
Some Discriminant-based PAC Algorithms ∗

Paul W. Goldberg†

University of Warwick,

Department of Computer Science,

Coventry, CV4 7AL, UK.

January 5, 2006

Abstract

A classical approach in multi-class pattern classification is the following. Estimate prob-
ability distributions that generated the observations for each label class, and then label new
instances by applying the Bayes classifier to the estimated distributions. That approach pro-
vides more useful information than just a class label; it also provides estimates of the conditional
distribution of class labels, in situations where there is class overlap.

We would like to know whether it is harder to build accurate classifiers via this approach,
than by techniques that may process all data with distinct labels together. In this paper we
make that question precise by considering it in the context of PAC learnability. We propose
two restrictions on the PAC learning framework that are intended to correspond with the above
approach, and consider their relationship with standard PAC learning. Our main restriction of
interest leads to some interesting algorithms that show that the restriction is not stronger (more
restrictive) than various other well-known restrictions on PAC learning. An alternative slightly
milder restriction turns out to be almost equivalent to unrestricted PAC learning.

Keywords: Computational learning theory, Pattern classification

∗This work was supported by EPSRC Grant GR/R86188/01. This work was supported in part by the IST Pro-
gramme of the European Community, under the PASCAL Network of Excellence, IST-2002-506778. This publication
only reflects the author’s views. A preliminary version of this paper was presented at the 2001 COLT conference.

†author’s email address: pwg@dcs.warwick.ac.uk

1

1 Introduction

We present some PAC learning algorithms for various learning problems, within a new restriction
of the PAC setting. We begin by explaining the motivation for studying the new restriction, and
continue with some general results about it, followed by the algorithms.

1.1 Background and Motivation

A standard approach to classification problems (see for example Duda and Hart (16), page 17) is
the following. For each class, find a discriminant function that maps elements of the input domain
to real values. These functions can be used to label any element x of the domain with the class label
whose associated discriminant function takes the largest value on x. The discriminant functions
are usually estimates of the probability densities of points in each class, weighted by the class prior
(relative frequency of that class), in which case we are using the Bayes classifier.

If it is possible to obtain good estimates of the probability distributions that generated the
label classes, then (for reasons we explain below) these are often more useful than just an accurate
classification rule. However, this raises the question of how much harder it becomes to learn to
classify data well, if we actually insist on learning the distributions. This motivates our choice to
study this general question in the context of PAC learning, since PAC learning gives a framework
for results giving lower bounds on sample-size or computational requirements. These results allow
different models of the learning process to be provably distinguished from each other, in terms of
the learning problems that are tractable within each model.

Most recent work on pattern classification (for example work on support vectors (12)) of course
does not try to learn label class distributions, but rather to find decision boundaries that optimize
some performance guarantee, usually misclassification rate. Performance guarantees are derived
from observed classification performance in conjunction with other features of the boundary such
as syntactic or combinatorial complexity, or the number of support vectors and margin of separation.
The general approach clearly requires examples with different labels to be taken in conjunction with
each other when finding a decision boundary. By contrast, discriminant functions are constructed
from individual label classes in isolation. It seems clearly “easier” to find a good classifier by
considering all data together (so as to apply empirical risk minimisation), than by insisting that
each label class must be independently converted into a discriminant function. Noting Vapnik’s
observation ((29), page 30) that one should not try to solve a problem via solving a more general
problem, why exactly would we want to estimate the distributions of label classes?

The answer is that when the distributions can be found, the extra information that is obtained
is often very useful in practice. In contrast with decision boundaries, we obtain for a domain
element x, the values of the probability densities of label classes at x, which provide a conditional
distribution over the class label of x. A predicted class label for x can then take into account
variable misclassification penalties, or changes in the assumed class priors. There are of course
other ways to obtain such distributions, for example using logistic regression, or more generally
(for k-class classification) neural networks with k real-valued outputs re-scaled using the softmax
activation function (see Bishop (6) for details). However, unsupervised learning for each class – if
it can be done successfully – has other advantages over these techniques, such as the following.

1. Label classes can be added without re-training the system. So for example if a new symbol
were added to a character set, then given a good estimate of the probability distribution over
images of the new symbol, this can be used in conjunction with pre-existing models for how
the other symbols are generated.

2

2. Outlying instances are those that lie in regions of the domain where the distributions have
low weight. We usually cannot assign a sensible label to such instances, however they may at
least be recognised as a result of all class label distributions having very small weight around
such an instance.

3. For applications such as handwritten digit recognition, it is arguably more natural — from
the perspective of cognitive modeling — to model the data generation process in terms of 10
separate probability distributions, than as a collection of thresholds between different digits.
This is because a handwritten zero (say) is nearly always the result of a process that first
chooses the label “0” and then creates the image. It is not the result of a process that first
generates a character and then assigns it the label “0” based on context, appearance or other
criteria.

Another difficulty with decision boundaries arises specifically in the context of multiclass clas-
sification. It has been noted (1) that multiclass classifiers are often constructed using multiple
2-class classifiers. How to combine them is a challenging topic that has itself received much recent
attention, see for example (19; 1). In practical studies such as (27) that build a multi-class classifier
from a collection of 2-class classifiers, a distinction is made between separating each class from the
union of the others (1-v-r classifiers, where 1-v-r stands for one-versus-rest) and pairwise separation
(1-v-1 classifiers). Neither is entirely satisfactory – for example it may be possible to perform linear
1-v-1 separation for all pairs of classes, but not linear 1-v-r separation, while 1-v-1 classification (as
studied in (27)) raises the problem of combining the collection of pairwise classifiers in a principled
way to get an overall classification, for example ensuring that all classes are treated the same way.
In (27), the first test for any unlabeled input is to apply the separator that distinguishes 0 from
9. Thus 0 and 9 are being treated differently from other digits (which in turn are also treated
differently from each other.)

With regard to PAC learning, the approach of applying unsupervised learning to each label class,
can treat situations where class overlap occurs (as is usually the case in practice). Standard PAC
algorithms do not address this problem (although there have been extensions such as “probabilistic
concepts” (24) that do so, and methods using support vectors that also allow decision boundaries
that do not necessarily agree with all observed data). It is not hard to verify (see (26)) that when
we have good estimates of the class label distributions (in a sense described below in Section 1.3)
then the associated classifier is approximately optimal in the agnostic PAC sense. For large data
set sizes, it becomes feasible to find good estimates of these distributions, and obtain this more
useful “summary” of the data.

The algorithms described in this paper are given in the context of simple 2-class classification,
as opposed to multi-class classification. This is because we aim to explore the problems arising
from an insistence upon treating each label class independently. The algorithms would however
apply in a multi-class context where each pair of classes is separated by a boundary belonging to
the given set of boundaries.

1.2 Formal Definition of the Learning Framework

In PAC learning (see for example (3) for a detailed introduction) there is a source of data consisting
of instances generated by a probability distribution D over a domain X, labeled using an unknown
“target function” t : X −→ {0, 1}. The objective is to find a classifier h : X −→ {0, 1} which is a
good approximation to t with respect to probability measure D. As usual we will let ε denote a
misclassification rate (probability that t and h disagree on random x) and δ denote the uncertainty

3

(probability that error rate ε is not attained). We refer to the members of t−1(1) as the “positive
examples” and the members of t−1(0) as the “negative examples”.

We say that a set C of functions from X to {0, 1} (the “concept class”) is PAC learnable if there
exists an algorithm A that for any t ∈ C, with probability at least 1 − δ outputs h : X −→ {0, 1}
having misclassification rate at most ε. A is required to run in time polynomial in ε−1 and δ−1 and
other parameters (usually, the syntactic description length of t and members of the training data).
A may sample x from D in unit time, and obtain (x, t(x)). In this standard definition, we assume
that t and D may be worst-case (chosen by an adversary).
Notation. For ` ∈ {0, 1} let D` denote the restriction of D to t−1(`). Let p` denote the class prior
for label `, p` = Prx∼D(t(x) = `). We assume throughout that p` > 0. Thus

Prx∼D`
(x) = 1

p`
Prx∼D(x) for t(x) = `

Prx∼D`
(x) = 0 for t(x) = 1 − `

For any probability distribution P over X (for example D or D`), an algorithm with access to P
may in unit time draw an unlabeled sample from P .

