ p j ′ . This implies
that vi q j ′ ≥ p j ′ ; thus, i would envy the subset Xi ∪ { j ′}\{ j}, a contradiction. �

2.4 Properties

We present some observations regarding envy-freeness and competitive equilibrium.
Our first observation implies that a winner is envy-free if and only if he prefers each
of his allocated items to any other item.

Lemma 2.2 Given any solution (p,X) and any winner i , if i is envy-free then vi j −
p j ≥ vi j ′ − p j ′ for any items j ∈ Xi and j ′ /∈ Xi . On the other hand, if i is not
envy-free, then there is j ∈ Xi and j ′ /∈ Xi such that vi j − p j < vi j ′ − p j ′ .

Proof If i is envy-free but (for j ∈ Xi and j ′ /∈ Xi ) vi j−p j < vi j ′−p j ′ , it is easy to see
that i would envy subset Xi ∪{ j ′}\{ j}, a contradiction. If i is not envy-free, then there
is a subset T of items with |T | = di such that

∑
j∈Xi

(vi j − p j ) <
∑

j ′∈T (vi j ′ − p j ′).
Since |Xi | = |T |, the inequality holds for at least one item, i.e., there is j ∈ Xi and
j ′ /∈ Xi such that vi j − p j < vi j ′ − p j ′ . �
Lemma 2.3 For any envy-free solution (p,X), suppose there are two buyers i, i ′ with
values vi > vi ′ and two items j and j ′ that are allocated to i and i ′ respectively, i.e.,
j ∈ Xi and j ′ ∈ Xi ′ . Then q j ≥ q j ′ .
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Proof By the above Lemma 2.2, we have

vi q j − p j ≥ vi q j ′ − p j ′

vi ′q j ′ − p j ′ ≥ vi ′q j − p j

Adding the two inequalities together, we get (vi − vi ′)(q j − q j ′) ≥ 0, yielding the
desired result. �

Lemma 2.3 implies that in any envy-free solution, the allocation of items is
monotone in terms of their amount of qualities and the values of the winners, i.e., win-
ners with larger values win items with larger qualities. However, it does not imply that
the value of every winner is larger than or equal to the value of any loser. For instance,
consider three buyers i1, i2, i3 and two items j1, j2 with q j1 = 2 and q j2 = 1. The
values and demands are vi1 = 1.3, vi2 = 1, vi3 = 0.9 and di1 = 1, di2 = 2, di3 = 1.
Then prices p j1 = 2.2, p j2 = 0.9 and allocations Xi1 = { j1}, Xi2 = ∅, Xi3 = { j2}
constitute a revenue maximizing envy-free solution. In this solution, vi2 > vi3 , but i2
does not win any item (because of the sharp demand constraint) whereas i3 wins item
j2.

Lemma 2.4 If there is a competitive equilibrium (p,X), then for any winner i , item
j ∈ Xi and unallocated item j ′, we have q j ≥ q j ′ .

Proof Since item j ′ is not allocated to any buyer, its price p j ′ = 0. By envy-freeness
and Lemma 2.2, we have vi q j ≥ vi q j − p j ≥ vi q j ′ − p j ′ = vi q j ′ , which implies that
q j ≥ q j ′ . �

By the above characterization, in any competitive equilibrium, all allocated items
have larger qualities. Hence, by Lemmas 2.3 and 2.4, we know that if the set of winners
is fixed in a competitive equilibrium, the allocation is determined implicitly as well.
On the other hand, we observe that Lemma 2.4 does not hold if (p,X) is an (revenue
maximizing) envy-free solution. For instance, consider two buyers i1, i2 with values
vi1 = 10, vi2 = 1 and demand di1 = 1, di2 = 10, and twelve items j1, j2, . . . , j12
with qualities q j1 = 10, q j2 = 5, q j3 = · · · = q j12 = 1. It can be seen that in the
optimal envy-free solution, we set prices p j1 = 91, p j2 = ∞, p j3 = · · · = p j12 = 1,
and allocate Xi1 = { j1}, Xi2 = { j3, . . . , j12}, which generates total revenue 91+10 =
101. In this solution, q j2 > q j3 = · · · = q j12 , but item j2 is not allocated to any buyer.

Lemma 2.5 Given an envy-free solution (p,X), a loser � and any subset T of d�

items, the following property cannot hold:
A non-empty subset of items in T are either allocated to winners with values smaller
than v� or priced at 0; any other elements of T are allocated to winners having the
same value v� as �.

Note that this is a result about envy-free prices, not just competitive equilibrium.

Proof Let (p,X) be an envy-free pair of price and allocation vectors. Given the loser
� and T satisfying the conditions of the statement of the Lemma, we show how to
construct a set T ′ of items that � envies.
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Let T = T0 ∪ T1 ∪ · · · ∪ Ts be a partition of T where T0 consists of items priced
at 0 in (p,X) and for i > 0, Ti = T ∩ Xi and s is the number of non-empty elements
in {T ∩ Xi , i ∈ [n]}. Note that any non-empty Ti satisfies vi ≤ v�, and if T0 = ∅ then
Ti �= ∅ for some i > 0 with vi < v�.

Note that T0 satisfies
∑

j∈T0 vi q j − p j ≥ 0, where the inequality is strict if T0 is
non-empty. Let T ′

0 = T0.
Consider any non-empty Ti (with i > 0). Let T ′

i be the |Ti | items j ∈ Xi that
maximize vi q j − p j . We have

∑
j∈T ′

i
vi q j − p j ≥ 0. Hence

∑
j∈T ′

i
v�q j − p j ≥ 0,

with strict inequality if vi < v�.
Summing these inequalities, we have

∑s
i=0

∑
j∈T ′

i
v�q j − p j ≥ 0, and in fact

the inequality is strict since at least one of the s + 1 inequalities is strict. Let T ′ =
T ′
0 ∪ T ′

1 ∪ · · · ∪ T ′
s ; |T ′| = |T | = d� and we have shown that � envies T ′. �

3 Computation of competitive equilibrium

Our main result of this section is the following.

Theorem 3.1 There is a polynomial algorithm to determine the existence of a com-
petitive equilibrium; and if one exists, it computes a revenue maximizing equilibrium.

Thus, both the existence problem and the maximization problem become tractable,
as a result of the correlated valuations vi j = vi q j .

The algorithm, calledMax- CE, is divided into two steps. The first step is to com-
pute a set of ‘candidate’winners if an equilibrium exists. The second step is to calculate
a ‘candidate’ equilibrium and verify if it is indeed a (revenuemaximizing) equilibrium.
Recall that Ak , 1 ≤ k ≤ K denotes all the buyers with the kth largest value.

Max- CE stage 1.

1. Let S∗ ← ∅ be the set of candidate winners
2. Let k ← 1 and let D ← m be the number of “available items”
3. While k ≤ K

• If di > D for every i ∈ Ak, let k ← k + 1
• Else

– Let S = {i | i ∈ Ak , di ≤ D}
– If d(S) > D

(a)If there is S′ ⊆ S s.t. d(S′) = D let S∗ ← S∗ ∪ S′,
and goto Max- CE stage 2

(b)Else, a competitive equilibrium does not exist,
and return

– Else d(S) ≤ D
(c)Let S∗ ← S∗ ∪ S, D ← D − ∑

i∈S di, k ← k + 1
4. Goto Max- CE stage 2

Note that in the above step 3(a) we check whether there is S′ ⊆ S such that
d(S′) = D; this is equivalent to solving a subset sum problem. However, in our
instance, each demand satisfies di ≤ m. Hence, a dynamic programming approach can
solve the problem in time O(n2m). Hence, stage 1 runs in strongly polynomial time.
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An input to Max- CE is all the n buyers with valuation vi and demand di and all
the m items with qualities q j .

Lemma 3.1 If an input to Max- CE has a competitive equilibrium (p,X), then
stage 1 will not return that an equilibrium does not exist at step 3(b).

