
225

The Precision of Query Points as a Resource forLearning Convex Polytopes with Membership Queries
Paul GoldbergUniversity of WarwickDepartment of Computer ScienceEmail: pwg@dcs.warwick.ac.uk Stephen KwekUniversity of Texas at San AntonioDepartment of Computer ScienceEmail: kwek@jazz.cs.utsa.eduAbstractWe consider the problem of learning convexpolytopes frommembership queries only, wherethe learner is initially provided with a sin-gle interior point. The class of polytopeslearnable in this setting turns out to be thosewhose vertices can be e�ciently enumeratedgiven their bounding hyperplanes. It is anopen question whether in general one canenumerate the vertices of a given polytope intime polynomial in the number of vertices. Infact, we show that both problems are equiv-alent. We also give a query-based algorithmfor the related problem of piecewise linearfunction regression.The bit complexity of the instances in ourqueries and the time complexity are polyno-mial in the bit complexity of the coe�cientsof the equations de�ning the bounding hyper-planes. This is consistent with prior estab-lished results showing that the weights, notthe size, of a neural network determine thecomplexity of learning. As in previous posi-tive results on learning convex polytopes, theprecision of the instances queried can have`polynomially' high precision. Thus one canview the precision of the input to the mem-bership query oracle as a useful resource. Thisleads us to investigate learning environmentswhere this precision is limited.1 Introduction1.1 Our Main ResultIn this paper, we consider learning the concept classof intersections of halfspaces, i.e. convex polytopes, ind-dimensional Euclidean space. The instances in Eu-clidean space are labeled according to some target con-vex polytope P . Instances that lie inside P are classi�edpositive while those lying outside P are classi�ed neg-ative. Given an initial positive instance to start with,the learner's task is to determine P exactly by posing

membership queries (MQs) to an oracle that returns theclassi�cations of the instances of the learner's choosing.Clearly, if the equations de�ning the bounding hy-perplanes are allowed to be unrestricted unit-cost realnumbers, then learning is impossible even if the instancespace is one-dimensional and the target is a half inter-val. In this case, the learner is simply trying to identifya real number x by asking queries of the form: \x � y?".Regardless of how many MQs are made, the learner can-not determine x exactly but can only identify arbitrar-ily small intervals containing x. Thus, we assume thatthe coe�cients of the bounding hyperplanes are rationalnumbers. Further, we assume that the numerators anddenominators have values bounded by m. We call themaximum number of bits, dlogme needed to encode thenumerators and denominators the bit complexity of thetarget concept. The bit complexity of an instance is themaximum number of bits needed to encode the numer-ators and denominators of its (rational) components.We show that this class of convex polytopes in arbi-trary dimension can be identi�ed exactly if we may askmembership queries on instances with bit complexityhigher than that of the target concept. Our algorithmruns in time polynomial in the bit complexity � of thetarget concept, dimension d, and number of vertices andfacets (i.e. faces of dimension d � 1). This is subjectto the target polytope belonging to any class for whichthe vertex enumeration problem is solvable e�ciently.The paper [Pro94] gives examples of such classes. Animportant special case is when the target polytope is asimplex, and we can say that the number of vertices isjust d+1. In fact, we also show in this paper that bothour learning problem and the vertex enumeration prob-lem are essentially equivalent (See Theorem 10). Ouralgorithm assumes that the bit complexity b of the tar-get is known. In the case where � is not known, ouralgorithm will produce a polytope that approximates(in terms of its volume) the target by assuming � to besu�ciently small.1.2 Previous Work on Learning ConvexPolytopesConvex polytopes have been investigated extensively incomputational learning theory. They can be viewedas a continuous generalization of CNF Boolean formu-
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las which are also very well-studied. By using simpleprediction-preserving reductions it can be shown thatlearnability of the class of convex polytopes withoutmembership queries implies PAC-learnability of CNFformulas [PW90, Lit88]. The latter problem is one ofthe most challenging open problems in learning theory.In the following, we survey some of the relevant resultson the learning of convex polytopes.1.2.1 Learning Convex Polytopes in ArbitraryDimension is Hard in GeneralMostly negative results have been obtained for learn-ing in the case that the dimension is not held constant.Long and Warmuth [LW93] showed that learning con-vex polytopes (bounded convex polytopes) in the con-tinuous domain, without membership queries, is as hardas learning polynomial-size circuits, assuming that thechosen representation (whose size dictates a parameterin which the algorithm must be polynomial) is the list ofvertices, instead of bounding hyperplanes, of the poly-tope. It follows that if one-way functions exist, thenlearning convex polytopes is intractable.Learning convex polytopes in arbitrary dimensionremains di�cult even if the number of halfspaces is re-stricted to some small constant. Blum and Rivest [BR89]showed that �nding an intersection of two halfspacesthat is consistent with a sample of labeled points fromthe boolean domain, if it exists, is NP-complete. It hasbeen shown that in the boolean domain, exact learningfrom equivalence and membership queries remains NP-hard if the algorithm is required to �nd (as ours does)an intersection with the same number of halfspaces k,for any �xed k � 3 [AHHP98, PR94].1.2.2 Learning Convex Polytopes usingMembership QueriesOne way of making the learning of convex polytopestractable using membership queries only is to restrictthe number of halfspaces, and sometimes, also the di-mension. Bultman and Maass [BM91] presented an al-gorithm that learns a single halfspace in the discretizeddomain Z2m = (1; � � ��;m)2 using �(logm) membershipqueries in time O((logm)O(1)). Shevchenko [She87] in-vestigated the learning of a single halfspace in Znm =(1; :::;m)n in time polynomial in ((logm)n) by askingO((logm)(n�1)dn2 e+n) membership queries.Baum [Bau90] presented an algorithm that learnsintersections of two halfspaces from examples and mem-bership queries, or from examples alone if the distribu-tion obeys a symmetry condition (homogeneous). Thisresult has been extended by Blum et al. [BCGS95] tolearn intersections of two (not necessarily homogeneous)halfspaces where the membership queries on points thatare distance d from the bounding hyperplanes are unre-liable and the distribution has weight 0 within d of theboundary.1.2.3 Learning Convex Polytopes UsingMembership Queries and LabeledSample

