When Can Two Unsupervised Learners Achieve
PAC Separation?

Paul W. Goldberg*

Dept. of Computer Science, University of Warwick, Coventry CV4 7AL, U.K.
pwg@dcs.warwick.ac.uk

Abstract. In this paper we study a new restriction of the PAC learn-
ing framework, in which each label class is handled by an unsupervised
learner that aims to fit an appropriate probability distribution to its own
data. A hypothesis is derived by choosing, for any unlabeled instance,
the label whose distribution assigns it the higher likelihood.

The motivation for the new learning setting is that the general approach
of fitting separate distributions to each label class, is often used in prac-
tice for classification problems. The set of probability distributions that
is obtained is more useful than a collection of decision boundaries. A
question that arises, however, is whether it is ever more tractable (in
terms of computational complexity or sample-size required) to find a
simple decision boundary than to divide the problem up into separate
unsupervised learning problems and find appropriate distributions.
Within the framework, we give algorithms for learning various simple
geometric concept classes. In the boolean domain we show how to learn
parity functions, and functions having a constant upper bound on the
number of relevant attributes. These results distinguish the new setting
from various other well-known restrictions of PAC-learning. We give an
algorithm for learning monomials over input vectors generated by an un-
known product distribution. The main open problem is whether monomi-
als (or any other concept class) distinguish learnability in this framework
from standard PAC-learnability.

1 Introduction

A standard approach to classification problems (see e.g. Duda and Hart [10]) is
the following. For each class, find a discriminant function that maps elements of
the input domain to real values. These functions can be used to label any input
element x by giving it the class label whose associated discriminant function
takes the largest value on x. The discriminant functions are usually estimates of
the probability densities of points having some class label, weighted by the class
prior (relative frequency of that class label).

In learning theory e.g. PAC learning [2] or more recently support vectors [7]
the approach is to find decision boundaries that optimize some performance guar-
antee. (The guarantee is usually based on observed classification performance in

* Partially supported by the IST Programme of the EU under contract number IST-
1999-14186 (ALCOM-FT).

2 Paul W. Goldberg

conjunction with other features of the boundary such as syntactic or combina-
torial complexity, or the number of support vectors and margin of separation.)
The general approach clearly requires examples with different labels to be taken
in conjunction with each other when finding a decision boundary. By contrast,
discriminant functions are constructed from individual label classes in isolation.

There are practical advantages to applying an unsupervised learning method
to each label class, and obtaining estimates of the distribution over that label
class. In contrast with decision boundaries, we obtain for any input vector x,
the values of the probability densities of label classes at x, which provide a
conditional distribution over the class label of x. A predicted class label for x
can then take into account variable misclassification penalties, or changes in the
assumed class priors. There are of course other ways to obtain such distributions,
for example using logistic regression, or more generally (for k-class classification)
neural networks with & real-valued outputs re-scaled using the softmax activation
function (see Bishop [3] for details). Learning using an unsupervised learner for
each class has other advantages over these techniques, notably the first two of
the following observations.

1. For applications such as handwritten digit recognition, it is more natural
to model the data generation process in terms of 10 separate probability
distributions, than as a collection of thresholds between different digits.

2. Label classes can be added without re-training the system. So for example if
the euro symbol were added to a character set, then given a good estimate of
the probability distribution over images of euro symbols, this can be used in
conjunction with pre-existing models for how other symbols are generated.

3. The approach can treat situations where class overlap occurs (as is usually
the case in practice). Standard PAC algorithms do not address this problem
(although there have been extensions such as “probabilistic concepts” [18]
that do so, and of course versions of support vector networks also allow
decision boundaries that do not necessarily agree with all observed data).

Another difficulty with decision boundaries arises specifically in the context
of multiclass classification. It has been noted [1] that multiclass classifiers are
often constructed using multiple 2-class classifiers. How to combine them is a
challenging topic that has itself received much recent attention, see for exam-
ple [13,1]. In practical studies such as [19] that build a multi-class classifier
from a collection of 2-class classifiers, a distinction is made between separating
each class from the union of the others (1-v-r classifiers, where 1-v-r stands for
one-versus-rest) and pairwise separation (I-v-1 classifiers). Neither is entirely
satisfactory — for example it may be possible to perform linear 1-v-1 separation
for all pairs of classes, but not linear 1-v-r separation, while a problem with 1-v-1
classification (as studied in [19]) is the difficulty of combining the collection of
pairwise classifiers to get an overall classification, in a principled way, for exam-
ple ensuring that all classes are treated the same way. In [19], the first test for
any unlabeled input is to apply the separator that distinguishes 0 from 9. Thus
0 and 9 are being treated differently from other digits (which in turn are also
treated differently from each other.)

Two Unsupervised Learners 3

1.1 Main Research Questions

In view of the advantages we have noted of using unsupervised learners to solve
classification problems, we propose to search for a gap between the tractability of
classification problems and the tractability of classification problems subject to
the restriction that each class be learned with its own unsupervised learner. Does
there exist a learning problem for which we can both obtain a positive result
for finding a decision boundary, and a negative result for the problem of fitting
appropriate probability distributions to the classes so that maximum likelihood
gives rise to a decision boundary with the same performance guarantees?

