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Abstract

A recent body of experimental literature has studied empirical game-theoretical analysis,
in which we have partial knowledge of a game, consisting of observations of a subset of the
pure-strategy profiles and their associated payoffs to players. The aim is to find an exact
or approximate Nash equilibrium of the game, based on these observations. It is usually
assumed that the strategy profiles may be chosen in an on-line manner by the algorithm.
We study a corresponding computational learning model, and the query complexity of
learning equilibria for various classes of games. We give basic results for exact equilibria
of bimatrix and graphical games. We then study the query complexity of approximate
equilibria in bimatrix games. Finally, we study the query complexity of exact equilibria
in symmetric network congestion games. For directed acyclic networks, we can learn the
cost functions (and hence compute an equilibrium) while querying just a small fraction of
pure-strategy profiles. For the special case of parallel links, we have the stronger result
that an equilibrium can be identified while only learning a small fraction of the cost values.

Keywords: query complexity, bimatrix game, congestion game, equilibrium computation,
approximate Nash equilibrium

1. Introduction

Suppose that we have a game G with a known set of players, and known strategy sets for
each player. We want to design an algorithm to solve G, where the algorithm can only
obtain information about G via payoff queries. In a payoff query, the algorithm proposes
pure strategies for the players, and is told the resulting payoffs. The general research issue
is to identify bounds on the number of payoff queries needed to find an equilibrium, subject
to the assumption that G belongs to some given class of games.

A general motivation for this topic is the observation that many data sets are generated
by economic or competitive agents (for example, transactions on financial or housing mar-
kets, or data on competitive sports). In attempting to learn from such data sets, it seems
natural to model the data-generating process in game-theoretic terms. To some extent,
the work in agent-based modelling takes this approach: artificial selfish agents are simu-
lated, and a general objective is to replicate various economic phenomena and behaviour
observed in practice. We believe that there is considerable future potential to study data
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sets through the game-theoretic lens in this way. This has already been successfully applied
in the AI literature on adversarial security games, where for example, Yang et al. (2013)
apply existing models of bounded rationality of an opponent, so as to improve competitive
performance in an artificial online game. Nguyen et al. (2013) develop an adversary-based
model (SUQR), and shows that SUQR’s performance (using parameters learned from real-
world data) improves over previous work that does not model adversaries; an extension of
SUQR has been deployed in the context of fishery protection (Brown et al., 2014).

Suppose we have a detailed computational simulation of a game, and we want to check
whether it gives rise to behaviour that corresponds with real-world observations. A key
observation is that it is not too hard to take such a simulation, and feed into it some chosen
behaviour of the (simulated) players, check their payoffs, and (with a bit more effort) check
on whether players have a profitable deviation. From this, we get to the challenge of
searching for an equilibrium of the game (ideally a Nash equilibrium; failing that, search
for something weaker, like an approximate equilibrium). In terms of the theoretical model
that is studied in this paper, our choice of which behaviour to simulate corresponds to the
choices of payoff queries. Below, we discuss some of the literature in this setting.

1.1 Motivation for the Payoff-Query Model

Given a game, especially one with many players, it is unreasonable to assume that anyone
maintains an explicit representation of its payoff function, even if the game in question has
a concise representation. However, in practice, a reasonable modelling assumption is that
given, say, a strategy profile for the players, we can determine their payoffs, or some estimate
of the payoffs. We are interested in algorithms that find Nash equilibria using a sequence
of queries, where a query proposes a strategy profile and gets told the payoffs. We would
like to know under what conditions an algorithm can find a solution based on knowledge of
some but not all of the game’s payoffs, which is particularly important when there are many
players, and the number of pure-strategy profiles is large. This kind of challenge (where
you get observations of profile/payoff-vector pairs, and you want to find an approximate
equilibrium, as opposed to the unobserved payoffs) has been the subject of experimental
work (Vorobeychik et al., 2007; Wellman, 2006; Jordan et al., 2008; Duong et al., 2009),
where Jordan et al. (2008) focuses on the case (highly relevant to this work) where the
algorithm selects a sequence of pure profiles and gets told the resulting payoffs. In this
paper, we introduce the study of payoff-query algorithms from the algorithmic complexity
viewpoint.1 We are interested in upper and lower bounds on the query complexity of classes
of games.

From the theoretical perspective, we are studying a constrained class of algorithms for
computing equilibria of games. The study of such constraints—especially when they lead
to lower bounds or impossibility results—informs us about the approaches that a successful
algorithm needs to apply. In the context of equilibrium computation, other kinds of con-
straint include uncoupled algorithms for computing equilibria (Hart and Mas-Colell, 2003,
2006), communication-constrained algorithms (Hart and Mansour, 2010; Daskalakis et al.,

1. The first discussion of this query model (that we are aware of) appears in a 2009 blog article by Noam
Nisan: https://agtb.wordpress.com/2009/11/19/the-computational-complexity-of-pure-nash/.
It also mentions best-reply queries, which deserve further attention in the context of adversarial security
games.
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2010; Goldberg and Pastink, 2012), and oblivious algorithms (Daskalakis and Papadim-
itriou, 2009). Of course, the restriction to polynomial-time algorithms is the best-known
example of such a constraint. Based on the algorithms and open problems identified in this
paper, we find this to be a compelling motivation for the further study of the payoff-query
model. There are various related kinds of query models that are suggested by the payoff
queries studied here, which may also be of similar theoretical interest; we discuss these in
Section 6.

1.2 Games and Query Models

In this paper we introduce the study of payoff-queries for strategic-form games. We also
consider two models of concisely represented games: graphical games (Kearns et al., 2001),
where players are nodes in a given graph and the payoff of a player only depends on the
strategies of its neighbors in the graph, and symmetric network congestion games (Fabrikant
et al., 2004), where the strategy space of the players corresponds to the set of paths that
connect two nodes in a network.

For a strategic-form game, we assume that initially the querying algorithm only knows n,
the number of players, and k, the number of pure strategies that each player has.

Definition 1 A payoff query to a strategic-form game G selects a pure-strategy profile s
for G, and is given as response, the payoffs that G’s players derive from s.

There are kn pure-strategy profiles in a game, and one could learn the game exhaustively
using this many payoff queries. We are interested in algorithms that require only a small
fraction of this trivial upper bound on the number of queries required.

For our results on symmetric network congestion games, we assume that initially the
algorithm only knows the number of players n, and the set of pure strategies, given by a
graph and the common origin/destination pair. In this paper, we will consider two different
query models, which are described in the following definition.

Definition 2 For a symmetric congestion game with m pure strategies and n players, a
query is a tuple q = (q1, q2, . . . , qm), where for each pure strategy i = 1, 2, . . . ,m, we have
that qi ∈ {0, 1, 2, . . . , n} is the number of players assigned to i under the query. In response
to the query q, the querier learns the costs of each pure strategy under the assigned loads.
Let Q =

∑
1≤i≤m qi. We consider two different types of queries:

• In a normal-query, we require that Q = n;

• in an under-query, we require that Q < n.

Normal-queries correspond to the query model that we use for strategic-form games.
For a congestion game, m, which is the number of paths from the origin to the destination
in a graph, may be exponential. While we defined a query for congestion as a tuple of
length m, both normal-queries and under-queries require at most n positions of this tuple
to be non-zero, so the query can be specified succinctly. We use under-queries in our query
algorithm for games played on directed acyclic graphs. We feel that under-queries are a
reasonable query model for congestion games, because we can ask some players to refrain
from playing when we conduct our query.
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Definition 3 The payoff query complexity of a class of games G, with respect to some
solution concept such as exact or approximate Nash equilibrium, is defined as follows. It
is the smallest N such that there is some algorithm A that, given N payoff queries to any
game G ∈ G (where initially none of the payoffs of G are known) can find a solution of G.

The definition imposes no computational bound on the algorithm A. It is to some
extent inspired by the work on query-based learning initiated by Angluin (1987, 1988), in
the context of computational learning theory. Note that A may select the queries in an
on-line manner, so queries can depend on the responses to previous queries.

1.3 Overview of Results

We study a variety of different settings. In Section 3, we consider bimatrix games. Our
first result is a lower bound for computing an exact Nash equilibrium: in Theorem 4, we
show that computing an exact Nash equilibrium in a k× k bimatrix game has payoff query
complexity k2, even for zero-sum games. In other words, we have to query every pure
strategy profile.

We then turn our attention to approximate Nash equilibria, where we obtain some more
positive results. With the standard assumption that all payoffs lie in the range [0, 1], we
show that, when 2 ≤ i ≤ k − 1, the payoff query complexity of computing a (1 − 1

i )-
approximate Nash equilibrium is at most 2k − i + 1 (Theorem 5) and at least k − i + 1
(Theorem 7.) We also observe that, when ε ≥ 1 − 1

k , no payoff queries are needed at all,
because an ε-Nash equilibrium is achieved when both players mix uniformly over their pure
strategies.

The query complexity of computing an approximate Nash equilibrium when ε < 1
2

appears to be a challenging problem, and we provide an initial lower bound in this direction
in Theorem 13: we show that the payoff query complexity of finding a ε-approximate Nash
equilibrium for ε = O( 1

log k ) is Ω(k · log k). This gives an interesting contrast with the ε ≥ 1
2

case. Whereas we can always compute a 1
2 -approximate with 2k − 1 payoff queries, there

exists a constant ε < 1
2 for which this is not the case, as shown in Corollary 14.

Having studied payoff query complexity in bimatrix games, it is then natural to look for
improved payoff query complexity results in the context of “structured” games. In partic-
ular, we are interested in concisely represented games, where the payoff query complexity
may be much smaller than the number of pure strategy profiles. As an initial result in this
direction, in Section 4 we consider graphical games, where we show (Theorem 15) that for
graphical games with constant degree d, a Nash equilibrium can be found with a polynomial
number of payoff-queries. This algorithm works by discovering every payoff in the game,
however unlike bimatrix games, this can be done without querying every pure strategy
profile.

Finally, we focus on two different models of congestion games. In Section 5.1, we
consider the case of parallel links, where the game has a origin and destination vertex,
and m parallel links between them. We show both lower and upper bounds for this set-
ting. If n denotes the number of players, then we obtain a log(n) + m payoff query lower
bound (Theorem 17), which applies to both query models. We obtain an upper bound of

O
(

log(n) · log2(m)
log log(m) +m

)
normal-queries (Theorem 26). Note that there are n ·m different
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payoffs in a parallel links game, and so our upper bound implies that you do not need to
discover the entire payoff function in order to solve a parallel links game.

In Sections 5.2, 5.3, 5.4, we consider the more general case of symmetric network con-
gestion games on directed acyclic graphs. We show that if the game has m edges and n
players, then we can find a Nash equilibrium using m · n payoff queries (Theorem 38). The
algorithm discovers every payoff in the game, but it only queries a small fraction of the pure
strategy profiles.

2. Related Work

In Section 2.1 we review some very recent work on the payoff query complexity of related
game-theoretic solution concepts. In Section 2.2 we review the experimental work that
motivated this paper. Finally, in Section 2.3 we discuss the relationship with work that
analyzes best-response dynamics in a game-theoretic context.