With a membership query oracle, Baum [Bau91]presented an algorithm for solving the consistency prob-lems for, and hence Probably Approximately Correctly(PAC) learning, intersections of s halfspaces in n dimen-sions in time polynomial in s and n. He assumed thatthe sample labeled instances are drawn from a distri-bution that rule out with high con�dence pathologicalcon�gurations with several hyperplanes arbitrarily closeto one another or large fractions of the measure righton top of decision boundaries. Subsequently, Kwek andPitt [KP98] improved on his result by presenting an ef-�cient algorithm that works for arbitrary distributions.Their algorithm makes use of membership queries toresolve the credit assignment problem. That is, it par-titions the negative examples into sets where all the ex-amples in each set can be separated by the same bound-ing hyperplane of the target. This allows that learnerto construct a separating halfspace for each of the setsin the partition. Our polytopes learning algorithm pre-sented here can be viewed in some sense as an improve-ment over these results in that it does not requires aninitial sample, but just a single positive instance, tostart with. Moreover, we require the learner to exactlyidentify, instead of PAC learn, the target convex poly-tope.The limitations of our method presented here are�rst, that the target polytope must allow its verticesto be e�ciently enumerable (a su�cient condition forthis is that at most d facets should meet at any vertex).Moreover, the time complexity and number of mem-bership queries are polynomial not just in the numberof facets (as in these earlier algorithms) but also thenumber of vertices. These two constraints are necessaryfor our purely membership-query based learning setting,since with just membership queries as our resource, ev-ery vertex needs to be \inspected" with MQs to verifythat it has not been truncated by an additional undis-covered halfspace. Note that for general polytopes, itis very much an open question whether, given linear in-equalities representing their bounding hyperplanes, it ispossible to list all their vertices in time polynomial inthe number of vertices.Recently, Kwek [Kwe00] also presented an algorithmfor our problem of learning convex polytopes using mem-bership queries. However, his result assumes the tar-get is an upper convex polytope (i.e., unbounded fromabove) and the number of membership queries madeis polynomial in the bit complexity and the numberof faces (which could be exponential in the number offacets) of the target. He employed duality so that thebounding hyperplanes are points in the dual space anda membership query corresponds to asking whether ahyperplane cuts through the dual of the target (upperconvex) polytope. His algorithm is essentially a 'gift-wrapping' algorithm in the dual space that determinesthe dual of the target. Our algorithm is an improvementover Kwek's result in that the number of membershipqueries and the time complexity is polynomial in thenumber of vertices and number of facets. Further, wedo not need to assume that the target is unbounded
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from above.1.3 The Precision of the MQ OracleAt �rst glance, our result and the positive results inSection 1.2.3 seems to contradict the general consensusthat e�cient concept learning in arbitrary dimension(even when the number of halfspaces is small) is a dif-�cult task. However, these algorithms are e�cient be-cause of the use of a powerful membership query oracle.More speci�cally, the instances that are input to the or-acle can have bit complexity polynomially higher thanthe bit complexity of the target concept (as in our re-sult) or the bit complexity of the initial labeled sample(as in the PAC learnability results using membershipqueries noted in Section 1.2.3). We de�ne the precisionof the membership query oracle as the bit complexity ofqueried instances.Our result is consistent with various known resultsindicating that the size of the coe�cients is a moreimportant determinant of the complexity of the tar-get concept than the dimension. Recently, Abboundet. al. [AAB+99] showed that the number of member-ship queries needed to learn a linear threshold functionin the Boolean domain with positive integer weightsbounded by t requires O(nt) membership queries. Also,the worst case mistake bounds of Littlestone's Win-now on-line algorithm [Lit88] and its variants [CBLW95,KW94, HKW96] for learning linear threshold functionsare linear in the total number of bits needed to encodethe weights. Golea et. al. [GBLM98] showed that sam-ple complexity of a neural network is determined moreby the magnitude of the weights of the network than itssize.This suggests that the precision of the MQ oracleshould be viewed as a resource. If this precision is toohigh, even if it is polynomially higher, the learning al-gorithm may not be feasible. On the other hand, if itis the same as the bit complexity of the initial labeledsample, then the learning task is intractable. This isbecause learning intersections of k halfspaces for anyk � 3 using eqivalence and membership queries is NP-hard [AHHP98, PR94]. Thus, one would like to knowwhat can be learned if the precision of the MQ oracle isallowed to be a few bits more than the bit complexity ofthe target concept or the initial labeled sample so thatthe results obtained are more feasible, and the MQ ora-cle is powerful enough to learn a previously intractabletask.To this end, we extend Angluin's exact learningmodel [Ang88] for Boolean functions to real-valued func-tions in a natural way. In our extension, an equivalencequery oracle returns a point x together with f(x) if thetarget f di�ers from the hypothesis h of the learner atpoint x in the domain. Instead of having a membershipquery oracle, we have a valuation query oracle whichreturns f(x) on input x. The precision of the valua-tion query oracle is the bound on the maximum num-ber of bits needed to represent each component of theinstances in the valuation queries. The learner's task isto identify the target function in time, and hence with