We consider this question in the basic Probably Approximately Correct
(PAC) setting of [20,21], since it is well-understood. In PAC learning, the usual
algorithmic challenge is to separate the two classes of examples. It would be re-
markable if it turned out that PAC-learnability were equivalent to PAC-learnabi-
lity using unsupervised learners, in view of the way the PAC criterion seems to
lead to a search for class separation. The main drawback of studying PAC-
learnability is the loss of realism associated with class separability.

There are not many papers on unsupervised learning in the computational
learning theory literature; the topic was introduced in [17], see also [8,11,12,9].
The algorithms we describe here differ substantially from these previous ones
(as well as from the algorithms in the much more extensive general literature on
unsupervised learning). The reason is that our aim is not really to approximate
a distribution over inputs. Rather, it is to construct a discriminant function in
such a way that we expect it to work well in conjunction with the corresponding
discriminant function constructed on data with the opposite class label.

From a theoretical perspective, we address a natural question in asking how
much it hampers learning not to have simultaneous access to examples with
different labels. The topic appears to raise new and interesting research problems.
The main theoretical question (which we leave open) is of course: are all PAC
learnable problems also learnable in this framework, and if not, how does the set
of learnable problems compare with other subsets of PAC learnable problems,
for example Statistical Query (SQ) learnability [16]. (In the case of SQ learning,
we find that parity functions are learnable in this framework but from [16] they
are not learnable using SQs.)

1.2 Formalizing the Learning Framework

In PAC learning there is a source of data consisting of instances generated by a
probability distribution D over a domain X, labeled using an unknown function
f: X — {0,1}. Thus f divides members of X into two sets f~1(0) and f~1(1),
and the learner’s objective is to find good approximations to those sets. As usual
we will let € and § denote the target error and uncertainty respectively.

We use the standard convention of referring to the two classes of inputs
associated with the two class labels as the “positive examples” and the “negative
examples”. Each learner has access to a source of examples having one of the
two class labels. More precisely, one learner may (in unit time) draw a sample

4 Paul W. Goldberg

from D restricted to the positive examples, and the other may sample from D
restricted to the negative examples. This formalism loses any information about
the class priors, i.e. the relative frequency of positive and negative examples,
but PAC learnability is in fact equivalent to PAC learnability where the class
priors are concealed from the learner. (Formally, this is the equivalence of the
standard PAC framework with the “two-button” version, where the learner has
access to a “positive example oracle” and a “negative example oracle” [14]. The
two-button version conceals the class priors and only gives the learner access to
the distribution as restricted to each class label.)

We assume that neither unsupervised learner knows whether it is receiving
the positive or the negative examples. Consequently both learners must apply
the same algorithm. Note that for a concept class that is closed under comple-
mentation, output labels are of no help to the learners. For a concept class that
is not closed under complementation (such as rectangles), observe that it is PAC
learnable if and only if its closure under complementation is PAC learnable.
Hence any learning algorithm in our framework which required class labels to
be provided to each of the two learners, would lack a robustness property that
standard PAC algorithms have. That observation also indicates that the main
question of distinguishability from standard PAC-learnability is independent of
the assumption that class labels (positive/negative) are provided. Note however
that for some concept classes (notably monomials, section 3.1) we can (without
much difficulty) find algorithms in our setting that use labeled examples, but we
have so far not found any algorithm that works with unlabeled examples.

The class label which the pair of learners assign to input z is the one asso-
ciated with the data sent to the learner that assigned z the higher likelihood. If
z is given the same likelihood by both distributions generated by the learners,
the tie is broken at random.

1.3 Notation and Terminology

We refer to the unsupervised learners as learners A and B, and we also assume
by convention that learner A is the one receiving the positive examples, however
as we have noted above, learner A (and likewise B) is not told its identity.

Theorem 1 below justifies the design of algorithms in which instead of insist-
ing that the outputs of the unsupervised learners define probability distributions,
we allow unrestricted discriminant functions from domain X to the real numbers
R. The comparison of the two values assigned to any z € X is used to determine
the class label that the hypothesis classifier assigns to z. In what follows we refer
to the “score” assigned to an input vector x by an unsupervised learner to mean
the value taken by its discriminant function on input x.

We will say that learner A (respectively B) “claims” an input z if it gives
z a higher likelihood or score than learner B (respectively A). We say that a
learner “rejects” an input if it assigns a likelihood of 0, or alternatively a score
of minimal value (it is convenient to use —oo to denote such a score). Thus if
a learner rejects an input, it will be claimed by the other learner provided that
the other learner does not also reject that input.

Two Unsupervised Learners 5

2 General Results

In this section we give some general results about the two unsupervised learners
framework. (Then in section 3 we give some algorithms for specific PAC learning
problems. The results of section 3 also serve to distinguish our learning setting
from other restrictions of the PAC setting in terms of what concept classes may
be learned.) We show first that if hypotheses may be any real-valued discrimi-
nant functions, then the algorithm may be modified so that the hypotheses are
probability distributions, and the separation is still PAC. There is no partic-
ular reason to suppose that probability distributions obtained in this way will
approximate the underlying distributions generating the instances, according to
previously-studied metrics such as variation distance or KL-distance.

Theorem 1. Let X be a domain of inputs. If there is a PAC algorithm in which
each unsupervised learner may assign any real number to an element of X, then
there is a PAC algorithm in which the learners must choose numbers that inte-
grate or sum to 1 over the domain (i.e. are a probability distribution).

