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ABSTRACT
This paper studies —from the perspective of efficient com-
putation— a type of competition that is widespread through-
out the plant and animal kingdoms, higher education, pol-
itics and artificial contests. In this setting, an agent gains
utility from his relative performance (on some measurable
criterion) against other agents, as opposed to his absolute
performance. We model this situation using ranking games
in which each strategy corresponds to a level of competi-
tiveness, and incurs an upfront cost that is higher for more
competitive strategies. We study the Nash equilibria of
these games, and polynomial-time algorithms for computing
them. For games in which there is no tie between agents’
levels of competitiveness we give a polynomial-time algo-
rithm for computing an exact equilibrium in the 2-player
case, and a characterization of Nash equilibria that shows
an interesting parallel between these games and unrestricted
2-player games in normal form. When ties are allowed, via
a reduction from these games to a subclass of anonymous
games, we give polynomial-time approximation schemes for
two special cases: constant-sized set of strategies, and con-
stant number of players. The latter result is improved to a
fully polynomial-time approximation scheme when the con-
stant number of players only compete to win the game, i.e.
to be ranked first.
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1. INTRODUCTION
We consider a class of games in which each action available

to a player has two associated quantities — the effort (or
cost) of making that action, and a “return” that the player
gains — return is a monotonically increasing function of
effort. Players derive utility, not so much from maximising
the return, as from getting a higher return than other players
— given a pure profile, players are ranked according to their
returns, and a player’s payoff is a function of his rank, minus
his effort. By way of illustration, consider a set of athletes
who are training for a race. Each athlete spends time and
effort in training, and has an increasing function that maps
this upfront cost to performance (speed in the race). His
total utility is the value of the prize that he wins, minus
the cost of making this initial effort. Note that the prize is
awarded based on his speed relative to other competitors,
with no consideration given to his speed taken in isolation.

A ranking game [2] is a game in which the outcome of any
pure-strategy profile is a rank-ordering of the players, and a
player’s utility is a decreasing function of his position in the
rank-ordering. In [2], the value to player i of the k-th posi-
tion in a ranking depends on both i and k — in this paper
we assume it just depends on k. But the more significant
restriction that we introduce, is the notion of actions that
correspond to competitiveness — a more competitive action
has a higher upfront cost but may result in a higher position
in the ranking.

In our model, the socially optimal behavior for the players
is to all play at minimal level of competitiveness (this is due



# players # prizes # actions Result

Return-symmetric
games

O(1) O(1) any PTAS (Thm. 6)

any any O(1) PTAS (Thm. 7)

O(1) 1 any FPTAS (Thm. 8)

any any 2 Exact Pure (Thm. 5)

Games without ties 2 2 any Exact (Thm. 3)

Linear-prize games any # players any Exact (Thm. 4)

Table 1: Our algorithmic contributions in a nutshell.

to the assumption that any behavior will lead to a ranking of
the players, and the award of associated prizes for each rank
position; and we noted above that values of positions in the
ranking does not depend on which players obtained them).
However, in a Nash equilibrium, players will typically be
more competitive (as in for example [14], in the context of a
continuous game). Competitiveness amongst the players is
supposed to result in a positive externality — in the context
of spectator sports, the spectators prefer to see a well-run
race, or in the context of the DARPA Grand Challenge (or
other similar contests), the competitiveness is supposed to
generate research progress. Ultimately our hope is that this
work will be applicable to the problem of allocating a prize
fund amongst a set of separate awards, so as to maximise
the competitiveness. A related line of research [13, 4] has
addressed from a game-theoretic perspective, the impact of
the point scoring system on offensive versus defensive play
in the UK Premier League; our concern here is slightly dif-
ferent, being focused on highly competitive versus weakly
competitive play.

1.1 The computational perspective
The PPAD-completeness results for unrestricted normal-

form games [8, 5] are understood to indicate that it is hard
to find a Nash equilibrium, and they motivate the study of
more specific types of game that both model a form of com-
petition in the real world, and are computationally easier to
solve. The existence of a fast, robust algorithm makes a so-
lution concept more plausible, and holds out the hope that a
solution may indeed be obtained by a natural, decentralised
process.

One motivation for studying this subclass of ranking games
is that while unrestricted ranking games are hard [2] (even
for just 3 players), here we obtain some encouraging pos-
itive results. Furthermore, for a large number of players,
note that (in contrast with unrestricted ranking games) our
restriction to competitiveness-based strategies admits a con-
cise representation of games of many players. Indeed, this
conciseness applies to the more general setting where there
are many players with player-dependent values for the posi-
tions in the ranking.

Under some circumstances, Nash equilibria of these games
can be studied without loss of generality by considering a
further restriction in which any player’s strategies have the
same set of returns (but not necessarily the same costs)
as any other player. These games, that we call “return-
symmetric” are a class of anonymous games. Anonymous
games are games where a player’s payoff depends on his own

action and the distribution of actions taken by the other
players, but not the identities of players who chose each ac-
tion. Anonymous games admit PTAS’s [7, 9] but may be
PPAD-complete to solve exactly. The reason why we do not
universally apply this reduction to return-symmetric games
is that it leads to a blowup in the number of strategies per
player, and obscures the interesting special case in which
players may not tie for a (shared) position in the ranking.

1.2 Our Contribution
In addition to the return-symmetric games noted above,

we consider an alternative special case that is in a sense
the opposite – the case of games without ties, which may
arise when a tie-breaking rule has been specified in advance,
or equivalently when all return values are distinct. Table
1 gives our algorithmic results for both classes of games,
including a special class of games without ties (see Section
3.3). We show in Section 3.4 that any competitiveness-based
ranking game can be reduced to a return-symmetric game,
thus implying that Nash equilibria of these games can be
considered without loss of generality, so long as we are not
restricting to a fixed number of strategies per player. We
note that in the literature, algorithmic results for return-
symmetric games are known [9, 7] although with the focus
on the more general class of anonymous games. In particu-
lar, [9] provides a PTAS in the case of constant number of
strategies. However, since our PTAS is tailored to a more
specific class of games we are able to give a conceptually
simpler and more efficient algorithm with the same approx-
imation guarantee. [7] improves the efficiency of the PTAS
in [9] for anonymous games in which players have only 2
strategies. Under this hypothesis, return-symmetric games
admit pure equilibria that can be computed efficiently as
from Theorem 5.