a number of queries, that is polynomial in the represen-tational size of the target function and the number ofvariables.In this extended exact learning model, we inves-tigate the learnability of the function class of convexpiecewise linear functions CPLF . We can view a con-vex k-piecewise linear function f with domain Rd asf(x) = maxff1(x); :::; fk(x)gwhere the fi's are linear functions. The following ob-servation shows that e�cient exact learnability of thisfunction class would imply that DNF is e�ciently learn-able in the exact model.Observation 1 There is a prediction-preserving trans-formation of DNF Boolean formulas to convex piecewiselinear functions.Proof: Here, a boolean attribute has value either -1or +1 (instead of 0 or 1). Each term Ti = li1:::liki in fcan be represented as a functionfi : 1ki kiXj=1wij lijwhere wij = +1 if lij is a positive literal and �1 other-wise. Let f0 be the constant function (n � 1)=n. Con-sider the convex piecewise linear functions F formed byf0; :::; ft where t is the number of terms. It is straight-forward to check that a boolean instance x satis�es aterm Ti if and only if fi(x) = 1. Conversely, a booleaninstance x falsi�es a term Ti if and only if fi(x) �(n� 1)=n. Thus F maps all positive boolean instancesto 1 and all negative boolean instances to (n� 1)=n.Note that the above prediction-preserving transfor-mation is a bijection when the domain of the class ofconvex piecewise linear functions is restricted to f�1;+1gn.That is, the instances of our membership queries andvaluation queries are in the same domain. Therefore,the existence of an e�cient exact learning algorithmfor convex piecewise linear functions using equivalencequeries and/or valuation queries would imply DNFs arelearnable using (improper) equivalence queries and/ormembership queries. However, the observation does notapply when the domain of the target convex piecewiselinear functions is the real domain and a valuation queryoracle is available. In this case, there is no instancein boolean domain of the DNF learning problem thatcorresponds to an instance in the real domain of thefunction learning problem.We show that convex k-piecewise linear functionscan be learned with both equivalence queries and valu-ation queries in time polynomial in the dimension andk. The precision of the valuation query oracle is onebit more than the bit complexity of the counterexam-ples returned by the equivalence query oracle. Here,we assume that the attribute values of the counterex-amples returned by the equivalence query oracle have adecimal representation. If a rational representation isused, then the bit precision may need to be twice the
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bit complexity of the counterexamples. When the di-mension is �xed, we show that (improper) equivalencequeries alone can ensure e�cient learning. The last re-sult assumes that the approximating function need notbe a convex piecewise linear function.2 Some Lemmas Needed to EstablishOur Main ResultFor the sake of simplicity, we assume that the coe�-cients of the equations de�ning the target concept areintegers1 with absolute values bounded by �. The fol-lowing lemma by Maass and Turan states that the ver-tices are rational points of polynomially bounded bitcomplexity.Lemma 2 [MT94] 2 Suppose the coe�cients of theequations de�ning the target concept are integers withabsolute values bounded by �, then the vertices are inQd(8d�)3d where Q(8d�)3d = fab : 0 � jaj; jbj < (8d�)3dg.In our algorithm, we often need to determine wherea line segment with rational endpoints intersects a lin-ear hyperplane with bit complexity �. Note that, thebit complexity of this point of intersection is again a ra-tional point, and the problem is reduced to determininga number (i.e., the intersection point) on the rationalline. The next lemma states that this problem can besolved using binary search.Lemma 3 Let x be an arbitrary number in Qm =�ab : a; b 2 f0; � � �;mg	. Suppose we are given an or-acle that takes a rational input y 2 Q and answerswhether \x � y". Then we can identify the numberx in O (log(m)) time by making 3dlog(m)e queries tothe oracle.Proof: See Appendix A.Let H denote the set of bounding hyperplanes form-ing our target polytope. Without loss of generality, letus assume that the initial positive instance is the ori-gin o. The next two lemmas allow us to �nd a pointlying on an unidenti�ed hyperplane. With this point,Lemma 7 states that the unidenti�ed hyperplane canbe constructed.Lemma 4 Let H denote the set of bounding hyper-planes forming our target polytope. Suppose that theboundary of our current hypothesis is a proper subset H 0of H such that the polytope P 0 formed is not bounded.Then we can determine an instance p lying on somebounding hyperplane in H nH 0.1We can do so since any linear equation with rational co-e�cients can be expressed using integer coe�cients by mul-tiplying all the coe�cients by the least common multiple ofthe denominators of the coe�cients.2The original statement of this lemma is di�erent fromour version. The original lemma states that if the instancesspace is [0; � � �;m]d then any linear halfspace is equivalentto one with coe�cients in [0; � � �; (8dm)3d]. Our version is adual of the original lemma.