Proof Let (p,X) be a competitive equilibrium of an input toMax- CE. In this proof,
when we refer to winning/losing buyers, or allocated/unallocated items, we mean with
respect to (p,X). In particular, let W be the set of winners of (p,X).

Suppose thatMax- CE stage 1 exits on the k-th iteration of the loop.We claim that
during the first k − 1 iterations, all buyers added to S∗ must be winners i.e. S∗ ⊂ W .
To see this, suppose alternatively that at iteration k′ < k, buyer � is the first loser to
be added to S∗. In that case, � has d� items that satisfy the conditions of Lemma 2.5,
contradicting envy-freeness (Suppose that the winners found by the algorithm during
thefirst k′−1 iterations are given their allocation in (p,X). At iteration k′, the algorithm
has more than d� available items, some of which are allocated to buyers with value
less than �, or are unallocated.). Second, we claim that S∗ = W ∩ (∪k−1

i=1 Ai ). We will
inductively shows that W ∩ (∪k−1

i=1 Ai ) ⊂ S∗. The base case k = 2, since step 3(c)
is executed during the first k − 1 iterations, each i ∈ A1 with di ≤ m will be added
to S∗, which gives that W ∩ A1 ⊂ S∗. Suppose now k − 2 is true, we argue that the
case k − 1 is true. Since step 3(c) is executed during the first k − 1 iterations, each
buyer i ∈ Ak−1 with di ≤ D will be added to S∗. This is the maximum number of
buyers in Ak−1 which can be added into W . Therefore, W ∩ (∪k−1

i=1 Ai ) ⊂ S∗. Since
S∗ ⊂ W ∩ (∪k−1

i=1 Ai ), the claim S∗ = W ∩ (∪k−1
i=1 Ai ) holds.

At the final iteration k we must have S �= ∅ (otherwise the algorithm will begin a
new iteration). Since d(S) > D, we have S\W �= ∅ (members of S have too much
demand for them all to be able to win). Since there is no subset S′ ⊆ S such that
d(S′) = D, we have d(S ∩ W ) < D. Hence, there are items that are not allocated
to buyers in S∗ ∪ (S ∩ W ). Note that these items are either priced 0 or allocated to
winners with values smaller than vk . Since S∗ = W ∩ (∪k−1

i=1 Ai ), there are D items
allocated to winners with values no more than vk or priced 0, among which there are
items either priced 0 or allocated to winners with values smaller than vk . Hence, for
any loser i ′ ∈ S\W where di ′ < D, we can find di ′ items that satisfy the condition of
Lemma 2.5: a contradiction. �
Lemma 3.2 A revenue maximizing competitive equilibrium (p,X) can be converted
to one with equal revenue whose winning set is S∗.
Proof Assume that the given instance has a competitive equilibrium (p,X) and that
Max- CE enters Max- CE stage 2 at the kth iteration with the set of candidates
S∗. Let W be the set of winners of (p,X), and let W ′ = W ∩ (A1 ∪ · · · ∪ Ak−1)

and W ′′ = W\W ′. Let S1 = S∗ ∩ (A1 ∪ · · · ∪ Ak−1) and S2 = S∗\S1 (note that
S2 ⊆ Ak). From the analysis of the above lemma and Lemma 2.5, we know that (i)
W ′ = S1, (ii) W ′′ ⊆ Ak , and (iii) d(W ′′) = d(S2). (i) is proved in Lemma 2.5. For
(ii), ifW ′′\Ak �= ∅, thenW ′′ ∩ Ak will be selected byMax- CE andMax- CE in stage
1 will enter k′th iteration with k′ > k, which contradicts that k is the final iteration in
stage 1 ofMax- CE . Hence, W ′′ ⊂ Ak . For (iii), in kth iteration of stage 1, ifMax-
CE enters step 3(a), then d(S2) = m − d(S1) = m − d(W ′) ≥ d(W ′′). Suppose
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d(S2) > d(W ′′), which means that some buyer in S2 will be a loser in (p,X). Due to
(ii), in (p,X), there are m − d(W ) items priced 0 and d(W ′′) items allocated to W ′′.
Hence, the loser in S2 of (p,X) will not be envy-free by Lemma 2.5, a contradiction.
If in kth iteration of stage 1, Max- CE enters step 3(c), then S2 will be winners by
previous argument and we have d(W ′′) = d(S2). Thus, the only difference between
S∗ andW lies in the selection of buyers in Ak (this is due to possibly multiple choices
in step 3(a) inMax- CE stage 1). Due to envy-freeness, we have

∑

i∈W ′′\S2
ui (p,X) =

∑

i∈W ′′\S2

∑

j∈Xi

(vi q j − p j ) ≥ 0 ≥
∑

i∈S2\W ′′
ui (p,X)

Since all buyers in W ′′\S2 and S2\W ′′ have the same value, we know that the above
inequalities are tight. Thus, if we reassign the items in ∪i∈W ′′ Xi to the buyers in S2

and keep the same prices, the resulting output will still be an equilibrium. �
Given the above characterization, the second step of the algorithm Max- CE is

described inMax- CE stage 2. In the LP ofMax- CE stage 2, there arem variables
where each item j has a variable p∗

j . The first two constraints ensure that the price
vector is a set of feasible market clearing prices. The third condition guarantees that
all winners are envy-free. The last condition says that for each loser i and any subset
of items T with T = |di |, i cannot obtain a positive utility from T . Notice that it
is possible that there are exponentially many combinations of T ; thus the LP has an
exponential number of constraints. However, observe that for any given solution p∗,
it is easy to verify if p∗ is a feasible solution of the LP or find a violated constraint. In
particular, for every loser i , we can order all items j in decreasing order of vi q j − p∗

j
and verify the subset T composed of the first di items; if i cannot obtain a positive
utility from such T , then i is envy-free. Therefore, there is a separation oracle to the
LP, and thus, the ellipsoid method can solve the LP in polynomial time. Hence, the
total running time of Max- CE is polynomial.

Max- CE stage 2.

5. Allocation X∗ is constructed as follows:
• Let X∗

i ← ∅, for each buyer i /∈ S∗
• For each i ∈ S∗ in non-increasing order of vi

– allocate di of the remaining items to i in non-increasing
order of q j

6. Price p∗ is computed according to the following linear program:

max
∑

i∈S∗
∑

j∈X∗
i
p∗
j

s.t. p∗
j ≥ 0 ∀ j

p∗
j = 0 ∀ j /∈ ∪i∈S∗ X∗

i

vi q j − p∗
j ≥ vi q j ′ − p∗

j ′ ∀ i ∈ S∗, j ∈ X∗
i , j ′ /∈ X∗

i
∑

j∈T (vi q j − p∗
j ) ≤ 0 ∀ i /∈ S∗, T with |T | = di

7. If the above linear program has a feasible solution, output the
tuple (p∗,X∗)

8. Else, return that a competitive equilibrium does not exist
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If the algorithm returns a tuple (p∗,X∗), certainly it is a competitive equilibrium;
further, it is a revenue maximizing equilibrium because of the objective function in
the LP. It is therefore sufficient to show the following claim to complete the proof of
Theorem 3.1.

Lemma 3.3 If there exists a competitive equilibrium, then stage 2 will not claim
that an equilibrium does not exist at step 8.

Proof If there is a competitive equilibrium (p,X), let W be the set of winners of the
equilibrium. By Lemma 3.1, we know that Max- CE will enter Max- CE stage 2.
By the above discussions, we know that W and S∗ only differ in the last kth iteration
of the main loop of Max- CE stage 1 and replacing all winners in W ∩ Ak with
S∗ ∩ Ak gives an equilibrium as well. Further, by Lemmas 2.3 and 2.4, the allocation
of items to the winners in W is fixed. Hence, the equilibrium price vector p gives a
feasible solution to the LP in the stage 2, which implies that the algorithm will not
claim that an equilibrium does not exist. �

4 Computation of envy-free pricing

In this section, we will ignore the market clearance condition (i.e. that unsold items
are priced at 0) and only consider envy-freeness. We noted earlier that an envy-free
solution always exists. Our main results are the following.