It is shown in (20) that the standard PAC framework is equivalent to a “two-button” version,
where an algorithm has access to a “positive example oracle” and a “negative example oracle”. (The
two-button version conceals the class priors and only gives the algorithm access to the distribution
as restricted to each class label. Thus the oracles generate examples from D1 and D0 respectively.)
We define a restriction of “two-button” learning as follows.

Definition 1 Suppose algorithm A has access to a distribution P over X, and the output of A is
a function f : X −→ IR. Execute A twice, using D1 (respectively D0) for P . Let f1 and f0 be the
functions obtained respectively. For x ∈ X let

h(x) = 1 if f1(x) > f0(x)
h(x) = 0 if f1(x) < f0(x)

h(x) undefined if f1(x) = f0(x)

If A takes time polynomial in ε−1 and δ−1, and h is PAC with respect to ε and δ, then we will say
that A PAC-learns via discriminant functions.

It is clear that if A can be found such that the resulting h is PAC, then we have PAC learnability
in the two-button setting, and hence standard PAC learnability.

In specifying the restriction above, we are keeping it both simple and “severe”, in the sense of
making it difficult to find algorithms within the restricted framework. This is with a view to getting
strong positive results, and also to maximizing the potential for negative results (PAC learnable
problems that are hard within the restricted setting). One could devise less severe restrictions to
capture the general idea of learning via discriminant functions. Alternatives are discussed at the
end of this section.

We also consider the following slightly less severe variant related to POSEX learnability as
introduced in Denis (15), in which A has access to D (in (15) the “EX” oracle), in addition to D1

(in (15) the “POS” oracle). This is formalized as Definition 2, and it turns out that we can be much
more specific about learnability in this sense, namely it is intermediate between PAC learnability
with uniform misclassification noise and basic PAC learnability.

Definition 2 Suppose algorithm A has access to D in addition to distribution P over X, and the
output of A is a function f : X −→ IR. Execute A twice, using D1 (respectively D0) for P . Let f1

4

and f0 be the functions obtained respectively. For x ∈ X let

h(x) = 1 if f1(x) > f0(x)
h(x) = 0 if f1(x) < f0(x)

h(x) undefined if f1(x) = f0(x)

If A takes time polynomial in ε−1 and δ−1, and h is PAC with respect to ε and δ, then we will say
that A PAC-learns via discriminant functions with access to D.

POSEX learnability requires that f1 be a 0/1-valued function that constitutes a PAC hypothesis.
We discuss the relationship in more detail in the next section.
Notation. We refer to the two instances of the unsupervised learning algorithm as A1 and A0, so
that A1 consists of A with the (unlabeled) positive data as input, and A0 is A with the (unlabeled)
negative data as input. (Note however that learning according to Definition 1 or 2 does not allow
A` to use the value of `.) We let S` denote the sample of unlabeled data drawn by A`.

Let us conclude this section by considering alternative restrictions to PAC learnability that
capture the informal notion of learning via discriminant functions. We could for example ask that
f1 and f0 should be probability distributions. Our reason for not doing so is that, while we believe
that the functions produced by our algorithms can be re-scaled on an ad-hoc basis to become
probability distributions, there is no guarantee in the distribution-free PAC setting that they are
similar to the unknown distributions D1 and D0.

Another natural candidate is a variant in which A1 and A0 are two distinct agents that know
their class labels. Equivalently, we would be seeking two algorithms A1 and A0 that respectively
have access to the positive and negative data (equivalently, an algorithm A` that may use the value
`). Observe however that this relaxation is not helpful for any concept class C that is closed under
complement (meaning that for all c ∈ C, we also have X \ c ∈ C). Consequently, any algorithms
that require this relaxation would need to exploit additional prior information about data from
different classes. There’s nothing wrong with that of course, but it departs from our focus on the
approach of independently processing each label class.

1.3 Related Work

There has been much work on the comparison of alternative notions of PAC learning with each
other, with the criterion for distinguishability being that some learning task (concept class) should
be tractable1 in one variant but not in the other. The early paper of Haussler et al. (20) showed
that various alternative definitions of PAC learnability are equivalent in this sense. Examples of
distinctions that have been found between different restrictions to the framework include learning
with a restricted focus of attention (4; 5) which is shown to be more severe that learnability in
the presence of uniform misclassification noise. Learnability with Statistical Queries (22) is also
known to be at least as severe as learnability with uniform misclassification noise. Perhaps the
most important result of this kind is the equivalence between PAC learnability and “weak” PAC
learnability found by Schapire (28) which led to the development of boosting techniques. Blum (7)
exhibits a concept class that distinguishes PAC learnability from mistake-bound learning, and that
is of interest here since we use the same concept class (in Section 3.3) to show that our restriction
of PAC learnability is likewise distinct from mistake-bound learnability.

We noted that learning under the constraint of Definition 2 is related to POSEX learning.
Specifically we have:

1“tractable” is usually taken to mean that the computational and sample-size requirements for learning, should
be polynomial in the parameters of the task.

5

Observation 1 If a concept class and its complement are POSEX learnable, then they are learnable
under Definition 2.

Proof. (sketch; the following technique is used in more detail in Theorem 1) Let AP be a POSEX
algorithm for C and let A′

P be a POSEX algorithm for C ′, the class of sets whose complements are
members of C. An algorithm A in the sense of Definition 2 works as follows. A can sample from
D, and it uses samples from D` as “positive” examples. A applies AP and A′

P to this data, and at
least one of the two hypotheses h, h′ is PAC, since the “positive” data really is positive from the
perspective of one of AP and A′

P .
h and h′ are then tested on further data; the chosen hypothesis should contain almost all samples

from D`, and if both h and h′ do so, choose the one that contains fewer samples from D. That
hypothesis with high probability maps samples from D` to 1 and samples from D1−` to 0. Let A1

and A0 be the two runs of A having access to D1 and D0 respectively. The overall hypothesis is
obtained from two functions found by A1 and A0, and its misclassification rate is at most the sum
of their error rates.

In Section 2 we show that if a concept class is learnable in the presence of noise, then it
and its complement are POSEX learnable, and hence by the above observation, learnable under
Definition 2. The result of Section 2 answers a question raised by Letouzey et al. (25) (the hierarchies
of inclusions given in Equations (4,5) of (25) can be merged).

There are some interesting algorithms having PAC-like performance guarantees for learning
probability distributions; the topic was introduced in (23), see also (13; 17; 18; 14). The criterion
for learning a distributionD is to obtain a hypothesis distribution which is within ε ofD under some
measure of similarity. The KL distance and the variation distance are usually considered. We noted
above that when distributions are learned under these criteria, the Bayes classifier achieves agnostic
PAC-ness. However, the algorithms we describe here differ substantially from these previous ones
(as well as from the algorithms in the much more extensive general literature on unsupervised
learning). The reason is that our aim is not really to approximate a distribution over inputs.
Rather, it is to construct a discriminant function in such a way that we expect it to work well in
conjunction with the corresponding discriminant function constructed on data with the opposite
class label.

1.4 Summary of Results

The rest of the paper is organized as follows. In Section 2 we consider learning under Definition 2
in which A` has access to D in addition to D`. We show that PAC learnability with uniform
misclassification noise implies PAC learnability with discriminant functions and access to D. This
gives us a good understanding of how learning under Definition 2 fits in with other restrictions.

In Section 3 we move to the trickier issue of learning according to Definition 1. We exhibit
algorithms that show that the restriction is not more severe than various other restrictions of
PAC learning. In Section 3.1 we show that parity functions are learnable in this setting, which
distinguishes it from learnability in the presence of noise (subject to the “noisy parity assumption”,
which is the widespread assumption that parity functions are hard to learn in the presence of uniform
misclassification noise) as well as Statistical Query (SQ) learnability (22) (since it is known from (22)
that parity functions are not learnable using SQs.) In Section 3.2 we distinguish the setting from
learnability from positive data only (or negative data only) by studying the class of unions of
intervals on the real line. In Section 3.3 we distinguish the setting from mistake-bound learning,
using a concept class from (7).