Proof: We begin by �nding a semi-in�nite ray withone end at the origin which is contained in the (un-bounded) polytope. Such a ray can be expressed asthe set of points of the form �(�1; �2; : : : ; �d) where �ranges over the non-negative real numbers. Suppose alinear threshold function f that de�nes a facet of P 0 isgiven by 
1x1 + 
2x2 + : : : + 
dxd � � (where the xi'sare coordinates and the 
i's are the parameters of f).Then f imposes the following linear constraint on theparameters of the ray: �1
1 + �2
2 + : : : + �d
d � � .Hence �nding an unbounded ray contained in P 0 can besolved by linear programming.Given a suitable ray R, there should exist a pointp on R which is on the border of the target polytopeP (since P is assumed to be bounded) and necessarilylying on a facet (i.e. a (d� 1)-face) of P which is givenby a linear threshold function other than the ones thatde�ne the facets of P 0.We can �nd p by binary search using membershipqueries, and p may be found to whatever precision weare allowed with the membership queries. The origin isalready known to lie in the interior of P , and we mayidentify a point onR that is exterior to P { starting froman initial guess of � = 1, we keep doubling our guessuntil the point �h�1; � � �; �di is outside the polytope.By Lemma 2, the number of guesses is polynomiallybounded.Lemma 5 Suppose our current hypothesis is an inter-section of a proper subset H 0 of H such that the poly-tope formed is bounded (convex polytope) P 0. Supposethat each vertex of P is in the intersection of exactly dfacets of P . Then we can determine an instance p lyingon some bounding hyperplane in H nH 0.Proof: Let P be the target polytope, P 0 the currenthypothesis (formed from a subset of P 's bounding hy-perplanes), so that P � P 0. The general idea is to tryto enumerate the vertices of P 0, checking that each oneis a vertex of P . Starting from a vertex v of P 0, where vis the intersection of d of the halfspaces de�ning P 0; callthis set Sv = fH1; : : : ; Hdg. A vertex v0 adjacent to vwill be de�ned by halfspaces Sv0 = Sv [fH 0g n fHig forsome Hi 2 Sv , H 0 62 Sv. For each appropriate Hi; H 0we can1. see if v0 is a new vertex2. see if v0 is a vertex of P .If v0 is not a vertex of P , we will �nd a new hyperplaneof P cutting the line segment between the origin and v0.(We then use Lemma 7 to identify the new hyperplaneand �nd a vertex that it contains.) If v0 is a vertex of P ,add it to our collection and subsequently test neighboursof v0.The above lemma makes the assumption that eachvertex is the intersection of exactly d of the faces (andno more). This holds for simplices and hypercubes forexample (although in the latter case there are expo-nentially many vertices). The assumption is needed
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since the algorithm necessarily performs vertex enumer-ation, which as noted previously is an open problem inthe general case. A solution would allow the algorithmpresented here to apply in general (in time polynomialin the number of vertices together with the number offacets).Lemma 6 Suppose p is the point found in Lemma 4or Lemma 5, and has bit complexity b. That is, the de-nominator of each component is at most 2b. (1) If pdoes not lie on a bounding hyperplane h then the dis-tance from p to h is at least r = 1=2bd�2. (2) Furtherthe ball B(p; r) with center p and radius r lies entirelyinside the current hypothesis.Proof: Suppose h : Pdi=1 cixi = cd+1 is a boundinghyperplane that does not contain p. Then the shortestdistance between p and h isc � (p� cd+1ci ui)jjcjjwhere ci is a coe�cient that is non-zero and ui is the ithunit vector. This distance is at least 1=2b�pd�2 whichis larger than 1=2bd�2.To prove the second statement, it su�ces to showthat the point p does not lie on the boundary of thecurrent hypothesis. This is clearly true for the case ofLemma 4. The same can be shown to hold for the pointp in Lemma 5 as follows. Suppose on the contrary thatp lies on the boundary of our hypothesis. Consider anarbitrary two-dimensional space S containing the line ovwhere v is the vertex of P 0 that contains p (see the proofof Lemma 5). The intersection of the target and S is aconvex polygon with p and v lying on the boundary, ando in the interior. This is impossible since p lies betweeno and v!Lemma 7 Given the point p constructed from Lemma4 or 5, the learner can construct a bounding hyperplanede�ning h that is not in our hypothesis.Proof: For simplicity, let us assume the following.Assumption 1: p does not lie on a facet of dimensionsmaller than d�2. That is, p lies in the interior of aface f of the target that has not been determined.Assumption 2: p does not lie on an axis.We will remove these two assumptions later in our proof.With these two assumptions, we can �nd d mutuallyindependent points q1; :::; qd that lie on some face f asfollows.Let Si be the two-dimensional subspace that con-tains o and the line li = p + tui where t 2 R and ui isthe ith unit vector(see Figure 1). Note that Si wouldhave been a one-dimensional if p lies on the ith-axis(i.e., Assumption 2 is not true). The intersection of thetarget with Si is a convex polygon Pi since Si containsan interior point o and a boundary point p. Further

there is a face f such that f \Si is an edge which p lieson. Denote this edge by ei. Consider the two pointsp�i = p� rui and p+i = p+ rui, which are on the sphereB(p; r). If both points are in the target concept, thenby convexity and the fact that p lies on the edge ei,both points must lie on ei and hence f . Thus, we canarbitrarily set qi to either of these points.Next, suppose one of these two points, call it pi, isoutside the target. Let s be the point p� r0 � ~po wherer0 = max�r;� rjjpojj�2�. Clearly, s is in the ball B(p; r)centered at p with radius r. Since s lies between the twopositive points o and p, it is also in the target polytope.Further by statement 1 of Lemma 6, no vertex of Pi isinside B(p; r). Therefore the point of intersection qi, ofthe line pisi and Pi is on the edge ei and hence on f .This point can be determined by the binary search ofLemma 3.Now, if Assumption 1 is not true, the points q1; � � �; qdproduced by the above procedure may not lie on thesame face. To circumvent this di�culty, instead of pick-ing p deterministically, we randomly pick a point p0 toreplace p in a similar fashion as selecting qi as follows.We randomly pick a vector u that has polynomial bitcomplexity and have Euclidean norm smaller than r.We let p+ = p + u and p� = p � u. If both points areinside the target concept, then we select another u untilwe have one of p+ and p� outside the target. Note thatsince the measure of the boundary of a face is zero (rel-ative to the face), we are almost certain that the desiredp+ and p� can be determined in the �rst trial. In theworst case, we can try another u with almost certaintyof succeeding. Say p+ is outside the target. Replacing piby p+ in the procedure for determining qi, we can deter-mine another point p0 that is on e and hence also on theboundary. Again, since the measure of the boundary ofa face is zero, p0 is very likely to fall on the interior of anundermined face. Using Lemma 8, we can verify thatthe points q1; � � �; qd obtained is in the interior of a facewith almost certainty. In the worst case, we can repeatthe process until we get the desired p0. Replacing p byp0, we can determine the desired points q1; :::; qk. Notethat with the new p, we need to recalculate r base onthe bit complexity of p0 (which is still polynomial).Finally, suppose Assumption 2 is not true and p ison the ith-axis. In this case, the above algorithm canstill determine the d � 1 points q1; :::; qi�1; qi+1; :::; qdwhich together with p gives us a collection of d mutuallyindependent points that lie on the same face.Lemma 8 Suppose we are given the set of points Q =fq1; � � �; qdg constructed in Lemma 7. By posing at mostd membership queries, we can determine if all the pointsin Q lie on the same face.Proof: Let qi and qj be two arbitrary points in Q.Consider the two dimensional subspace S containing p,qi and qj (see Figure 2). If qi does not lie on a facefj that qj (and p) lie, then q0i = p + ~qip lies on theopposite side of pqj and hence hj . Therefore q0i is outside
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Figure 1: The point qi is obtained by performing a binary search to �nd a boundary point between pi = p + rui ands = p� r0 ~op.the target concept. On the other hand, if the faceswhich qi and qj lie are the same, then by Lemma 6, theball B(p; r) intersects S in a circle with center at p andradius r. Hence q0i, which is inside this circle, is insidethe target. Therefore, all the points in Q lie on the sameface if and only if all the q0i's are also inside the target.