In addition to the algorithmic results we also give a char-
acterization of Nash equilibria for games without ties and
a single prize (see Theorem 1). Such a characterization al-
lows to show an interesting parallel with general 2-player
normal form games: a Nash equilibrium for games without
ties can be computed in polynomial-time, given knowledge
of its support (see Theorem 2).

2. MODEL, NOTATION AND SOME ILLUS-
TRATIVE EXAMPLES

We work in a classical game-theoretic setting of a finite
number of players, each with a finite number of actions1, and

1It may also be interesting to model this kind of competition



we consider the problem of computing Nash equilibria, and
approximate Nash equilibria, for these games. Section 2.3
gives the background definitions of Nash and approximate
Nash equilibrium. First, we mention a couple of items of
terminology in Section 2.1, and the in Section 2.2 we specify
in detail the class of games that we study, and introduce
some notation. Section 2.4 shows some examples to illus-
trate various technical issues.

2.1 Terminology
By a prize we refer to the reward that a player gains from

obtaining a specified position in the ranking, and this relates
directly to the standard usage of “first prize”, “second prize”
etc in competitions.

We say that an action is “stronger” or “more competitive”
than another one, if its return (called also strength) is higher.
Any pair of actions are comparable in this sense, whether or
not they belong to the same player.

2.2 Definition and notation
In a ranking game with competitiveness-based strategies

we have d players. Player i has n actions; they will be de-
noted ai1,...,ain in increasing order of competitiveness. Each
action has two numeric associated quantities: a cost and a
return (strength). The cost of aij will be denoted cij and

the return (strength) rij ; for j < n we have cij < cij+1 and

rij < rij+1, by the assumption that the actions are indexed in
increasing order of competitiveness. Note that strict mono-
tonicity of costs and returns is without loss of generality:
if two different actions (i) have the same cost and differ-
ent returns then the most rewarding dominates the other
and (ii) have the same return and different costs then the
cheaper will dominate the more expensive. We let uk be the
value of the k-th prize. Prizes are monotonically decreasing:
uk ≥ uk+1.

The outcome of the game consists in a ranking of the
players according to the returns. A player whose position in
the ranking is k gets awarded the prize uk. However, in the
event of a tie (where two or more players obtain the same
return and are ranked equal) the prizes that would result
from tie-breaking are shared. For example when two players
choose actions with the same highest return in the game so
as to be both ranked first, then each will be awarded half of
the first prize plus half of the second prize.

The payoff to a player will be the value of the prize he
is awarded, minus the cost of the action selected by that
player.

2.3 Exact and approximate Nash equilibria
Here we give the definitions of Nash equilibrium and ap-

proximate Nash equilibrium, also some of the notation we
use throughout. Let Si be the set of player i’s pure strate-
gies; Si = (aij)j . Let S = S1 × . . . × Sd be the set of pure-
strategy profiles, where we recall d denotes the number of
players. It is convenient to define S−i = S1 × . . . × Si−1 ×
Si+1 × . . . × Sd as the set of pure-strategy profiles of all
players but i.

A mixed strategy for player i is a distribution on Si, that
is, real numbers xij ≥ 0 for each strategy aj ∈ Si such thatP
j∈Si x

i
j = 1. If d is the number of players in a game, a

with continuous games, but here we discretise the set of
actions available to the players.

set of d mixed strategies (one for each player) is a mixed
strategy profile. uis denotes the utility to player i in strategy
profile s. A mixed strategy profile {xij}j∈Si , i = 1, . . . , d, is

called a (mixed) Nash equilibrium if, for each i,
P
s∈S u

i
sxs

is maximised over all mixed strategies of i —where for a
strategy profile s = (s1, . . . , sd) ∈ S, we denote by xs the
product x1

s1 ·x
2
s2 · · ·x

d
sd . (The notation xs naturally extends

to strategy profiles s ∈ S−i.) That is, a Nash equilibrium is a
set of mixed strategies from which no player has a unilateral
incentive to deviate. It is well-known (see, e.g., [17]) that
the following is an equivalent condition for a set of mixed
strategies to be a Nash equilibrium:X

s∈S−i

uijsxs >
X
s∈S−i

uij′sxs =⇒ xij′ = 0. (1)

The summation
P
s∈S−i u

i
jsxs in the above equation is the

expected utility of player i if i plays pure strategy j and

the other players use the mixed strategies {xi
′
j }j∈Si′ , i

′ 6=
i. Nash’s theorem [16] asserts that every game has a Nash
equilibrium.

We say that a set of mixed strategies x is an ε-approximately
well supported Nash equilibrium, or ε-Nash equilibrium for
short, if, for each i, the following holds:X

s∈S−i

uijsxs >
X
s∈S−i

uij′sxs + ε =⇒ xij′ = 0. (2)

Condition (2) relaxes that in (1) by allowing a strategy to
have positive probability in the presence of another strategy
whose expected payoff is better by at most ε.

2.4 Some examples
We consider some examples that should be helpful in un-

derstanding the model and issues arising. Example 1 shows
that the games we consider do not always have pure Nash
equilibria.

Example 1. Consider two players, for i = 1, 2 player i
has two actions ai1 and ai2. Suppose the row player (player
1) is stronger than the column player in the sense that the
column player only wins by playing a2

2 while the row player
plays a1

1 — this can be achieved by setting r21 = 2, r11 = 3,
r22 = 4, r12 = 5. Assume the costs are ci1 = 0, ci2 = 1

2
for

both players i = 1, 2. We have a single prize worth 1, i.e.,
u1 = 1 and u2 = 0. We have payoff matrix:

a2
1 a2

2

a1
1 (1, 0) (0, 1

2
)

a1
2 ( 1

2
, 0) ( 1

2
,− 1

2
)

It is easily checked that this game has no pure Nash equi-
librium and that the unique equilibrium is the one in which
both players mix uniformly.