Proof. Let A be an algorithm that returns any discriminant function. So in a
problem instance, A is applied twice, once to A’s data and once to B’s data,
and we obtain functions f4 : X — R and fg : X — R. (So for example
any ¢ € X with fa4(z) > fgp(z) would be labeled as positive by the overall
hypothesis, under our convention that A receives the positive examples.)

Our approach is to re-scale any function returned by the algorithm so that the
outcome of any comparison is preserved, but the new functions sum or integrate
to 1. In a case where, for example, > x fa(z) =1 and) . x fB(z) = 2, this
initially appears problematic: fp has to be scaled down, but then the new values
of fp may become less than f4. Note however that we can modify f4 by choosing
an arbitrary Z in A’s data, and adding 1 to fa(&). This can only improve the
resulting classifier (it may cause £ to be claimed by A where previously it was
claimed by B). Now the new f4 together with fp can both be rescaled down by
a factor of 2, and comparisons are clearly preserved.

Making the above idea general, suppose that algorithm 4 takes a sample
of data S and returns a function f : X — R. Modify A as follows. Define
g(z) = ef@ /(1 + /@), so the range of g is (0,1). Let P(X) be a probability
distribution over X that does not vanish anywhere. Let s =)y g(z)P(z),
or [.x9(z)P(z)dr for continuous X. s is well-defined and lies in the range
(0,1). Now for a discrete domain X, the probability distribution returned by
the modified A is D'(z) = g(z)P(z) for all z € X except for some arbitrary
Z € S, where D'(%) = g(z)P(z) +1—s. For a continuous domain the probability
distribution is the mixture of the continuous density D'(z) = g(x)P(z) with
coefficient s and a point probability mass located at some £ € S with probability

1—s. &

In view of the above result, we subsequently give algorithms for hypotheses
that may output unrestricted real numbers. The next two results about PAC-
learning with two unsupervised learners provide some further information about

6 Paul W. Goldberg

how it compares with other variants of PAC-learning in terms of which concept
classes become learnable. First, note that the framework can be extended to a
misclassification noise situation by letting each learner have examples that are
(correctly or incorrectly) assigned the class label associated with that learner.

Theorem 2. Any concept class that is PAC-learnable in the presence of uni-
form misclassification noise can be learned by two unsupervised learners in the
presence of uniform misclassification noise if the input distribution is known to
both learners.

Proof. Let D be the known distribution over the input domain X. Let C be
a concept class that is PAC-learnable with uniform misclassification noise. We
may assume that C is closed under complementation (we have noted that if it is
not closed under complementation we can take it closure under complementation
which should still be PAC learnable).

Each learner takes a set of N examples, where N is chosen such that a
standard PAC algorithm would have error bound €2. Let D+ (resp. D~) be the
probability that an example generated by D belongs to target T' (resp. X \ T).
(17V)D+

Let v be the noise rate. With probability =)D 1oD=

an example received by
A belongs to target T'; meanwhile with probability (17(3)_[;’% an example
received by B comes from X \ T.

FEach learner labels all its examples as positive, and then generates a set of N
examples from D, each of which is labeled positive with some probability p < %,
otherwise negative. For learner A, the union of these two sets consists of a set
of examples from a new probability distribution D', labeled by the same target
concept T'. It may be verified that the examples from 7" have misclassification
noise with noise rate

(1—-p)(DFY(1—v)+ D7 v)
Ql-pDtQ—-v)+Dv)+1—-v

and the examples from X \ T have misclassification noise with noise rate

v+p(D*t*(1—-v)+ D v)
v+ (Dt(1-v)+Dv) "’

It may be verified from these expressions that there is a unique value of p in
the range [0, 3] for which these two noise rates are equal, and for that value of
p they are both strictly less than 1.

Hence for some value of p we obtain data with uniform misclassification noise.
An appropriate p can be found by trying all values p = re for r = 0,...,1/2¢,
and checking whether the hypothesis obtained (using a standard noise-tolerant
PAC algorithm) is consistent with uniform misclassification noise.

The same reasoning applies to learner B using X \ T as the target concept.

Let H be the set of examples labeled positive by the resulting hypothesis.
Each learner assigns discriminant function values as follows. If the observed value

Two Unsupervised Learners 7

of D'(H) is at least 1 — ¢, use a value of 1 for all elements of X. Otherwise use
a value of 1 for elements of H and a value of 0 for elements of X \ H.

Let D'y and D' be the D"s for learners A and B.

D(T) is the probability that a random example from D belongs to T. As-
suming D(T') < 1 — €, we can say that error O(e®) with respect to D', implies
error O(€) with respect to D. If alternatively D(T") > 1 — €/2, the hypothesis H
found by A will have a probability D'(H) > 1 — € as observed on the data. A
learner finding such a hypothesis then gives all examples a score of %, allowing
B’s scores to determine the overall classification. A similar argument applies for
low values of D(T), i.e. < €/2, (where we expect B to assign scores of). ¢

It is probably not the case that noise-free distribution-specific learnabil-
ity with two unsupervised learners is actually equivalent to standard PAC-
learnability with uniform misclassification noise. This is because, given the Noisy
Parity Assumption (that it is hard to PAC-learn parity functions in the pres-
ence of random misclassification noise given the uniform distribution over input
vectors), noise-free distribution-specific learning with two unsupervised learners
is tractable (see corollary 2) in a situation where the uniform misclassification
noise situation is intractable.