2.1 Payoff Query Complexity

A preliminary version of this paper appeared at the ACM conference on Electronic Com-
merce (Fearnley et al., 2013). Work that has appeared subsequently has studied query
complexity bounds for general multi-player games, where the main parameter of interest is
the number of players n, who usually just have a small number of pure strategies. Hart
and Nisan (2013) obtain an exponential in n lower bound on the query complexity of
finding an exact correlated equilibrium of a general n-player game. Note that any lower
bounds for correlated equilibria apply immediately to Nash equilibria, since Nash equilibria
are a more restrictive solution concept. For approximate correlated equilibria, no-regret
learning dynamics can be simulated by a randomized payoff query algorithm, so that the
query complexity of approximate correlated equilibria is polynomial in the number of play-
ers (Babichenko and Barman, 2013; Hart and Nisan, 2013). Goldberg and Roth (2014)
studied the dependence in more detail, obtaining upper and lower bounds that are loga-
rithmic in n. However, randomness is needed: Babichenko and Barman (2013) show that
finding an exact correlated equilibrium in an n-player games using a deterministic querying
strategy requires exponentially many queries in n. This result is strengthened by Hart and
Nisan (2013), where it is shown that deterministic querying strategies require exponentially
many queries to find even a 1

2 -approximate correlated equilibrium.
Approximate well-supported Nash equilibria are another approximate solution concept

that have been studied in the context of strategic form games (Kontogiannis and Spirakis,
2010; Fearnley et al., 2012). Babichenko (2014) has shown that finding a 10−8-well sup-
ported Nash equilibrium in an n-player game requires exponentially many queries in n.
The query complexity of computing an ε-approximate Nash equilibrium (that need not be
well-supported) for constant ε remains open, although Goldberg and Roth (2014) show that
it is polynomial if the unknown game can be specified concisely. These negative results for
n-player games motivate the consideration of more structured classes of games, such as
congestion games, which we study in this paper.

Finally, Fearnley and Savani (2014) have continued the study of query complexity for
bimatrix games that was initiated in this paper. In particular, they show that randomized
payoff query algorithms can achieve better approximation ratios: there is a randomized
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algorithm for finding a (3−
√
5

2 +ε)-Nash equilibrium in a bimatrix game usingO(k·log k
ε2

) payoff
queries, and there is a randomized algorithm for finding a (23 +ε)-WSNE in a bimatrix game

using O(k·log k
ε4

) payoff queries. They also provide lower bounds for finding well-supported
Nash equilibria in bimatrix games: finding an ε-well-supported Nash equilibrium requires
k − 1 payoff queries for any ε < 1, even in win-lose games, and finding a 1

3k -well-supported
Nash equilibrium requires Ω(k2) payoff queries, even in win-lose constant-sum games.

2.2 Experimental Work

In empirical game-theoretic analysis (Wellman, 2006; Jordan et al., 2010), a game is pre-
sented to the analyst via a set of observations of strategy profiles (usually, pure) and their
corresponding payoffs. This set of profiles/payoff-vector pairs is called an empirical game.
In some settings the strategy profiles are randomly generated, but it is typically feasible
to obtain observations via the payoff queries we study here. The profile selection prob-
lem (Jordan et al., 2008) is the challenge of choosing helpful strategy profiles. The strategy
exploration problem (Jordan et al., 2010) is the special case of finding the best way to limit
the search to a small subset of a large set of strategies.

Jordan et al. (2008) envisage a setting where a game (called a base game) has a cor-
responding game simulator, an implementation in software, which is amenable to payoff
queries; a more general scenario allows the observed payoffs to be sampled from a distri-
bution associated with the strategy profile. The distribution is sometimes considered to be
due to a noise process, and called the noisy payoff model in Jordan et al. (2008). In this
paper we just consider deterministic payoffs, the “revealed payoff model” in Jordan et al.
(2008). As noted in Vorobeychik et al. (2007), a profile can be repeatedly queried to sample
from the distribution of payoffs, and thus get an estimate of the expected values. The two
interacting challenges are to identify helpful queries, and to use them to find pure-strategy
profiles that have low regret (where regret refers to the largest incentive to deviate, amongst
the players.)

Vorobeychik et al. (2007) study the payoff function approximation task, in which a
game belongs to a known class, and there is a “regression” challenge to determine certain
parameters; the information about the game consists of a random sample of pure profiles
and resulting payoff vectors. However, success is measured by the extent that the players’
predicted behaviour is close to the behaviour associated with the true payoffs, rather than
how well the true payoff functions are estimated.

Work on specific classes of multi-player games includes the following. Duong et al. (2009)
studies algorithms for learning graphical games; we consider a graphical game learning
algorithm in Section 4. Jordan et al. (2008) apply payoff-query learning to various kinds
of games generated by GAMUT (Nudelman et al., 2004), including a class of congestion
games. Vorobeychik et al. (2007) investigate a first-price auction and also a scheduling
game, where payoffs are described via a finite random sample of profile/payoff vector pairs.
Earlier, Sureka and Wurman (2005) study search for pure Nash equilibria of strategic-form
games (mostly with 5 players and 10 pure strategies).

Most of the experimental work (e.g., Sureka and Wurman 2005; Jordan et al. 2008;
Duong et al. 2009) uses local search, in which profiles that get queried are typically very
similar (differing in just one player’s strategy) from previously queried profiles. Jordan
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et al. (2008) experiment with local-search type algorithms in which when a player has the
incentive to deviate, the tested profile is updated with that deviation. Sureka and Wurman
(2005) study search for pure equilibria via best-response dynamics while maintaining a tabu
list, introduced to reduce the risk of cycles.

2.3 Best-Response Dynamics and Local Search

There is a large body of literature that studies best- and better-response dynamics for classes
of potential games, and gives bounds on the number of steps required for convergence to
pure-strategy equilibria. These dynamics relate to the payoff query model since they work
by exploring the space of pure profiles, and receiving feedback consisting of payoffs. The
difference is that they purport to model a decentralized process of selfish behaviour by
the players, while the payoff query model envisages a centralized algorithm that is less
constrained. In this section, we discuss some of the relevant literature.

Local search processes in that each pure profile is obtained from the previous one by
letting a single player move have been studied extensively in the literature. Bounds on
the convergence of deterministic best-response dynamics were considered in Even-Dar et al.
(2003) and Feldmann et al. (2003). Gairing and Savani (2010, 2011) showed polynomial
convergence of better-response dynamics for certain hedonic games. The better-response
dynamics considered by Goldberg (2004) is the basic randomized local search algorithm,
and bounds are obtained for its convergence to exact equilibrium. The work in Bei et al.
(2013) shows that a Nash equilibrium of a bimatrix game can be found using a polynomial
number of better-response queries. Chien and Sinclair (2011) study another local search,
the ε-Nash dynamics, and its convergence to approximate equilibria. Gairing et al. (2010)
employ controlled local search dynamics (where a sequence of players moves simultaneously)
to compute pure Nash equilibria. Other papers (e.g., Fischer et al. 2006; Berenbrink et al.
2007) analyze strongly-distributed dynamics in which multiple players can move in the
same time step; consequently the dynamics is not a local search. However, these dynamical
systems could all be simulated by payoff query algorithms in which at each step, at most
nk queries are made to determine the change in payoffs available to players as a result of
unilateral deviations. This paper begins to answer the question: how much better could a
payoff query algorithm do, if it were not subject to that constraint?

Finally, Alon et al. (2011) consider payoff-query algorithms for finding the costs of paths
in graphs. They consider weight discovery protocols where the aim is to determine the costs
of edges, and shortest path discovery protocols where the aim is to find a shortest path. The
latter objective is more similar to what we consider, since it can avoid the need to learn
the entire payoff function; also a shortest path is an equilibrium strategy for the one-player
case of a network congestion game.

3. Bimatrix Games

In this section, we give bounds on the payoff-query complexity of computing approximate
Nash equilibria of bimatrix games. A bimatrix game is a pair (R,C) of two k× k matrices:
R gives payoffs for the row player, and C gives payoffs for the column player. We use [n]
to denote the set {1, 2, . . . , n}. A mixed strategy is a probability distribution over [k]. A
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mixed strategy profile is a pair s = (x,y), where x is a mixed strategy for the row player,
and y is a mixed strategy for the column player.

Let s = (x,y) be a mixed strategy profile in a k× k bimatrix game (R,C). We say that
a row i ∈ [k] is a best response for the row player if Ri · y = maxj∈[k]Rj · y. We say that a
column i ∈ [k] is a best response for the column player if (x · C)i = maxj∈[k](x · C)j . We
define the row player’s regret under s = (x,y) as the difference between the payoff of a best
response and the payoff that the row player obtains under s. More formally, the regret that
the row player suffers under s is:

max
j∈[k]

(Rj · y)− x ·R · y.

Similarly, the column player’s regret is defined to be:

max
j∈[k]

((x · C)j)− x · C · y.

We say that s is a mixed Nash equilibrium if both players have regret 0 under s. An ε-Nash
equilibrium is an approximate solution concept: for every ε ∈ [0, 1], we say that s is an
ε-Nash equilibrium if both players suffer regret at most ε under s.

We begin with the following simple observation: there are no query-efficient algorithms
for finding exact Nash equilibria, even in zero-sum games. The following theorem shows
that, in order to find an exact Nash equilibrium, we must query all k × k pure strategy
profiles.

Theorem 4 The payoff query complexity of finding an exact Nash equilibrium of a zero-sum
k × k bimatrix game is k2.

Proof Consider a generalized version of matching pennies, where the column player pays 1
to the row player whenever both players choose the same strategy, otherwise the row player
pays 1 to the column player. Note that this is a zero-sum game, and that it has a unique
Nash equilibrium, namely when both players randomize uniformly over their strategies.
Now suppose each payoff in the game is perturbed by a small quantity, in such a way as to
maintain the zero-sum property. For small perturbations, there will still be a unique fully-
mixed equilibrium profile, but it can only be known exactly if all the payoffs are known
exactly. Thus, we cannot find an exact Nash equilibrium in a zero-sum bimatrix game
without querying all k × k pure strategy profiles.

Theorem 4 implies that we cannot devise query-efficient algorithms for finding exact
Nash equilibria. This naturally raises the question of whether there are query-efficient
algorithms for finding approximate Nash equilibria, and we continue by presenting results
on this topic. From now on, we will assume that all payoffs lie in the range [0, 1], which is
a standard assumption when finding approximate Nash equilibria.

Our first result is an upper bound. The work of Daskalakis, Mehta, and Papadim-
itriou (Daskalakis et al., 2009b) gives a simple algorithm for finding a 1

2 -Nash equilibrium.
We adapt their algorithm to prove the following result.
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Theorem 5 Let i be chosen such that 2 ≤ i ≤ k−1. The payoff query complexity of finding
a (1− 1

i )-approximate equilibrium of a k × k bimatrix game is at most 2k − i+ 1.

Proof We begin by querying all k pure profiles where the row player plays row 1. This
allows us to find the column player’s best response to row 1. Without loss of generality, we
can assume that this is column 1. Now query column 1 against rows 2 through k − i + 2.
Note that we have made a total of 2k − i + 1 queries. Let row b be a row that maximizes
the row player’s payoff against column 1, among those that we have queried. Let B =
{1, b} ∪ [k− i+ 3, k]. We propose the following mixed strategy profile s: the column player
plays column 1 with probability 1, and the row player mixes uniformly over the strategies
in B. Note that the row player is mixing between i rows, and thus plays each of them with
probability 1

i .

We claim that s is a (1− 1
i )-approximate Nash equilibrium. Let R and C be the actual

payoff matrices for the row and column player, respectively. Note that the row player’s best
response to column 1 is either b, or one of the strategies between k − i+ 3 and k. Call this
row j, and observe that j ∈ B. The row player’s regret can be expressed as

Rj,1 −
∑
`∈B

1

i
·R`,1 = (1− 1

i
) ·Rj,1 −

∑
`∈B\{j}

1

i
·R`,1

≤ (1− 1

i
) ·Rj,1

≤ (1− 1

i
).

Let j′ be a pure best response of the column player under s. Observe that, since column 1
is a best response against row 1, we have that C1,j′ −C1,1 ≤ 0. The column player’s regret
can be expressed as:∑

`∈B

1

i
· C`,j′ −

∑
`∈B

1

i
· C`,1 =

∑
`∈B

1

i
· (C`,j′ − C`,1)

≤
∑

`∈B\{1}

1

i
· (C`,j′ − C`,1)

≤
∑

`∈B\{1}

1

i

= 1− 1

i
.

Thus we have shown that both players suffer regret at most 1− 1
i .