6

The two remaining algorithms indicate some limits to our success at finding algorithms in the
restricted setting. Section 3.4 shows how to learn linear separators in the plane, using an approach
that we have not been able to extend to three or more dimensions. In Section 3.5 we show how
to learn monomials provided that the input distribution D is an unknown product distribution.
Learning under this sort of assumption is in a sense intermediate between learning with access to
D (Definition 2) and learning via discriminant functions in the sense of Definition 1.

2 Learning via Discriminant Functions with Access to D

In this section we show that given a standard noise-tolerant PAC learning algorithm, we may use it
to construct an algorithm for POSEX learning and hence learning in the restriction of Definition 2.
We do this in two stages — Proposition 1 shows how this is achieved provided that an estimate of
the class prior p` is provided to A`, and Theorem 1 extends the result to the setting in which the
class priors are unknown.

Here is an overview of the proofs in this section. Proposition 1 analyses learning with a given
noise rate. This uses a standard definition of noise-tolerant PAC learning in which an algorithm Aη

has parameter η. η is the probability that an example is mislabeled; 0 ≤ η < 1
2 . Aη should then be

polynomial in (1
2 − η)−1 in addition to other parameters. Given the class prior p` (the probability

that a random instance has label `) we can generate random samples from a fixed distribution that
is a mixture of D and D`, such that they have uniform misclassification rate, which allows Aη to
be used. In fact, we show that an additive approximation p` can be used in place of p`. This is
done by exhibiting a coupling of the two labeled sample distributions (one using p` and the other
using p`), in which they are very likely to generate the same data.

In Theorem 1 we exploit the fact that an approximation p` can be used. The algorithm of
Figure 2 tries out a sequence of values for p`, at least one of which is a good approximation to p`.
The previous algorithm is used for each of these values, which generates a collection of hypotheses,
and the empirically best hypothesis is shown to be PAC.

Proposition 1 Let Aη be an algorithm with parameter η, 0 ≤ η < 1
2 , that has access to labeled

data, where elements of X are distributed according to D, with a uniform label noise rate of η.
Suppose that Aη uses time p(ε−1, δ−1, (1

2 −η)−1) (where p is some polynomial), and with probability
at least 1 − δ returns a hypothesis having error at most ε (with respect to D).

For ` ∈ {0, 1} let p` = Prx∼D(t(x) = `). Suppose that |p` − p`| ≤ ∆/p(ε−1, δ−1, (1
2 − η)−1).

(∆ ∈ [0, 1].) Suppose that the algorithm of Figure 1 is executed with input p` and access to D` and
D. Then with probability 1 − δ − ∆, the algorithm outputs f` : X −→ {0, 1} satisfying

Prx∼ 1

2
(D+D`)

(f`(x) 6= t(x)) ≤ ε for ` = 1

Prx∼ 1

2
(D+D`)

(f`(x) 6= 1 − t(x)) ≤ ε for ` = 0

Comment. The fact that f` has error at most ε for x ∼ 1
2(D +D`) implies that f` has error at

most 2ε for x ∼ D.

Proof. We may assume that the concept class C is closed under complementation, since if C
is learnable with misclassification noise then its closure under complementation is also learnable
under misclassification noise.

Since C is closed under complementation, it suffices by symmetry to show that f1 satisfies: with
probability at least 1 − δ − ∆, Prx∼ 1

2
(D+D1)(f1(x) 6= t(x)) ≤ ε.

7

Input p`, an estimate of A`’s class prior p` (` ∈ {0, 1}).
Let η = p`

2p`+1 ; N = p(ε−1, δ−1, (1
2 − η)−1).

1. Construct a labeled sample S` as follows. For m = 1 . . . , N do:

(a) Let cm be a “fair coin” random variable; cm = 0 or 1 with
probability 1

2 ; let `m be a 0/1 random variable, `m = 1 with

probability p`

2p`+1 .

(b) If cm = 1, sample x from D and let (x, `m) ∈ S`.

(c) If cm = 0, sample x from D` and let (x, 1) ∈ S`.

2. Input S` to Aη using η = p`

2p`+1 to obtain a hypothesis h` : X −→
{0, 1}.

3. f`(x) = h`(x) for all x ∈ X.

Figure 1: Learning in the sense of Definition 2 using noise-tolerant PAC algorithm and estimates
of class priors

Let (x, j) be the element of S1 constructed on the m-th iteration.

Pr(t(x) = 0) = Pr(cm = 1)Prx∼D(t(x) = 0) = 1
2(1 − p1)

Pr(t(x) = 1) = 1 − 1
2(1 − p1) = 1

2(1 + p1)
(1)

Next we give expressions for misclassification rates Pr(j = 0 | t(x) = 1) and Pr(j = 1 | t(x) = 0).
Consider first the case that t(x) = 1. Note that

Pr(j = 0 | t(x) = 1) = Pr(j = 0 | t(x) = 1 ∧ cm = 0)Pr(cm = 0 | t(x) = 1)
+Pr(j = 0 | t(x) = 1 ∧ cm = 1)Pr(cm = 1 | t(x) = 1).

Pr(j = 0 | t(x) = 1 ∧ cm = 0) = 0, since if cm = 0 then Step (1c) assigns label 1. Hence

Pr(j = 0 | t(x) = 1) = Pr(j = 0 | t(x) = 1 ∧ cm = 1)Pr(cm = 1 | t(x) = 1). (2)

When cm = 1, we have j = `m where `m = 1 with probability p1/(2p1 + 1), so

Pr(j = 0 | t(x) = 1 ∧ cm = 1) = 1 − p1

2p1 + 1
=

p1 + 1

2p1 + 1
. (3)

Pr(cm = 1 | t(x) = 1) =
Pr(cm = 1)Pr(t(x) = 1 | cm = 1)

Pr(t(x) = 1)
=

1
2p1

Pr(t(x) = 1)
.

Pr(t(x) = 1) = 1
2(1 + p1) by Equation (1), hence

Pr(cm = 1 | t(x) = 1) =
1
2p1

1
2(1 + p1)

=
p1

1 + p1
. (4)

Hence from Equations (2) and (3) and (4),

Pr(j = 0 | t(x) = 1) =
(p1 + 1

2p1 + 1

)(p1

1 + p1

)
.

8

Now consider the case that t(x) = 0 (where (x, j) is the labeled exampled constructed on the
m-th iteration of A1); note that

Pr(j = 1 | t(x) = 0) = Pr(j = 1 | t(x) = 0 ∧ cm = 0)Pr(cm = 0 | t(x) = 0)
+Pr(j = 1 | t(x) = 0 ∧ cm = 1)Pr(cm = 1 | t(x) = 0).

If cm = 0 then from Step (1c), t(x) = 1. Hence

Pr(cm = 1 | t(x) = 0) = 1
Pr(cm = 0 | t(x) = 0) = 0.

Consequently,
Pr(j = 1 | t(x) = 0) = Pr(j = 1 | t(x) = 0 ∧ cm = 1). (5)

When cm = 1 we have j = `m where `m = 1 with probability p1/(2p1 + 1), so

Pr(j = 1 | t(x) = 0 ∧ cm = 1) =
p1

2p1 + 1
. (6)

From (5) and (6),

Pr(j = 1 | t(x) = 0) =
p1

2p1 + 1
.

Based on the above expressions for the misclassification rates Pr(j = 0 | t(x) = 1) and Pr(j =
1 | t(x) = 0), and noting that N is defined in Figure 1, Step (1) of the algorithm of Figure 1 is
equivalent to the following:

1. For m = 1 . . . N do:

(a) Sample x from the mixture 1
2 (D +D1).

(b) Sample rm uniformly at random from [0, 1].

(c) If t(x) = 1, then if rm < (p1+1
2p1+1)(p1

1+p1
) label x incorrectly else label x correctly.

(d) If t(x) = 0, then if rm < p1

2p1+1 label x incorrectly else label x correctly.

Let DA be the above distribution over samples of size N . Let Dη be the following distribution
over samples of size N :

1. For m = 1 . . . N do:

(a) Sample x from the mixture 1
2 (D +D1).

(b) Sample rm uniformly at random from [0, 1].

(c) If rm < p1

2p1+1 label x incorrectly else label x correctly.

Let SN denote the set of labeled samples of size N . Define a distribution D2N over SN × SN

by using the same sequence of x’s and rm and the above procedures for constructing the labeled
samples, so that the two marginal distributions over SN are DA and Dη. For (S, S ′) ∼ D2N ,

Pr(S 6= S′) ≤ N · Pr
x∼ 1

2
(D+D1)

(t(x) = 1) ·
∣∣∣
(p1 + 1

2p1 + 1

)(p1

1 + p1

)
− p1

2p1 + 1

∣∣∣.