The following result is a sufficient condition for learning with unsupervised
learners:

Theorem 3. If a concept class is closed under complementation and learnable
from positive examples only, then it is learnable with two unsupervised learners.

Proof. Let X = X 4U Xp be the partition of the domain X where X 4 is the set
of positive examples and X the negative examples. Closure under complemen-
tation implies that Xp as well as X 4 is a member of the concept class.

Both learners apply an algorithm that learns from positive examples only.
Consequently A’s hypothesis must be a subset of X4 and B’s hypothesis must
be a subset of Xp. A and B use discriminant functions f4 and fp that are the
indicator functions of their hypotheses. As a result, if f4 and fg both have error
at most €, then A and B correctly claim all but a fraction € of examples from
X4 and Xp respectively. O

As a consequence we have

Corollary 1. Boolean functions over a constant number of variables are learn-
able using unsupervised learners.

Proof. The class of functions is clearly closed under complementation.

To learn the class from positive examples, suppose k is the number of vari-
ables in the target formula. Given a set S of boolean vectors that constitutes
the observed data (assumed to be positive examples), label a new vector v as
positive if and only if for each set of k attributes in v, there is a member of S
that agrees with v on those attributes.

It can be readily verified that for constant k, the time and sample complexity
of the above rule is polynomial in the total number of variables. &

8 Paul W. Goldberg

The following result distinguishes our learning setting from learnability with
uniform misclassification noise, or learnability with a restricted focus of atten-
tion. A parity function [15] has an associated subset of the variables, and an
associated “target parity” (even or odd), and evaluates to 1 provided that the
parity of the number of “true” elements of that subset agrees with the target
parity, otherwise the function evaluates to 0.

Corollary 2. The class of parity functions is learnable by unsupervised learners.

Proof. Once again it is clear that the class is closed under complementation.
To learn a parity function from positive examples only, then similar to the
algorithm of [15], each unsupervised learner finds the affine subspace of GF(2)™
spanned by its examples, and assigns a score of 1 to elements of that subspace
and a score of 0 to all elements of the domain. &

3 Examples of Concrete Learning Problems

The algorithms in this section give an idea of the new technical challenges, and
also distinguish the learning setting from various others. We have already dis-
tinguished the learning setting from learnability with uniform misclassification
noise or learnability with a restricted focus of attention, and the result of sec-
tion 3.2 distinguishes it from learnability with one-sided error or learnability
from positive or negative examples only.

3.1 Monomials

Recall that a monomial is a boolean function consisting of the conjunction of a set
of literals (where a literal is either a boolean attribute or its negation). Despite
the simplicity of this class of functions, we have not resolved its learnability in
the two unsupervised learners framework, even for monotone (i.e. negation-free)
monomials. If the unsupervised learners are told which of them has the positive
and which the negative examples, then the problem does have a simple solution (a
property of any class of functions that is learnable from either positive examples
only or else negative examples only). The “negative” unsupervised learner assigns
a score of % to all boolean vectors. The “positive” unsupervised learner uses its
data to find a PAC hypothesis, and assigns a score of 1 to examples satisfying
that hypothesis, and 0 to other examples.

Discussion of the Distribution-independent Learning Problem. Given
a monomial f, let pos(f) denote its satisfying assignments. The problem that
arises when the unsupervised learners are not told which one is receiving the
positive examples, is that the distribution over the negative examples could in
fact produce boolean vectors that satisfy some monomial m that differs from
target monomial ¢, but if D(pos(m) N pos(t)) > e this may give excessive error.
This problem can of course be handled in the special case where the monomial
is over a constant number k of literals, and corollary 1 applies.

Two Unsupervised Learners 9

Learnability of Monomials over Vectors of Attributes Generated by
a Product Distribution. In view of the importance of the concept class of
monomials, we consider whether they are learnable given that the input distri-
bution D belongs to a given class of probability distributions. This situation is
intermediate between knowing D exactly (in which case by theorem 2 the prob-
lem would be solved since monomials are learnable in the presence of uniform
misclassification noise) and the distribution-independent setting. We assume now
that the class priors are known approximately, since we no longer have the equiv-
alence of the one-button and two-button versions of PAC learnability. Formally,
assume each learner can sample from D, but if the example drawn belongs to
the other learner’s class then the learner is told only that the example belonged
to the other class, and no other information about it. Hence each learner has an
“observed class prior”, the observed probability that examples belong to one’s
own class.

Suppose that D is known to be a product distribution. Let z1,...,z, be the
boolean attributes in examples. Let d;, ¢ = 1,...,n, be the probability that the
i-th attribute equals 1. For attribute z; for which one of the literals z; or T;
is in the target monomial ¢ (we assume that they are not both in t), let p; be
the probability that the literal is satisfied, so p; = d; for an un-negated literal,
otherwise p; = 1 — d;.

We say that attribute x; is “useful” if z; or Z; is in ¢, and also p; € [¢,1—¢€/n].
Note that if p; < € then the probability that any example is positive is also < €,
and if p; > 1 — €/n then only a very small fraction of examples can be negative
due to their value of z;.