Theorem 4.1 For the sharp multi-unit demand with vi q j valuations, it is NP-hard to
solve the revenue-maximizing envy-free pricing problem, even if there are only three
buyers. However, if the demand of each buyer is bounded by a constant, then the
revenue-maximizing envy-free pricing problem can be solved in polynomial time.

We note that the correlated vi q j valuations are crucial to derive an efficient compu-
tation when the demands are bounded by a constant; in contrast, for unit-demand, the
envy-free pricing is NP-hard for general valuations vi j even if every buyer is interested
in at most three items (Chen and Deng 2014).

4.1 Algorithm for constant demands

Throughout this subsection, let � be a constant where di ≤ � for any buyer i , and
again, buyers and items are sorted according to their values and qualities. For any tuple
(p,X), we assume that all unsold items are priced at ∞. This assumption is without
loss of generality for envy-freeness. We will first explore some important properties
of an (optimal) envy-free solution, then at the end of the section present our algorithm.

4.1.1 Candidate winner sets

For a given set S of buyers, let max(S) and min(S) denote the buyer in S that has the
largest and smallest index, respectively.
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Definition 4.1 (Candidate winner set) Given a subset of buyers S �= ∅, let k =
max{r |Ar ∩ S �= ∅}. We say S is a candidate winner set if the total demand of buyers
in S is atmostm, i.e.,d(S) ≤ m, and for any i ∈ A1∪· · ·∪Ak−1\S,di >

∑
i ′∈S: i ′>i di ′ .

The definition of candidate winner set is closely related to envy-freeness. Indeed,
due to Lemma 2.5, the above definition defines a slightly larger set (than all possible
sets of winners in envy-free solutions) as the inequality does not consider all the buyers
completely in the same value category v j . However, this definition makes it easier for
us to describe and analyze the algorithm.

Proposition 4.1 For any envy-free solution (p,X), let S = {i | Xi �= ∅} be the set of
winners. Then S is either a candidate winner set or S = ∅.
Proof The claim follows directly from Lemma 2.5. �
By Proposition 4.1, in order to calculate the optimal envy-free solutions, we need
only to compute the envy-free solutions whose winner sets are candidate winner sets.
Therefore, Algorithm FindWinners(S) is a procedure for finding candidate winner
sets based on Lemma 2.5 and Proposition 4.1. It is an inductive procedure where the
buyer with larger value must be selected as a winner if his demand is no more than the
total demands of all the winners with smaller values (otherwise by Lemma 2.5, this
buyer will be a loser and not be envy-free if he is not selected).

FindWinners(S): Input a set of buyers S

• Let imax = max(S) and assume imax ∈ Ak
• Initially let WS = S
• For each buyer j ∈ A1 ∪ · · · ∪ Ak−1 in reverse order

– If j /∈ S and d j ≤ ∑

i∈WS : i> j
di, let WS ← WS ∪ { j}

• Return WS

Proposition 4.2 For any subset of buyers S, let WS =FindWinners(S).

• If d(WS) ≤ m, then WS is a candidate winner set and for any candidate winner
set S′ ⊇ S, WS ⊆ S′.

• If d(WS) > m, then there is no candidate winner set containing S.

Proof Obviously, if d(WS) ≤ m, then from the definition of candidate winner set,
we know WS is a candidate winner set. Still, by the definition of candidate winner
set, for any j in WS\S, any candidate winner set S′ ⊇ S, since d j ≤ ∑

i∈WS : i> j di ,
then d j ≤ ∑

i∈S′: i> j di (since S
′ ⊇ S), thus, j ∈ S′, hence, WS ⊆ S′. Therefore, the

second statement follows. �
Similar to FindWinners(S), FindLoser(S) is also an inductive procedure based on
the observation that if a loser is envy-free then a loser with the same valuation but with
a larger demand will also be envy-free. For more details, see the proof of Proposition
4.3.
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FindLoser(S): Input a candidate winner set S

• Let imin = min(S) and assume imin ∈ A j
• Initially let LS = ∅, and α = ∞
• For each k = j, j + 1, . . . , K

– Let i0 = argmin{di | i ∈ Ak\ S}
– If di0 < α, let LS ← LS ∪ {i0} and α ← di0• Return LS

Proposition 4.3 For any given tuple (p,X) with winner set S, suppose that S is a
candidate winner set and let LS =FindLoser(S). If all losers in LS are envy-free
with respect to (p,X), then all other losers are envy-free as well.

Proof Assume there exists a loser i ′ who is not envy-free, that is, such that there exists
a set T ′ of di ′ items such that

∑
j∈T ′(vi ′q j − p j ) > 0. This implies that there exists

T ⊆ T ′ with |T | = di such that
∑

j∈T (vi q j − p j ) ≥ ∑
j∈T (vi ′q j − p j ) > 0: a

contradiction.
Hence, by the rules of FindLoser, we know that if all the losers in LS are envy-

free, all other losers in A j ∪ · · · ∪ AK are envy-free as well. On the other hand, for
any loser j ∈ A1 ∪ · · · ∪ A j−1, since S is a candidate winner set, we know that
d j >

∑
i∈S: i> j di = d(S). Since all unsold items are priced at ∞, we know that j is

envy-free. Hence, all losers are envy-free. �

4.1.2 Bounding the number of candidate winner sets

We have the following bound on the number of candidate winner sets.

Lemma 4.1 For any k ∈ {2, . . . , K } and S ⊆ Ak, suppose d(S) ≤ m. Let

C = {
S ∪ S′ | S′ ⊆ A1 ∪ · · · ∪ Ak−1 and S ∪ S′ is a candidate winner set

}

Then |C| ≤
⌊

m
d(S)

⌋
.

Proof Let a = d(S) and � be the index of the buyer max(Ak−1). We add buyers
�, �−1, �−2, . . . , 1 into S in sequence andmaintain all the possible candidate winner
sets. Let C0 = {S}. In general, we have constructed Ct containing all the candidate
winner sets of {�, �−1, �−2, . . . , �− t +1}∪ S. We order Ct = {St,1, St,2, . . . , St,nt }
such that d(St,1) ≤ d(St,2) ≤ · · · ≤ d(St,nt ) ≤ m. We will inductively prove that
d(St,i ) ≥ id(S), for t = 0, 1, · · · , �.

The base case t = 0 is trivial since C0 = {S}. Suppose the claim holds for some
other value of t . That is, we have constructed Ct containing all the candidate winner
sets of {�, � − 1, � − 2, . . . , � − t + 1} ∪ S with d(St,i ) ≥ id(S), for any i ≤ nt .
Now for the case t + 1, which means we will add � − t into Ct to construct Ct+1. Let
ts = max{i : d(St,i ) < d�−t } if {i : d(St,i ) < d�−t } �= ∅, otherwise ts = 0. Let
St+1, j = St, j for j = 1, 2, · · · , ts , St+1, j+ts = St, j ∪ {� − t} for j = 1, 2, . . . , nt .
Clearly d(St+1,i ) ≥ id(S) for i ≤ ts by the inductive hypothesis. Also,

d(St+1, j+ts ) = d(St, j ) + d�−t ≥ jd(S) + d(St,ts ) ≥ ( j + ts)d(S).
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Let nt+1 = max{i : d(St+1,i ) ≤ m}. Clearly the claim follows for the case t + 1.
The lemma follows by the condition m ≥ d(S�,n�

) ≥ n�d(S). �

4.1.3 Optimal winner sets

Definition 4.2 (Optimal winner set) A subset of buyers S is called an optimal winner
set if there is a revenue maximizing envy-free solution (p,X) such that S is its set of
winners.

Proposition 4.4 Let S be an optimal winner set and let k = max{r | Ar ∩ S �= ∅}.
For any S′ ⊆ Ak, if d(S′) = d(S ∩ Ak), then S′ ∪ (S\Ak) is an optimal winner set as
well.

Before proving the proposition, we first establish the following claim.