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Figure 2: All the qi's are lie on the same face if and onlyif all the q0i's are inside the target polytope.3 Learning Convex Polytopes withMembership QueriesWith the lemmas obtained in the previous section, it isstraightforward to design an algorithm that learns con-vex polytopes using membership queries (see Figure 3.

Brie
y, with the lemmas in Section 2, we can simply useLemma 5 to �nd a suitable point lying on the interiorof an unknown face. Using Lemma 7, we can constructthe bounding hyperplane that contains this face. Wekeep doing this until the hypothesis becomes bounded.We then repeat the same process with Lemma 5 untilall the vertices in the hypothesis are also vertices in thetarget, and output the hypothesis.LearnPolytope1. V = ; fV will be vertex set of target polytopeg2. F = ; fF will be set of bounding hyperplanesg3. while R = findray(F ) succeeds (i.e. �nds a ray)4. p = threshold(R; 2b)5. f = facet(p)6. F = F [ ffg7. end while f by now, F de�nes a bounded polytopeg8. repeat9. let v be a vertex of polytope(F ) not in V10. if v 2 P (satis�es MQ) then V = V [ fvg11. else p = threshold(origin; v)12. f = facet(p)13. F = F [ ffg14. until no new vertices v are found.Figure 3: An algorithm for learning convex polytopescontaining the origin with MQsThe algorithm uses procedures threshold(R; a) which�nds (to a given precision a ) a threshold between pos-itive and negative classi�cation for points along a givenray R (using lemma 5). Procedure findray(F ) �nds asemi-in�nite ray from the origin that is contained in aconvex polytope (using lemma 4). It succeeds providedthat the polytope bounded by set F of hyperplanes is
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unbounded. facet(p) �nds a bounding halfspace con-taining threshold point p (using lemma 7.)The bound on the bit complexity of the instancesused in our algorithm is polynomially bounded. How-ever, the expression for a reasonable bound based onthe basic parameters - dimension, � and the numberof faces in our target concept, is quite complex. Fur-ther, the main intention of this paper is simply to illus-trate that convex polytopes can be learned in polyno-mial time which was previously not known. Giving adetailed analysis of the algorithm will obscure the mainidea behind our work. Hence, instead of deriving anexpression for the bound, we derive a bound that ispolynomial in terms of other polynomial functions andsimply give its closed from without giving the details ofthe derivation.The bit complexity of the point p in Lemma 4 issome polynomial polyLP (k; d; �) where polyLP (k; d; �)is the bit complexity of the output produced by solving alinear equation with k constraints, d unknowns and thecoe�cients in the linear program have bit complexity�. By Lemma 2, the bit complexity of a vertex in Pis 3d log(8md). The bit complexity of the point p inLemma 5 ispolyintersect(d�1; �;max(polyLP (k; d; �); 3d log(8md)); 0)where polyintersect(d� 1; �; a; b) is the bit complexity ofthe point of intersection of a d� 1-dimension linear hy-perplane with a line segment with one endpoint havingbit complexity a and the other having bit complexity b.It is easy to show that polyintersect(d; �; a; b) � 2d�(a+b). Let bit(a) denote the bit complexity of a point a. Inthe proof of Lemma 7, the bit complexity of the pointp+ is bit(p)+bit(u) where u is the o�set of p+ from p andit has polynomial bit complexity. Since p0 is the inter-section of a bounding hyperplane with the line segmentop+, bit(p0) = polyintersect(d; �; bit(p+); 0). Now, s =(1�r) ~op0 and pi = p+rui, and hence both have bit com-plexity� log r+bit(p0). Finally, qi is the intersection of abounding hyperplane with the line segment spi. There-fore bit(qi) = polyintersect(d; �; bit(s); bit(pi)). Thus, allthe points considered here have polynomial bit com-plexity. Using the fact that polyintersect(d; �; a; b) �2d�(a+ b), one can bound their bit complexity byB = O �d3�3max(polyLP (k; d; �); 3d log(8�d))�:The binary search is always performed on a line seg-ment where the endpoints and the desired intersectionpoints have bit complexity bounded by B. Therefore,by Lemma 3, the number of membership queries in ourbinary search is bounded by 3B. Further, the numberof binary searches performed is bounded by O(kd + v)where k is the number of faces and v is the numberof vertices in out target polytope. Therefore, the totalnumber of membership queries is O(B(kd+ v)).The time complexity of our algorithm is dominatedby the time to perform the binary search and solvingat most k linear programming problems with d vari-ables and d constraints. Thus, the time complexity isO ((B(kd+ v) + k) + kLP(k; d)) , where LP(k; d) is the

time complexity for solving a linear programming prob-lems with k constraints and d variables.Theorem 9 Suppose the target concept comes from aclass of convex k-polytopes in Rd where the vertex enu-meration problem can be solved e�ciently. Further, sup-pose it has bit complexity � and v vertices. Then thetarget can be determined by askingO(B(kd+ v))membership queries on instances that have bit complex-ity bounded byB = O �d3�3max(polyLP (k; d; �); 3d log(8�d))�in time O ((B(kd+ v) + k) + kLP(k; d)) :Here, polyLP (k; d; �) is the bit complexity of the out-put produced by solving a linear equation with k con-straints, d unknowns and the coe�cients in the linearprogram have bit complexity �. LP(k; d) is the timecomplexity for solving a linear programming problemswith k constraints and d variables.In fact, we show in the next theorem that the con-verse of Theorem 9 is true.Theorem 10 The problem of learning convex poly-topes using membership queries and the vertex enumer-ation problem are equivalent.Proof: In the dual space, the vertices and boundinghyperplanes of a polytope P correspond to the boundinghyperplanes and vertices in the dualD(P ) of P . Thus, ifwe can determine all the bounding hyperplanes in D(P )then we have solved the vertex enumeration problem.Further, a point p is inside D(P ) if and only if p is aconvex combination of the vertices in D(P ). Since thesevertices corresponds to the hyperplanes of P which areknown, we can determine if p is in D(P ).4 Learning Convex Piecewise LinearFunctionsTheorem 11 In domain Rd, CPLF can be learnedusing at most k(d+1) equivalence queries and k2(d+1)valuation queries. Here, k is the number of linear func-tions in the target. The time complexity of the algorithmis O (k(d+ 1)LP (k(d+ 1); d+ 1))where LP (m;n) is the time complexity for solving a lin-ear program with m constraints and n variables. If thecounterexamples returned have decimal representation,then the precision of the valuation query oracle is one bitmore than the bit complexity of the instances returnedby the equivalence query oracle. If the counterexamplesreturned are in Qm = fpq : 0 � p; q � mg, then theprecision of the valuation query oracle needed is at most4 dlogme+ 2.