The Algorithm.

We use the fact that for D a product distribution, D restricted to the positive
examples of a monomial is also a product distribution. We apply a test (step 3 of
the algorithm) to see whether the observed data appears to come from a product
distribution. The test identifies negative data when there is more than one useful
attribute. The discriminant function (computed in step 4) also handles the case
when at most one attribute is useful.

1. Draw a sample S of size O((n/€)®log(3)).

2. If the observed class prior of the examples is < €/2, reject all examples.
Otherwise do the following.

3. (product distribution test) For each literal [that is satisfied by at least a
fraction €/n of elements of S, let S; denote elements of S which satisfy I,
and for each literal I’ # [check whether the fraction of examples satisfying
I' differs by at least €/n? from the fraction of examples belonging to S; that
satisfy I'. If any such I’ exists, the test “fails” and we assume that the negative
examples are being seen, and give all examples a score of 1/2. Otherwise (the
test is “passed”) proceed to step 4:

4. Let L be the set of literals satisfied by all elements of S.

(a) If an example satisfies all the literals in L and fails to satisfy all literals
that are satisfied by a fraction < €/2n of elements of S, give that example
a score of 1.

10 Paul W. Goldberg

(b) Otherwise, if the example still satisfies L, assign a score of 1/2.
(¢) Otherwise assign a score of 0.

Note: step 3 is a test with “one-sided error” in the sense that we may reason-
ably expect all product distributions to pass the test, but there exist distributions
other than product distributions that may also pass. However, we show below
that when a product distribution restricted to the negative data of a monomial
passes the test, then (with probability > 1 — §) there is at most one useful
attribute.

Proving That the Algorithm is PAC. There must be at least one useful
attribute in order for the frequency of both positive and negative examples to
exceed e. We consider two cases: first when there is only one useful attribute,
second, when there is more than one.

Case 1: In this case, we expect the distributions over both the positive and
negative examples to be close to product distributions, so that the test of step 3
of the algorithm will be passed in both A’s case and B’s case. Learner A (with
probability 1—0(d)) gives a score of 1 to examples that satisfy the useful literal [,
with the exception of a small fraction of them due to the additional requirement
in step 4a. Meanwhile, learner B assigns a score of < % to all examples satisfying
l, since [is not satisfied by any of B’s data. Hence learner A claims all but a
fraction < €/2 of the positive data. By a similar argument, learner B claims all
but a fraction < €/2 of the negative data.

Case 2: When there are two useful attributes, the positive examples are still
generated by a product distribution, so A’s data pass the test of step 3. Mean-
while, with probability > 1 — §, B’s data fail this test, since when we choose
literal [in target ¢ that happens to be useful, and remove elements of S which
satisfy [, then the conditional probability that any other useful literal is satisfied,
changes by > €¢/n?. (A Chernoff bound analysis assures that the change will be
detected with probability 1 — §/2.) All examples are then given scores of 1/2,
and this allows A to claim positives and leave B the negatives.

3.2 TUnions of Intervals

Let the domain be the real numbers R, and assume that the target concept
is a union of k intervals in R. We show that this concept class is learnable by
two unsupervised learners. This result shows that learnability with two unsuper-
vised learners is distinct from learnability from positive examples only, or from
negative examples only.

Each learner does the following. Let S be the set of real values that constitutes
its data. Define discriminant function f as

f(r):—(min (s) — max (s)) ifr¢s

sES,s>r SES,s<r

firy=1ifres.

Two Unsupervised Learners 11

This choice of discriminant function ensures that when A’s and B’s scores
are combined, the set of all points that are claimed by A consists of a union of at
most k intervals, and this set contains A’s data but not B’s data. Hence we have
a consistent hypothesis of V-C dimension no more than the target concept, so
this method is PAC (with runtime polynomial in k, e~! and §—!). Note that the
value of k needs to be prior knowledge for the purpose of identifying a sufficient
sample size. This is in contrast with PAC learning in the standard setting, where
an appropriate sample size can be identified using the standard on-line approach
of comparing the number of examples seen so far with the complexity of the
simplest consistent classifier, and continuing until the ratio is large enough.

3.3 Rectangles in the Plane with Bounded Aspect Ratio

Let a denote the length of the target rectangle divided by the width, and we give
a PAC-learning algorithm that is polynomial in a as well as the standard PAC
parameters. We do not have a PAC algorithm that works without the bound
on the aspect ratio. A notable feature of this learning problem is that it seems
to require quite a complex method, despite the simplicity of the concept class.
Extensions are discussed in the next section.

The general idea is that each learner partitions the domain into rectangles
containing equal numbers of its data points, and given a query point q, compares
the coordinates of q with other points in the partition element within which q
falls. A high score is given when there exist points in that partition element with
similar coordinate values.

The Algorithm. Each learner does the following.

1. Generate a sample of size N = O(alog(6~1)/€%).
2. Build a partition P of the domain R? as follows:

(a) Partition the domain into 1/€? pieces using lines normal to the y-axis,
such that each piece contains the same number of data points.!

(b) Partition each element of the above partition into 1/€? pieces using lines
normal to the z-axis, such that each piece contains the same number of
data points.

3. For query point q € R? the score assigned to q is computed as follows.

(a) Let Py € P be the rectangle in P containing q.