Example 2 is a kind of anonymous game with binary ac-
tions [1], although [1] studies a continuum of players. The
example shows that in this kind of game, there may be mul-
tiple equilibria, and the number of equilibria may be expo-
nential in the number of players.

Example 2. Consider a symmetric game with an even
number d ≥ 4 of players; a single prize worth 1 unit; each
player i has two actions a1 and a2 with costs c1 = 0 and
c2 = c (we do not have a superscript to identify a player,



since the games are symmetric). The prize will be shared
between players who use a2, or all players if they all use a1.

Notice first that for c ∈
`
0, 1

d

˜
, there is a pure equilibrium

in which all players play a2. For c ∈
`

1
d
, 1
´

there is, by
symmetry, a fully-mixed Nash equilibrium where all players
play a2 with the same probability. This can be seen by the
following argument. Suppose each player, but the first, plays
a2 with probability p. The first player has an incentive to
play a2 which is decreasing in p. In particular, for p = 1
player 1 has no incentive to play a2, while for p = 0 player
1 has an incentive to play a2. Then, by continuity, there
exists a value of p, say p∗, for which player 1 is indifferent
between a1 and a2. In a profile in which all players play a2

with probability p∗ all players are indifferent by symmetry.
Now put c = 2

d
− ε, where ε < 2

d2+2d
. We claim that there

are also pure Nash equilibria where any subset of size d
2

play
pure a2 and the others play pure a1. A player playing a2

obtains utility −c + 2
d
> 0; no incentive to switch to a1. A

player playing a1 obtains utility 0, and by switching to a2

would obtain utility −c + 1/( d
2

+ 1) = ε − 2
d

+ 2
d+2

< 0.
Indeed there are also many mixed equilibria where a subset
of the players play pure a1 and the other players all use the
same probabilities.

Observe that there are no Nash equilibria where players
may mix with different probabilities — two such players would
both be indifferent between a1 and a2, but their expected pay-
offs from playing a2 would have to differ.

The following example shows that in a game of this type,
there may be a single Nash equilibrium where some but not
all players have pure strategies.

Example 3. Consider Example 1 with an additional 3rd
player (player 3) with actions a3

1 and a3
2 and costs c31 = 0,

c32 = 0.9. Player 3’s returns are chosen such that he can
only win if he plays a3

2 while the others play a1
1 and a2

1 (for
example, choose r31 = 0, r32 = 3.5). Then player 3 plays
pure a3

1 while players 1 and 2 behave as in Example 1. It
is not hard to convince oneself that players 1 and 2 assign
enough probability to their “competitive” actions a1

2 and a2
2

that player 3 is too unlikely to win, to have an incentive to
compete by playing a3

2.

The following example shows that there is no bound on
the price of anarchy and on the price of stability in these
games.

Example 4. Consider a symmetric game with 2 players;
a single prize worth 1 unit; each player i has two actions a1

and a2 with costs c1 = 0 and c2 = 1/2 − ε, where ε > 0 is
a small given number. The payoff for playing (a2, a2) is ε
for both players, and it is higher than the payoffs obtained
by deviating from the strategy a2: player 1 has a payoff of 0
for strategy profile (a1, a2) and so does player 2 for strategy
profile (a2, a1). Thus, strategy profile (a2, a2) is a pure Nash
equilibrium and its social welfare is 2ε. Now, notice that a2

is actually a strictly dominant strategy for both players thus
implying that no other action profile is a Nash equilibrium.
The action profile that maximises the social welfare is when
both players play their less competitive actions, (a1, a1), and
its social welfare is 1. Thus, the price of anarchy in this
game is 1/(2ε). By uniqueness of Nash equilibrium it is also
the price of stability of this game. Because ε can be chosen
arbitrarily small, both price of anarchy and price of stability

are unbounded. Note that this game is essentially the Pris-
oner’s Dilemma in which a1 is the collaborating strategy and
a2 is the defecting one.

Finally, we note that certain zero-sum games do not be-
long to the class of games we study here. Consider Matching
Pennies. In order for a ranking-games with competitiveness-
based strategies to be zero-sum, the costs of any player’s
strategies must be all the same. In that case, the stronger
strategy will dominate the weaker. But, Matching Pennies
has no dominating strategies. That observation could apply
to other games like rock-paper-scissors that are zero-sum
and have no dominating strategies.

3. ALGORITHMS AND PROOFS
We start by noting some preprocessing steps that estab-

lish some useful assumptions that we can make without loss
of generality. We continue in Section 3.2 by considering sep-
arately the special case where players cannot tie for a po-
sition in the ranking; this case would arise in competitions
that have a tie-breaking rule, and note that a tie-breaking
rule could be expressed by adjusting the return values rij so
that they are all distinct and select the appropriate winner.
The reason for a focus on the tie-free case is that the analysis
is simpler and the Nash equilibria turn out to have a special
structure. Section 3.3 applies a result of [10] for polyma-
trix games, to the special case where prize values decrease
linearly as a function of rank position.

In Section 3.4 we study the more general case where play-
ers may tie for a position in the ranking. We show that we
can focus without loss of generality on an anonymous sub-
class of these games. Pure Nash equilibria of these games are
studied in Section 3.4.2. In Sections 3.4.3 and 3.4.4 we give
polynomial-time approximation schemes for fixed number of
players and strategies, respectively. Finally, in Section 3.4.5
we give a fully polynomial-time approximation scheme for
the case of constantly-many players and a single prize.