9

This is because there are N opportunities for S to differ from S ′, and this occurs when x sampled
from 1

2(D +D′) satisfies t(x) = 1. In that case, the labels will differ when rm lies between p1

2p1+1

and (p1+1
2p1+1)(p1

1+p1
). Consequently,

Pr(S 6= S′) ≤ N ·
|p1 − p1(

1+p1

1+p1
)|

2p1 + 1
≤ N · (2p1 + 1)−1 · |p1 − p1| ≤ N |p1 − p1|.

By definition of Aη, for S ∼ Dη, N = p(ε−1, δ−1, (1
2 − η)−1), η = p1

2p1+1 , with probability 1 − δ,

Aη on input S returns h′ having error Pr(h′(x) 6= t(x)) ≤ ε for x ∼ 1
2(D +D1).

Hence for S ∼ DA, N = p(ε−1, δ−1, (1
2 − η)−1), with probability 1 − δ − N(|p1 − p1|), Aη on

input S returns h′ having error Pr(h′(x) 6= t(x)) ≤ ε for x ∼ 1
2(D + D1). Given our assumption

that |p1 − p1| ≤ ∆/N = ∆/p(ε−1, δ−1, (1
2 − η)−1), the result follows.

1. Let p(ε, δ) = max0≤η≤1/3 p(ε
−1, δ−1, (1

2 − η)−1); where p(·, ·, ·) is the
sample size in terms of error, uncertainty and noise rate used by Aη

in Figure 1; Let ∆ = δ/32p(ε, δ); N = (16/ε)2 log(128p(ε, δ)/δ2);
H = ∅.

2. For all p` ∈ [0, 1] such that p` = k∆ for k ∈ IN do:

(a) Apply the algorithm of Figure 1 with parameters 1
16 ε,

1
4δ.

(b) If h : X −→ {0, 1} is returned, add h to H.

3. Draw an unlabeled sample S` of size N using D`.

4. For each h ∈ H, if |{x ∈ S` : h(x) = 1}| < (1 − 3
16ε)|S`| then

remove h from H.

5. Draw a unlabeled sample S of size N using D.

6. Let h′ = arg minh∈H |{x ∈ S : h(x) = 1}|.

7. f`(x) = h′(x) for x ∈ X.

Figure 2: Learning in the sense of Definition 2 using noise-tolerant PAC algorithm and unknown
class priors

Theorem 1 Let Aη be a noise-tolerant algorithm as defined in Proposition 1.
For ` ∈ {0, 1}, the Algorithm of Figure 2 given access to D` and D, with probability at least

1 − δ outputs (in polynomial time) f` with Prx∼D(f`(x) 6= t(x)) ≤ ε for ` = 1, and Prx∼D(f`(x) 6=
1 − t(x)) ≤ ε for ` = 0.

Comment. As a consequence we have learnability in the sense of Definition 2, since when we
derive classifier h from f1 and f0, the error of h is at most the sum of the errors of f1 and f0. (By
the error of f0 we mean the probability that f0(x) is not equal to 1 − t(x).)

10

Proof. Let P̂rx∈S(π(x)) denote the empirical probability that x satisfies property π, with respect
to sample S. We show first that the expression for N used by the algorithm of Figure 2 guarantees
that with probability at least 1 − 1

2δ,

∀h ∈ H
∣∣∣ Pr
x∼D`

(h(x) = 1) − P̂rx∈S`
(h(x) = 1)

∣∣∣ ≤ 1

16
ε (7)

∀h ∈ H
∣∣∣ Pr
x∼D

(h(x) = 1) − P̂rx∈S(h(x) = 1)
∣∣∣ ≤ 1

16
ε (8)

We are asking that the relative frequencies (over N observations) of a set of at most 2|H| events
should be within 1

16 ε of their probabilities. Taking a union bound, it is sufficient that N should
satisfy: Given any f : X −→ {0, 1}, with probability at least 1 − δ/(4|H|)

∣∣∣ Pr
x∼D

(f(x) = 1) − P̂rx∈S(f(x) = 1)
∣∣∣ ≤ 1

16
ε.

Recall Hoeffding’s inequality: Let Y1, . . . , YN be Bernoulli trials with probability p of success.
Let T = Y1 + . . . + YN denote the total number of successes. Then for γ ∈ [0, 1], Pr(|T − pN | >
γN) ≤ 2e−2Nγ2

.
This means that N is sufficiently large if N satisfies δ/(4|H|) ≥ 2e−2N(ε/16)2 . Since |H| ≤ 1/∆,

it is sufficient for N to satisfy δ∆/4 ≥ 2e−2N(ε/16)2 .
For ∆ = δ/32p(ε, δ),

δ2/128p(ε, δ) ≥ 2e−2N(ε/16)2

The equation is satisfied by putting N = (16/ε)2 · log(128p(ε, δ)/δ2), polynomial in the parameters.

Assume that ` = 1. We assume as before that the concept class is closed under complementation,
so that the proof for ` = 0 is similar but using the complement of t in place of t.

Note that the algorithm of Figure 1 constructs a noise rate η in the range [0, 1
3] based on p`, so

each application of Algorithm 1 in Step (2a) uses sample size at most p(1
16ε

−1, 1
4δ

−1). (Polynomial
p(·, ·) is defined in Figure 2.)

One of the values of p` used in Step (2a) as input to Algorithm 1 satisfies |p` − p`| < ∆. As a
result, applying Proposition 1 we have that with probability 1 − 1

2δ, there exists h∗ ∈ H satisfying

Pr
x∼ 1

2
(D+D1)

(h∗(x) 6= t(x)) ≤ 1

16
ε.

We may deduce that
Prx∼D1

(h∗(x) 6= t(x)) ≤ 1
8ε

Prx∼D(h∗(x) 6= t(x)) ≤ 1
8ε.

(9)

We show that with probability 1 − 1
2δ

1. for h ∈ H, if Prx∼D(h(x) = 0 ∧ t(x) = 1) > 1
4ε then h is eliminated in Step 4.

2. h∗ is not eliminated in Step 4.

3. For h ∈ H, if Prx∼D(h(x) = 1 ∧ t(x) = 0) > 1
2ε then h is eliminated in Step 6.

Suppose that Prx∼D(h(x) = 0 ∧ t(x) = 1) > 1
4ε. Then Prx∼D1

(h(x) = 0 ∧ t(x) = 1) > 1
4ε/p1 ≥ 1

4ε.
Hence by (7),

P̂rx∈S1
(h(x) = 0 ∧ t(x) = 1) >

1

4
ε− 1

16
ε =

3

16
ε.

11

From (7) and (9),

P̂rx∈S1
(h∗(x) = 0 ∧ t(x) = 1) ≤ 1

8
ε+

1

16
ε =

3

16
ε.

Hence Step 4 does not eliminate h∗ but it eliminates all h with Prx∼D(h(x) = 0 ∧ t(x) = 1) > 1
4ε.

Now suppose that Prx∼D(h′′(x) = 1 ∧ t(x) = 0) > 1
2ε for some h′′ ∈ H after Step 4. We have

just shown that h′′ satisfies Prx∼D(h′′(x) = 0 ∧ t(x) = 1) ≤ 1
4ε. Consequently, Prx∼D(h′′(x) = 1) −

Prx∼D(t(x) = 1) > 1
2ε− 1

4ε = 1
4ε. Meanwhile note from (9) that Prx∼D(h∗(x) = 1)−Prx∼D(t(x) =

1) ≤ 1
8ε. As a result, Prx∼D(h′′(x) = 1) − Prx∼D(h∗(x) = 1) > 1

4ε− 1
8ε = 1

8ε. From (8),

P̂rx∈S(h′′(x) = 1) − P̂rx∈S(h∗(x) = 1) > 0.

Hence h′′ is eliminated at Step 6.
Hence all h ∈ H with error at least ε are eliminated with probability 1 − 1

2δ. With probability
at least 1 − 1

2δ there exists h∗ ∈ H with error less that ε. Putting these together, with probability
at least 1 − δ we are left with h′ having error less than ε.