(b) Let S(Pq) be the sample points that lie inside Py.

(So [S(Pa)| = O(alog(d-1)/€%))

(c) Sort S(Pq)U{q} by z-coordinate. If q is among the first (1)~! elements
or among the last (%)_1 elements, then reject q, i.e. assign q a score of
—oo and terminate.

(d) If q was not rejected, define the z-cost of q to be the difference between
the z-coordinates of the two neighbors of q.

(e) Sort S(Pq)U{q} by y-coordinate. If q is among the first (1)~" elements
or among the last (£)~' elements, then reject q.

! Throughout we ignore rounding error in situations where for example an equal par-
tition is impossible; such rounding will only change quantities by a constant.

12 Paul W. Goldberg

(f) If q was not rejected, define the y-cost of q to be the difference between
the y-coordinates of the two neighbors of q.

(g) Finally, the score assigned to q is the negation of the sum of the z-cost
and y-cost.

Proving That the Algorithm is PAC. Let P4 be the partition constructed
by A and let Pg be the partition constructed by B. Let u4 (respectively ug)
be the measure on R? induced by the input distribution D restricted to target
T (respectively T', the complement of T') and re-normalised, so that we have
ua(R?) = up(R?) = 1. So, given region R C R2, ua(R) is the probability that
a random input z lies within R conditioned on z being an element of T'. Let fi 4
and jip denote the measures pa and pup as observed by A and B respectively
on the random examples used in the algorithm. The well-known V-C theory
of [4] says that for a concept class C of V-C dimension v, given a sample of size?
O(vlog(6—te~1)/e), we have that with probability 1 — &,

|2(C) — p(C)| <eforall C eC

where p is a probability measure and /i is the measure as observed on the sample.
Noting that axis-aligned rectangles in R? have V-C dimension 4, we deduce that
if learners A and B draw samples of size O(log(d e 1) /e), then with probability
1-4,

fia(R) — pa(R)| < e and

|ig(R) — ps(R)| < ¢, for all rectangles R.

The following fact emerges automatically from the V-C bounds:

Remark 1. N is chosen such that if learners A and B use samples of size N,
then with probability 1 — O(Jd) we have that for all rectangles R:

lia(R) — pa(R)| < €
|iB(R) — pup(R)| < €.
From the construction of partition P we note:

Remark 2. P4 and Pg are each of size (1/€)*, and each element of P4 (respec-
tively Pg) contains ©(alog(671)(1/€)%) of A’s (respectively B’s) data points.
From remark 2, given rectangle R € Pa, ia(R) = €, and consequently
lpa(R) — €*| < €® with high probability, using remark 1. Clearly all rectan-
gles in P4 intersect target rectangle T (similarly members of Pg intersect T").
Now consider the potential problem of rectangles in Pp that contain positive
examples. We continue by upper-bounding the number of those rectangles, and

2 This is weaker than the known bound — we are using a weak bound to simplify the
presentation.

Two Unsupervised Learners 13

upper-bounding the amount of damage each one can do (due to claiming data
examples that should be claimed by A).

Let P} C Py be elements of P4 which intersect 7" (so are not proper subsets
of T). Similarly let Pg denote elements of Pg which intersect 7. We show that the
number of elements of P} and Pf is substantially smaller than the cardinalities
of P4 and Pg.

Remark 3. Any axis-aligned line cuts (%)2 elements of P4 and similarly (%)2
elements of Pg.

Corollary 3. The boundary of T intersects at most O((1)?) elements of P4 and
similarly at most O((%)?) elements of Pp.

In particular, it intersects at most 4.(1)? elements of either partition.

So partition Pp has (1)* elements each containing (1)° data points, and only
O((%)?) of them intersect T. Now we consider how an element R € Pp could
intersect T'. We divide the kinds of overlap into

1. An edge overlap, where one edge and no vertices of T' are overlapped by R.

2. A two-edge overlap, where 2 opposite edges and no corner of T" are overlapped
by R.

3. Any overlap where R contains a corner of 7.

We treat these as separate cases. Note that since there are < 4 overlaps
of type 3 we may obtain relatively high bounds on the error they introduce,
by comparison with the edge and two-edge overlaps, of which there may be up
to (%)2 Throughout we use the following notation. Let x be a point in target
rectangle T which is being assigned scores using A’s and B’s partitions. Let
x € rectangle R4 € P4 and x € Rp € Pp, so that R, intersects 7T'.

Case 1: (edge overlap) Rp has an edge overlap with T'. Consider steps 3¢ and 3e
of the algorithm. When x is being compared with the points in Rp it will have
either an z-coordinate or a y-coordinate which is maximal or minimal for data
points observed in Rp. One of these steps of the algorithm will cause B to reject
x. But x will only have a probability O(e®) of having a maximal or minimal
coordinate value amongst points in R4 (since R4 contains (1) data points and
x is generated by the same distribution that generated those data points).
Case 2: (two-edge overlap) There are at most (1)? two-edge overlaps possible.
Suppose that in fact Rp overlaps the top and bottom edges of T' (the following
argument will apply also to the other sub-case). Hence all the two-edge overlaps
do in fact overlap the top and bottom edges of T'. Let zp and yr denote the
lengths of T' as measured in the = and y directions, so we have zr /yr € [1/a, a].
Then the y-cost of Rp is at least yr. Meanwhile, all but a fraction € of boxes in
P4 will give a y-cost of < € - yp. Also, all but a fraction € of boxes in Py will
have z-costs at most € - z7. Using our aspect ratio assumption, this is at most
eayr. Hence, for points in all but a fraction e of boxes in P4, the y-cost will
dominate, and the score assigned by B will exceed A’s score.