3.1 Preprocessing
By linear rescaling we may assume that the top prize has

a value of 1 and the bottom prize has a value of 0, i.e. u1 = 1
and ud = 0. We may furthermore additively rescale individ-
ual players’ payoffs such that the weakest pure strategy ai1
of every player i has a cost of zero, i.e. ci1 = 0 for all i. (To
do this, add ci1 to all payoffs of i.) We also assume that no
player has an action with a cost greater than 1, since such
an action would be dominated by ai1.

Note also that the numerical values of the returns rij may
be modified without affecting the payoffs and Nash equilib-
ria of the game, provided only that the modification does
not affect which are greater than which (in which case the
ranking of the players is preserved). However it is usually
convenient to specify numerical rij values when describing a
game.

Finally, we state a useful fact that will be used to obtain
polynomial-time algorithms that return approximate Nash
equilibria.

Observation 1. Let k be an integer and let ε = 1/k.
Given a probability vector x, it is possible to define a prob-
ability vector x̃, called an ε-rounding of x, in which each
entry is equal to the corresponding entry in x rounded either
up or down to the nearest non-negative integer multiple of ε.



Proof. Arrange the quantities in x to be rounded in
some arbitrary order. Round the first one up to the nearest
integer multiple of ε. We follow the fixed order, and when
rounding each subsequent quantity we aim to maintain the
property that the total rounding error from rounding up,
minus the total rounding error from rounding down, should
be strictly less than ε in absolute value. It is not hard to
see that one can always round each value either up or down
so as to maintain this invariant. Provided that 1/ε is an
integer, we must end with fractions that sum to 1.

3.2 Games without ties and single prize
We begin by observing that we may restrict our attention

to actions’ costs that are strictly less than 1.

Observation 2. Assume player i has an action aij such

that cij = 1. This action is weakly dominated by ci1. There-

fore, we can eliminate aij from the game at the price of elim-
inating some potential Nash equilibria.

Assuming that costs are strictly less than 1, we show that
Nash equilibria of games without ties have a nice structure
when there is a single prize.

Theorem 1. Suppose there is a single prize and assume
that actions’ costs are less than 1. If no two actions have
the same strength (so that ties are impossible) then in any
Nash equilibrium

1. There is just one player with positive expected payoff;
all others have payoff zero.

2. The player with positive payoff is the one with the
strongest action with a cost of less than 1.

Proof. As from the preprocessing steps noted above as-
sume without loss of generality that the single prize has
value 1, the costs of all actions lie in the range [0, 1], and
each player has an action with cost 0. Let N be a Nash equi-
librium. For each player i let wi be the weakest action of i
that lies in the support of N ; thus, i has positive probability
of using wi, and all other actions that i uses with positive
probability are stronger than wi.

For any action a, let r(a) denote the return of that ac-
tion (the “strength” that is used to rank players). Let p be
the player whose weakest action is stronger than all other
players’ weakest actions, thus r(wp) > r(wp′) for all p′ 6= p.

Note that for any player p′ 6= p, the expected payoff to p′

from using action wp′ is non-positive, wp′ cannot win since
p guarantees to play a stronger action. But, p′ gives positive
probability to wp′ , so no other action available to p′ can have
higher expected payoff. p′ has non-positive expected payoff,
and under the assumption (that we may adopt from pre-
processing) that players all have a 0-cost action, p′’s payoff
must in fact be zero.

The second part of the theorem characterizes p in terms of
the game (without reference to any Nash equilibria) and can
be seen for the following reason. Let p′′ be the player with
the strongest action having a cost of less than 1. Then p′′

can guarantee a positive payoff by using that action. Hence,
p′′ cannot be one of the players who have expected payoff 0
in a Nash equilibrium, so p = p′′.

The following theorem also shows how a Nash equilibrium
may be efficiently computed for tie-free games, provided that

we know the support of the Nash equilibrium. This shows
an interesting parallel between these games, and general 2-
player normal form games, especially in conjunction with
the subsequent observation that the solution is in rational
numbers.

Theorem 2. For games with any number of players, ac-
tions’ costs less than 1 and a single prize where ties are im-
possible, a Nash equilibrium can be computed in polynomial-
time if we are given the support of a solution.

Proof. Given a game G, suppose that we remove the
pure strategies that are not in the support of some (un-
known) Nash equilibrium. The resulting game G′ has a fully-
mixed equilibrium N , thus any two strategies that belong to
a player have the same expected payoff in N . Our general
approach is to compute the probabilities xij in descending

order of strength of the associated actions aij .

Let aij be the strongest action in G′ (i.e. having the highest

return). Player i’s expected payoff is 1−cij and by Theorem 1
all other players have expected payoff 0.

Let ai
′

j′ be the second-strongest action in G′; we may as-

sume i′ 6= i since if i′ = i then aij would be strictly domi-

nated by ai
′

j′ . Its expected payoff to i′ is−ci
′

j′+(1−xij), which

by Theorem 1 is 0, so we have an expression for xij . Con-

sider the third-strongest action ai
′′

j′′ , whose payoff is given

by −ci
′′

j′′ + (1 − xij)(1 − xi
′

j′) (assuming i′′ 6= i) which gives

us an expression for xi
′

j′ .
Generally, the r-th strongest action aαβ has expected payoff
−cαβ + (1− σi1) · · · (1− σir ) where σij (for player ij) is the

sum of probabilities xkij for actions stronger than the r-th
strongest action.

The probabilities for each player’s weakest actions will be
obtained from the equations that ensure that for every player
i, the values xij sum to 1 (are a probability distribution).

Observation 3. For games where ties are impossible, if
all action costs are rational numbers then the solution is also
in rational numbers.

This is immediate from the expressions in the above proof
that give the values xij .

3.2.1 Solving 2-player games exactly
Ranking games (as in [2]) with actions that do not have

the upfront costs cij we consider here, are zero-sum, so they
can be solved efficiently in the 2-player case. Our games are
not zero-sum, but we do have an alternative polynomial-time
algorithm to solve them in the 2-player case.