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Proof: First, suppose we have an oracle O that oninput x1 and x2, answers whether there exits an i suchthat f(x1) = fi(x1) and fi(x2) = f(x2). That is, the or-acle tells the learner whether the points hx1; f(x1)i andhx2; f(x2)i fall on the same linear surface of the targetfunction. Using O, the learner can separate the labeledcounterexamples returned by the equivalence query or-acle into bags P1; :::; Pj ; j � k such that all the points inthe same bag lie on the same linear surface of f . Notethat a point may appear in more than one bag if it lieson a facet. The hypothesis produced by the learner is aconvex j-piecewise linear functionh(x) = max (h1(x); :::; hj(x))such that if x 2 Pi then h(x) = hi(x). The individualhi can be constructed by using linear programming to�nd a linear function that �ts the points in Pi but liesbelow all the points in [j 6=iPj . The resulting algorithmis shown in Figure 4.We can simulate the oracle O by using valuation or-acle as follows. Given two labeled points hx1; f(x1)i andhx2; f(x2)i as input to O, we use the valuation oracle todetermine f(x0) where x0 is the average of x1 and x2. Ifhx1; f(x1)i, hx2; f(x2)i and hx0; f(x0)i are collinear thenwe return YES, otherwise we return NO. The bit com-plexity of x0 is at most one bit more than that of x1and x2 when decimal representation is adopted. If therepresentation is Qm then it is at most 4 dlogme+2. Tosee the latter, consider the (worst) case where x1 = aband x2 = cd such that are a, b, c and d are mutuallyrelatively prime. Say a = m� 1, b = m� 2, c = m� 3and d = m� 4. Then x0 = (ad+ bc)=2bd which has bitcomplexity at most 4 dlogme+ 2.Clearly, once Pi contains d + 1 (mutually indepen-dent) points, the learner can exactly determine the lin-ear function that de�nes the values of the points inPi. Thus, the number of counterexamples seen by thelearner is bounded by k(d+1). The number of valuationqueries needed is at most k for each counterexample.Thus, the total number of valuation queries needed isat most k2(d + 1). The time complexity in each whileloop is dominated by the complexity for solving a linearprogram in Line 9 and 13. Thus, the time complexity ofthe entire algorithm is O (k(d+ 1)LP (k(d+ 1); d+ 1)).LearnCPLF-1 in Theorem 11 uses valuation queryoracle to separate a set of counterexamples C accord-ing to which hyperplanes they lie on. However, if thedimension is constant then we do not need a valuationquery oracle to learn CPLF . Figure 5 describe an ef-�cient algorithm that learns CPLF using only equiva-lence queries. The learner maintains a collection of setsof labeled instances A = fP1; :::; Pjg. Each of these setshas size at most d+1. InitiallyA is empty. Let P 0i denotethe set of instances obtained by ignoring the labels of theinstances in Pi. To make a prediction on x, the learner�rst determines those sets P 0i s which x is linearly depen-dent on. We call these sets relevant and the others irrel-evant. If there is no relevant set then the learner simplymakes a random guess. Otherwise, for each relevant set

P 0i = fxi1; :::; xikig, say x = Pkij=1 akjxkj , the learner letPi(x) = Pkjj=1 akj f(xkj ). (Note that the values f(xkj )'scan be obtained from Pi.) The learner then guesses f(x)to be Pi�(x) where i� = argmaxi:P 0i is relevant Pi(x).When the prediction is a mistake, the learner receives acounterexample hx; f(x)i. The learner then updates Aand the hypothesis h according to the following typesof error.Type 1: The relevant set is not empty and our predic-tion Pi�(x) is greater than f(x). Here, the learnereliminates from A all the relevant sets Pi such thatPi(x) > f(x).Type 2: The relevant set is empty or Pi�(x) < f(x).In this case, for each irrelevant set Pi in A, weintroduce a new set Pi [ fhx; f(x)ig into A.LearnCPLF-21. A ;2. while our hypothesis is not the same as the target3. get the counterexample hx; f(x)i4. if 9 some relevant sets Pi such that Pi(x) > f(x)5. remove from A all such sets6. else7. for each irrelevant set Pi in A8. A A [ fPi [ fhx; f(x)iggFigure 5: An algorithm for learning convex piecewiselinear functions in �xed dimension that uses only equiv-alence queries.Claim 12 Suppose C� is the set of counterexamplesseen during Type 1 mistakes. Let B(C�) denotes thecollection of bags obtained in LearnCPLF-1 using O.After each update of A, B(C�) � A.Proof: Initially both A and C� are both empty andtherefore the claim is true to begin with. First, considerthe updates due to type 1 mistakes. A set Pi that isbeing removed from A must be relevant and hence x isa linear combination of Pi. Say x = Pkij=1 akjxkj . Byde�nition of B(C�), the values of the points in Pi arede�ned by the same linear function fl and hence fl(x) =Pkij=1 akj fl(xkj ). Therefore Pi(x) = fl(x) � f(x) and Piis not removed. Next, consider type 2 updates. Beforethe update, the bag Pi in B(C�) that contains x mustbe irrelevant. For otherwise, x is a linear combinationof Pi and the above analysis implies that Pi(x) � f(x).However f(x) 6= Pi(x) since our prediction is less thanf(x). In other words, the points in Pi lie on a di�erentlinear surface than x. Thus, Pi [ fxg is not in B(C�).Hence, all the bags in B(C�) that contain x must be inthe new sets that are added to A.