3 Learning via Discriminant Functions without Access to D

We exhibit algorithms that show that learnability in the sense of Definition 1 is distinct from various
well-known restrictions of PAC learnability. We also study a special case of the problem of learning
monomials (in which D is known to belong to a particular class of distributions), for which we have
no algorithm in the distribution-independent setting.

Our algorithms are mostly proven to have the PAC property in a standard way, by arguing that
the hypothesis is consistent with the data, and furthermore that it belongs to a class of hypotheses
that have description length polynomial in the parameters of the problem, and sub-linear in the
sample size. (This is the “Occam algorithm” property (8)). For Sections 3.2 and 3.4 we use the
(more generally applicable) Vapnik-Chervonenkis dimension (9; 29) of the class of hypotheses.

3.1 Parity Functions

The following result distinguishes our learning setting from learnability with uniform misclassifica-
tion noise, or learnability with a restricted focus of attention.

An instance is an element of {0, 1}n, representing a sequence of values of n boolean variables.
A parity function (21) has an associated subset of the variables, and an associated “target parity”
(even or odd), and evaluates to 1 provided that the parity of the number of “true” elements of that
subset agrees with the target parity, otherwise the function evaluates to 0.

Theorem 2 The class of parity functions is PAC learnable via discriminant functions.

Proof. Observe that the class is closed under complementation.
To learn a parity function from positive examples only, in an essentially similar way to the

algorithm of (21), A` finds the affine subspace of GF (2)n spanned by its examples, and f` assigns
a value of 1 to elements of that subspace and a value of 0 to all other elements of the domain.
(By “span” we mean with respect to GF (2)n, as opposed to IRn. GF (2), the generic field with
two elements 0 and 1, has addition modulo 2, so that the sum of two 0/1 vectors is their bitwise
exclusive-or. Generally the positive examples of a parity function would span all of IRn.)

In more detail, let xi be the i-th entry of bit vector x. The positive examples of a parity function
satisfy

∑
i cixi = b (all addition and multiplication modulo 2), where ci, b ∈ GF (2). Let x′ be an

12

arbitrary positive example; positive examples x satisfy
∑

i ci(xi − x′i) = 0, and negative examples
do not satisfy this. Hence, the subspace constructed by A1 will be a subset of

∑
i ci(xi − x′i) = 0,

and will contain no negative examples. A0 constructs a subspace that contains all the negative
data and no positive examples.

We have that f`(x) = 0 for all x with t(x) = 1 − `, and f`(x) = 1 for all x ∈ S` (the unlabeled
sample obtained by A`).

The overall hypothesis h has description length O(n2) (a spanning set has at most n vectors,
each of length n) and h is consistent with the training data; thus we have PAC-ness by the standard
Occam-algorithm argument.

3.2 Unions of Intervals

Let X = IR, and let t : X −→ {0, 1} be the indicator function of a union of k intervals in IR. We
show that the class of all such functions, is learnable by discriminant functions in time polynomial
in ε−1, δ−1 and k. A union of more than one interval cannot be PAC-learned from just positive or
just negative data, simply because it is impossible to guess where the data with the opposite label
may lie. Learnability via discriminant functions is thus distinct from learnability from positive
examples only, or from negative examples only.

Theorem 3 The class of unions of k intervals on the real line is learnable via discriminant func-
tions.

Proof. Construct discriminant functions f0 and f1 as follows. Given an (unlabeled) sample, and
a point x ∈ IR, our discriminant function maps x to the negation of its distance to its nearest
neighbor in the sample. (Intuitively, it makes sense that x should get a higher value if it is close to
a data point in the sample.) We show furthermore that this rule creates a classifier that is “simple”
(a union of k intervals) and consistent with the data.

More precisely, given (unlabeled) sample S` ⊂ IR of size O(k log(δ−1ε−1)/ε), let dNN (x, S`) =
minx`∈S`

{|x − x`|}. Let f`(x) = −dNN (x, S`). Recall that h(x) = 1 if f1(x) > f0(x) and h(x) = 0
if f1(x) < f0(x). We show that h is PAC.

For x, x′ ∈ S`, suppose x, x′ belong to the same interval of t−1(`). Then [x, x′] ⊆ h−1(`), since
any point between x and x′ is closer to at least one of x or x′ than to any point x′′ for which
t(x′′) 6= t(x).

Suppose x0 ∈ S0, x1 ∈ S1, x0 < x1, and there does not exist x ∈ S0 ∪ S1 with x0 < x < x1.
For a real number x such that x0 < x < x1, if x ∈ (x0,

1
2(x0 + x1)) then dNN (x, S0) < dNN (x, S1),

so f0(x) > f1(x) and h(x) = 0 for h constructed according to Definition 1. Similarly, for x ∈
(1
2 (x0 + x1), x1), h(x) = 1. h(1

2 (x0 + x1)) is undefined.
For S0 ∪ S1 sorted in ascending order, there are at most 2k pairs of consecutive points x, x ′ in

the sequence where t(x) 6= t(x′).
Hence h is undefined on at most 2k elements of IR, and h−1(1) is a union of at most k intervals,

and h−1(0) is a union of at most k + 1 intervals. The VC dimension of unions of k intervals is 2k,
so using the results of (8), the sample size required for PAC learning is O(k log(δ−1ε−1)/ε).

Comment. This nearest-neighbour rule does not work in more than one dimension, given that
the input distribution D is closen by an adversary. Suppose we wish to learn a linear threshold
in the plane IR2. Suppose D is uniform over two parallel line segments that are very close but on
opposite sides of the classification threshold. Then the probability is only about 1

2 that the nearest
neighbour of a data point x will have the same label as x. In Section 3.4 we show how to learn
linear thresholds in the plane using a more sophisticated rule.

13

3.3 Distinguishing the Model from the Mistake-bound Setting

In (7), Blum exhibits a concept class that is PAC learnable, but is not (in polynomial time)
learnable using membership and equivalence queries, assuming that one-way functions exist. In
this section we show that the concept class is PAC learnable via discriminant functions in the sense
of Definition 1. We review the concept class introduced in (7). Let X = {0, 1}n.

If A is a probabilistic polynomial-time algorithm that computes a function from {0, 1}∗ to
{0, 1}, and g is some function from {0, 1}∗ to {0, 1}∗, let Pk(A, g(s)) denote the probability that
A(g(s)) = 1 for strings s of length k generated uniformly at random.

Let G be a Cryptographically Strong Pseudorandom Bit (CSB) generator with stretch p(k) =
2k. For polynomial p a CSB generator is defined as follows.

Definition 3 A deterministic polynomial-time program G is a CSB generator with stretch p if
on input s ∈ {0, 1}k it produces an output in {0, 1}p(k) and for all probabilistic polynomial-time
algorithms A, for all polynomials Q, for sufficiently large k (k depending on A and Q),

|Pk(A,G(s)) −Pp(k)(A, s)| <
1

Q(k)
.

Thus, no polynomial-time algorithm can distinguish between strings generated uniformly at
random from {0, 1}2k , and strings obtained by taking the output of G for a random input string of
length k. (Technically, the definition allows A to be a circuit family.)

For strings x and y, let x ◦ y denote their concatenation. For a bit string x let LSB[x] denote
the rightmost bit of x. Let λ denote the empty string. For bit string s of length k, G(s) is a bit
string of length 2k, and we define the following notation.

1. Let G0(s) be the leftmost k bits of G(s).

2. Let G1(s) be the rightmost k bits of G(s).

3. Let G′
0(s) be the rightmost k bits of G(s).

4. Let G′
1(s) = λ.

5. If i = i1 · · · id (where the ij are binary digits), let Gi(s) = Gid(Gid−1
(· · ·Gi1(s))).

The concept class is defined as follows:

Definition 4 Let k = b√nc − 1 and let C = {cs}s∈{0,1}k where cs is defined as follows.

• cs is the indicator function of {xi
s : i ∈ {0, 1}k and LSB[Gi1 ···ik(s)] = 1}

where for i = i1 · · · ik,

• xi
s = i ◦G′

i1
(s) ◦G′

i2
(Gi1(s)) ◦G′

i3
(Gi1i2(s)) ◦ . . . ◦G′

ik
(Gi1···ik−1

(s)) ◦ 0w

where w is chosen to ensure that |xi
s| = n.