Theorem 3. 2-player ranking games that have competi-
tiveness-based strategies and are without ties can be solved
exactly in polynomial time.

Proof. As before, assume a single prize of 1 unit and
action costs in [0, 1], which may be assumed by the prepro-
cessing noted earlier.

We can (in polynomial time) compute exact solutions of
2-player games of this type as follows. We start by elim-
inating certain dominated strategies. Specifically, suppose
that for strategies aij and aij+1, the set of opponent’s strate-

gies that they win against, is the same. Then aij+1 can be
eliminated. Rename the strategies of this game (a1, . . . an)



for the row player and (a′1, . . . a
′
n′) for the column player.

Assume without loss of generality that it is the row player
who has the weakest strategy, thus a′1 wins against a1. In
general when n = n′, the strategies, arranged in ascending
order of strength are a1, a

′
1, a2, a

′
2, . . . an, a

′
n.

Suppose that in some Nash equilibrium N the row player
does not use strategy aj for some j > 1 (that is, the player
plays aj with probability 0). Then the column player does
not use strategy a′j (which is the cheapest one that wins
against aj) since a′j would now be dominated by a′j−1. For a
similar reason, the row player will not use aj+1, the cheap-
est strategy that wins against a′j , so the column player will
not use a′j+1, and so on. This shows that (in a Nash equi-
librium) the strategies in either player’s support must be
either a prefix of the sequence of his strategies or a prefix of
all his strategies but the weakest, with strategies arranged
in ascending order of strength.

We can now try to solve for all such supports, since there
are polynomially-many of them. Recall that a 2-player game
can be solved efficiently in polynomial time if we are told
the support of a solution, since it reduces to a linear pro-
gram.

The main property used to show Theorem 3 above (i.e.,
if in any solution a player does not play a certain strategy
s then the other one does not play the strategy that “just
beats” s) breaks down when ties are allowed. Simply con-
sider two consecutive strategies of player 1, a1

i and a1
i+1,

and of player 2, a2
j and a2

j+1 such that returns of a1
i and a2

j

(resp. a1
i+1 and a2

j+1) are the same. In this case it is false

that in any solution if player 1 does not play a1
i then player

2 does not play a2
j+1 as such a strategy is used not just to

beat a1
i but also to share with a1

i+1. This shows that for
general games the supports of a Nash equilibrium can be
anything and we have to use different approaches to obtain
polynomial-time algorithms for them.

3.3 Exact algorithm for linear-prize ranking
games

Consider a d-player n-strategies-per-player ranking game
G with competitiveness-based strategies without ties in which
the prize for ranking j-th is a linear function a−jb, for some
value of a and b. We call G a linear-prize ranking game. We
claim that we can represent G as a polymatrix game [10]. A
polymatrix game can be represented as a graph: players are
the vertices and a player’s payoff depends on the actions of
his neighbors. The edges are 2-player zero-sum games and
once all players have chosen a strategy, the payoff of each
player is the sum of the payoffs from each game played with
each neighbor.

We can express G as a polymatrix game as follows. We
define a complete (d+ 1)-vertex graph where the additional
vertex encodes an external player N , the nature. Edge (i, j),
for i and j players in G, is an n by n 2-player zero-sum
game (shifted by a constant) punishing who is ranking worst
between i and j. So, the entry (k, l) will have payoff 0 for
player i and −b for player j if and only if rik > rjl . Edge
(i,N) is an n by 1 2-player zero-sum game in which the
nature “gains” what player i is paying in effort minus a− b.
So the entry k will have payoff a − b − cik for player i and
payoff cik−a+b for the nature. Note that once all players of
G choose a strategy, the sum of all the payoffs to a player of
these games is the prize he is awarded (from the games with

other players of G we subtract b for any player who beats
him and add a − b from the game with the nature) minus
the cost for the strategy he chooses (from the game with the
nature). The following thus immediately follows from [10].

Theorem 4. There is a polynomial-time algorithm that
computes a Nash equilibrium for linear-prize ranking games.

3.4 Games where ties are possible
In this section we consider general competitiveness-based

ranking games. We begin by showing that we can study
without loss of generality Nash equilibria of competitiveness-
based ranking games in which returns are symmetric. That
is, all players have n actions a1,...,an. As above player i
has costs ci1 < . . . < cin for those actions but, differently
from above, returns are player-independent and denoted as
r1 < . . . < rn.

3.4.1 Reduction to return-symmetric games
The reduction preserves Nash equilibria of the original

game (and thus is a Nash homomorphism) and is presented
for the case of 2-player games. The argument generalises to
more players, although the number of strategies per player
would increase by a factor of d, the number of players.

Suppose that player 1 has action a1
j and player 2 has no

action with return equal to r1j . We give player 2 a dominated

strategy with return r1j — if a2
k is the weakest strategy of

player 2 that has higher return than a1
j , give player 2 an

additional strategy with cost c2k and return r1j . If player 2

does not have a stronger strategy than a1
j , give player 2 an

additional strategy with cost 1 and return r1j .
Hence we can assume that each player has n strategies

a1, . . . , an where for each player i, aj has cost cij that de-
pends on i (and non-decreasing as a function of j), while the
return of aj may be set to rj , thus aj is stronger than ak
for j > k. Suppose we solve this game, and now we have
to recover a solution to the original game before the dom-
inated strategies were added. To do this, each player just
has to replace their usage of any dominated strategy by the
corresponding dominating one — this raises the question of
whether the other player may be given an incentive to devi-
ate as a consequence, however the reason why this does not
happen, is that if it did, it would mean that the dominated
strategy being used by the first player, was in fact strictly
dominated — the opponents’ behaviour gives him a positive
incentive to switch.

3.4.2 Return-symmetric games and pure equilibria
Unlike games without ties, for which 2-player 2-strategy

games might not possess pure equilibria (see Example 1),
return-symmetric games in which players have only 2 strate-
gies do have pure Nash equilibria (for any number of players
and any number of prizes).