Note that, when i = 2, the algorithm of Theorem 5 finds a 1
2 -Nash equilibrium using the

same technique as the algorithm from Daskalakis et al. (2009b). For i > 2, our algorithm
uses fewer payoff queries in exchange for a worse approximation. When i = k − 1, our
algorithm uses k+2 payoff queries in order to find a (1− 1

k−1)-Nash equilibrium. It turns out

that, for ε ≥ 1− 1
k , we do not need to make any payoff queries at all: an ε-Nash equilibrium
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is obtained when both players play the uniform distribution over their strategies, because
both players must place at least 1

k of their probability on a pure best response.

We now turn our attention to lower bounds. We complement the result of Theorem 5 by
showing lower bounds for finding (1− 1

i )-Nash equilibria, when i is in the range 2 ≤ i ≤ k−1.
First, we prove an auxiliary lemma.

Lemma 6 Suppose that every payoff query that is made by the algorithm returns 0 for both
players. Let i be chosen such that 2 ≤ i ≤ k − 1, and let s be a (1 − 1

i )-Nash equilibrium.
Any column that receives no queries must be assigned at least 1

i probability by s.

Proof Suppose, for the sake of contradiction, that c is a column that received no queries,
and that c is assigned strictly less than 1

i probability by s. We construct a column player
matrix C as follows:

Cj,j′ =

{
1 if j′ = c,

0 otherwise.

Since c received no queries, C is consistent with all queries that have been made. Note that
the column player’s payoff under s is strictly less than 1

i , and that the payoff of playing c as
a pure strategy is 1. Thus, the column player’s regret is strictly greater than 1− 1

i , which
contradicts the fact that s is a (1− 1

i )-Nash equilibrium

Now we can show our lower bound.

Theorem 7 Let i be chosen such that 2 ≤ i ≤ k−1. The payoff query complexity of finding
a (1− 1

i )-approximate Nash equilibrium of a k × k bimatrix game is at least k − i+ 1.

Proof Assume that all payoff queries return 0 for both players. Suppose, for the sake
of contradiction, that an algorithm makes fewer than k − i + 1 payoff queries, and then
outputs s as a (1 − 1

i )-Nash equilibrium. It follows that there must be at least i columns
that have received no payoff queries at all, and without loss of generality, we can assume
that these are columns 1 through i. By Lemma 6, we know that s must assign exactly 1

i
probability to each of the columns 1 through i. Since there are k rows, there is at least
one row r that receives probability at most 1

k under s. We construct a row player payoff
matrix R as follows:

Rj,j′ =

{
1 if j = r and 1 ≤ j′ ≤ i,
0 otherwise.

Since columns 1 through i were not queried, R is consistent with all queries that have been
made so far. The row player’s payoff under s is at most 1

k . On the other hand, the row
player would receive payoff 1 for playing r as a pure strategy. Thus, the row player’s regret
is at least:

1− 1

k
> 1− 1

i
.

This contradicts the fact that s is a (1− 1
i )-Nash equilibrium.
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As a consequence of the previous two theorems, when 2 ≤ i ≤ k − 1, we have that the
payoff query complexity of finding a (1− 1

i )-Nash equilibrium lies somewhere in the range
[k − i + 1, 2k − i + 1]. Determining the precise payoff query complexity for this case is an
open problem.

So far, we have only considered ε-Nash equilibria with ε ≥ 1
2 . Of course, the most

interesting challenge is to determine the payoff query complexity for values of ε < 1
2 . By our

previous results, we know that the payoff query complexity for finding a 1
2 -Nash equilibrium

is O(k), and the payoff query complexity for finding a 0-Nash equilibrium is O(k2), but we
do not know how the payoff query complexity behaves as we vary ε between 0 and 1

2 .

Our final result in this section will be to show a lower bound for ε = O( 1
log k ). We will

show that finding a O( 1
log k )-Nash equilibrium requires Ω(k log k) payoff queries. This estab-

lishes that there are some positive values of ε, for which computing an ε-Nash equilibrium
is asymptotically harder than computing a 1

2 -Nash equilibrium.

We will use the following class of bimatrix games, which have been previously used in
Theorem 1 of Feder et al. (2007).

Definition 8 Let G` be the class of strategic-form games where the column player has `
pure strategies and the row player has

(
`
`/2

)
pure strategies (where we assume ` is even).

Let G` ∈ G` be the win-lose constant-sum game in which each row of the row player’s payoff
matrix has `

2 1’s and `
2 0’s, all rows being distinct. The column player’s payoffs are one

minus the row player’s payoffs.

It is well-known that every zero-sum game has a unique value, which is the payoff that
both players can guarantee for themselves, independent of what the other player does. The
value of each game G` ∈ G` is 1

2 since either player can obtain payoff 1
2 by using the uniform

distribution over their pure strategies. Our first lemma shows that, if the column player
deviates from this by placing too much probability on a single column, then the row player
can take advantage and increase his payoff.

Lemma 9 Suppose that in game G` ∈ G`, the column player places probability α > 1/` on
some column. Then the row player can obtain a payoff strictly greater than 1

2 + α
2 −

1
2` .

Proof Let j be a column that the column player plays with probability α. Let Rj be
the set of rows where the row player obtains payoff 1 against column j. Suppose the row
player plays the uniform distribution over rows in Rj . When the column player plays j, the
row player receives payoff 1. Let j′ 6= j be a column, and consider the payoffs to the row
player where j′ intersects Rj . A fraction `/2−1

`−1 of these entries pay the row player 1, while a

fraction `/2
`−1 pay the row player 0. Consequently whenever the column player plays j′ 6= j,

the row player’s expected payoff is `/2−1
`−1 . Thus with probability α the row player receives

payoff 1, and with probability 1 − α he receives payoff `/2−1
`−1 . Thus, the payoff to the row
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player is

α+ (1− α)
`/2− 1

`− 1
=

1

2
+

1

2
α− 1− α

2(`− 1)

>
1

2
+

1

2
α− 1− 1/`

2(`− 1)

=
1

2
+

1

2
α− 1

2`
,

which completes the proof.

We now use the bound from the previous lemma to show that, in an approximate Nash
equilibrium for G`, the column player cannot place too much probability on any individual
column.

Corollary 10 Let α > 1
k , and let ε = 1

4(α − 1
` ). In every ε-Nash equilibrium of G` ∈ G`,

the column player plays each individual column with probability at most α.

Proof Suppose, for the sake of contradiction, that there is an ε-Nash equilibrium s in
which that the column player assigns column j probability strictly greater than α. Then,
by Lemma 9, the row player’s payoff is strictly greater than 1

2 + α
2 −

1
2` , and therefore the

row player’s payoff in s must be strictly greater than:

1

2
+
α

2
− 1

2`
− ε =

1

2
+ ε.

Therefore, the column player obtains payoff strictly less than 1
2 − ε. Since the value of G`

is 1
2 , the column player’s regret in s is strictly greater than ε, and therefore s is not an

ε-Nash equilibrium.

We can now provide a lower bound for the payoff query complexity of finding an ap-
proximate Nash equilibrium for the games in G`.

Lemma 11 For any ε < 1
12 , and any even ` ≥ 8, the payoff query complexity of finding an

ε-Nash equilibrium for the games in G` is at least 1
2 ·
(
`
`/2

)
· ( 1

16ε+4/`).

Proof Let A be a payoff query algorithm for finding an ε-Nash equilibrium, and, for the
sake of contradiction, suppose that A makes fewer than 1

2 ·
(
`
`/2

)
· ( 1

16ε+4/`) many payoff
queries when processing G`. Let s be the mixed strategy profile that A outputs for G`. By
Corollary 10, we know that no column in s is assigned more than α = 4ε+ 1

` probability. We
also know that in s, the row player’s payoff is at most 1

2 + ε, since s is an ε-Nash equilibrium

of a constant-sum game with value 1
2 . Since A made fewer than 1

2 ·
(
`
`/2

)
· ( 1

16ε+4/`) payoff

queries, at least half of the rows received fewer than ( 1
16ε+4/`) queries. Since ` ≥ 8, this

implies that there are at least 1
2 ·
(
8
4

)
= 45 such rows. Thus, there is one such row, call it r,

that is played with probability strictly less than 1
12 in s.
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Since s assigns at most α probability to each column, the total amount of probability
that s assigns to the queried portion of r is at most α( 1

16ε+4/`) = 1
4 . Now suppose that we

modify G` by replacing all un-queried entries of r with payoffs of 1 for the row player. Call
this new game G′`. Note that A outputs the same strategy profile s for both G` and G′`.

Let p be the payoff to the row player of playing s in G`, and let p′ be the payoff to the
row player of playing s in G′`. Since r is played with probability less than 1

12 we have:

p′ ≤ p+
1

12

≤ 7

12
+ ε

However, the row player’s best response payoff is at least 3
4 in G′`, so we have:

p′ ≥ 3

4
− ε

Therefore, we can conclude that:

7

12
+ ε ≥ 3

4
− ε

2ε ≥ 2

12
.

However, this is impossible because ε < 1
12 .

Finally, we can extend the lower bound to square bimatrix games.

Lemma 12 For k × k bimatrix games, the payoff query complexity of finding an ε-Nash
equilibrium, for ε ≤ 1

8 , is at least k · ( 1
32/ log k+64ε).

Proof Let k′ be the largest number of the form
(
`
`/2

)
that is smaller than k. We have

k′ ≥ k/4 and ` ≥ log k/2. By Lemma 11, the number of payoff queries needed to find an
ε-Nash equilibrium for games in Gk is at least:(

`

`/2

)
·
( 1

16ε+ 4/`

)
= k′

( 1

4/`+ 16ε

)
≥ k

4

( 1

4/`+ 16ε

)
≥ k

4

( 1

8/ log(k) + 16ε

)
= k

( 1

32/ log(k) + 64ε

)
.

The games in G` can be written down as a k × k game, by duplicating rows and columns.
Note that these operations preserve approximate equilibria.

By taking ε ∈ O( 1
log k ) in the previous lemma, we arrive at our final theorem.
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Theorem 13 For k × k bimatrix games, the payoff query complexity of finding a ε-Nash
equilibrium for ε ∈ O( 1

log k ), is Ω(k · log k).

Recall, from Theorem 5, that we can always find a 1
2 -Nash equilibrium using 2k − 1

payoff queries. The following corollary of Lemma 12 shows that there are some constant
values of ε that require more payoff queries.

Corollary 14 There is a constant value of ε > 0 for which finding an ε-Nash equilibrium
of a k × k bimatrix game requires strictly more than 2k − 1 payoff queries.

Proof Consider, for example, setting ε = 1
512 in Lemma 12. Then, for the family of games

in Gl with l > 2256, we have a lower bound of

k ·

(
1

32
log k + 0.0064

)
> k · 1

0.125 + 0.125
= 4 · k,

on the number of payoff queries.

An interesting question that remains is whether one can a show a superlinear lower
bound on the number of payoff queries required for a constant ε.

4. Graphical Games

In this section, we give a simple payoff query-based algorithm for graphical games. In a
n-player graphical game (Kearns et al., 2001) the players lie at the vertices of a degree-d
graph, and a player’s payoff is a function of the strategies of just himself and his neighbors.
If every player has k pure strategies, then the number of payoff values needed to specify such
a game is n · kd+1 which, in contrast with strategic-form games, is polynomial (assuming d
is a constant).

Previously, Duong et al. (2009) have carried out experimental work on payoff queries
for graphical games. They compare a number of techniques; the algorithm we give here is
polynomial-time but would likely be less efficient in practice. Similar to Duong et al. (2009),
we assume the underlying graph G is unknown, and we want to induce the structure of G,
and corresponding payoffs.

Theorem 15 For constant d, the payoff query complexity of degree d graphical games is
polynomial.