Claim 4.1 Let (p,X) be a revenue-maximizing envy-free solution and let S be the
winning set in (p,X), and let k = max{r | Ar ∩ S �= ∅}. Then every buyer in Ak has
utility zero.

Proof Of course, every loser in Ak has utility zero. To show that every winner in Ak

has utility zero, we show that if there exists a winner who has positive utility, then
prices can be raised to the point where his utility becomes zero, while maintaining
envy-freeness (contradicting the assumption that (p,X) maximizes revenue).

Let imax be the buyer in Ak ∩ S with the highest utility. Let

δ = uimax(p,X)

dimax

.

We claim that (p+ δ,X) is an envy-free solution as well, where the price of each item
is increased by δ.

Obviously we have δ ≥ 0, and the conclusion holds trivially if δ = 0. Suppose
δ > 0. For the tuple (p+ δ,X), since all items have their prices increased by the same
amount, all losers are still envy-free and all winners would not envy the items they
don’t get. Hence, we need only to check that each winner still gets a non-negative
utility. For imax, we have uimax(p+ δ,X) = 0. For any other winner i �= imax, it holds
that vi ≥ vimax . Since i does not envy any item in (p,X), for any item j ′ ∈ Xi and
j ∈ Ximax , it holds that vi q j ′ − p j ′ ≥ vi q j − p j , hence, p j ′ ≤ vi (q j ′ − q j ) + p j .
Then, we get

p j ′ ≤
∑

j∈Ximax
(vi (q j ′ − q j ) + p j )

dimax

= vi q j ′ −
∑

j∈Ximax
(vi q j − p j )

dimax

.

This implies that

p j ′ + δ ≤ vi q j ′ .

Hence, ui (p + δ,X) = ∑
j ′∈Xi

(vi q j ′ − p j ′ − δ) ≥ 0. Therefore, (p + δ,X) is an
envy-free solution. �
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We are now ready for the proof of Proposition 4.4.

Proof of Proposition 4.4 Since S is an optimal winner set, there is an optimal envy-
free solution (p,X) such that S = {i | Xi �= ∅}. We construct a new allocationX′ with
winner set S′ ∪ (S\Ak) as follows:

• For any i /∈ Ak , X ′
i = Xi .

• For any i ∈ Ak\S′, X ′
i = ∅.

• For all the buyers in S′, allocate items in
⋃

i∈S∩Ak
Xi to them arbitrarily. (The

allocation is feasible as d(S′) = d(S ∩ Ak).)

Obviously, (p,X′) generates the same revenue as (p,X). We claim that (p,X′) is an
envy-free solution (this implies our desired result that S′∪(S\Ak) is an optimal winner
set). For any buyer i /∈ Ak , since prices are not changed, i is still envy-free.

Next we prove that all buyers i ∈ Ak are envy-free in (p,X′). Let J = ∪i∈S∩Ak Xi

be the set of items allocated to buyers in Ak ; we also have J = ∪i∈S′ X ′
i . Suppose first

that |S ∩ Ak | = |S′| = 1; in this case (p,X) differs trivially from (p,X′), so (p,X′)
is envy-free.

Alternatively, there is some buyer ī ∈ Ak with dī < d(S ∩ Ak). We show that any
item j ∈ J allocated to any buyer i ∈ Ak in (p,X′), affords zero utility to i , i.e. j
satisfies vi q j = p j . Let v be the value shared by all i ∈ Ak , i.e. v = vi for any i ∈ Ak .
Since (p,X) is envy-free, we have using Claim 4.1 that ui (p,X) = 0 for all i ∈ Ak ,
hence

∑
j∈J vq j − p j = 0. Suppose some j ∈ J does not satisfy vq j − p j = 0.

Arrange all j ∈ J in descending order of vq j − p j . Any proper prefix P of this
sequence satisfies

∑
j∈P vq j − p j > 0. Then buyer ī envies this prefix. �

4.1.4 Maximizing revenue for a given set of winners and allocated items

Suppose that S is a candidate winner set and T is a subset of items, where |T | = d(S).
We want to know if there is an envy-free solution such that S is the set of winners and
S wins items in T ; if yes, we want to find one that maximizes revenue. This problem
can be solved easily by a linear program with an exponential number of constraints
for each i ∈ S. The following combinatorial algorithm does the same thing; the idea
inside is critical to our main algorithm.

We will use the following notations: S = {i1, i2, . . . , it } with i1 < i2 < · · · < it
and T = { j1, j2, . . . , j�} with j1 < j2 < · · · < j�. Let ib(s) be the winner of js ,
s = 1, 2, . . . , �.

Remark 4.1 It should be noted that in LP(k), the objective function is equivalent to
maximize pk . Also note that di = O(1) for constraint (5) of MaxRevenue, for
any i ∈ [n]. By the pricing rule (2),(6) and (c) of MaxRevenue(S, T ), the total
revenue

∑
j∈T p j obtained is a linear increasing function of pk , hence maximizing

pk is equivalent to maximizing the total revenue. This remark will be used later in the
proof of Lemma 4.2.

We establish the following properties:

Proposition 4.5 Let (p,X) be computed in terms of LP(k∗) where k∗ ∈ Xit in
MaxRevenue(S, T ). Let ib(u) be the winner of ju. Use the convention j�−dit +1 = k∗.
For s = 1, 2, . . . , � − dit , we have
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1. vib(s)q js+1 − p js+1 ≥ 0;

2.
p js
q js

≥ p js+1
q js+1

;

3. p ji ≥ p ji+1 .

MaxRevenue(S, T ): Input a candidate winner set S and a subset of items
T where |T | = d(S)

• Let LS = FindLoser(S).
• Allocation X

– Let Xi ← ∅, for each buyer i /∈ S.
– Allocate items in T to buyers in S according to the following

rule (by Lemma 2.3):
Buyers with smaller indices obtain items with smaller indices.

• Price p
– Let Y = ∅
– For each item j /∈ T, let p j = ∞.
– For each item k ∈ Xit , do the following

(a)Let J be the last 2� items with the largest indices in T if
|T | > 2�
and J = T otherwise. Run the following linear program
(denoted by
LP(k)), which computes prices for items in Xit−1 ∪ Xit

min vit−1qk − pk

s.t. vit−1qk − pk ≥ vit−1q j − p j ∀ j ∈ Xit (1)
∑

j∈Xit

(vit q j − p j ) = 0 (2)

vit−1q j − p j = vit−1qk − pk ∀ j ∈ Xit−1 (3)

vit q j − p j ≤ vit q j ′ − p j ′ ∀ j ∈ Xit−1 , j
′ ∈ Xit (4)

∑
j∈J ′ (vi q j − p j ) ≤ 0 ∀ i ∈ LS, J ′ ⊆ J with |J ′| = di (5)

p js = vib(s) (q js − q js+1 ) + p js+1 ∀ js ∈ J − Xit − Xit−1 (6)

(b)If the LP(k) in (a) has a feasible solution, let Y ← Y ∪ {k}.
(c)For each item js ∈ Xi1 ∪ · · · ∪ Xit−2 in the reverse order

∗ let p js = vib(s) (q js − q js+1 ) + p js+1

(d)Denote the price vector computed above by p(k).
• If Y = ∅, return that there is no price vector p such that (p,X) is

envy-free.
• Otherwise,

– Let k∗ ∈ Y have the largest total revenue for which (p(k∗),X) is
an envy-free solution.

– Output the tuple (p(k∗),X) .

Proof For the first inequality, consider the last case, vit−1qk∗ − pk∗ ≥ 0.Assume it does
not hold. By (1) in AlgorithmMaxRevenue,

∑
j∈Xit

(vit−1q j − p j ) < 0. Therefore,
∑

j∈Xit
(vit q j − p j ) < 0, which contradicts Formula (2). Further, viu qk∗ − pk∗ ≥ 0

for all u : 1 ≤ u ≤ t − 1. That is, all other buyers have nonnegative utility on item
k∗. Now consider s = 1, 2, . . . , � − dit . By (6) and (c) in the algorithm, using the
convention j�−dit +1 = k∗, item 1 holds as following
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vib(s)q js+1 − p js+1 ≥ vib(s+1)q js+1 − p js+1 = vib(s+1)q js+2 − p js+2

≥ · · · ≥ vit−1qk∗ − pk∗ ≥ 0.