Case 3: (corner overlap) Suppose Rp overlaps a corner of T'. We show that Rp
introduces error O(e), and since there are at most 4 such rectangles, this case

14 Paul W. Goldberg

is then satisfactory. For Rp to introduce error > ¢, it must overlap a fraction
(2(e) of rectangles in Py, hence > ()3 rectangles in P4. In this situation, Rp
contains Q((%)3) recangles in P4 in its interior. On average, both the z and y
coordinates of sample points in these interior rectangles will be Q(%) closer to
each other than the points in Rg. This means that only an e-fraction of points
in these elements of P4 will have coordinates closer to points in Rpg, than to
some other point in the same element of P4. Hence all but an e-fraction of these
points will be claimed by A.

Discussion, possible extensions. Obviously we would like to know whether
it is possible to have PAC learnability without the restriction on the aspect
ratio of the target rectangle. The restriction is arguably benign from a practical
point of view. Alternatively, various reasonable “well-behavedness” restrictions
on the input distribution would probably allow the removal of the aspect ratio
restriction, and also allow simpler algorithms.

The extension of this result to unions of k& rectangles in the plane is fairly
straightforward, assuming that the aspect ratio restriction is that both the tar-
get region and its complement are expressible as a union of k rectangles all with
bound « on the aspect ratio. The general idea being used is likely to be extend-
able to any constant dimension, but then the case analysis (on the different ways
that a partition element may intersect the region with the opposite class label)
may need to be extended. If so it should generalize to unions of boxes?® in fixed
dimension (as studied in [6] in the setting of query learning, a generalization is
studied in [5] in PAC learning). Finally, if boxes are PAC learnable with two un-
supervised learners in time polynomial in the dimension, then this would imply
learnability of monomials, considered previously.

3.4 Linear Separators in the Plane

Given a set S of points in the plane, it would be valid for an unsupervised learner
to use a probability distribution whose domain is the convex hull* of S, provided
that only a “small” fraction of elements of S are actually vertices of that convez
hull. For a general PAC algorithm we have to be able to handle the case when
the convex hull has most or all of the points at its vertices, as can be expected
to happen for an input distribution whose domain is the boundary of a circle,
for example. Our general approach is to start out by computing the convex hull
P and give maximal score to points inside P (which are guaranteed to have the
same class label as the observed data). Then give an intermediate score to points
in a polygon @) containing P, where () has fewer edges. We argue that the way
@ is chosen ensures that most points in) are indeed claimed by the learner.

3 A boz means the intersection of a set of halfspaces whose bounding hyperplanes are
axis-aligned, i.e. each hyperplane is normal to one of the axes.

4 The conver hull of a finite set S of points is the smallest convex polygon (more
generally, polytope) that contains S. Clearly all the vertices of the convex hull of S
are members of S.

Two Unsupervised Learners 15

The Algorithm. The general idea is to choose a discriminant function in such a
way that we can show that the boundary between the classes is piecewise linear
with O(v/N) pieces, where N is sample size. This sublinear growth ensures a
PAC guarantee, since we have an “Occam” hypothesis — the V-C dimension of
piecewise linear separators in the plane with O(v/N) pieces is itself O(v/N).

1. Draw a sample S of size N = O(log(§~2¢72)/e?).
2. Let polygon P be the convex hull of S.
3. Let Q be a polygon having < 2 + v/N edges such that

(a) Every edge of () contains an edge of P
(b) Adjacent edges of @ contain edges of P that are < v/N apart in the
adjacency sequence of P’s edges.
4. Define discriminant function h as follows.

(a) For points in P use a score of 1.

(b) For each region contained between P and 2 adjacent edges of @, give
points in that region a score of the negation of the area of that region.

(c¢) Reject all other points (not in Q).

Regarding step 3: () can be found in polynomial time; we allow @ to have
2 + VN edges since P may have 2 acute vertices that force pairs of adjacent
edges of () to contain adjacent edges of P.

shaded region is
claimed by A

16 Paul W. Goldberg

Proving That the Algorithm is PAC. Figure 1 illustrates the construction.
Let P4 and Pp be the convex hulls initially found by learners A and B respec-
tively. They define subsets of the regions claimed by A and B respectively. Let
Q4 and @ p be the polygons @) constructed by A and B respectively. Let [be a
line separating P4 and Pg. Observe that () 4 and @ g respectively can each only
have at most two edges that cross [, and at most one vertex on the opposite side
of [from P4 and Pp respectively, using the fact that each edge of Q4 contains
an edge of P4, and similarly for @p and Pg.

Hence only one of the regions enclosed between P4 and two adjacent edges of
Q4 can cross line [, and potentially be used to claim part of the interior of Q).
If this region contains more than one of the similar regions in @ g, then it will
not in fact claim those regions of @ g, since the score assigned to its interior will
be lower. Omitting the details, it is not hard to show using these observations
that the region claimed by A is enclosed by a polygon with O(v/N) edges, and
similarly for B. N was chosen such that the V-C bound of section 3.3 ensures
PAC-ness with parameters € and §.