Definition 4 is slightly different from the corresponding definition of (7), where k = b√nc. We use
k = b√nc − 1 so that the length of xi

s is always less that n, and we can then “pad it out” to a
length of exactly n using the string 0w on the right-hand side.

Note that for any fixed s, a bit string of length n of the form xi
s is determined entirely by i,

its first k bits. We will let the index of a bit string of length n refer to its first k bits, viewed as

14

a binary number (to give the natural ordering on indices). For a string x let index(x) denote this
number, regardless of whether x is well-formed according to Definition 4. (If x is not well-formed,
x is a negative example of cs, i.e. cs(x) = 0.) Algorithm Compute-Forward (Figure 3) shows how
to take any positive example xi

s, together with an index j > i, and construct the pair 〈xj
s, cs(x

j
s)〉

in polynomial time.
The following notation is used in Algorithm Compute-Forward:

1. Let zi
s be the correctly labeled example 〈xi

s, cs(x
i
s)〉.

2. Let zi
s be the incorrectly labeled example 〈xi

s, 1 − cs(x
i
s)〉.

3. For i1, . . . , id ∈ {0, 1}d, let Gi1···id(s) = G′
i1

(s) ◦G′
i2

(Gi1(s)) ◦ . . . ◦G′
id

(Gi1···id−1
(s)).

So xi
s = i ◦Gi1···ik(s) ◦ 0w.

From (7) we know that C is not learnable (in time polynomial in n) in the mistake-bound
model. We review the PAC learning algorithm of (7) and show how to adapt it to the constraint
of Definition 1.

Algorithm Compute-Forward (7)
On input xi

s and j > i,

1. Say i = i1 · · · ik and j = j1 · · · jk. Let r be the least index such that
ir 6= jr. Since j > i we have ir = 0 and jr = 1.

2. Extract from xi
s the portions:

u = G′
i1

(s) ◦G′
i2

(Gi1(s)) ◦G′
i3

(Gi1i2(s)) ◦ . . . ◦G′
ir−1

(Gi1 ···ir−2
(s))

= Gi1···ir−1(s).
v = G′

ir
(Gi1···ir−1

(s)) = Gjr
(Gj1···jr−1

(s)).

3. Notice that G′
jr

(Gj1···jr−1
(s)) = λ. Since v = Gjr

(Gj1···jr−1
(s)), we

can use v as an intermediate point in the computation of those parts
of zj

s that differ from zi
s.

4. If r = k, output: 〈j ◦ u ◦ λ,LSB[v]〉. Otherwise, output: 〈j ◦ u ◦ λ ◦
Gjr+1···jk(v),LSB[Gjk···jr+1

(v)]〉.

Figure 3: Algorithm from (7)

We noted that Algorithm Compute-Forward, given a positive example xi
s and j > i, produces

a correctly-labeled example 〈xj
s, cs(x

j
s)〉. Based on this observation, we assign values to examples

as shown in Figure 4.

Theorem 4 The concept class of (7) is learnable via discriminant functions.

Proof. We use the algorithm of Figure 4 to construct discriminant functions.
Recall that for x ∈ {0, 1}n, index(x) denotes the k bit binary number forming a prefix of x, for

k = b√nc − 1. For ` ∈ {0, 1}, A` denotes the instance of the algorithm that is given access to D`.

15

Input S`, a sample of unlabeled elements of X = {0, 1}n.

1. Apply algorithm Consistency-Check to S`; if S` fails the test, then
for all x ∈ X, f`(x) = 1

2 . Else:

2. Let m and M be the minimum and maximum indices of elements of
S`. Call these elements xm

s and xM
s respectively; since Consistency-

Check has been passed, they are unique. For x ∈ X, index(x) = j,
if j > M or j < m then f`(x) = 0.

3. If x ∈ S` then f`(x) = 1.

4. Otherwise, if 〈xj
s, 1〉 =Compute-Forward(xm

s , j) and furthermore,
〈xM

s , 1〉 =Compute-Forward(xj
s ,M) then let f`(x

j
s) = 1.

5. Otherwise, let f`(x
m
s) = 0.

Algorithm Consistency-Check

1. If there exist x1, x2 ∈ S` with x1 6= x2, but index(x1) = index(x2),
then fail.

2. If there exist x1, x2 ∈ S` such that index(x2) > index(x1), yet with
Compute-Forward(x1 , index(x2))6= 〈x2, 1〉, then fail.

Figure 4: Assigning values to unlabeled data for concept class of (7)

As in (7), we will argue that what we have is an “Occam Algorithm” in the sense of Blumer
et al. (8) which is consistent with the training data. Specifically, A1 and A0 memorize at most
2 training examples each (A0 possibly memorizes none) and their combined hypothesis (the h in
Definition 1) is consistent with the training data.

In particular, A1 (and possibly also A0) just retains xm
s and xM

s , since for any unlabeled x, the
label assigned to it is computed (in polynomial time) using xm

s and xM
s . (In the case of A0, the

sample S0 may fail the test Consistency-Check, in which case no examples are memorized.) Hence
the description length of the rule that labels examples, is O(n).

Note that f1 from A1 will now give a value of 1 to any positive example whose index is between
the largest and smallest indices it has seen so far, and will give value of 0 to all other examples. If
an example x ∈ X is either negative or is ill-formed (“bad” in the terminology of (7)), then Step 4
will ensure f1(x) = 0, even if index(x) is between m and M .

At the same time, we claim that f0 from A0 gives a value of ≤ 1
2 to all positive examples.

Suppose for a contradiction that A0 gives a value of 1 to positive example xj
s. Then A0 must have

in its collection an unlabeled example xM
s and xj

s must predict xM
s as being positive. But that

implies that xM
s must be positive, and since it belongs to S0 it is negative, a contradiction.

A0 ensures that f0(x) ≥ 1
2 for all x ∈ S0. A1 ensures that f1(x) ≥ 1 for all x ∈ S1 and f1(x) = 0

for all negative x (including all x ∈ S0). Hence the combined classifier h is consistent with the
training data.

16

3.4 Linear Separators in the Plane

For X = IR2, suppose each x ∈ X is labeled 0 or 1 according to whether its coordinates satisfy
some linear inequality; that is, a concept is a half-space in IR2. This problem is well-known to be
PAC-learnable in the standard setting; generally for X = IRn it reduces to linear programming.

Given a sample S` of points in t−1(`), note that points within their convex hull2 ought to receive
a “high” value from f`, since the convex hull must be a subset of t−1(`). We need to be able to
deal with the case when the convex hull has most or all of S` at its vertices, as would happen for an
input distribution D` whose domain is the boundary of a circle, for example. Our general approach
is to start out by computing the convex hull P and give maximal value to points inside P . Then
give an intermediate value to points in a polygon Q containing P , where Q has fewer edges. We
argue that the way Q is chosen ensures that most points in Q are indeed given the correct label.

1. Draw a sample S` of size N = Θ(log(1/δε)/ε2).

2. Let polygon P` be the convex hull of S`.

3. Let Q` be a polygon having at most d
√
Ne edges such that

(a) Every edge of Q` intersects P` at a single vertex, and

(b) Adjacent edges of Q` contain vertices of P` that are at most√
N apart in the adjacency sequence of P`’s vertices.

4. Define discriminant function f` as follows.

(a) For all x in the interior or boundary of P`, f`(x) = 1.

(b) For each connected region R in Q` \ P` let A(R) denote its
area. For x ∈ R let f`(x) = (A(R) + 1)−1. If A(R) is infinite
let f`(x) = 0.

(c) For x 6∈ Q` let f`(x) = −1.

Figure 5: Assigning values to unlabeled data for linear separators in the plane

Theorem 5 Linear separators in the plane are learnable via discriminant functions.

Proof. Figure 5 shows the algorithm we use to construct discriminant functions; it is not hard to
check that the steps can be carried out in polynomial time. Figure 6 illustrates the construction
on an example.

Let h : IR2 −→ {0, 1} be the hypothesis constructed from f0 and f1. We show below that for
` ∈ {0, 1}, h−1(`) is a region bounded by O(

√
N) line segments. We also show that h is consistent

with the data, i.e. that for x ∈ S` (the unlabeled sample drawn by A`), we have h(x) = `. As before,
PAC-ness follows from an Occam-algorithm argument; the class of hypotheses has VC dimension
O(

√
N), sublinear in the sample size.