For the second inequality, by pricing rule (c), we know that

p js

q js
≥ p js+1

q js+1

holds if and only if

vib(s) (q js − q js+1) + p js+1

q js
≥ p js+1

q js+1

which holds if and only if

(vib(s)q js+1 − p js+1)(q js − q js+1) ≥ 0,

which follows from the first inequality.
The third inequality follows immediately from the second one and the non-

increasing ordering of q’s. �
Lemma 4.2 Suppose that S is a candidate winner set and T is a subset of items, where
|T | = d(S). Let X be the allocation computed in the procedureMaxRevenue(S, T ).
ThenMaxRevenue(S, T ) determines whether there exists a price vector p such that
(p,X) is an envy-free solution, and if the answer is ‘yes’, it outputs one that maximizes
the total revenue given by allocation X.

Proof Assume that there is a price vector p′ such that (p′,X) is a revenue maximizing
envy-free solution, with the winner set S and the sold item set T . In one direction, we
prove that the algorithm given the input sets S and T returns a solution with at least
the same total revenue. On another direction, we prove that the solution found by the
Algorithm is an envy-free solution for the fixed sets S and T . By Remark 4.1, this
sharp envy-free solution must be an optimal one. The two parts together complete the
proof.

For the first direction, let S = {i1, i2, . . . , it } with vi1 ≥ vi2 ≥ · · · ≥ vit and T =
{ j1, j2, . . . , j�} with q j1 ≥ q j2 ≥ · · · ≥ q j� . By Claim 4.1,

∑
j∈Xit

(vit q j − p′
j ) = 0.

Consider an item k′ = argmaxk∈Xit
(vit−1qk − p′

k). Define a new price vector p as
follows:

• For j ∈ Xit , p j = p′
j .

• For j ∈ Xit−1 , p j = vit−1(q j − qk′) + p′
k′ .

• For j ∈ Xi1 ∪ · · · ∪ Xit−2 , p j is defined according to step (c) of the procedure
MaxRevenue.

It is easy to see that the Formulas (1), (2) and (3) of LP(k′) are satisfied for price vector
p. By induction on the reverse order of items, we can show that p′ ≤ p (First, we
know, by envy-freeness, vit−1q j − p j ≥ vit−1qk − p′

k , for any k ∈ Xit and j ∈ Xit−1 ,
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which implies p j ≤ vit−1q j −maxk∈Xit
(vit−1qk − p′

k) = vit−1(q j −qk′)+ p′
k′ . Hence,

p′
j ≤ p j , for any j ∈ Xit−1 . Similarly, by induction, p j defined according to step (c)

of the procedure MaxRevenue is the maximum price that item j can be defined as.
Thus, p′ ≤ p). This implies that Formula (4) of LPk′ is satisfied as well. Further, since
prices are monotonically increasing, all losers (in particular, those in LS) are still
sharp envy-free, which implies Formula (5) is satisfied. Formula (6) is automatically
satisfied. Hence, p is a feasible solution of LP(k′). Hence, there is a feasible solution
in the above procedure MaxRevenue(S, T ) for item k′; this implies that Y �= ∅ in
the course of the procedure.

In addition, again because of p′ ≤ p, the total revenue generated by (p,X) is at
least that by (p′,X). By the objective of the linear program, we know that the revenue
generated by the solution at LP(k′) is at least that given by (p,X)Therefore, by Remark
4.1, MaxRevenue(S, T ) computes a revenue no less than that of (p,X).

For the second direction, let (p,X) be the output of the procedure
MaxRevenue(S, T ). We need to show that (p,X) is an envy-free solution. Suppose
(p,X) is computed in terms of LP(k∗), where k∗ ∈ Xit .

We first claim that all losers are sharp envy-free. By Proposition 4.3, we need only
to check if all the losers in LS are sharp envy-free for (p,X). Since p j = ∞, ∀ j /∈ T ,
we only need to check that all the losers in LS would not envy the items in T .

According to (5) in step (a) of MaxRevenue(S, T ), for any i ∈ LS , we know
that

∑
j∈T ′(vi q j − p j ) ≤ 0 for any T ′ ⊆ J with |T ′| = di . Choose T ′ =

{ j�−dit −di+1, j�−dit −di+2, . . . , j�−dit } ⊆ J (as di ≤ �). Let jmax be the largest index
in T ′ such that vi q jmax − p jmax ≤ 0. Then, by monotonicity of price-per-unit-quality
in Proposition 4.5, we have

q j1

(
vi − p j1

q j1

)
≤ q j2

(
vi − p j2

q j2

)
≤ · · · ≤ q jmax

(
vi − p jmax

q jmax

)
≤ 0,

and vi q j − p j > 0, ∀ j ∈ { jmax+1, jmax+2, . . . , j�−dit }.
Hence, for every loser i in LS , its largest di values in the set {vi q j − p j | j ∈ T } are

contained in
{
vi q j − p j | j ∈ { j�−dit −di+1, j�−dit −di+2, . . . , j�} ⊂ J

}
. Therefore, the

requirement (5) in step (a) of MaxRevenue(S, T ) would imply that for any T ′ ⊂ T
with |T ′| = di , we have

∑
j∈T ′(vi q j − p j ) ≤ 0, whichmeans that i is sharp envy-free.

Hence, all the losers are sharp envy-free for the tuple.
It remains to show that all winners are sharp envy-free as well. Before doing this,

by the pricing rule in subroutine (c), we can easily see that for any iu and j ∈ Xiu with
u < t , there exists item j ′ ∈ Xiu+1 such that p j = viu (q j − q j ′) + p j ′ . We will use
this particular property to show that all winners are sharp envy-free. Since p j = ∞
for any j /∈ T , it suffices to show that any winner would not envy the items of other
winners. The claim follows from the following arguments.

• All winners get non-negative utility. Formula (2) guarantees that it gets non-
negative utility for Xit . For any winner iu < it , none has over-priced item. It
follows by the fact that, ∀s ∈ J − Xit , p js = vib(s) (q js − q js+1) + p js+1 in the
algorithm and vib(s)q js+1 − p js+1 ≥ 0 in Proposition 4.5.

• Buyer it would not envy items won by any other winner iu , where iu < it . We
show this by induction. Formula (4) shows the base case holds (i.e., it would not
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envy items won by it−1). Then, for any item j ′ ∈ Xit and any item j ∈ Xiu , (notice
that by the pricing rule, there exists k ∈ Xiu+1 such that p j = viu (q j − qk) + pk),
we have

vit q j − p j = vit q j − (viu (q j − qk) + pk) = (vit − viu )(q j − qk) + vit qk − pk
≤ vit qk − pk ≤ vit q j ′ − p j ′,

where the first inequality follows from vit − viu ≤ 0 and q j − qk ≥ 0, and the
second inequality follows from the induction hypothesis.

• For any iu , iu < it , iu would not envy items won by it . Again, the proof is by
induction. For the base case iu = it−1, for any item j ∈ Xit−1 and item j ′ ∈ Xit ,
it holds that

vit−1q j − p j =vit−1q j −(vit−1(q j −qk∗) + pk∗)=vit−1qk∗ − pk∗ ≥vit−1q j ′ − p j ′ ,

where the first equality follows from Formula (3) and the inequality follows from
Formula (1). Hence, the base case holds. Next for any j ∈ Xiu and item j ′ ∈ Xit ,
(notice by pricing rule, there exists k ∈ Xiu+1 such that p j = viu (q j − qk) + pk),
we have

viu q j − p j = viu q j − (viu (q j − qk) + pk) = viu qk − pk
= (viu − viu+1)(qk − q j ′) + viu q j ′ + (viu+1(qk − q j ′) − pk).