4 Conclusion and Open Problems

The standard requirement of PAC learning that algorithms must work for any
input distribution D, appears to give rise to very novel algorithmic challenges,
even for fairly elementary computational learning problems. At the same time
however, the resulting algorithms do not appear to be applicable to the sort
of class overlap situations that motivated the learning setting. Probably it will
be necessary to model learning situations with an additional assumption that
D should belong to some given class of distributions, as we did in section 3.1.
Our formalisation of this learning setting will hopefully provide insights into
what assumptions need to be made about the distribution of inputs, in order for
standard practical methods of unsupervised learning to be applied.

The main open question is whether there is a PAC-learnable concept class
that is not PAC-learnable in the two unsupervised learners framework. It would
be remarkable if the two learning frameworks were equivalent, in view of the way
the PAC criterion seems to impose a discipline of class separation on algorithms.
Regarding specific concept classes, the most interesting one to get an answer for
seems to be the class of monomials, a special case of nearly all boolean concept
classes studied in the literature. It may be possible to extend the approach in
section 3.1 to the assumption that D is a mixture of two product distributions,
a class of distributions shown to be learnable in [8,11].

Related open questions are: does there exist such a concept class for com-
putationally unbounded learners (where the only issue is sufficiency of informa-
tion contained in a polynomial-size sample). Also, can it be shown that proper
PAC-learnability holds for some concept class but not in the two unsupervised
learners version. (So, we have given algorithms for various learning problems
that are known to be properly PAC-learnable, but the hypotheses we construct
do not generally belong to the concept classes.)

Two Unsupervised Learners 17

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

E.L. Allwein, R.E. Schapire and Y. Singer (2000). Reducing Multiclass to Binary:
A Unifying Approach for Margin Classifiers. Journal of Machine Learning Research
1, 113-141.

M. Anthony and N. Biggs (1992). Computational Learning Theory, Cambridge
Tracts in Theoretical Computer Science, Cambridge University Press, Cambridge.
C.M. Bishop (1995). Neural Networks for Pattern Recognition, Oxford University
Press.

A. Blumer, A. Ehrenfeucht, D. Haussler and M.K. Warmuth (1989). Learnability
and the Vapnik-Chervonenkis Dimension, J.LACM 36, 929-965.

N.H. Bshouty, S.A. Goldman, H.D. Mathias, S.Suri and H. Tamaki (1998). Noise-
Tolerant Distribution-Free Learning of General Geometric Concepts. Journal of
the ACM 45(5), pp. 863-890.

N.H. Bshouty, P.W. Goldberg, S.A. Goldman and H.D. Mathias (1999). Exact
learning of discretized geometric concepts. SIAM J. Comput. 28(2) pp. 674-699.
N. Cristianini and J. Shawe-Taylor (2000). An Introduction to Support Vector Ma-
chines. Cambridge University Press.

M. Cryan, L. Goldberg and P. Goldberg (1998). Evolutionary Trees can be Learned
in Polynomial Time in the Two-State General Markov Model. Procs. of 89th FOCS
symposium, pp. 436-445.

S. Dasgupta (1999). Learning mixtures of Gaussians. 40th IEEE Symposium on
Foundations of Computer Science.

R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. Wiley, New
York (1973).

Y. Freund and Y. Mansour (1999). Estimating a mixture of two product distribu-
tions. Procs. of 12th COLT conference, pp. 53-62.

A. Frieze, M. Jerrum and R. Kannan (1996). Learning Linear Transformations.
87th IEEE Symposium on Foundations of Computer Science, pp. 359-368.

V. Guruswami and A. Sahai (1999). Multiclass Learning, Boosting, and Error-
Correcting Codes. Procs. of 12th COLT conference, pp. 145-155.

D. Haussler, M. Kearns, N. Littlestone and M.K. Warmuth (1991). Equivalence of
Models for Polynomial Learnability. Information and Computation, 95(2), pp. 129-
161.

D. Helmbold, R. Sloan and M.K. Warmuth (1992). Learning Integer Lattices. STAM
Journal on Computing, 21(2), pp. 240-266.

M.J. Kearns (1993). Efficient Noise-Tolerant Learning From Statistical Queries,
Procs. of the 25th Annual Symposium on the Theory of Computing, pp. 392-401.
M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R.E. Schapire and L. Sellie (1994).
On the Learnability of Discrete Distributions, Proceedings of the 26th Annual ACM
Symposium on the Theory of Computing, pp. 273-282.

M.J. Kearns and R.E. Schapire (1994). Efficient Distribution-free Learning of Prob-
abilistic Concepts, Journal of Computer and System Sciences, 48(3) 464-497. (see
also FOCS ’90)

J.C. Platt, N. Cristianini and J. Shawe-Taylor (2000). Large Margin DAGs for
Multiclass Classification, Procs. of 12th NIPS conference.

L.G. Valiant (1984). A Theory of the Learnable. Commun. ACM 27(11), pp. 1134-
1142.

L.G. Valiant (1985). Learning disjunctions of conjunctions. Procs. of 9th Interna-
tional Joint Conference on Artificial Intelligence.