2The convex hull of a finite set S of points is the smallest convex polygon (more generally, polytope) that contains
S. Any vertex of the convex hull of S is a member of S.

17

To show consistency of the hypothesis, suppose x ∈ S1, i.e. x is a positive example. Then
f1(x) = 1 since x lies in the interior or on the boundary of P1 (rule 4a). By contrast, when f0 is
constructed, x lies strictly outside the convex hull of the negative data, so either rule 4b or 4c is
applied, giving f0(x) a value less than 1. By symmetry, members of S0 are also correctly labeled.

Next we prove our claim that the boundary between the points labeled 0 by h, and the points
labeled 1, is indeed simple. (Specifically, h−1(0) and h−1(1) are bounded by O(

√
N) line segments.)

Let L be the line that defines the target linear threshold function t. Let R` be the set of connected
regions constructed by A` that lie between P` and Q`. For R ⊆ IR2 let CH(R) denote the convex
hull of R. Observe that

1. no straight line may pass through more than 2 elements of R`. (If that occurred, suppose
the line passes through R,R′, R′′ ∈ R` in that order. Note that P` ∪R ∪R′′ is convex. That
makes it impossible for the line to cut R′, which is outside P` ∪R ∪R′′.)

2. at most one element of R0 (respectively, R1) may intersect L. (If two of them intersected L,
there would be an edge of Q` on the opposite side of L from P`, hence a vertex of P` on the
wrong side of L.)

3. for R ∈ R`, CH(R) is a region bounded by three line segments. (R has two “outer” edges
and a concave sequence of edges from P` connecting them.)

Suppose that R0 ∈ R0 intersects R1 ∈ R1. Then CH(R0) intersects CH(R1). From Obser-
vation 3 above, the boundary of CH(R0) has only 2 line segments on the opposite side of L from
P0, and from Observation 1 the boundary of CH(R0) intersects at most 4 elements of R1. For all
remaining regions R′

1 ∈ R1, either R′
1 ⊂ R0 (so that for x ∈ R′

1, f1(x) > f0(x)) or R′
1 ∩R0 = ∅ (so

that again, for x ∈ R′
1, f1(x) > f0(x)).

For ` ∈ {0, 1} let P ′
` = P` ∪ {R` : h(R`) = `}. Note that P ′

` ⊆ h−1(`) and has at most 3d
√
Ne

edges.
The portion of t−1(0) not in P ′

0 ∪ P ′
1 is divided into O(

√
N) regions by the remaining edges of

Q0 and the two edges of Q1 that intersect t−1(0). h is constant within each of these regions, which
allows us to deduce that h−1(0) is indeed bounded by a set of line segments of size O(

√
N). By a

similar argument, h−1(1) is bounded by O(
√
N) lines.

3.5 Monomials over Attribute Vectors having a Product Distribution.

Recall that a monomial is a boolean function consisting of the conjunction of a set of literals
(where a literal is either a boolean attribute or its negation). Despite the simplicity of this class
of functions, we have not resolved its learnability under the restriction of Definition 1, even for
monotone (negation-free) monomials. If A0 and A1 are allowed to be different algorithms (A is
allowed to treat the positive data differently from the negative data), then the problem does have a
simple solution (a property of any class of functions that is learnable from either positive examples
only or else negative examples only). f0 from A0 assigns a value of 1

2 to all boolean vectors. A1 uses
its data to find a PAC hypothesis, and assigns a value of 1 to examples satisfying that hypothesis,
and 0 to other examples.

The following problem arises when A is oblivious to whether it is receiving the positive data.
The distribution over the negative examples could in fact produce boolean vectors that satisfy
some monomial f that differs from target monomial t, but if D(f−1(1) ∩ t−1(1)) > ε this may give
excessive error.

18

L

P

Q

P

Q

1

1

0

0

shaded regions are
subsets of andP’ P’

1 0

Figure 6: Illustration of algorithm for learning linear separators in two dimensions

In view of the importance of the concept class of monomials, we consider whether they are
learnable given that the input distribution D belongs to a given class of probability distributions.
This situation is intermediate between knowing D exactly (in which case by Theorem 1 the problem
would be solved since monomials are learnable in the presence of uniform misclassification noise (2))
and the distribution-independent setting.

1. Draw a sample S` of size N = Õ((n3/ε)2 log(1
δ)).

2. For x ∈ X let ψ̂j
` (x) denote the fraction of elements of S` whose j-th

entry is equal to the j-th entry of x.

3. For x ∈ X, f`(x) = Πn
j=1ψ̂

j
` (x).

Figure 7: Algorithm for learning monomials

Theorem 6 Monomials over the boolean domain are learnable via discriminant functions, provided
that the input distribution D is known to be a product distribution.

Comments. We use the algorithm of Figure 7 which simply fits a product distribution to its data
and assigns a value to unlabeled vector x that is the estimated likelihood of x. The proof that it
works heavily exploits the assumption that D is a product distribution, and does not appear to
extend to larger class of distributions (for example, mixtures of product distributions (13; 17)) or
more general classes of boolean functions.

19

Proof. We show that the algorithm given in Figure 7 constructs discriminant functions which,
when combined to get h according to Definition 1, ensure that h is PAC.

For x ∼ D, x = x1x2 . . . xn where xj is a 0/1 random variable which is independent of xk for
k 6= j. By a relevant attribute of t we mean any xj whose value is fixed for all x that satisfy t. Let
tj denote that value. Let R denote the set of relevant attributes and let I denote the remaining
(irrelevant) attributes.

We say that an example x′ = x′1x
′
2 . . . x

′
n with t(x′) = ` is ordinary if for all b ∈ {0, 1} and

j ∈ {1, . . . , n} such that Prx∼D`
(xj = b) > 1 − ε

n , we have x′j = b. (Thus, an ordinary example is
one that does not have any “very unusual” attribute values in comparison with random examples
having the same label. If there happen to be no bit positions that are very “reliable” for random
examples with the same label, then the property becomes vacuous, or true for all bit strings.)

Note that for ` ∈ {0, 1}, Prx∼D`
(x is ordinary) ≥ 1 − ε. Consequently, Prx∼D(x is ordinary) ≥

1 − ε. We will show that with probability at least 1 − δ, all ordinary examples end up correctly
labeled.

Let P̂rx∈S`
(xj = b) denote the empirical probability that xj = b, and we show that sample size

N is large enough to ensure that with probability 1 − δ, for b ∈ {0, 1}, j ∈ {1, . . . , n},

|P̂rx∈S`
(xj = b) − Pr

x∼D`

(xj = b)| ≤ ε

8n3
. (10)

Applying the same Hoeffding bound as in Theorem 1, it is sufficient that N should satisfy
2e−2N(ε/8n3)2 ≤ δ

2n2 which is satisfied by N as prescribed in Figure 7.

For ` ∈ {0, 1}, x ∈ X let ψj
` (x) denote the probability that a random vector with label ` agrees

with x on the j-th entry. Note that if t(x) = ` then ψ̂j
` (x) (as defined in the algorithm of Figure 7)

is an empirical estimate of ψj
` (x).

Let ψ`(x) = Πjψ
j
` (x). Note that f`(x) is an estimate of ψ`(x) (in the sense that f`(x) converges

to ψ`(x) as the sample size increases). We know from (10) that

ψ̂j
` (x) ∈

[
ψj

` (x) −
ε

8n3
, ψj

` (x) +
ε

8n3

]
.

If ψj
` (x) > ε/n, then

ψ̂j
` (x)/ψ

j
` (x) ∈

[
1 − 1

8n2
, 1 +

1

8n2

]
. (11)

Suppose x is ordinary and negative. Observe that f1(x) = 0. (This is because x must have
an attribute value that disagrees with all corresponding attribute values in the positive data.)
Furthermore, Equation (11) holds for ` = 0 and all j, implying that

ψ̂0(x)/ψ0(x) ∈
[
1 − 1

4n
, 1 +

1

4n

]
. (12)

So with probability 1 − δ, f0(x) > 0, since f0(x) = 0 would contradict Equation (12) taken with
the observation that ψ0(x) > 0. Hence with probability 1 − δ, all ordinary negative examples are
correctly labeled.