Since viu −viu+1 ≥ 0 and qk −q j ′ ≥ 0, and by the induction hypothesis, viu+1qk −
pk ≥ viu+1q j ′ − p j ′ , it holds that viu q j − p j ≥ viu q j ′ − p j ′ .

• Every winner in S\{it } would not envy the items won by other winner in S\{it }.
Use the convention j�−dit +1 = k∗, recall ∀u, 1 ≤ u ≤ � − dit , p ju = vib(u)

(q ju −
q ju+1) + p ju+1 , then for 1 ≤ s < s′ ≤ � − dit ,

p js − p js′ =
s′−1∑

u=s

(p ju − p ju+1) =
s′−1∑

u=s

vib(u)
(q ju − q ju+1)

≤ vib(s)

s′−1∑

u=s

(q ju − q ju+1) = vib(s) (q js − q js′ ).

Rewrite p js − p js′ ≤ vib(s) (q js − q js′ ) as vib(s)q js − p js ≥ vib(s)q js′ − p js′ , which
means buyer with smaller index would not envy items won by buyer with larger
index. Similarly, note that

p js − p js′ =
s′−1∑

u=s

vib(u)
(q ju − q ju+1) ≥ vib(s′)

s′−1∑

u=s

(q ju − q ju+1)=vib(s′) (q js − q js′ ).

Rewrite p js − p js′ ≥ vib(s′) (q js − q js′ ) as vib(s′)q js − p js ≤ vib(s′)q js′ − p js′ , which
means buyer with larger index would not envy items won by buyer with smaller
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index. In all, every winner in S\{it }would not envy the items won by other winner
in S\{it }.

Therefore, we know that the tuple (p,X) is an envy-free solution. �
Observe that the computation of step (a) ofMaxRevenue does not depend on the

whole set T . In fact, we only need to know the last 2� items with largest indices in
T to check whether Y is empty or not. Therefore, whether MaxRevenue(S, T ) will
output a tuple only depends on the last 2� items in T . The prices for those 2� items
are determined in one of the linear programs there. Suppose that the last 2� items in T
are J and let jmin = min{ j ∈ J }, then if MaxRevenue(S, T ) output a tuple (p,X),
we can re-choose any other set Z ⊆ {1, 2, 3, . . . , jmin − 1} with |Z | = � − 2� and
runMaxRevenue(S, Z ∪ J ), which would always output an envy-free tuple (p′,X′)
as well. Similarly, ifMaxRevenue(S, T ) claims that there is no tuple (p,X)which is
an envy-free solution, thenMaxRevenue(S, Z ∪ J ) also claims that no tuple exists.
These observations are critical in our main algorithm Max- EF.

4.1.5 Only the winner set is known

Suppose that we are given a candidate winner set S = {i1, i2, . . . , it } and a set of
items J = { j1, . . . , j2�} with i1 < i2 < · · · < it and j1 < · · · < j2�. Assume that
� = d(S) > 2�. Let Y = {1, 2, . . . , j1 − 1} denote the set of items that have indices
smaller than j1. Our objective is to pick a subset Z ⊆ Y with |Z | = � − 2� such that
the revenue given by MaxRevenue(S, Z ∪ J ) is as large as possible. By steps (a)
and (c) of MaxRevenue, for the given set of winners S, the prices of the items in J
are already fixed (no matter which Z is chosen). Hence, to maximize revenue from
MaxRevenue(S, Z ∪ J ), it suffices to maximize revenue (or equivalently, prices)
from the items in Z . To this end, we use the approach of dynamic programming to
find an optimal solution.

Consider any subset Z = {z1, z2, . . . , z�−2�} ⊆ Y with z1 < z2 < · · · <

z�−2�; denote z�−2�+1 = j1. Suppose MaxRevenue(S, Z ∪ J ) will output a
tuple (p,X). As we already know the winner to which each z j will be allocated by
MaxRevenue(S, Z ∪ J ), let w j = vi if z j ∈ Xi , for j = 1, 2, . . . , � − 2�; further,
let w0 = 0. An important observation is that the values of all w j ’s are independent
to the selection of Z . By the pricing rule in MaxRevenue(S, Z ∪ J ), it holds that
pz j = w j (qz j − qz j+1) + pz j+1 , for j = 1, 2, . . . , � − 2�. Hence, we have

�−2�∑

j=1

pz j =
�−2�∑

j=1

⎛

⎝
�−2�∑

u= j

(pzu − pzu+1) + p j1

⎞

⎠

=
�−2�∑

j=1

�−2�∑

u= j

(
(qzu − qzu+1)wu

) + (� − 2�)p j1

=
�−2�∑

j=1

( j · qz j w j − j · qz j+1w j ) + (� − 2�)p j1
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=
[ �−2�∑

j=1

(
j · w j − ( j − 1) · w j−1

)
qz j

]

−
[
(� − 2�)(q j1w�−2� − p j1)

]

� R1 − R2,

where R1 and R2 are the first and second term of the difference, respectively. By
the rule of MaxRevenue, the allocation of z�−2� (thus, the value w�−2�) and the
price p j1 are fixed. Hence, to maximize

∑�−2�
j=1 pz j , it suffices to maximize R1. For

any α, β with 1 ≤ α ≤ β ≤ j1 − 1, let opt (α, β) denote the optimal value of the
following problem, denoted by DLP(α, β), which picks α items from the first β items
to maximize a given objective (recall thatw j is defined above for j = 1, . . . , �−2�).

max
α∑

j=1

(
j · w j − ( j − 1) · w j−1

)
qz j

s.t. z1 < z2 < · · · < zα, {z1, z2, . . . , zα} ⊆ {1, 2, . . . , β}.

The problem that maximizes R1 is exactly DLP(�−2�, j1−1), which can be solved
by the following dynamic programming.

Solve- DLP

1. Compute opt (1, 1), opt (1, 2), . . . , opt (1, j1 − 1).
2. Compute

opt (α, β+1) =
{
max

{
opt (α, β), opt (α − 1, β) + (α · wα − (α − 1)wα−1)qβ+1

}
if β + 1 ≥ α

0 Otherwise

3. Find a subset Z∗ that maximizes opt (� − 2�, j1 − 1).
4. Return the output of MaxRevenue(S, Z∗ ∪ J ).

The following claim is straightforward from the definition of DLP(α, β) and the
above dynamic programming.

Proposition 4.6 Given a candidate winner set S and a subset J of 2� items, the above
Solve- DLP picks in polynomial time a subset Z ⊆ Y with |Z | = � − 2� such that
the revenue given byMaxRevenue(S, Z ∪ J ) is the maximum if we guessed S and J
correctly.

4.1.6 Algorithm

In this subsection, we will present our main algorithm Max- EF. The algorithm has
two stages: stage 1 is to select the set of possible winners (candidate winners), and
stage 2 is designed to calculate all the ‘candidate’ maximum revenue and output an
optimal envy-free solution and maximum revenue.
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The algorithm is described as follows.

Max- EF stage 1.

1. Initialize D = ∅ (denote the collection of candidate winner

sets).

2. Find S ⊆ A1 such that d(S) = max
{
d(S′) | d(S′) ≤ m, S′ ⊆ A1

}
, let D ←

{S}.
3. For k = 2, . . . , K

• For each d such that 1 ≤ d ≤ m

– Let S = argmaxS{d(S)|d(S) ≤ d, S ⊂ Ak }.
– Let S0,1 = S, n0 = 1 and C0 = {S0,1}.
– Let � = |A1 ∪ A2 ∪ · · · ∪ Ak−1|.
– For t = 1, 2, . . . , � do:

∗ In general, we have constructed Ct containing all the

candidate winner sets of {� − t + 1, � − t + 2, . . . , �} ∪ S.

∗ We order Ct = {St,1, St,2, . . . , St,nt } such that d(St,1) ≤ d(St,2) ≤
· · · ≤ d(St,nt ) ≤ m.

∗ We now add � − t into Ct to construct Ct+1.