Proof Algorithm 1 constructs a directed graph G for the (initially unknown) game, along
with the payoff function. G is the “affects graph” (Goldberg and Papadimitriou, 2006) in
which a directed edge (p′, p) has the meaning that the behaviour of p′ may affect p’s payoff.
Note that in Step 2, |S| < (n · k)d+1. In a degree-d graphical game, any player p’s payoffs
may be affected by his own strategy, and the strategies of at most d neighbours p′ for which
edges (p′, p) exist. The existence of edge (p′, p) is equivalent to the existence of strategy
profiles s, s′ that differ only in p′’s strategy and p’s payoff. This is what Algorithm 1 checks
for. Finally, when the edges, and hence neighborhoods of the graph game have been found,
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Algorithm 1 GraphicalGames

1: Initialize graph G’s vertices to be the player set, with no edges
2: Let S be the set of pure profiles in which at least n− (d+ 1) players play 1.
3: Query each element of S.
4: for all players p, p′ do
5: if ∃s, s′ ∈ S that differ only in p’s payoff and p′’s strategy then
6: add directed edge (p, p′) to graph
7: end if
8: end for
9: for all players p do

10: Let Np be p’s neighborhood in G
11: Use elements of S to find p’s payoffs as a function of strategies of Np

12: end for

it is simple to read off each player’s payoff matrix from the data in Step 3.

Algorithm 1 learns the entire payoff function with polynomially many queries, but there
are a couple of important caveats. First, although the payoff query complexity is polynomial,
the computational complexity is probably not polynomial, since it is PPAD-complete to
actually compute an approximate Nash equilibrium for graphical games (Daskalakis et al.,
2009a). Second, while Algorithm 1 avoids querying all of the exponentially-many pure-
strategy profiles, it works in a brute-force manner that learns the entire payoff function. It
is natural to prefer algorithms that find a solution without learning the entire game, such
as those that we give for Theorem 5 and Theorem 26.

5. Congestion Games

In this section, we give bounds on the payoff-query complexity of finding a pure Nash
equilibrium in symmetric network congestion games. A congestion game is defined by a
tuple Γ = (N,E, (Si)i∈N , (fe)e∈E). Here, N = {1, 2, . . . , n} is a set of n players and E
is a set of resources. Each player chooses as her strategy a set si ⊆ E from a given set
of available strategies Si ⊆ 2E . Associated with each resource e ∈ E is a non-negative,
non-decreasing function fe : N 7→ R+. These functions describe costs (latencies) to be
charged to the players for using resource e. An outcome (or strategy profile) is a choice of
strategies s = (s1, s2, ..., sn) by players with si ∈ Si. For an outcome s define ne(s) = |i ∈
N : e ∈ si| as the number of players that use resource e. The cost for player i is defined
by ci(s) =

∑
e∈si fe(ne(s)). A pure Nash equilibrium is an outcome s where no player has

an incentive to deviate from her current strategy. Formally, s is a pure Nash equilibrium
if for each player i ∈ N and s′i ∈ Si, which is an alternative strategy for player i, we have
ci(s) ≤ ci(s−i, s′i). Here (s−i, s

′
i) denotes the outcome that results when player i changes her

strategy in s from si to s′i.

In a network congestion game, resources correspond to the edges in a directed multigraph
G = (V,E). Each player i is assigned an origin node oi, and a destination node di. A
strategy for player i consists of a sequence of edges that form a directed path from oi to
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di, and the strategy set Si consists of all such paths. In a symmetric network congestion
game all players have the same origin and destination nodes. We write a symmetric network
congestion game as Γ = (N,V,E, (fe)e∈E , o, d), where collectively V , E, o, and d succinctly
define the strategy space (Si)i∈N . We consider two types of networks, directed acyclic
graphs, and the special case of parallel links. We assume that initially we only know the
number of players n and the strategy space. The latency functions are completely unknown
initially. As discussed in Section 1.2, we use several different querying models for congestion
games.

5.1 Parallel Links

In this section, we consider congestion games on m parallel links. We present a lower
bound and an upper bound on the query complexity of finding an exact pure equilibrium
of these games. To simplify the presentation of the algorithmic ideas of our upper bound
we introduce a stronger type of query that we call an over-query. Recall from Definition 2
that for a query q = (q1, q2, . . . , qm), we denote by Q the total number of players used in
the query, i.e., Q =

∑
1≤i≤m qi.

Definition 16 An over-query is a query with n < Q ≤ mn.

First, we present a simple lower bound. Then, we present an algorithm, Algorithm 2,
that uses over-queries. Finally, we extend Algorithm 2 to Algorithm 3, which uses only
normal queries.

5.1.1 Lower Bound

In the following construction, we show that, if there are two links, the querier can do no
better than performing binary search in order to find an equilibrium, which gives a lower
bound of log(n) many queries.

Theorem 17 A querier must make log(n) queries to determine a pure equilibrium of a
symmetric network congestion game played on parallel links.

Proof We fix a graph G with two parallel links e1 and e2, and we fix the cost of e2 so that
fe2(i) = 1 for all i ∈ N . We consider functions fe1 that only return costs of 0 or 2. Since
fe1 is non-decreasing, this implies that it will be a step function with a single step. We say
that the step is at location i ∈ N if fe1(j) = 0 for all j ≤ i, and fe1(j) = 2 for all j > i.
The precise location of the step will be decided by an adversary, in response to the queries
that are received.

The adversary’s strategy maintains two integers ` and u with ` < u, and initially the
adversary sets ` = 0 and u = n. Intuitively, for all values below ` the adversary has fixed
fe1 to 0, and for all values above u the adversary has fixed fe1 to 2. The range of values
between u and ` are yet to be fixed, and all values in this range could potentially be the
location of the step.

Suppose that the adversary receives the query s. The adversary will respond with a pair
(c1, c2), where c1 is the cost of e1, and c2 is the cost of e2. The adversary uses the following
strategy:
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• If ne1(s) ≤ `, then the adversary responds with (0, 1). If ne1(s) ≥ u, then the adversary
responds with (2, 1).

• If ne1(s) < u+`
2 , that is, if ne1(s) is closer to ` than it is to u, then the adversary sets

` = ne1(s), and responds with (0, 1).

• If ne1(s) ≥ u+`
2 , that is, if ne1(s) is closer to u than it is to `, then the adversary sets

u = ne1(s), and responds with (2, 1).

Note that, if there exists an i with ` < i < u, then the querier cannot correctly deter-
mine the Nash equilibrium. This is because the step could be at location i, or it could be at
location i− 1. In the former case, the unique Nash equilibrium assigns i players to e1 and
n− i players to e2, and in the latter case the unique Nash equilibrium assigns i− 1 players
to e1 and n− i+ 1 players to e2. By construction, the adversary’s strategy ensures that, in
response to each query, the gap between u and ` may decrease by at most one half. Thus,
the querier must make log(n) queries to correctly determine the Nash equilibrium.

Consider a one-player game with m links. Clearly, we can solve this game with a single
over-query, but it requires m normal-queries. Thus we have the following:

Corollary 18 If over-queries are not allowed, then log(n) +m queries are required to de-
termine a pure equilibrium of a symmetric network congestion game played on parallel links.

5.1.2 Upper Bound

In the rest of the section, we provide an upper bound, by constructing a payoff query algo-

rithm that finds a pure Nash equilibrium using O
(

log(n) · log2(m)
log log(m) +m

)
normal-queries.

In order to simplify the presentation, we first present an algorithm that makes use of
over-queries; later we show how this can be translated into an algorithm that uses only
normal-queries.

Our algorithm is based on an algorithm from Gairing et al. (2008). Before we present
the full algorithm, we give an overview of the techniques by describing a simplified version
of the algorithm. The basic idea is to group the players into blocks, where all players in a
block must play on the same link. In each round of the algorithm, we maintain the property
that the blocks are in equilibrium: no block of players can collectively deviate in order to
reduce their latency. Initially, we place all of the players into a single block, and then in
each round of the algorithm, we split each block into smaller blocks, and compute a new
equilibrium for the smaller block size. Eventually, the block size will be reduced to 1, and
we recover a Nash equilibrium for the congestion game.

In this simplified overview, we will assume that the number of players n is equal to 2i

for some i ∈ N, and in each round we will split each block in half. Our full algorithm will
be more complicated, because it must deal with an arbitrary number of players, and it will
split each block into more than two pieces.

At the start of the algorithm, we place all n players into a single block. In order to find
an equilibrium for this block, we simply have to find the link i ∈ [m] that minimizes fi(n).
We can do this with a single over-query q = (n, n, . . . , n).
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Now suppose that we have found an equilibrium s for block size δ. We split each block
into two equal-sized pieces, and our task is to transform s into an equilibrium for block size
δ/2 by moving blocks between the links. The key observation is that no link can receive two
or more blocks of size δ/2, because this would contradict the fact that s is an equilibrium
for block size δ. So, when we move blocks between the links, we know that each link can
receive at most one block, and therefore each link can lose at most m − 1 blocks. We can
make a single over-query in order to discover the cost of adding one block of δ/2 players to
each link: we simply query p = (n1(s) + δ/2, n2(s) + δ/2, . . . , nm(s) + δ/2). On the other
hand, we also need to determine how many blocks each link loses, and a naive approach
would use m queries. We now describe a method that uses only log2(m) under-queries.

Suppose that we guess that q, where 0 ≤ q ≤ m, is the number of blocks that move. We
give an algorithm that verifies whether this guess is correct. Let c be the (q+ 1)th smallest
cost returned by the query p. For each link i, we determine qi, which is the number of
δ/2-sized blocks that would want to move to a link with cost c. This can be done by binary
search, in parallel for all links, using log(m) many under-queries. There are three possible
outcomes:

• If
∑m

i=1 qi = q, then our guess was correct, and exactly q blocks move.

• If
∑m

i=1 qi < q, then our guess was too high, and fewer than q blocks move.

• If
∑m

i=1 qi > q, then our guess was too low, and more than q blocks move.

Thus, to determine exactly how many blocks move between the links, we can use a nested
binary search approach: in the outer level we guess how many blocks move, and in the inner
level we use the above method to determine if our guess was too high or too low.

Therefore, we have a method for constructing an equilibrium with block size δ/2 from
an equilibrium with block size δ using log2(m) many queries. Since we start with block size
n, and we halve the block size in every round, this gives us an algorithm that finds a Nash
equilibrium using log(n) · log2(m) many payoff queries.

In the rest of this section, we formalize this approach, and we deal with the issues that
were ignored in this high level overview. In particular, we present an algorithm that works
for any number of players n, and we obtain a slightly better query complexity by splitting
each block into log(m) many pieces in each round.

5.1.3 The Algorithm With Over-Queries

The algorithm ParallelLinks is depicted in Algorithm 2. We will show how this algorithm

can be implemented with O
(

log(n) · log2(m)
log log(m)

)
queries. The integer k is a parameter to

the algorithm that determines the block size: in each round we consider blocks of size kt

for some t. To deal with the fact that n may not be an exact power of k, the algorithm
will maintain a special link a. This link is defined to be the link upon which all n players
are placed at the start of the algorithm. Since every subsequent step of the algorithm only
moves players in blocks of size kt for some t, link a will be the only link where the number
of players is not a multiple of the block size.
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We start by formalizing the notion of an equilibrium with respect to a certain block
size. For a congestion game Γ, an integer δ, and a special link a we define a δ-equilibrium
as follows:

Definition 19 (δ-equilibrium) A strategy profile s is δ-equilibrium if δ|ni(s) for all i ∈
[m] \ {a}, and for all links i, j ∈ [m] with ni(s) ≥ δ we have fi(ni(s)) ≤ fj(nj(s) + δ).

Intuitively, we can think of a δ-equilibrium s as a Nash equilibrium in a transformed
game where the players (of the original game) are partitioned into blocks of size δ and each
block represents a player in the transformed game, and the remaining (n mod δ) players are
fixed to link a.

We start with an informal description of algorithm ParallelLinks. On Line 1 we
initialize the algorithm by using one over-query to find the cheapest link a, and assigning
all n players to link a. Note that a is the special link, as discussed earlier. The algorithm
then works in T + 1 phases, where T = b log(n)log(k)c. Each phase is one iteration of the for-
loop. The for-loop is governed by a variable t, which is initially T and decreases by 1 in
each iteration. Within any iteration, the algorithm uses the function RefineProfile to
transform a kt+1-equilibrium into a kt-equilibrium.