Theorem 5. 2-strategy competitiveness-based return-sym-
metric ranking games do have pure Nash equilibria (any
number of players; any action costs for individual players).
Furthermore, a pure Nash equilibrium can be found in poly-
nomial time.

Proof. Assume for contradiction that a 2-strategy return-
symmetric competitiveness-based ranking game does not have
a pure Nash Equilibrium. This implies that in the Nash dy-
namics graph any node has an outgoing edge and then the



Nash dynamics graph has a cycle. Let s1 → . . . → sk = s1
be such a cycle. Each edge (sj , sj+1) encodes the fact that
some player, denoted by ij , is better off in sj+1 than in sj ,
i.e., uij (sj) − cij (sj) < uij (sj+1) − cij (sj+1) where ui(s)
(resp. ci(s)) is the prize given to (resp. the cost experienced
by) player i for outcome s.

Let L and H be the low-competitive and high-competitive
strategies, respectively. Consider the point in the cycle where
the number of players using H reaches its highest value. The
player who moves to attain that point in the cycle, will never
prefer to return to strategy L, since at other points in the
cycle, the payoff for H can only increase (the prize is shared
between fewer players using H).

The above indicates how to quickly find a pure Nash equi-
librium — the players using H should have costs for playing
H that are lower than those of the players using L. (Recall
that the costs of playing L can be assumed to be 0 for all
players.) So there are just n− 1 pure-strategy profiles that
actually need to be checked.

A related result is known for symmetric games in which
players have only 2 strategies: These games always have a
pure Nash equilibrium [6]. Above theorem concerns games
that are anonymous but not symmetric (as costs are player-
specific). However, let us notice that the arguments used in
[3] to prove the result about symmetric games appear to be
similar to ours. It is easy to see that these arguments fail
when two players have three strategies available, as shown
by the next example.

Example 5. We have 2 players and 3 actions, namely
a1, a2 and a3 ordered increasingly by return, i.e., r1 < r2 <
r3. The prizes are u1 = 1 and u2 = 0, u3 = 0. Costs are
ci1 = 0 for i = 1, 2, c12 = 2

3
, c13 = 4

5
and c22 = 1

3
, c23 = 2

3
.

Thus, we have payoff matrix

a1 a2 a3

a1 ( 1
2
, 1

2
) (0, 2

3
) (0, 1

3
)

a2 ( 1
3
, 0) (− 1

6
, 1

6
) (− 2

3
, 1

3
)

a3 ( 1
5
, 0) ( 1

5
,− 1

3
) (− 3

10
,− 1

6
)

It is easily checked that this game has no pure Nash equilib-
rium. The unique Nash equilibrium of the game is ( 2

3
, 0, 1

3
)

for player 1 and ( 2
5
, 3

5
, 0) for player 2.

3.4.3 PTAS for constant number of players; variable
size n of pure-strategy sets

Let d be the number of players and prizes; by the pre-
processing step of Section 3.1 we may assume that the first
prize is worth 1 and the bottom prize is worth 0; also that
all costs are in the range [0, 1].

Theorem 6. For any ε > 0, if the number of players d is
a constant then Algorithm 1 returns a 3ε-Nash equilibrium
in time polynomial in the input size.

Proof. Consider the case in which ε = 1/k for some inte-
ger k. Observe that after Step 2 each player has some num-
ber of strategies with the same cost but different returns.
Thus, the cost rounding introduces a number of dominated
strategies and after Step 3 each player has only a constant
number k + 1 of actions available. This and the fact that
costs lie in the interval [0, 1] imply that the number of strate-

gies considered in Step 5 is (k + 1)
1
δ per player. This is a

constant and since d is constant we can perform the brute

Algorithm 1: PTAS for constant number of players

1 Let k be an integer constant, let ε = 1
k

, and let
δ = ε/(k + 1).

2 For each player, round each cost cij down to the nearest
non-negative integer multiple of 1/k.

3 Eliminate dominated strategies.
4 for all players i do
5 Consider every strategy {xi1, . . . , xik+1} in which

each xij is a non-negative integer multiple of δ.

6 Do a brute-force search over all the possible choice of
strategies as above by all the d players.

7 Return an ε-Nash equilibrium of the reduced game.

force search in Step 6 efficiently in time (k + 1)
d
δ . Notice

furthermore that in Step 7 an ε-Nash equilibrium is always
found. To see this, consider a δ-rounding (as from Obser-
vation 1) of each probability vector of a Nash equilibrium
of the game and notice that such a probability vector is
checked by the algorithm. How badly a player can do by
restricting probabilities to be non-negative integer multiples
of δ? For each of his k+1 actions, the probability with which
he chooses the action may be “wrong” by an additive δ. If
he is wrong, he loses a payoff which is upper bounded by 1
and so his overall regret is at most (k + 1)δ = ε. We now
show that the ε-Nash equilibrium N of the reduced game
is an ε + 2/k-Nash equilibrium of the original game. To
see this consider a player, say i, that in his best response
assigns positive probability to an action x which is not in
the reduced game. We know that the algorithm considers
the smallest non-negative integer multiple of ε larger than
x. Call it b and let πz denote the expected utility of player i
when playing action z ∈ Si. By construction we know that
πx ≤ πb + 1/k. (Indeed, by playing x player i can get at
most the same expected prize that he gets in b but has to
pay 1/k less.) Then if b is in the support of N then the
maximum regret that i has by not playing x is 1/k. On the
other hand, consider the case in which b is not in the sup-
port of N . Since N is an ε-Nash equilibrium then by (2) we
know that πb < πc + ε for an action c in the support of N ,
thus implying that the maximum regret of i for not playing
x is 2/k = 2ε.

When ε is not the inverse of an integer, simply run the
algorithm with an ε′ < ε which is the inverse of an integer.
Since an ε′-Nash equilibrium is an ε-Nash equilibrium the
theorem follows.