· Let ts = max{i : d(St,i ) < d�−t } if {i : d(St,i ) < d�−t } �= ∅,
otherwise ts = 0.

· Let St+1, j = St, j for j = 1, 2, · · · , ts.
· Let St+1, j+ts = St, j ∪ {� − t} for j = 1, 2, . . . , nt.
· Let nt+1 = max{i ≤ ts + nt : d(St+1,i ) ≤ m}.
· Let Ct+1 = {St+1,i : i ≤ nt+1, d(St+1,i ) ≤ m}.

– D ← D ∪ C�.

4. return D

stage 1 ofMax- EF is designed to select candidate winner sets one of which con-
tains exactly the winners in an optimal envy-free solution. For each 1 ≤ k ≤ K ≤ n
and 1 ≤ d ≤ m the problem is of one discussed in Lemma 4.1. It constructs C,
consisting of up to m

d subsets of total size O(mn
d ) in time O(mn2

d ). The total time com-
plexity then adds up to O(mn3 logm). Hence, Max- EF runs in strongly polynomial
time.

Proposition 4.7 There is an optimal winner set contained in the set D.

Proof Now suppose there is an optimal winner set W , if W ⊆ A1, then by Propo-
sition 4.4, the set S selected in above algorithm is an optimal winner set and we are
done. Otherwise, let imax = max(W ); suppose imax ∈ Ak∗ , where k∗ ≥ 2, and let
w∗ = d(W ∩ Ak∗). Now consider the k∗th andw∗th round of the for loop. There exists
T ⊆ Ak∗ such that d(T ) = w∗. By Proposition 4.4, we know that (W\(W ∩ Ak))∪ T
is an optimal winner set. By the procedure of the algorithm and Proposition 4.2 and
the proof of Lemma 4.1, the algorithm would find all the candidate winner sets with
the form C ∪ T where C ⊆ A1 ∪ · · · ∪ Ak−1. Hence, (W\(W ∩ Ak)) ∪ T ∈ D. �
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Max- EF stage 2.

5. For each candidate winner set S ∈ D
• Let � = d(S)

• If � ≤ 2�
– For any set J ⊆ {1, 2, . . . ,m} with |J | = �

∗ Run MaxRevenue(S, J ).

∗ If it outputs a tuple (p,X), let RS,J ←
n∑

i=1

∑

j∈Xi
p j

∗ Else, let RS,J ← 0.
• Else � > 2�

– For any set J ⊆ {� − 2� + 1, � − 2� + 2, . . . ,m} with |J | = 2�
∗ Let jmin ← min{ j ∈ J }
∗ Choose any Z ← {z1, . . . , z�−2�} ⊆ {1, 2, . . . , jmin−1}, where z1 >

z2 > · · · > z�−2�.
∗ Run MaxRevenue(S, J ∪ Z)

∗ If it outputs a tuple
· run Solve- DLP on S and J to get a tuple (p,X)

· let RS,J ←
n∑

i=1

∑

j∈Xi
p j

∗ Else, let RS,J ← 0
6. Output a tuple (p,X) which gives the maximum RS,J.

SinceMaxRevenue andSolve- DLP takes polynomial time, and |D| ≤ nm logm,
we know stage 2 ofMax- EF runs in polynomial time.

Proof of Theorem 4.1 Since Max- EF takes polynomial time, we only need to check
that Max- EF will output an optimal envy-free solution. By the above analysis, we
know thatMax- EFwill output an envy-free solution. Since there is an optimal winner
S ∈ D, there exists an optimal envy-free solution (p,X) such that S = {i |Xi �= ∅}.
W.l.o.g. suppose that the items in T = ⋃n

i=1 Xi are allocated to S by the rules of
allocation ofMaxRevenue(S, T ) (otherwise, there exists i > i ′ and j < j ′ such that
j ∈ Xi and j ′ ∈ Xi ′ , if vi = vi ′ , then vi q j − p j ≥ vi q j ′ − p j ′ and vi ′q j − p j ≤
vi ′q j ′ − p j ′ , hence vi q j − p j = vi q j ′ − p j ′ , then exchanging the allocation j and
j ′ without changing their prices would still make everyone envy-free. If vi < vi ′ ,
then by Lemma 2.3, we have q j = q j ′ , then exchanging allocation j and j ′ and their
prices would still make everyone envy-free). If d(S) ≤ 2�, then by the argument of
Lemma 4.2, we know RS,T ≥ ∑n

i=1
∑

j∈Xi
p j . Similarly if d(S) > 2�, let J be

the 2� largest values in T , by the argument of Lemma 4.2 and Proposition 4.6, we
know RS,J ≥ ∑n

i=1
∑

j∈Xi
p j . Therefore, the output (p,X) ofMax- EF is an optimal

envy-free solution.

4.2 Proof of hardness

We next prove the NP-hardness result that is part of Theorem 4.1, that envy-free
revenue maximization with vi q j valuations is NP-hard.

We reduce from the exact cover by 3-sets problem (X3C): Given a ground set
A = {a1, a2, . . . , a3n} and collection T = {S1, S2, . . . , Sm} where each Si ⊂ A and
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|Si | = 3, we are asked if there are n elements of T that cover all elements in A. We
assume that n ≤ m ≤ 2n − 1; it is easy to see that the problem still remains NP-
complete (as we can add dummy elements x, y, z to A and subsets including either x ,
y or z to T to balance the sizes of A and T ).

Given an instance of X3C, we construct a market with 3 buyers and n + m items
as follows. Let M = 3nm + 1, L = ∑3n

i=1 M
i . Note that L < 3nM3n , whose binary

representation is of size polynomial in m and n. Consider m values Ri = ∑
a j∈Si M

j ,
for i = 1, 2, . . . ,m, and rearranging if necessary, let R1 ≥ R2 ≥ · · · ≥ Rm be a
non-increasing order of these values. The valuations and demands of buyers are

d1 = n, v1 = 3

d2 = 2n, v2 = 3n + 1

n + 1
d3 = n, v3 = 2

The qualities of items are defined as follows: Let q j = L , for j = 1, 2, . . . , n, and
qn+ j = R j , for j = 1, 2, . . . ,m. Obviously, the unit values and qualities are in
non-increasing order, and the construction is polynomial.

Consider the winner set in an optimal envy-free solution (p,X). Since n ≤ m ≤
2n − 1, the possible winner sets are {1}, {2}, {3}, and {1, 3}. There is no envy-free
solution where {2} or {3} is the winner set, since buyer 1 would be envious. It remains
to consider {1} and {1, 3}. If the winner set is {1}, then the optimal revenue is v1 ·(∑n

i=1 qi
) = 3nL where buyer 1 gets the first n items. If the winner set is {1, 3},

it is not difficult to see that in the optimal envy-free solution (p,X), it holds that
X1 = {1, 2, . . . , n}. Suppose that X3 = { j1, j2, . . . , jn} ⊂ {n + 1, n + 2, . . . , n +m}
where j1 > j2 > · · · > jn . Applying the characterizations of optimal envy-freeness
i.e. procedure of MaxRevenue(S, T ), and Lemma 4.2 in Sect. 4.1.4, we will prove
the following claim. In the optimal solution (p,X) with X1 = {1, 2, . . . , n} and
X3 = { j1, j2, . . . , jn},
Claim 4.2

v1qk − pk = v1q j − p j ∀k, j ∈ X3

proof of Claim 4.2 According toMaxRevenue(S, T ), there exists k∗ : n+1 ≤ k∗ ≤
m+n such that (p,X) is the optimal solution of the following linear program(denoted
by LP(k∗)).

min v1qk∗ − pk∗

s.t. v1qk∗ − pk∗ ≥ v1q j − p j ∀ j ∈ X3 (1∗)
∑

j∈X3

(v3q j − p j ) = 0 (2∗)

v1q j − p j = v1qk∗ − pk∗ ∀ j ∈ X1 (3∗)
v3q j − p j ≤ v3q j ′ − p j ′ ∀ j ∈ X1, j ′ ∈ X3 (4∗)
∑

j∈X1∪X3
(v2q j − p j ) ≤ 0 (5∗)
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Please note that the last set of equations (6∗) in the original LP are not needed since
they are empty under the current restriction of three buyers. We first prove all the
inequalities in (1∗) must be equalities. Suppose it is not true. Then there exists � ∈ X3
such that

v1qk∗ − pk∗ > v1q� − p�.