Recall, from the overview, that when k = 2, we observed that each link can receive at
most one block when we transform a 2t+1-equilibrium into a 2t-equilibrium. In the following
lemma, we establish a similar property for the case where k 6= 2: each link can receive at
most 2k blocks. Intuitively, one might expect each link to receive at most k blocks, but the
extra factor of two here arises due to the special link a, which was not considered in our
simplified overview.

Lemma 20 We can convert a kt+1-equilibrium s into a kt-equilibrium s′ by moving at most
2k blocks of δ = kt players to any individual link and at most km blocks of δ players in
total.

Proof Since s is kt+1-equilibrium, we have fi(ni(s)) ≤ fj(nj(s) + kt+1) for all i ∈ [m] \
{a}, j ∈ [m]. Moreover, either (a) fa(na(s)) ≤ fj(nj(s) + kt+1) for all j ∈ [m] or (b)
na(s) < kt+1. In case (a), this implies that each link j ∈ [m] can in total receive at most
k blocks of size δ = kt from links i ∈ [m]. In case (b), this implies that each link j ∈ [m]
can in total receive at most k blocks of size δ = kt from links i ∈ [m] \ {a}. Moreover, since
na(s

′) < kt+1, we can move at most k blocks of size δ = kt from link a. In either case,
in total we move at most km blocks. All links receive and lose players only in multiples
of δ = kt, which ensures that kt|ni(s′) for all i ∈ [m] \ {a} is maintained.

RefineProfile determines the number of blocks q which have to be moved by binary
search on q in [0, km]. Since, by Lemma 20, each link receives at most 2k blocks of players,
we spend 2k over-queries to determine the cost function values fi(ni(s) + r · δ) for all
integers r ≤ 2k and all links i ∈ [m]. We define Q as the multi-set of these cost function
values and Cmin(q) as the (q + 1)-th smallest value in Q. Intuitively, Cmin(q) is the cost of
the (q + 1)-th block of players that we would move. We use Cmin(q) to find out how many
blocks of players qi we need to remove from each link i ∈ [m] so that on each link i ∈ [m] the
cost is at most Cmin(q) or we can’t remove any further blocks as there are less than δ players
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Algorithm 2 ParallelLinks

1: a← arg mini∈[m] fi(n) . 1 over-query
2: initialize strategy profile s by putting all players on link a
3: T ← b log(n)log(k)c
4: for t = T, T − 1, . . . , 1, 0 do
5: δ ← kt

6: s← RefineProfile(s, δ, 0, km)
7: end for
8: return s

9: function RefineProfile(s, δ, qmin, qmax)
10: q ← b qmin+qmax

2 c
11: Parallel for all links i ∈ [m]
12: Query for costs fi(ni(s) + rδ) for all integer 1 ≤ r ≤ 2k . 2k queries
13: EndParallel
14: Q← the ordered multiset of 2km non-decreasing costs from the above queries
15: Cmin(q)← (q + 1)-th smallest element of Q
16: pi ← number of times i ∈ [m] contributes a cost to the q smallest elements of Q

17: Parallel for all links i ∈ [m]

18: if fi(ni(s)− bni(s)
δ c · δ) > Cmin(q) then . 1 query; only relevant for link a

19: qi ← bni(s)
δ c

20: else (using binary search on qi ∈ [0,min{km, bni(s)
δ c}])

21: qi ← min {qi : fi(ni(s)− qiδ) ≤ Cmin(q)} . log(km) queries
22: end if
23: EndParallel

24: if
∑

i∈[m] qi = q then
25: modify s by removing qi and adding pi blocks of δ players to every link i ∈ [m]
26: return s
27: else if

∑
i∈[m] qi < q then

28: return RefineProfile(s, δ, qmin, q − 1)
29: else (

∑
i∈[m] qi > q)

30: return RefineProfile(s, δ, q + 1, qmax)
31: end if
32: end function
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assigned to it (which can only happen on link a). By Lemma 20, we need to remove at most

km blocks of players in total. Therefore, we can determine qi ∈ [0,min{km, bni(s)
δ c}] by

binary search in parallel on all links, with O(log(km)) under-queries. Now, if
∑m

i=1 qi = q,
we can construct a kt-equilibrium by removing qi and adding pi blocks of δ players to link
i ∈ [m]; note that for every i ∈ [m], either qi = 0 or pi = 0. If

∑m
i=1 qi 6= q, our guess for q

was not correct and we have to continue the binary search on q.

The algorithm maintains the following invariant:

Lemma 21 RefineProfile(s, δ, 0, km) returns a δ-equilibrium.

Proof Observe that δ = kt. In the first iteration of the for-loop t = T and Refine-
Profile(s, δ, 0, km) gets a n-equilibrium as input, which is also a kT+1-equilibrium as all
players are assigned to link a and kT+1 > n. So to prove the claim, it suffices to show that
RefineProfile(s, kt, 0, km) returns a kt-equilibrium if s is a kt+1-equilibrium. For the s
returned by RefineProfile and the q in its returning call, we have fi(ni(s)) ≤ Cmin(q) ≤
fi(ni(s) + δ) for all i ∈ [m] \ {a}. The left inequality follows from line 21 of the algorithm.
The right inequality follows from the definition of Cmin(q) as the (q+1)-th smallest element
in Q in line 15 of the algorithm. For link a, we have fa(na(s)) ≤ Cmin(q) ≤ fa(na(s) + δ)
or we have fa(na(s)) > Cmin(q) and na(s) < δ, where the first case follows from lines 21
and 15 as before, and the second case corresponds to line 18. Noting that RefineProfile
maintains that for the returned s we have δ|ni(s) for all i ∈ [m] \ {a}, as it only moves
blocks of size δ, the claim follows.

We now give the payoff query complexity of RefineProfile. We split our analysis
into over-queries and non-over-queries (i.e., under-queries or normal-queries), because we
will later show how the over-queries made by our algorithm can be translated into a sequence
of non-over-queries.

Lemma 22 RefineProfile(s, δ, 0, km) can be implemented to make 2k over-queries and
O(log2(km)) non-over-queries.

Proof Note that, as long as δ is not changed, the queries made on line 12 are the same
for each pair of qmin and qmax. Therefore, we can perform these 2k over-queries when we
first call RefineProfile(s, δ, 0, km), and reuse these values during each recursive call. For
each value of q in the binary search, we make O(log(km)) under-queries to determine the
qi’s in parallel for all links i ∈ [m]. The binary search on q adds a factor log(km) to give
O(log2(km)) under-queries in total.

Using Lemmas 21 and 22 we can prove the following.

Theorem 23 Algorithm ParallelLinks returns a pure Nash equilibrium and can be im-

plemented with O
(

log(n) · log2(m)
log log(m)

)
queries, of which 2k · logn

log logm are over-queries.

Proof In the last iteration of the for-loop, we have δ = 1, so Lemma 21 implies that s
is a pure Nash equilibrium. To find the best link in line 1 of the algorithm, we need one
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over-query. For any k ≥ 2, the algorithm does T + 1 = O
(
log(n)
log(k)

)
iterations of the for-

loop. In each iteration we do O(log2(km)) under-queries and 2k over-queries. Choosing
k = Θ(log(m)) yields the stated upper bound.

5.1.4 Using Only Normal-Queries

We now show how Algorithm 2 can be implemented without the use of over-queries. Before
doing so, we remark that in the parallel links setting, we can also avoid using under-queries.

Lemma 24 If a parallel links congestion game has at least two links, then every under-
query can be translated into two normal-queries.

Proof Suppose that the game has m ≥ 2 links, and let q = (i1, i2, . . . , im) be an under-
query. Let n′ =

∑m
j=1 ij be the total number of players used by q. We define the following

queries:

q1 = (i1 + n− n′, i2, . . . , im),

q2 = (i1, i2, . . . , im + n− n′).

Clearly both q1 and q2 are normal-queries. Query q1 tells us the cost of links 2 through m
under q, and query q2 tells us the cost of link 1 under q.

We now turn our attention to over-queries. The following lemma gives a general method
for translating over-queries into non-over-queries.

Lemma 25 Suppose we have a parallel links game with m links and n players. Let q =
(i1, i2, . . . , im) be an over-query, and define n′ =

∑m
j=1 ij. We can translate q into a sequence

of O(n′/n) non-over-queries.

Proof Consider the following greedy algorithm: find the smallest index b such that∑
1≤k≤b ik ≤ n and assign links 1 through b to query q1. Set i1 = i2 = · · · = ib = 0,

and repeat. Clearly each query that we generate during this algorithm is a non-over-query.

Let q1, q2, . . . , ql be the sequence of non-over-queries generated by the above algorithm
for some l ∈ N. For each j, let nj be the total number of players used by qj , and observe
that

∑
1≤j≤l nj = n′. Furthermore, for each j, let rj = n−nj be the total number of players

not used by qj . Due to the nature of our algorithm, for every j > 1 we must have rj−1 < nj ,
since the first link assigned to qj would not fit in qj−1. Thus, we have:∑

1≤j≤l
rj <

∑
2≤j≤l

nj + r1

< n′ + n.

1326



Learning Equilibria of Games via Payoff Queries

Since the total number of queries in the sequence is l, we can argue that:

l =
1

n

∑
1≤j≤l

(nj + rj)

<
n′ + n′ + n

n

= 1 +
2n′

n
.

Thus, our greedy algorithm generates at most O(n′/n) non-over-queries.

In order to optimize the number of non-over queries we have to adjust Algorithm 2
slightly, because with k = Θ(log(m)) in early iterations of the for loop, i.e., when T is
large, the number of players used in the over queries in line (12) is large and applying

Lemma 25 would yield to a total of O
(

log(n) · log2(m)
log log(m) +m log(m)

)
non-over queries. In

contrast, we will now show that our adjusted Algorithm 3 can be implemented to do at most

O
(

log(n) · log2(m)
log log(m) +m

)
non-over queries. The main idea is to divide the block size by 2

until the number of players in a block is small enough and then switch to k = Θ(log(m)).

Algorithm 3 ParallelLinks avoiding over-queries

1: a← arg mini∈[m] fi(n) . 1 over-query
2: initialize strategy profile s by putting all players on link a

3: T ←
⌊
log(n/m)
log(k)

⌋
4: T0 ← largest t such that kT 2t < n
5: for t = T0, T0 − 1, . . . , 1 do
6: δ ← kT 2t

7: s← RefineProfile(s, δ, 0, 2m)
8: end for
9: for t = T, T − 1, . . . , 1, 0 do

10: δ ← kt

11: s← RefineProfile(s, δ, 0, km)
12: end for
13: return s

To initialize our algorithm, we make an over-query that uses m·n players. By Lemma 25,
we can translate this into O(m) non-over-queries.

In each iteration of the first for-loop with value t, by Lemma 22, we make O(1) over-
queries. Each of these uses at most n + m · 4 · kT 2t players. By Lemma 25, these can be
simulated by O(1 + mkT 2t

n ) non-over-queries. Summing up over all iterations and using the
definition of T0, we can argue that all over-queries of the first for-loop can be simulated by

T0∑
t=1

O
(

1 +
mkT 2t

n

)
= O(T0) +O

(
mkT 2T0

n

)
= O(m)
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non-over-queries.
In each iteration of the second for-loop with value t, by Lemma 22, we make make 2k

over-queries that each use at most n + m · 2k · kt players. By Lemma 25, these can be
simulated by O(mk

t+1

n ) non-over-queries. Summing up over all iterations, we can argue that
all over-queries of the second for-loop can be simulated by

b log(n/m)
log(k)

c∑
t=0

O
(
mkt+1

n

)
= O

(
m

n
· k

log(n/m)
log(k)

+1
)

= O
(
m

n
· k

log(n)−log(m)+log(k)
log(k)

)
= O

(
m

n
· k

log(n)
log(k)

)
= O(m)

non-over-queries.
Combining this discussion with Theorem 23, we get the following result:

Theorem 26 Algorithm 3 returns a pure Nash equilibrium and can be implemented with

O
(

log(n) · log2(m)
log log(m) +m

)
queries.