Suppose x is ordinary and positive. We will show that with probability 1 − δ, f1(x)/f0(x) > 1
for all ordinary positive examples. Observe that for j ∈ R, ψj

1(x) = ψ̂j
1(x) = 1. (This is because

all positive examples must agree on all the relevant attributes.) We have

f1(x) = Πj∈Iψ̂
j
1(x)

f0(x) = Πj∈Iψ̂
j
0(x)Πj∈Rψ̂

j
0(x).

20

For j ∈ I, ψj
1(x) = ψj

0(x) (for a product distribution D, the value of an irrelevant attribute is
selected independently of the label class of a bit string). Hence Equation (11) applies for ` = 0 or
1, j ∈ I.

f1(x)

f0(x)
≥ (1 − (1/8n2))n

(1 + (1/8n2))n

(1

Πj∈Rψ̂
j
0(x)

)
.

There exists j∗ ∈ R such that for a fraction at least 1
n of elements x′ ∈ S0, x

′
j∗ 6= xj∗ . (Each

negative example must disagree with x on at least one relevant attribute.) Hence,

ψ̂j∗

0 (x) ≤ 1 − (1/n)

ψj∗

0 (x) ≤ 1 − (1/n) + (ε/8n2) < 1 − (1/2n).

Hence
f1(x)

f0(x)
≥ (1 − (1/8n2))n

(1 + (1/8n2))n

(1

1 − (1/2n)

)
> 1,

as required. Hence with probability 1 − δ, all ordinary positive examples are correctly labeled.

4 Conclusion and Open Problems

The algorithms we have given differ significantly from previous PAC algorithms, which usually
work by minimizing the empirical error rate, and arguing that the way a hypothesis is constructed
ensures that the true error is close to the empirical error. The constraint that we expressed in
Definition 1 forces the positive data and the negative data to be processed independently — an
algorithm does not have access to the empirical error.

This lack of access to the empirical error appears to be quite a severe constraint, one that
might render certain learning problems intractable in the context of PAC learning. Indeed, we
have so far failed to find an algorithm in this setting which learns monomials over the boolean
domain, assuming no knowledge of the input distribution. We have also not obtained an algorithm
for learning linear threshold functions in more than two dimensions. Despite those limitations,
our positive results have distinguished learnability subject to this constraint from various other
constraints on PAC learnability that have been studied in the past.

Clearly, the main open question raised by this paper is to elucidate the relationship between
learnability via discriminant functions (Definition 1), and basic PAC learnability. Furthermore, if
they are not equivalent, can they be distinguished using a well-known learning problem, such as
monomials over the boolean domain?

We have a relatively good understanding of learnability subject to the slightly less severe con-
straint of Definition 2. Namely, it is intermediate between learnability with uniform misclassification
noise, and standard PAC learnability. Furthermore, subject to the Noisy Parity Assumption (that
it is hard to learn parity functions in the presence of random misclassification noise given the uni-
form distribution over input vectors) it is strictly a less severe constraint that learnability with
uniform misclassification noise, since we have shown (Section 3.1) how to learn parity functions
using the more severe constraint of Definition 1.

References

[1] E.L. Allwein, R.E. Schapire and Y. Singer. (2000). Reducing Multiclass to Binary: A Unifying
Approach for Margin Classifiers. Journal of Machine Learning Research, 1, pp. 113-141.

21

[2] D. Angluin and P. Laird. (1988). Learning from noisy examples. Machine Learning, 2(4),
pp. 343-370.

[3] M. Anthony and N. Biggs. (1992). Computational Learning Theory. Cambridge Tracts in
Theoretical Computer Science, Cambridge University Press, Cambridge.

[4] S. Ben-David and E. Dichterman. (1998). Learning with Restricted Focus of Attention. J. of
Computer and System Sciences, 56(3), pp. 277-298.

[5] S. Ben-David and E. Dichterman. (1994). Learnability with restricted focus of attention guar-
antees noise-tolerance. 5th International Workshop on Algorithmic Learning Theory, pp. 248-
259.

[6] C.M. Bishop. (1995). Neural Networks for Pattern Recognition. Oxford University Press.

[7] A. Blum. (1994). Separating Distribution-Free and Mistake-Bound Learning Models over the
Boolean Domain. SIAM J. Comput. 23(5), pp. 990-1000.

[8] A. Blumer, A. Ehrenfeucht, D. Haussler and M.K. Warmuth. (1987). Occam’s razor. Infor-
mation Processing Letters, 24, pp. 377-380.

[9] A. Blumer, A. Ehrenfeucht, D. Haussler and M.K. Warmuth. (1989). Learnability and the
Vapnik-Chervonenkis Dimension. Journal of the ACM, 36, pp. 929-965.

[10] N.H. Bshouty, S.A. Goldman, H.D. Mathias, S. Suri and H. Tamaki. (1998). Noise-Tolerant
Distribution-Free Learning of General Geometric Concepts. Journal of the ACM, 45(5),
pp. 863-890.

[11] N.H. Bshouty, P.W. Goldberg, S.A. Goldman and H.D. Mathias. (1999). Exact learning of
discretized geometric concepts. SIAM J. Comput. 28(2) pp. 674-699.

[12] N. Cristianini and J. Shawe-Taylor. (2000). An Introduction to Support Vector Machines.
Cambridge University Press.

[13] M. Cryan, L.A. Goldberg and P.W. Goldberg. (2001). Evolutionary Trees can be Learned in
Polynomial Time in the Two-State General Markov Model. SIAM J. Comput. 31(2), pp. 375-
397.

[14] S. Dasgupta. (1999). Learning mixtures of Gaussians. 40th IEEE Symposium on Foundations
of Computer Science, pp. 634-644.

[15] F. Denis. (1998). PAC Learning from Positive Statistical Queries. Procs. of the 9th Interna-
tional Conference on Algorithmic Learning Theory, LNAI 1501, pp. 112-126.

[16] R.O. Duda and P.E. Hart. (1973). Pattern Classification and Scene Analysis. Wiley, New
York.

[17] Y. Freund and Y. Mansour. (1999). Estimating a mixture of two product distributions.
Procs. of 12th COLT conference, pp. 53-62.

[18] A. Frieze, M. Jerrum and R. Kannan. (1996). Learning Linear Transformations. 37th IEEE
Symposium on Foundations of Computer Science, pp. 359-368.

22

[19] V. Guruswami and A. Sahai. (1999). Multiclass Learning, Boosting, and Error-Correcting
Codes. Procs. of 12th COLT conference, pp. 145-155.

[20] D. Haussler, M. Kearns, N. Littlestone and M.K. Warmuth. (1991). Equivalence of Models for
Polynomial Learnability. Information and Computation, 95(2), pp. 129-161.

[21] D. Helmbold, R. Sloan and M.K. Warmuth. (1992). Learning Integer Lattices. SIAM Journal
on Computing, 21(2), pp. 240-266.

[22] M.J. Kearns. (1998). Efficient Noise-Tolerant Learning From Statistical Queries. Journal of
the ACM, 45, pp. 983-1006.

[23] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R.E. Schapire and L. Sellie. (1994). On the
Learnability of Discrete Distributions. Proceedings of the 26th Annual ACM Symposium on
the Theory of Computing, pp. 273-282.

[24] M.J. Kearns and R.E. Schapire. (1994). Efficient Distribution-free Learning of Probabilistic
Concepts. Journal of Computer and System Sciences, 48(3) pp. 464-497.

[25] F. Letouzey, F. Denis and R. Gilleron. (2000). Learning from Positive and Unlabeled Examples.
Procs. of the 11th International Conference on Algorithmic Learning Theory. pp. 71-85.

[26] N. Palmer and P.W. Goldberg. (2005). PAC Classification based on PAC Estimates of Label
Class Distributions. University of Warwick, CS Dept Tech. Rept. No. 411.

[27] J.C. Platt, N. Cristianini and J. Shawe-Taylor. (2000). Large Margin DAGs for Multiclass
Classification. Procs. of 12th NIPS conference.

[28] R. Schapire. (1990). The Strength of Weak Learnability. Machine Learning, 5, pp. 197-227.

[29] V.N. Vapnik. (2000). The Nature of Statistical Learning Theory second edition, Springer-
Verlag, New York.

23