3.4.4 PTAS for many players who share a fixed set of
strategies

Assume we have a return-symmetric d-player game, each
of whom have strategies a1, . . . , an, where n is a constant.
This is an anonymous game, and we can directly apply a re-
sult of Daskalakis and Papadimitriou [9] that it has a PTAS.

For the more specific class of games that we are concerned
with here, we can describe a conceptually simpler PTAS as
follows. In a return-symmetric game actions have a player-
independent return and thus players differentiate by their
cost vectors. We call the type of a player his cost vector.
Thus in a return-symmetric game, if two players have the
same type they have the same cost vector and same action
returns.



Algorithm 2: PTAS for return-symmetric games with
constant number of actions

1 Let ε = 1/k for some integer constant k, and let δ = ε/n
and l = 1/δ.

2 For each player, round each cost cij down to the nearest
non-negative integer multiple of ε.

3 for all players i do
4 Consider every strategy {xi1, . . . , xil+1} in which

each xij is a non-negative integer multiple of δ.

5 Do a brute-force search over all the possible choice of

strategies as above by all the nl+1 player types.
6 Return an ε-Nash equilibrium of the reduced game.

Theorem 7. For any ε > 0, if the number of actions n is
a constant then Algorithm 2 returns a 2ε-Nash equilibrium
in time polynomial in the input size.

Proof. Consider first the case in which ε is the inverse
of an integer. Since costs lie in the range [0, 1] and as n is
constant, after Step 2 is executed there is a constant number
nl+1 of distinct types. This allows the brute force search in

Step 5 to be done efficiently in time (l + 1)n
2(l+1)

. Notice
that the algorithm always finds an ε-Nash equilibrium in the
last step. Consider a δ-rounding (as from Observation 1) of
each probability vector of a Nash equilibrium of the game
and notice that such a probability vector is checked by the
algorithm. We next show that such a probability vector is
an ε-Nash equilibrium. A player can be playing a strategy
with a probability that is δ away from the probability he
should have used for his best response. Thus for each of his
strategies he can lose at most δ times the payoff he gets for
that strategy. Since payoffs are upper bounded by 1, the
maximum regret is nδ = ε. The proof concludes by noting
that the cost rounding of Step 2 implies an extra regret of
at most ε.

Whenever ε is not the inverse of an integer, then we feed
the algorithm with an ε′ < ε which is the inverse of an
integer. The theorem thus follows.

Note that this algorithm is oblivious in the sense of Daska-
lakis and Papadimitriou [11].

3.4.5 A fully polynomial-time approximation scheme
for constant number of players and single prize

We will present this for the 2-player case for simplic-
ity. The arguments we use easily extend to the case of
constantly-many players.

Let G be a return-symmetric game with 2 players. In this
case, the expected payoff of player i from playing strategy
j is given by the expected prize he gets minus the cost cij
to play action aj . As for the expected prize, player 1 wins
(and gets the prize of 1) as long as player 2 plays a strategy
weaker than aj and shares (and thus gets a prize of 1

2
) when

player 2 plays action aj . (Similar formula applies to player
2’s payoffs.) More formally, let xij be the probability that
player i plays strategy j and let i′ be the player different
from i in the game. Then the expected payoff of player i for
playing j, denoted as πij , is given by

πij =

j−1X
k=1

xi
′
k +

1

2
xi
′
j − cij . (3)

To compute a Nash equilibrium, we need to find real val-
ues x1

1, . . . , x
1
n, x2

1, . . . , x
2
n that satisfy

xij ≥ 0 ∀i, j
X
j

xij = 1 i = 1, 2 (4)

saying that for i = 1, 2, the values {xij}j are a probability
distribution; for i = 1, 2 and j > 1 the following are also
true

πij > maxk=1,...,j−1{πik} =⇒ xi1 = . . . = xij−1 = 0,
πij < maxk=1,...,j−1{πik} =⇒ xij = 0.

(5)

Lemma 1. The values xij satisfy (4,5) if and only if they
are a Nash equilibrium.

Proof. The sets {x1
j}j and {x2

j}j are constrained by (4)
to be probability distributions.

The expressions (5) are equivalent to the definition of
Nash equilibrium constraints (1). Indeed, if action aj dom-
inates all previous weaker actions then any of these actions
must not be in the support. Similarly, when aj is dominated
by a weaker action, aj will not be in the support. Note that
if aj dominates the weaker actions but is dominated by a
stronger action aq then the probability of playing aj will be
set to 0 when πiq is compared to maxk=1,...,j,...,q−1{πik}.

Consequently we have reduced the problem to satisfying
the constraints (4,5). We now define variables in addition
to x’s and π’s with the aim to make the constraints (4,5)
depend on a constant number of “local” variables. This is
needed to define our FPTAS. Let σij be the partial sumPj
`=1 x

i
`. We can now express Equation (4) as follows:

σi1 = xi1 0 ≤ σij ≤ 1 σij−1 + xij = σij
σin = 1 0 ≤ xij ≤ 1,

(6)

and rewrite (3) as

πi1 =
1

2
xi
′

1 − ci1 πij = σi
′
j−1 +

1

2
xi
′
j − cij . (7)

Additionally, let αij be the maximum expected payoff player

i can get by playing one of the first j actions, i.e., αij =

maxk=1,...,j{πik}. We can now define

αi1 = πi1 αij = max{αij−1, π
i
j} (8)

and express Equation (5) as follows:

πij > αij−1 =⇒ σij−1 = 0,
πij < αij−1 =⇒ xij = 0.

(9)

Observation 4. The values xij, σ
i
j, α

i
j and πij satisfy (6,

7,8,9) if and only if xij are a Nash equilibrium.

Now consider the sequence

S = (π1
j , π

2
j , x

1
j , x

2
j , α

1
j , α

2
j , σ

1
j , σ

2
j )j=1,...,n.

Constraints in (6) involve 3 variables that are at distance
at most 9 in S (namely, for j > 1, σij−1 is followed by 8

elements of S –including xij– and then by σij). It is easy to
check that the same happens also for the other constraints
and conclude then that the following holds.