The upper bound in Theorem 26 should be contrasted with the lower bound of log(n)+m
(Corollary 18).

5.2 Symmetric Network Congestion Games on Directed Acyclic Graphs

In this section, we consider symmetric network congestion games on directed acyclic graphs.
Throughout this section, we consider the game Γ = (N,V,E, (fe)e∈E , o, d), where (V,E) is
a directed acyclic graph (DAG). We use the ≺ relation to denote a topological ordering over
the vertices in V . We assume that, for every vertex v ∈ V , there exists a path from o to v,
and there exists a path from v to d. If either of these conditions does not hold for some
vertex v, then v cannot appear on an o-d path, and so it is safe to delete v.

We provide an algorithm that discovers a cost function for each edge. One immediate
observation is that we can never hope to find the actual cost functions. Consider the
following one-player congestion game.

o d

b

a

d

c

If we set fa(1) = fb(1) = 1 and fc(1) = fd(1) = 0, then all o-d paths have cost 1. However,
we could also achieve the same property by setting fa(1) = fb(1) = 0 and setting fc(1) =
fd(1) = 1. Thus, it is impossible to learn the actual cost functions using payoff queries.

To deal with this issue, we introduce the notion of an equivalent cost function: two cost
functions are said to be equivalent if they assign the same cost to every strategy profile.
We show that, while it is impossible to find the actual cost function via payoff queries, we
can use payoff queries to find an equivalent cost function.
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Our algorithm proceeds inductively over the number of players in the game. For the
base case, we give an algorithm that finds an equivalent cost function f ′ such that f ′e(1) is
defined for every edge e. This corresponds to learning all the costs in a one-player congestion
game played on Γ. Then, for the inductive step, we show how the costs for an i-player game
can be used to find the costs in an i+ 1 player game. That is, we use the known values of
f ′e(j) for j ≤ i to find the cost of f ′e(i + 1) for every edge e. Therefore, at the end of the
algorithm, we have an equivalent cost function f ′ for an n-player game on Γ, and we can
then apply a standard congestion game algorithm (Fabrikant et al., 2004) in order to solve
our game.

Unlike our work on parallel links, in this section we will not use over-queries at all. In
each inductive step, when we are considering an i-player congestion game, we will make
queries that use exactly i players. Thus, in the first n− 1 rounds we will use under-queries,
and in the final round we will use normal-queries. For the sake of brevity, in this section
we will use the word “query” to refer to both normal and under-queries.

As a shorthand for defining queries, we use notation of the form s ← (1 7→ p, 3 7→ q).
This example defines s to be a four-player query that assigns 1 player to p and 3 players
to q, where p and q are paths from the origin to the destination in a symmetric network
congestion game. We use Query(s) to denote the outcome of querying s. It returns a
function cs, which gives the cost of each strategy when s is played.

5.2.1 Preprocessing

Our algorithm requires a preprocessing step. We say that edges e and e′ are dependent if
visiting one implies that we must visit the other. More formally, e and e′ are dependent
if, for every o-d path p, we either have e, e′ ∈ p, or we have e, e′ /∈ p. We preprocess the
game to ensure that there are no pairs of dependent edges. To do this, we check every pair
of edges e and e′, and test whether they are dependent. If they are, then we contract e′,
i.e., if e′ = (v, u), then we delete e′, and set v = u. The following lemma shows that this
preprocessing is valid, and therefore, from now on, we can assume that our congestion game
contains no pair of dependent edges.

Lemma 27 There is an algorithm that, given a congestion game Γ, where (V,E) is a DAG,
produces a game Γ′ with no pair of dependent edges, such that every Nash equilibrium of Γ′

can be converted to a Nash equilibrium of Γ. The algorithm and conversion of equilibria
take polynomial time and make zero payoff queries. Moreover, payoff queries to Γ′ can be
trivially simulated with payoff queries to Γ.

Proof Our algorithm will check, for each pair of edges e = (v, u) and e′ = (v′, u′), whether e
and e′ are dependent. This is done in the following way. Note that if v = v′, then e and e′

cannot possibly be dependent. Thus, we can assume without loss of generality that v ≺ v′.
The algorithm performs two checks:

• Delete e and verify that there is no path from o to v′.

• Delete e′ and verify that there is no path from u to d.

The first check ensures that every path that uses e′ must also use e. The second check
ensures that every path that uses e must also use e′. Thus, if both checks are satisfied,
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then e and e′ are dependent. On the other hand, if one of the checks is not satisfied, then
we can construct an o-d path that uses e and not e′, or a path that uses e′ and not e, which
verifies that e and e′ are not dependent.

Whenever the algorithm finds a pair of edges e, e′ ∈ E that are dependent, it contracts e′.
More formally, if e′ = (v, u), then the algorithm constructs a new congestion game Γ′ =
(N,V ′, E′, (f ′e)e∈E′ , o, d) where V ′ = V \ {u}, and E′ contains:

• every edge (w, x) ∈ E with and w 6= u, and

• an edge (v, x) for every edge (u, x) ∈ E.

Note that E′ does not contain e′. Moreover, we define the cost functions f ′ as follows. For
each edge e′′ 6= e, we set f ′e′′(i) = fe′′(i) for all i. For the edge e, we define f ′e(i) = fe(i)+fe′(i)
for all i.

We argue that this operation is correct. Since e and e′ are dependent, we have that, for
every strategy profile s, and for every o-d path p:∑

e′′∈p
f ′e′′(i) =

∑
e′′∈p

fe′′(i).

Therefore, we can easily translate every Nash equilibrium of Γ′ into a Nash equilibrium
for Γ. Moreover, every payoff query for Γ′ can be translated into a payoff query for Γ by
adding the edge e′ where appropriate.

Thus, the algorithm constructs a sequence of games Γ1, Γ2, . . . , where each game Γi+1

is obtained by contracting an edge in Γi. Moreover, the Nash equilibria for Γi+1 can be
translated to Γi, which implies that the algorithm is correct. This algorithm can obviously
be implemented in polynomial time. Moreover, since the algorithm only inspects structural
properties of the graph, it does not make any payoff queries.

5.2.2 Equivalent Cost Functions

As we have mentioned, we cannot hope to find the actual cost function of Γ using payoff
queries. To deal with this, we introduce the following notion of equivalence.

Definition 28 (Equivalence) Two cost functions f and f ′ are equivalent if for every
strategy profile s = (s1, s2, . . . , sn), we have

∑
e∈si fe(ne(s)) =

∑
e∈si f

′
e(ni(s)), for all i.

Clearly, the Nash equilibria of a game cannot change if we replace its cost function f with
an equivalent cost function f ′.

We say that (f ′e)e∈E is a partial cost function if for some e ∈ E and some i ≤ n, f ′e(i)
is undefined. We say that f ′′ is an extension of f ′ if f ′′ is a partial cost function, and if
f ′′e (i) = f ′e(i) for every e ∈ E and i ≤ n for which f ′e(i) is defined. We say that f ′′ is a total
extension of f ′ if f ′′ is an extension of f ′, and if f ′′e (i) is defined for all e ∈ E and all i ≤ n.

Definition 29 (Partial equivalent cost function) Let f be a cost function. We say
that f ′ is a partial equivalent of f if f ′ is a partial cost function, and if there exists a total
extension f ′′ of f ′ such that f ′′ is equivalent to f .
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Our goal is to find a total equivalent cost function by learning the costs one edge at
a time. Thus, our algorithm will begin with a partial cost function f0 such that f0e (i)
is undefined for all e ∈ E and all i ≤ n. Since it is undefined everywhere, it is obvious
that f0 is a partial equivalent of f . At every step of the algorithm, we will take a partial
equivalent cost function f ′ of f , and produce an extension f ′′ of f ′, such that f ′′ is still a
partial equivalent of f . This guarantees that, when the algorithm terminates, the final cost
function is equivalent to f .

5.3 The One-Player Case

For the one player case, our algorithm is relatively straightforward. The algorithm proceeds
iteratively by processing the vertices according to their topological order, starting from the
origin vertex o, and moving towards the destination vertex d. Each time we process a vertex
k, we determine the cost of every incoming edge (u, k). There are two different cases: the
case where k 6= d, and the case where k = d. For the latter case, we will observe that, once
we know the cost of every edge other than the incoming edges to d, we can easily find the
cost of the incoming edges to d.

The former case is slightly more complicated. When we consider a vertex k 6= d, it
turns out that we cannot find the actual costs for the incoming edges at k. Instead, we can
use payoff queries to discover the difference in cost between each pair of incoming edges,
and therefore, we can find the cheapest incoming edge e to k. We proceed by fixing the
cost of e to be 0. Once we have done this, we can then set the cost of each other incoming
edge e′ according to the difference between the cost of e and the cost of e′, which we have
already discovered. We prove that this approach is correct by showing that it yields a
partial equivalent cost function.

We now formally describe our algorithm. The algorithm begins with the partial cost
function f0. The algorithm processes vertices iteratively according to the topological order-
ing ≺. Suppose that we are in iteration a+ 1 of the algorithm, and that we are processing
a vertex k ∈ V . We have a partial equivalent cost function fa such that fae (1) is defined for
every edge e = (v, u) with u ≺ k, for some vertex k. We then produce a partial equivalent
cost function fa+1 such that fa+1

e (1) is defined for every edge e = (v, u) with u � k. We
now consider the two cases.

5.3.1 The k 6= d Case

We use the procedure shown in Algorithm 4 to process k. Lines 1 through 3 simply copy
the old cost function fa into the new cost function fa+1. This ensures that fa+1 is an
extension of fa. The algorithm then picks an arbitrary k-d path p. The loop on lines 5
through 10 compute the function t, which for each incoming edge e = (v, k), gives the cost
t(ep) of allocating one player to ep. Note, in particular, that the value of the expression∑

e′∈p′ f
a
e′(1) is known to the algorithm, because every vertex visited by p′ has already been

processed. The algorithm then selects e′ to be the edge that minimizes t, and sets the cost
of e′ to be 0. Once it has done this, lines 13 through 15 compute the costs of the other
edges relative to e′.

When we set the cost of e′ to be 0, we are making use of equivalence. Suppose that the
actual cost of e′ is ce′ . Setting the cost of e′ to be 0 has the following effects:
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Algorithm 4 ProcessK

Input: A partial equivalent cost function fa, such that fae (1) is defined for all edges (v, u)
with u ≺ k.

Output: A partial equivalent cost function fa+1, such that fa+1
e (1) is defined for all edges

(v, u) with u � k.
1: for all e for which fae (1) is defined do
2: fa+1

e (1)← fae (1)
3: end for
4: p← an arbitrary k-d path
5: for all e = (v, k) ∈ E do
6: p′ ← an arbitrary o-v path
7: s← (1 7→ p′ep)
8: cs ← Query(s)
9: t(ep)← cs(p

′ep)−
∑

e′∈p′ f
a
e′(1)

10: end for
11: e′ ← edge e = (v, k) that minimizes t(ep)
12: fa+1

e′ (1)← 0
13: for all e = (v, k) ∈ E with e 6= e′ do
14: fa+1

e (1)← t(ep)− t(e′p)
15: end for

• Every incoming edge at k has its cost reduced by ce′ .

• Every outgoing edge at k has its cost increased by ce′ .

This maintains equivalence with the original cost function, because for every path p that
passes through k, the total cost of p remains unchanged. The following lemma formalizes
this and proves that fa+1 is indeed a partial equivalent cost function.

Lemma 30 Let k 6= d be a vertex, and let fa be a partial equivalent cost function such that
fae (1) is defined for all edges e = (v, u) with u ≺ k. When given these inputs, Algorithm 4
computes a partial equivalent cost function fa+1 such that fa+1

e (1) is defined for all edges
e = (v, u) with u � k.