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LearnCPLF-11. h = ;2. j  03. while EQ(h; f) 6= Y ES4. get the counterexample hx; f(x)i5. if 9i : 8hx0; f(x0)i 2 Pi;O(hx0; f(x0)i; hx; f(x)i) = Y ES6. for each such i7. remove hi from h8. Pi  Pi [ fhx; f(x)ig9. h h [ the hyperplane hi containing Pi but lie below [j 6=iPj .10. else11. j  j + 112. Pj  fhx; f(x)ig13. h h [ the hyperplane hj containing Pj but lie below [l6=jPl.Figure 4: An algorithm for learning convex piecewise linear functions in arbitrary dimension.The same argument in the above proof togetherwith the fact that the points in each bag in A are mutu-ally independent suggests that once all the sets in B(C�)have d+1 instances and jB(C�)j = k then Type 2 mis-take ceases to occur. Therefore, the number of Type2 mistakes is at most k(d + 1). The number of setsintroduced by Type 2 mistakes is at most the numberof possible subsets of k(d + 1) points that have size atmost (d+1). Further, each Type 1 mistakes eliminatesat least one set from A and hence there are at mostO �(k(d+ 1))d+1� type 1 mistakes. Therefore, the totalnumber of equivalence queries is at most O �(k(d+ 1))d+1�.The time complexity for checking whether there is a rel-evant set in each iteration is O �(k(d+ 1))d+1d2� whichgives rise to the total time complexity.Theorem 13 The class of convex k-piecewise linear func-tions in domain Rd, d is constant, can be learned us-ing at most O �(k(d+ 1))d+1� (improper) equivalencequeries in time O �(k(d+ 1))2(d+1)d2� :Note that the LearnCPLF-1 uses an improper equiva-lence query oracle where the hypothesis is not in CPLF .A straightforward attempt to convert it to an algorithmthat uses proper equivalence query oracle would be tomaintain a hypothesis h = max(h1; :::; hj) where hi isthe linear function that �ts Pi but lies below [j 6=iPj .However, it is not clear how the learner should updateA and the hypothesis when the prediction h(x) is higherthan f(x) (i.e., type 1 error). We can no longer simplydiscard Pi when hi(x) > f(x). We might have to mod-ify hi to lie below x instead and only discard Pi whenwe cannot construct hi that �ts Pi but lies below all theother points. However, the number of counterexamplesseen before we can discard Pi may be very large.References[AAB+99] Elias Abboud, Nader Agha, Nader H. Bshouty,Nizar Radwan, and Fathi Saleh. Learning
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tems, volume 10. The MIT Press, 1998.[HKW96] D. P. Helmbold, J. Kivinen, and M. K. Warmuth.Worst-case loss bounds for sigmoided linear neu-rons. In Proc. 1996 Neural Information Process-ing Conference, 1996. To appear.[KP98] Stephen Kwek and Leonard Pitt. PAC learn-ing intersections of halfspaces with membershipqueries. Algorithmica: Special Issue on Compu-tational Learning Theory, pages 53{75, 1998.[KW94] J. Kivinen and M. K. Warmuth. Exponenti-ated gradient versus gradient descent for linearpredictors. Technical Report UCSC-CRL-94-16,University of California, Santa Cruz, ComputerResearch Laboratory, June 1994. Revised De-cember 7, 1995. An extended abstract to ap-peared in the STOC 95, pp. 209-218.[Kwe00] Stephen Kwek. An e�cient algorithm for learn-ing upper convex polyhedra using membershipqueries. In Proc. International Symposium of Ar-ti�cial Intelligence nd Mathematics, 2000.[Lit88] N. Littlestone. Learning when irrelevant at-tributes abound: A new linear-threshold algo-rithm. Machine Learning, 2:285{318, 1988.[LW93] P. M. Long and M. K. Warmuth. Composite ge-ometric concepts and polynomial predictability.Inform. Comput., 1993. To appear.[MT94] Wolgang Maass and Gy�orgy Tur�an. How fast cana threshold gate learn?, chapter 13, pages 381{414. MIT Press, 1994. Earlier versions appearedin FOCS89 and FOCS90.[PR94] K. Pillaipakkamnatt and V. Raghavan. On thelimits of proper learnability of subclasses of DNFformulas. In Proc. 7th Annu. ACM Workshop onComput. Learning Theory, pages 118{129. ACMPress, New York, NY, 1994.[Pro94] J.S. Provan. E�cient enumeration of the ver-tices of polyhedra associated with network lp's.Mathematical Programming, 63:47{64, 1994.[PW90] L. Pitt and M. K. Warmuth. Prediction pre-serving reducibility. J. of Comput. Syst. Sci.,41(3):430{467, December 1990. Special issue ofthe for the Third Annual Conference of Structurein Complexity Theory (Washington, DC., June88).[She87] V. Shevchenko. On deciphering a threshold func-tion of many-values logic. Grokii State Univer-sity, pages 155{163, 1987.Appendix A: Binary Search on aRational LineLet x be an arbitrary number inQm = �ab : a; b 2 f0; � � �;mg	.By querying whether x � m, we can determine if thedenominator of x is 0. Thus, without loss of generality,we assume that this is not the case.Note that x can be expressed as bxc+ ab where a andb are relatively prime and a < b. Using binary search,we can determine bxc by making dlog(m)e + 1 queries.To exactly determine the fractional part, we perform abinary search on the unit interval [bxc; bxc+ 1] so thatwe know �m2 � ab � �+1m2 . This can be done by asking2dlog(m)e - 1 queries.Lemma 14 Suppose ab ; cd 2 Qm and ab ; cd 2 [ �m2 ; �+1m2 ].Then ab = cd .