Observation 5. For any j = 1, . . . , n all constraints in
(6,7,8,9) apply to at most 9 consecutive elements of S.



The algorithm. For ε > 0 according to (2) we relax the
constraints of (9) as follows:

πij > αij−1 + ε =⇒ σij−1 = 0,
πij < αij−1 − ε =⇒ xij = 0.

(10)

Let Si be the sequence of 9 consecutive elements of S
that begins at the i-th element of S. Let Ei be the set
of expressions in (6,7,8,10) that relate elements of Si with
each other; by Observation 5 the union of the sets Ei is all
constraints (6,7,8,10).

The algorithm (see Algorithm 3) works its way through
the sequence S left-to-right, for each Si identifies a subset of
([0, 1])9 representing possible values of those quantities that
form part of an approximate Nash equilibrium. Then it
sweeps through the sequence right-to-left identifying allow-
able values for previous elements. The parameter ε controls
quality of approximation; the algorithm computes values for
terms in S that are integer multiples of ε/2.

Algorithm 3: FPTAS for return-symmetric games with
2 players

1 Let ε = 1/k for some integer constant k.

2 For each player, round each cost cij down to the nearest
non-negative integer multiple of ε.

3 For 1 ≤ i ≤ 8n− 8, let Di be the set of all
9-dimensional vectors of non-negative integer multiples
of ε/2 for x’s and σ’s values and of integer multiples of
ε/2 for π’s and α’s values that satisfy Ei.

4 For i > 1 (in ascending order) discard from Di any
vector whose first 8 entries are different from the last 8
entries of all vectors in Di−1.

5 Let s8n−8 be a point in D8n−8. For 1 ≤ i < 8n− 8 (in
descending order) let si be a point in Di chosen so that
its last 8 coordinates are the first 8 coordinates of si+1.

6 Let s be the vector of length 8n such that si is the i-th

sequence of 9 consecutive coordinates of s. Set xij to the

entry of s that corresponds to the position of xij in S.

Theorem 8. There is a FPTAS for competitiveness-based
ranking games with a constant number of players and a sin-
gle prize.

Next we show above theorem in relation to Algorithm 3 and
the case of 2 players by providing approximation guarantee,
correctness and runtime analysis of the algorithm in case ε
is the inverse of an integer. (Similarly to above, if this is not
the case we simply run the algorithm with an ε′ < ε which
is inverse of an integer.)

Proposition 1 (Approximation guarantee). Algo-
rithm 3 computes values xij that correspond to an n+4

2
ε-Nash

equilibrium.

Proof. The xij satisfy (6,7,8,10), where (10) simply re-
writes the definition of ε-Nash equilibrium (2) thus implying
that we are losing an additive ε. Another additive loss of ε
is due to the cost rounding. Furthermore, we are restricting
to probability distributions whose values are non-negative
integer multiples of ε/2. Thus, a player may be forced to
play a strategy with a probability that is far at most ε/2
from the probability of his best response. This will impose

an additional loss of nε/2 in the worst case (this is because
we have n actions and on each of them the best response is
at most ε/2 away while the payoffs are upper bounded by
1).

Proposition 2 (Correctness). The algorithm always
finds such an s.

Proof. Consider a Nash equilibrium N and associated
vector s. Take an ε/2-rounding of the probabilities vectors
x’s in s and round the remaining elements of s to the nearest
non-negative integer multiple of ε/2. Call this new sequence
s̃ and observe that s̃ is considered by the algorithm. It is
thus enough to show that such a sequence satisfies all the
constraints that the algorithm imposes on the output. To-
wards this end, we let πij , x

i
j , α

i
j and σij the values of s and

let π̃ij , x̃
i
j , α̃

i
j and σ̃ij the corresponding rounded values of s̃.

By Observation 1 we have that the values x̃’s and σ̃’s of s̃
satisfy (6). Moreover, since σ̃’s and x̃’s are integer multiples
of ε/2 and as costs are rounded to integer multiples of ε we
have that that π̃’s will be integer multiples of ε/2. This
immediately implies that s̃ satisfies constraints (7) and (8)
as well. As for constraint (10) we show that π̃ij > α̃ij−1+ε⇒
σ̃ij−1 = 0. (Very same arguments can be used to show the
other condition of (10).) Note that because of the rounding
we have |yij− ỹij | < ε/2 for y ∈ {π, α}. Therefore π̃ij > α̃ij+ε

implies that πij > αij and as s is a Nash equilibrium, by

Observation 4 and Equation (9), we have σij−1 = 0. But
then by the way we define the rounding of σ’s we have that
σ̃ij−1 = 0.

Runtime: The sets Di are of size O((4/ε)9), so the run-
time of the algorithm is indeed polynomial in n and 1/ε, as
required for a FPTAS.

4. CONCLUSIONS AND FURTHER WORK
The FPTAS we provide above, is very analogous to the

algorithm of [15] for solving tree-structured graphical games.
They give a similar forward-and-backward dynamic program-
ming approach to solving these games; their algorithm takes
exponential time for exact equilibria [12] but a similar quan-
tization of real-valued quantities leads to a FPTAS.

Our FPTAS can be used to compute exact equilibria in
certain cases. When a game with constantly-many play-
ers and a single prize has payoffs that are multiple of some
ε > 0 then we can compute exact Nash equilibria in time
polynomial in the size of the input and 1/ε by simply us-
ing the FPTAS. This observation raises the open problem of
determining if there is a polynomial-time algorithm to solve
2-player (competitiveness-based ranking) games in general
when ties are possible and the prize is shared in the event
of a tie.

A number of other concrete open problems have been
raised by the current results, as for example, a complete un-
derstanding of the complexity of computing Nash equilibria
for competitiveness-based ranking games. More generally,
in situations where multiple equilibria may exist, we would
like to know whether a specific equilibrium is selected by
some natural decentralised dynamic process.
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