Proof It can be verified that the algorithm assigns a cost to fa+1
e (1) for every edge

e = (v, u) with u � k. To complete the proof of the lemma, we must show that fa+1 is a
partial equivalent cost function. Since fa is a partial equivalent cost function, there must
exist a total extension of fa that is equivalent to f . Let f ′ denote such an extension. We
use f ′ to construct f ′′, which is a total extension of fa+1 that is equivalent to f .

Let e = (v, k) be an incoming edge at k. We begin by deriving a formula for t(ep),
which is computed on line 9. Note that, since f ′ is equivalent to f , we have cs(p

′ep) =∑
e′∈p′ep f

′
e′(1). Note also that f ′e′(1) = fae′(1) for every edge e′ ∈ p′. Therefore, we have the
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following:

t(ep) = cs(p
′ep)−

∑
e′∈p′

fae′(1)

=
∑

e′∈p′ep
f ′e′(1)−

∑
e′∈p′

f ′e′(1)

=
∑
e′∈ep

f ′e′(1).

For each edge e = (v, k) with e 6= e′, line 14 sets:

fa+1
e (1) = t(ep)− t(e′p)

=
∑
e′∈ep

f ′e′(1)−
∑
e′∈e′p

f ′e′(1)

= f ′e(1)− f ′e′(1).

Note also that line 12 sets:

fa+1
e′ (1) = 0 = f ′e′(1)− f ′e′(1).

Hence, we can conclude that fa+1
e (1) = f ′e(1)− f ′e′(1) for every incoming edge e = (v, k).

We construct the total cost function f ′′ as follows. For every edge e = (v, u), and every
i ≤ n, we set:

f ′′e (i) =


f ′e(i)− f ′e′(1) if u = k,

f ′e(i) + f ′e′(1) if v = k,

f ′e(i) otherwise.

Since we have shown that fa+1
e (1) = f ′e(1) − f ′e′(1) for every incoming edge e = (v, k), we

have that f ′′e (1) is a total extension of fa+1.
We must now show that f ′′e and f are equivalent. We will do this by showing that f ′′

and f ′ are equivalent. Let s = (s1, s2, . . . , sn) be an arbitrarily chosen strategy profile. If si
does not visit k, then we have:∑

e∈si

f ′′e (ne(s)) =
∑
e∈si

f ′e(ne(s)).

On the other hand, if si does visit k, then it must use exactly one edge (v, u) with u = k,
and exactly one edge (v, u) with v = k. Therefore, we have:∑

e∈si

f ′′e (ne(s)) =
∑
e∈si

f ′e(ne(s))− f ′e′(1) + f ′e′(1)

=
∑
e∈si

f ′e(ne(s)).

Therefore, f ′′ is equivalent to f ′, which also implies that it is equivalent to f . Thus, we
have found a total extension of f i+1 that is equivalent to f , as required.
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5.3.2 The k = d Case

When the algorithm processes d, it will have a partial cost function fa such that fae (1) is
defined for every edge e = (v, u) with u 6= d. The algorithm is required to produce a partial
cost function fa+1 such that fa+1

e (1) is defined for all e ∈ E. We use Algorithm 5 to do
this. Lines 1 through 3 ensure that fa+1 is equivalent to fa. Then, the algorithm loops

Algorithm 5 ProcessD

Input: A partial equivalent cost function fa, such that fae (1) is defined for all edges e =
(v, u) with u ≺ d.

Output: A partial equivalent cost function fa+1, such that fae (1) is defined for all edges
e ∈ E.

1: for all e for which fae (1) is defined do
2: fa+1

e (1)← fae (1)
3: end for
4: for all e = (v, d) ∈ E do
5: p← an arbitrary o-v path
6: s← (1 7→ pe)
7: cs ← Query(s)
8: fa+1

e (1)← cs(pe)−
∑

e′∈p f
a
e′(1)

9: end for

through each incoming edge e = (v, d), and line 8 computes fa+1
e (1). Note, in particular,

that fae′(1) is defined for every edge e′ ∈ p, and thus the computation on line 8 can be
performed. Lemma 31 shows that Algorithm 5 is correct.

Lemma 31 Let k 6= d be a vertex, and let fa be a partial equivalent cost function defined
for all edges (v, u) with u ≺ d. When given these inputs, Algorithm 5 computes a partial
equivalent cost function fa+1.

Proof Since fa is a partial equivalent cost function, there must exist a cost function f ′

that is an extension of fa, where f ′ is equivalent to f . We show that f ′ is also an extension
of fa+1.

Let e = (v, d) be an incoming edge at d. Consider line 8 of the algorithm. Note that,
since f ′ is equivalent to f , we have cs(pe) =

∑
e′∈pe f

′
e′(1). Furthermore, since f ′ is an

extension of fa+1, we have fae′(1) = f ′e′(1) for every e′ ∈ p. Therefore, we have:

fa+1
e (1) = cs(pe)−

∑
e′∈p

fae′(1)

=
∑
e′∈pe

f ′e′(1)−
∑
e′∈p

f ′e′(1)

= f ′e(1).

We also have fa+1
e (1) = f ′e(1) for every edge e = (v, u) with u ≺ d, and we have shown that

fa+1
e (1) = f ′e(1) for every edge e = (v, u) with u = d. Therefore f ′ is an extension of fa+1,

which implies that fa+1 is a partial equivalent cost function.
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The algorithm makes exactly |E| payoff queries in order to find the one-player costs.
When Algorithm 4 processes a vertex k, it makes exactly one query for each incoming edge
(v, k) at k. The same property holds for Algorithm 5. This implies that, in total, the
algorithm makes |E| queries.

5.4 The Many-Player Case

In this section, we will assume that we have a partial equivalent cost function fa such that
fae (j) is defined whenever j ≤ i. We will give an algorithm that goes through a sequence
of iterations and produces a partial cost function fa

′
, such that fa

′
e (j) is defined whenever

j ≤ i+ 1.

The algorithm for the many-player case proceeds in a similar fashion to the algorithm for
the one-player case. The algorithm is still iterative, and it still processes vertices according
to their topological order, starting from the origin o, and moving towards the destination
d. In this algorithm, when we process a vertex k, we will discover, for each incoming edge
e to k, the cost of placing i+ 1 players on e.

However, there is an additional complication. Our technique for discovering the cost of
placing i+ 1 players on the incoming edge at k requires two edge disjoint paths from k to
d, but there is no reason at all to assume that two such paths exist. We say that an edge e
is a bridge between two vertices v and u, if every v-u path contains e. Furthermore, if we
fix a vertex k ∈ V , then we say that an edge e is a k-bridge if e is a bridge between k-d.
The following lemma can be proved using the max-flow min-cut theorem and is a variant
of Menger’s theorem.

Lemma 32 Let v and u be two vertices. There are two edge disjoint paths between v and
u if, and only if, there is no bridge between v and u.

Proof Let (V,E) be a graph, and let v, u ∈ V be two vertices. We construct a network
flow instance where every edge e ∈ E has capacity 1, and we ask for the maximum flow
between v and u. Since each edge has capacity 1, we have that the maximum flow between
v and u is greater than 1 if, and only if, there are two edge-disjoint paths between v and u.
Moreover, by the max-flow min-cut theorem, the maximum flow from v to u is greater than
1 if and only if there is no bridge between v and u.

As a consequence of Lemma 32, we can only process k if there are no k-bridges. To
resolve this, before attempting to process k, we first use a separate algorithm to determine
the cost of placing i + 1 players on each k-bridge. After doing this, we can then find two
k-d paths that are edge disjoint except for k bridges. This, combined with the fact that we
know the cost of placing i+ 1 players on each k-bridge, is sufficient to allow us to process k.

The remainder of this section will proceed as follows. We first describe our algorithm
for finding the costs of the k bridges. After doing so, we then describe our algorithm for
processing k.
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5.4.1 Bridges

Given a vertex k, we show how to determine the cost of the k-bridges. Let b1, b2, . . . ,
bm denote the list of k-bridges sorted according to the topological ordering �. That is, if
b1 = (v1, u1), and b2 = (v2, u2), then we have v1 ≺ v2, and so on. Our algorithm is given a
partial cost function fa, such that fae (j) is defined for all j ≤ i, and returns a cost function
fa+1 that is an extension of fa where, for all `, we have that fa+1

b`
(i+ 1) is defined.

Our algorithm processes the k-bridges in reverse topological order, starting with the
final bridge bm. Suppose that we are processing the bridge bj = (v, u). We will make one
payoff query to find the cost of bj , which is described by the following diagram.

o k v u d
bj

p4

p5

p2 p3

p1

The dashed lines in the diagram represent paths. They must satisfy some special require-
ments, which we now describe. The paths p4 and p5 must be edge disjoint, apart from
k-bridges. The following lemma shows that we can always select two such paths.

Lemma 33 For each k-bridge bj = (v, u), there exists two paths p4 and p5 from u to d such
that p4 ∩ p5 = {bj+1, bj+2, . . . bm}.

Proof Note that for each `, there cannot exist a bridge between b` and b`+1. Therefore,
we can apply Lemma 32 to argue that there must exist two edge-disjoint paths between b`
and b`+1 For the same reason, we can find two edge-disjoint paths between bm and d. To
complete the proof, we simply concatenate these paths.

On the other hand, the paths p1, p2, and p3 must satisfy a different set of constraints,
which are formalized by the following lemma.

Lemma 34 Let bj = (v, u) be a k-bridge, let p2 be an arbitrarily chosen o-k path. There
exists an o-k path p1 and a k-v path p3 such that: p1 and p3 are edge disjoint; and if p1
visits k, then p2 and p1 use different incoming edges for k.

Proof We show how p1 and p3 can be constructed. This splits into two cases, and we
begin by considering the bridges bj with j > 1. Due to our preprocessing from Lemma 27,
bj and bj−1 cannot be dependent. Note that every o-d path that uses bj−1 must also use bj .
Therefore, there must exist an o-d path p that uses bj and not bj−1. We fix p1 to be the
prefix of p up to the point where it visits bj . Let p′3 be an arbitrarily selected path from k
to bj−1. Note that p1 cannot share an edge with p′3, because otherwise p1 would be forced
to visit bj−1.

We now show how p′3 can be extended to reach bj without intersecting p1. Since there
are no bridges between bj−1 and bj , we can apply Lemma 32 to obtain two edge-disjoint
paths q and q′ from bj−1 to bj . If one of these paths does not intersect with p1, then we
are done. Otherwise suppose, without loss of generality, that p1 intersects with q before it
intersects with q′. We create a path p′1 that follows p1 until the first intersection with q, and
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follows q after that. Since q and q′ are disjoint, the paths p′1 and p′3q
′ satisfy the required

conditions.

Now we consider the bridge b1. If k has at least two incoming edges, then we can apply
Lemma 32 to find two edge disjoint paths from k to b1, and we can easily construct p1 and
p3 using these paths. Otherwise, let e be the sole incoming edge at k. Since e and b1 are not
dependent, we can find a path p1 from o to b1 which does not use e, and we can use the same
technique as we did for j > 1 to find a path p3 from k to b1 that does not intersect with p1.

Algorithm 6 FindKBridges(k)

Input: A vertex k, and a partial equivalent cost function fa, such that fae (j) is defined for
every j ≤ i.

Output: A partial equivalent cost function fa+1, such that fa+1 is an extension of fa, and
fa+1
e is defined for every e that is a k bridge.

1: for all e and j for which fae (j) is defined do
2: fa+1

e (j)← fae (j)
3: end for
4: for j = m to 1 do
5: p4, p5 ← paths chosen according to Lemma 33
6: p1, p2, p3 ← paths chosen according to Lemma 34
7: s← (1 7→ p1bjp4, i 7→ p2p3bjp5)
8: cs ← Query(s)
9: fa+1

bj
(i+ 1)← cs(p1bjp4)−

∑
e∈p1 f

a+1
e (ne(s))−

∑
e∈p4 f

a+1
e (ne(s))

10: end for

Algorithm 6 shows how the cost of placing i+ 1 players on each of the k-bridges can be
discovered. Note that on line 9, since s assigns one player to p1, we have ne(s) = 1 for every
e ∈ p1. Therefore, fa+1

e (ne(s)) is known for every edge e ∈ p1. Moreover, for every edge
e ∈ p4, we have that ne(s) = i+ 1 if e is a k-bridge, and we have ne(s) = 1, otherwise. Since
the algorithm processes the k-bridges in reverse order, we have that fa+1

e (ne(s)) is defined
for every edge e ∈ p4. The following lemma shows that line 9 correctly computes the cost
of bj .