Set a j = v1q j − p j , j ∈ X3. From (2∗), it follows that
∑

j∈X3
a j = (v1 − v3)∑

j∈X3
q j . Take the average

ā =
∑

j∈X3
a j

|X3| = (v1 − v3)
∑

j∈X3
q j

|X3|
We introduce the price vector p′ = (p′

1, p
′
2, · · · , p′

n, p
′
j1
, p′

j2
, · · · , p′

jn
) such that

∀ j ∈ X3: p′
j = v1q j − ā and ∀ j ∈ X1: p′

j = v1(q j − qk∗) + p′
k∗ . If we can prove

that (p′,X) is still a feasible solution for LPk∗
, then p′

k∗ > pk∗ (due to ak∗ > ā by
(1∗)). It results in a smaller objective value than v1qk∗ − pk∗ , a contradiction to the
optimality of (p,X).

First, (1∗) (2∗) (3∗) follows directly from definition of p′. We need only to check
(4∗) and (5∗). From p′

k∗ > pk∗ , ∀ j ∈ X1 p′
j = v1(q j − qk∗) + p′

k∗ > v1(q j −
qk∗) + pk∗ = p j . We have ∀ j ∈ X1: p′

j > p j . Hence, the inequality (5∗) holds. To
see inequality (4∗), notice

v3q j − p′
j = v3q j − v1(q j − qk∗) − p′

k∗

= v3q j − v1(q j − q j ′) − p′
j ′

= (v3 − v1)(q j − q j ′) + v3q j ′ − p′
j ′

≤ v3q j ′ − p′
j ′, ∀ j ∈ X1, j

′ ∈ X3.

Claim 4.2 is proven. �
By Claim 4.2 and the above condition (3∗), we have

v1qi − pi = v1q j − p j , ∀ i ∈ X1, j ∈ X3 (1)

By the above condition (2∗),

∑

j∈X3

p j = v3 ·
n∑

k=1

q jk . (2)

Combining (1) and (2), the total revenue is

R =
n∑

i=1

pi +
∑

j∈X3

p j = v1 ·
n∑

i=1

qi + (2v3 − v1) ·
n∑

k=1

q jk .
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Since buyer 2 is envy-free, we have

v2 ·
(

n∑

i=1

qi +
n∑

k=1

q jk

)

− R = (v2 − v1) ·
n∑

i=1

qi + (v1 + v2 − 2v3) ·
n∑

k=1

q jk ≤ 0.

Therefore, computing themaximum revenuewhen thewinner set is {1, 3} is equivalent
to solving the following program:

max R = v1 ·
n∑

i=1

qi + (2v3 − v1) ·
n∑

k=1

q jk

s.t. (v2 − v1) ·
n∑

i=1

qi + (v1 + v2 − 2v3) ·
n∑

k=1

q jk ≤ 0

j1 > j2 > · · · > jn, jk ∈ {n + 1, n + 2, . . . , n + m}, k = 1, 2, . . . , n. (3)

Considering v1 = 3, v2 = 3n+1
n+1 , v3 = 2, and qi = L , i = 1, 2, . . . , n, the program

(3) is equivalent to

max R = 3nL +
n∑

k=1

q jk

s.t.
n∑

k=1

q jk ≤ L

j1 > j2 > · · · > jn, jk ∈ {n + 1, n + 2, . . . , n + m}, k = 1, 2, . . . , n. (4)

It is not difficult to see that the maximum revenue (i.e., the optimal value of the above
program) is (3n + 1)L if and only if there is a positive answer to the instance of X3C.
This completes the proof. �

5 Conclusions

In this paper, multi-unit demand models of the matching market are studied and their
competitive equilibrium solutions and envy-free solutions are considered. For the sharp
demand model, a strongly polynomial time algorithm is presented to decide whether a
competitive equilibrium exists or not and if one exists, to compute one that maximizes
the revenue. In contrast, the revenue maximization problem for envy-free solutions
is shown to be NP-hard. In a special case when the sharp demands of all players are
bounded by a constant, a polynomial time algorithm is provide to solve the (envy-free)
revenue maximization problem if the demand of each buyer is bounded by a constant
number.

The sharp demand model is related to interesting applications such as sponsored
search market for rich media ad pricing. Our work serves a modest step toward an
efficient algorithmic solution. Our models may be further investigated to deal with
much more complicated settings of application problems.
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Appendix: Hardness for general valuations

Theorem 5.1 It is NP-complete to determine the existence of a competitive equilib-
rium for general valuations in the sharp demand model (even when all demands are
3, and valuations are 0/1).

Proof We reduce from exact cover by 3-sets (X3C): Given a ground set A =
{a1, . . . , a3n} and a collection of subsets S1, . . . , Sm ⊂ A where |Si | = 3 for each
i , we are asked whether there are n subsets that cover all elements in A. Given an
instance of X3C, we construct a market with 3n + 3 items and 9n + m + 1 buyers
as follows. Every element in A corresponds to an item; further, we introduce another
three items B = {b1, b2, b3}. We use index j to denote one item. For each subset Si ,
there is a buyer with value vi j = 1 if j ∈ Si and vi j = 0 otherwise; further, for every
possible subset {x, y, z}where x ∈ A and y, z ∈ B, there is a buyer with value vi j = 1
if j ∈ {x, y, z} and vi j = 0 otherwise; finally, there is a buyer with value vi j = 1 if
j ∈ B and vi j = 0 otherwise. The demand of every buyer is 3.
We claim that there is a positive answer to the X3C instance if and only if there

is a competitive equilibrium in the constructed market. Assume that there is T ∈
{S1, . . . , Sm} with |T | = n that covers all elements in A. Then we allocate items in A
to the buyers in T and allocate B to the buyer who desires B, and set all prices to be
1. It can be seen that this defines a competitive equilibrium.

On the other hand, assume that there is a competitive equilibrium (p,X). We first
claim that all the items in B must be allocated (Cl). Suppose the claim C1 is not true,
there are two cases: Case 1, there is only one unallocated items, since if the items in
B are allocated, either two items are allocated to some buyer or all three items are
allocated (because there only exist buyers who desire two items in B or three items
in B). W.l.o.g. suppose b1 and b2 together with some x ∈ A are allocated to a buyer
and b3 is unallocated, then we know pb1 + pb2 + px ≤ 3. If px = 3, it holds that
pb1 = pb2 = 0, then buyer who values B will not be envy-free. If px < 3, then we
either have pb1 + px < 3 or pb2 + px < 3. W.l.o.g. suppose pb1 + px < 3, then
the buyer who values the set {b1, x, b3} will not be envy-free. Case 2: all three items
in B would be unallocated, contradicting envy-freeness of the buyer who values B.
Second, we claim all the items are allocated (C2). Otherwise, by C1, there must exist
an item a j ∈ A that is not allocated to any buyer. Then we have pa j = 0. Consider
the buyers who desire subsets {a j , b1, b2}, {a j , b1, b3}, {a j , b2, b3}. They do not win
since a j is not sold. Due to envy-freeness, we have

123



1204 J Comb Optim (2016) 31:1174–1205

pb1 + pb2 ≥ 3

pb1 + pb3 ≥ 3

pb2 + pb3 ≥ 3

This implies that pb1 + pb2 + pb3 ≥ 4.5. Hence, the buyer who desires B cannot
afford the price of B and at least one item in B, say b1, is not allocated out, which
contradicts with C1.

Now since all items in A are allocated out, because of the construction of themarket,
we have to allocate all items in A to n buyers and allocate B to one buyer; the former
gives a solution to the X3C instance. �
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