Proof: By way of contradiction, suppose ab 6= cd , andsay ab > cd . Then0 � ab� cd � 1m2 ) 0 < ad� bcbd < 1m2 ) 0 < ad�bc < 1:The last inequality is true since bd � m2 and ifbd = m2 then ad�bc � m. This inequality is impossiblesince a; b; c; d are integers and ab 6= cd .Suppose we know the desired ab is in I = [ �m2 ; �+1m2 ]as in Lemma 14. Clearly, since ab is the only fraction inQm that is also in I , all fractions in I that is not equalto ab must have denominator greater than b. Thus, itsu�ces to �nd the fraction that has the smallest de-nominator in I . The next lemma states that such afraction can be determined in time O (log(m)) withoutasking any further queries. Thus Lemma 15 completesthe proof of Lemma 3.Lemma 15 Given an interval I = [�� ; 
� ], there existsa fraction amin(I)bmin(I) in I = h�� ; 
� i such that for all ab 2 I,amin(I) � a; bmin(I) � b. Further, we can determinethis fraction in time O (log(max(�; �; 
; �))).Proof: We prove the existence of amin(I) and bmin(I)by constructing it using a recursive algorithm. Our al-gorithm has the same 
avor as Euclid's algorithm for�nding the greatest common divisor of two integers. Letab be an arbitrary fraction in I . We consider the follow-ing two cases.Case 1: the interval I does not contain any integer.In this case, we have�� � ab � 
�and ��� � = jab k = j
� k:We can express a asa = ��� �b+ (a mod b) (1)Let a0 = a mod b, �0 = � mod � and 
0 = 
 mod �.Then, we also have the following inequality.�
0 � ba0 � ��0 :That is, ba0 2 I 0 where I 0 = h �
0 ; ��0 i. Notice that ifthere exists b̂; â0 2 I 0 such that for all ba0 2 I 0; b � b̂and a0 � â0, then substituting b̂ for b and â0 for a0in Equation (1) gives us the smallest a among allfeasible b and a0 such that ba0 2 I . That is, to provethe existence of amin(I) and bmin(I), it su�ces toprove the existence of amin(I 0) and bmin(I 0). Simi-larly, to determine amin(I)=bmin(I), it is su�cientto solve the problem with the interval I 0.
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If I 0 contains an integer, then the problem instanceis reduced to Case 2. Thus, suppose I 0 does notcontain an integer. Notice that 
0 � 
 and �0 � �.Suppose 
 = 
0 and �0 = �, then by repeating theabove argument, we have�0�0 � a0b0 � 
0�0where b0 = b mod a0, �0 = � mod �0 and �0 =� mod 
0. That is, the problem is reduced to �nd-ing amin(I 00) and bmin(I 00) where I 00 = [�0�0 ; 
0�0 ].Further, since 
0 < � and �0 < �, we have �0 < �and 
0 < 
.In other words, by reducing the problem instance(i.e. an interval) in this manner, we are sure that�0 + �0 + 
0 + �0 < �+ � + 
 + �. Eventually theproblem instance must contain an integer and thealgorithm terminates (see Case 2). In the worstcase, we stop when the interval being consideredis [ 11 ; 11 ].Case 2: the interval I contains an integer. SupposeI contains the integers z1 < � � � < zk. We claimthat 8ab 2 I; a � z1. This is clearly true if z1 = 1or b = 1 or ab � z1. Thus, suppose z1�1 < ab < z1and b 6= 1 and z1 6= 1. Then a > y(z1 � 1) whichimplies a � z1. Hence we have amin(I) = z1 andbmin(I) = 1.
findFraction(�; �; 
; �) : a; bif ��� � = � 
� � and �� 62 Z (Case 1)b; a0  findFraction(�; 
 mod �; �; � mod �)a = ��� �b+ a0 (Equation 1)return a, belse (Case 2)return a = d�� e, b = 1Figure 6: An algorithm for �nding a fraction amin(I)bmin(I) 2I = h�� ; 
� i such that for all xy 2 I , x � amin(I); y �bmin(I).Figure 1 shows an algorithm for determining amin(I)and bmin(I). The method we used to reduce the de-nominator and numerator of the endpoints of I is thesame as Euclid's algorithm for �nding the greatest com-mon divisor of two numbers x < y. The time com-plexity for Euclid's algorithm is O(F�1(max(x; y))) =O(log(max(x; y))) where F�1(�) to be the largest ksuch that � is less than the kth Fibonacci number.Thus, we have the desired time complexity.