Lemma 35 Let k be a vertex, and let fa be a partial equivalent cost function, such that
fae (j) is defined for every j ≤ i. Algorithm 6 computes a partial equivalent cost function
fa+1, such that fa+1 is an extension of fa, and fa+1

e is defined for every e that is a k-bridge.

Proof It can be verified that the algorithm constructs a partial cost function fa+1 that
is an extension of fa, where fa+1

e is defined for every e that is a k-bridge. We must show
that fa+1 is partially equivalent to f . Since fa is partially equivalent to f , there exists
some total cost function f ′ that is an extension of fa, such that f ′ is equivalent to f . We
will show that f ′ is also an extension of fa+1.

We will do so inductively. The inductive hypothesis is that fa+1
e (i + 1) = f ′e(i + 1) for

every e = bl with ` > j. The base case, where j = m, is trivial, because there are no
k-bridges bl with ` > m. Now suppose that we have shown the inductive hypothesis for
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some j. We show that fa+1
bj

(i + 1) = f ′bj (i + 1). Let s be the strategy queried when the
algorithm considers bj .

Consider an edge e ∈ p1. By Lemma 34, we have that ne(s) = 1. By assumption, we
have that fa+1

e (1) = fae (1) for every edge e, and therefore fa+1
e (ne(s)) = f ′e(ne(s)) for every

edge e ∈ p1.
Now consider an edge e ∈ p4. By Lemma 33, we have that ne(s) = 1 whenever e is not

a k-bridge, and we have ne(s) = i+ 1 whenever e is a k-bridge. Therefore, by the inductive
hypothesis, we have that fa+1

e (ne(s)) = f ′e(ne(s)) for every e ∈ p4.
Since f ′ is equivalent to f , we have that cs(p1blp3) =

∑
e∈p1blp3 f

′
e. Therefore, line 9 sets:

fa+1
bj

(i+ 1) = cs(p1bjp4)−
∑
e∈p1

fa+1
e (ne(s))−

∑
e∈p4

fa+1
e (ne(s))

=
∑

e∈p1bjp4

f ′e(ne(s))−
∑
e∈p1

f ′e(ne(s))−
∑
e∈p4

f ′e(ne(s))

= f ′bj (ne(s)) = f ′bj (i+ 1).

Thus, the algorithm correctly sets fa+1
bj

(i+ 1) = f ′bj (i+ 1).

5.4.2 Incoming Edges of k

We now describe the second part of the many-player case. After finding the cost of each
k-bridge, we find the cost of each incoming edge at k. The following diagram describes how
we find the cost of e = (v, k), an incoming edge at k .

o v k d
ep

p1

p2

The path p is an arbitrarily chosen path from o to v. The paths p1 and p2 are chosen
according to the following lemma.

Lemma 36 There exist two k-d paths p1, p2 such that every edge in p1 ∩ p2 is a k-bridge.

Proof Let b1 be the first k-bridge. By Lemma 32 there exists edge disjoint paths from k
to b1. The proof can then be completed by applying Lemma 33.

Algorithm 7 shows how we find the cost of putting i + 1 players on each edge e that
is incoming at k. Apart from the consideration of k-bridges, this algorithm uses the same
technique as Algorithm 4. Consider line 9. Note that every vertex in p is processed before
k is processed, and therefore fa+1

e′ (i+1) is known for every e′ ∈ p. Moreover, for every edge
e′ ∈ p1, we have that ne′(s) = i + 1 if e′ is a k-bridge, and we have ne′(s) = 1 otherwise.
In either case, the fa+1

e′ (ne′(s)) is known for every edge e′ ∈ p1. The following lemma show
that line 9 correctly computes fa+1

e (i+ 1).
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Algorithm 7 MultiProcessK

Input: A vertex k, and a partial equivalent cost function fa, such that fae (j) is defined for
all e ∈ E when j ≤ i, all e = (v, u) with u ≺ k when j = i+ 1, and all k-bridges when
j = i+ 1.

Output: A partial equivalent cost function fa, such that fae (j) is defined for all e ∈ E
when j ≤ i, and for all e = (v, u) with u � k when j = i+ 1.

1: for all e and j for which fae (j) is defined do
2: fa+1

e (j)← fae (j)
3: end for
4: for all e = (v, k) ∈ E do
5: p← an arbitrary o-v path
6: p1, p2 paths chosen according to Lemma 36
7: s← (1 7→ pep1, i 7→ pep2)
8: cs ← Query(s)
9: fa+1

e (i+ 1)← cs(pep1)−
∑

e′∈p f
a+1
e′ (i+ 1)−

∑
e′∈p1 f

a+1
e′ (ne′(s)).

10: end for

Lemma 37 Let k be a vertex, and let fa be a partial equivalent cost function, such that
fae (j) is defined for all e ∈ E when j ≤ i, all e = (v, u) with u ≺ k when j = i + 1, and
all k-bridges when j = i+ 1. Algorithm 7 produces a partial equivalent cost function fa+1,
such that fa+1

e (j) is defined for all e ∈ E when j ≤ i, and for all e = (v, u) with u � k when
j = i+ 1.

Proof It can be verified that the algorithm constructs a partial cost function fa+1 that
is defined for the correct parameters. We must show that fa+1 is partially equivalent to f .
Note that fa+1 is an extension of fa. Since fa is partially equivalent to f , there exists some
total cost function f ′ that is an extension of fa, such that f ′ is equivalent to f . We will
show that f ′ is also an extension of fa+1.

Let e = (v, k) be an incoming edge at k. We will show that fa+1
e (i + 1) = f ′e(i + 1).

Let s be the strategy that the algorithm queries while processing e. Since f ′ is equivalent
to f , we have that cs(pep1) =

∑
e′∈pep1 f

′
e′(ne′(s)). For every edge e′ ∈ p1, we have ne′(s) =

i + 1. Since every vertex w visited by p satisfies w ≺ k, for every e′ ∈ p1 we must have
fa+1
e′ (ne′(s)) = fae′(ne′(s)) = f ′e′(ne′(s)). For every edge e′ ∈ p1, we have ne′(s) = 1 if e′ is

not a k-bridge, and we have ne′(s) = i + 1 if e′ is a k-bridge. In either case, we have that
fa+1
e′ (ne′(s)) = fae′(ne′(s)) = f ′e′(ne′(s)) for every edge e′ ∈ p1. Therefore, line 9 sets:

fa+1
e (i+ 1) = cs(pep1)−

∑
e′∈p

fa+1
e′ (ne′(s))−

∑
e′∈p1

fa+1
e′ (ne′(s))

=
∑
e∈pep1

f ′e′(ne′(s))−
∑
e′∈p

f ′e′(ne′(s))−
∑
e′∈p1

f ′e′(ne′(s))

= f ′e(ne(s)) = f ′e(i+ 1).

Therefore, for each incoming edge e = (v, k), we have that fa+1
e (i+ 1) = f ′e(i+ 1). Hence,

f ′ is an extension of fa+1, which implies that fa+1 is partially equivalent to f .
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5.4.3 Query Complexity

We argue that the algorithm can be implemented so that the costs for (i + 1) players can
be discovered using at most |E| many payoff queries. Every time Algorithm 6 discovers
the cost of placing i + 1 players on a k-bridge, it makes exactly one payoff query. Every
time Algorithm 7 discovers the cost of an incoming edge (v, k), it makes exactly one payoff
query. The key observation is that the costs discovered by Algorithm 6 do not need to be
rediscovered by Algorithm 7. That is, we can modify Algorithm 7 so that it ignores every
incoming edge (v, k) that has already been processed by Algorithm 6. This modification
ensures that the algorithm uses precisely |E| payoff queries to discover the edge costs for
i+ 1 players. This gives us the following theorem.

Theorem 38 Let Γ be a symmetric network congestion game with n-players played on a
DAG with |E| edges. The payoff query complexity of finding a Nash equilibrium in Γ is at
most n · |E|.

6. Conclusions and Further Work

We first consider open questions in the setting of payoff queries, which has been the main
setting for the results in this paper. We then consider alternative query models.

6.0.1 Open Questions Concerning Payoff Queries

In the context of strategic-form games, there are a number of open problems. In Theorem 13,
we show a super-linear lower bound on the payoff query complexity when ε is allowed to
depend on k. Can we prove a super-linear lower bound for a constant ε? Is there a
deterministic algorithm that can find an ε-Nash equilibrium with ε < 1

2 without querying
the entire payoff matrices? Fearnley and Savani (2014) achieve ε < 1

2 with the use of
randomization, but doing so with a deterministic algorithm appears to be challenging.
Finally, when 2 ≤ i ≤ k − 1, we have shown that the payoff query complexity of finding a
(1 − 1

i )-Nash equilibrium lies somewhere in the range [k − i + 1, 2k − i + 1]. Determining
the precise payoff query complexity for this case is an open problem.

For congestion games, our lower bound of log n+m arises from a game with two parallel

links and a one-player game with m links. The upper bound of O
(

log(n) · log2(m)
log log(m) +m

)
is a poly-logarithmic factor off from this lower bound, with the factor depending on m. Can
this factor be improved? It seems unlikely that the dependence of this factor on m can be
completely removed, in which case, in order to provide tight bounds, a single lower bound
construction that depends simultaneously on n and m would be necessary.

For symmetric network congestion games on DAGs it is unclear whether the payoff
query complexity is sub-linear in n. Non-trivial lower and upper bounds for more general
settings, such as asymmetric network congestion games (DAG or not) or general (non-
network) congestion games would also be interesting.

6.0.2 Other Query Models

We have defined a payoff query as given by a pure (not mixed) profile s, since that is
of main relevance to empirical game-theoretic modelling. Furthermore, if s was a mixed
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profile, it could be simulated by sampling a number of pure profiles from s and making
the corresponding sequence of pure payoff queries. An alternative definition might require
a payoff query to just report a single specified player’s payoff, but that would change the
query complexity by a factor at most n.

Our main results have related to exact payoff queries, though other query models are
interesting too. A very natural type of query is a best-response query, where a strategy s
is chosen, and the algorithm is told the players’ best responses to s. In general s may have
to be a mixed strategy; it is not hard to check that pure-strategy best response queries
are insufficient; even for a two-player two-action game, knowledge of the best responses to
pure profiles is not sufficient to identify an ε-Nash equilibrium for ε < 1

2 . Fictitious Play
(Fudenberg and Levine 1998, Chapter 2) can be regarded as a query protocol that uses
best-response queries (to mixed strategies) to find a Nash equilibrium in zero-sum games,
and essentially a 1/2-Nash equilibrium in general-sum games (Goldberg et al., 2013). We
can always synthesize a pure best-response query with n(k − 1) payoff queries. Hence, for
questions of polynomial query complexity, payoff queries are at least as powerful as best-
response queries. Are there games where best-response queries are much more useful than
payoff queries? If k is large then it is expensive to synthesize best-response queries with
payoff queries. The DMP-algorithm (Daskalakis et al., 2009b) finds a 1

2 -Nash equilibrium
via only two best-response queries, whereas Theorem 5 notes that O(k) payoff queries are
needed.

A noisy payoff query outputs an observation of a random variable taking values in
[0, 1] whose expected value is the true payoff. Alternative versions might assume that the
observed payoff is within some distance ε from the true payoff. Noisy query models might
be more realistic, and they are suggested by by the experimental papers on querying games.
However in a theoretical context, one could obtain good approximations of the expected
payoffs for a profile s, by repeated sampling. It would interesting to understand the power
of different query models.
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