Algorithmica (2016) 76:297-319 @ CrossMark
DOI 10.1007/s00453-015-0029-3

Approximate Well-supported Nash Equilibria Below
Two-thirds

John Fearnley! - Paul W. Goldberg? -

Rahul Savani!® - Troels Bjerre Sgrensen’

Received: 2 December 2014 / Accepted: 2 July 2015 / Published online: 28 July 2015
© Springer Science+Business Media New York 2015

Abstract Inane-Nashequilibrium, a player can gain at most € by changing his behav-
iour. Recent work has addressed the question of how best to compute e-Nash equilibria,
and for what values of € a polynomial-time algorithm exists. An e-well-supported Nash
equilibrium (e-WSNE) has the additional requirement that any strategy that is used
with non-zero probability by a player must have payoff at most € less than a best
response. A recent algorithm of Kontogiannis and Spirakis shows how to compute a
2/3-WSNE in polynomial time, for bimatrix games. Here we introduce a new technique
that leads to an improvement to the worst-case approximation guarantee.

Keywords Bimatrix games - Nash equilibria - Well-supported approximate
equilibria

1 Introduction

In a bimatrix game, a Nash equilibrium is a pair of strategies in which the two players
only assign probability to best response strategies. The apparent hardness of computing
an exact Nash equilibrium [3,5] has led to work on computing approximate Nash
equilibria, and two notions of approximate Nash equilibria have been developed. The

This work was supported by EPSRC grants EP/H046623/1, EP/G069239/1, EP/G069034/1, and
EP/LO11018/1.

B Rahul Savani
rahul.savani @liverpool.ac.uk

Department of Computer Science, University of Liverpool, Liverpool, UK
2 University of Oxford, Wolfson Building, Parks Road, Oxford, UK
ITU Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen, Denmark

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-015-0029-3&domain=pdf
http://orcid.org/0000-0003-1262-7831

298 Algorithmica (2016) 76:297-319

first, and more widely studied, notion is of an e-approximate Nash equilibrium (e-
Nash), where each player is required to achieve an expected payoff that is within
of a best response. A line of work [2,6,7] has investigated the value of € that can be
guaranteed in polynomial time. The current best result in this setting is a polynomial
time algorithm that always finds a 0.3393-Nash equilibrium [13].

However, e-Nash equilibria have a drawback: since they only require that the
expected payoff is within € of a pure best response, it is possible that a player could
be required to place probability on a strategy that is arbitrarily far from being a best
response. This issue is addressed by the second notion of an approximate Nash equi-
librium. An e-well supported approximate Nash equilibrium (e-WSNE), requires that
both players only place probability on strategies that have payoff within € of a pure
best response. This is a stronger notion of equilibrium, because every e-WSNE is an
€-Nash, but the converse is not true.

In contrast to e-Nash, there has been relatively little work e-WSNE. The first
result on the subject gave a % additive approximation [7], but this only holds if a
certain a graph-theoretic conjecture is true. The best-known polynomial-time additive
approximation algorithm was given by Kontogiannis and Spirakis, and achieves a 2-
approximation [11]. We will call this algorithm the KS algorithm. In [10], which is an
earlier conference version of [11], the authors presented an algorithm that they claimed
was polynomial-time and achieves a p-WSNE, where ¢ = @ —1 2~ 0.6583, but this
was later withdrawn, and instead the polynomial-time %-approximation algorithm was
presented in [11]. Recently, it has been shown that for every § > 0, a (% + 8)—WSNE
can be found in polynomial times for symmetric bimatrix games [4]. It has also been
shown that there is a PTAS for e-WSNE if and only if there is a PTAS for e-Nash [3,
Lemma 3.2].

1.1 Our Contribution

In this paper, we develop analgorithm for finding an e-WSNE with € < % Our
approach to modifying the KS algorithm for finding a %-WSNE, by adding two addi-
tional procedures: we perform a brute-force search that finds the best WSNE with a
2 x 2 support, and we attempt to improve the e-WSNE returned by the KS algorithm by
shifting the probabilities of the two players. We show that one of these two approaches
will always find an e-WSNE with € = % — 0.005913759. Our results are particularly
interesting when compared to a recent support size lower bound of Anbalagan, Norin,
Savani, and Vetta, who showed that there exist games in which all e-WSNE with e < %
have super-constant sized supports [1].

A preliminary version of this paper was published in the proceedings of SAGT
2012 [8]. In that version of the paper, we gave a polynomial time algorithm for finding
an e-WSNE with € = % — 0.004735. It turns out that one of the inequalities used to

show this result! was not as strong as it could have been, and correcting this led to

! The inequality in question appeared in Proposition 16 of the preliminary version, and is now part of
Proposition 12.

@ Springer

Algorithmica (2016) 76:297-319 299

the improved bound in this version of the paper. We have also greatly simplified the
computer-assisted proof that is used at the end of the paper. The preliminary version
of the paper used a rather opaque method involving sensitivity analysis of a linear
program. We have reformulated the LP so that the relevant values can be read directly
from the solution of the LP. The algorithm has since been implemented as part of an
experimental study [9].

The paper will proceed as follows. In Sect. 2 we give the basic definitions that will
be needed in this paper. In Sect. 3 we give a high level overview of our algorithms,
along with the intuition behind our two modifications. In Sect. 4, we formally define
our algorithm and state our main theorem. In Sect. 5 we give a high level overview of
the proof, before then proceeding with the proof in Sects. 6 through 9.

2 Definitions

A bimatrix game is a pair (R, C) of two n x n matrices: R gives payoffs for the row
player, and C gives payoffs for the column player. We assume that all payoffs are
in the range [0, 1]. We use [r] = {1, 2, ...n} to denote the pure strategies for each
player. To play the game, both players simultaneously select a pure strategy: the row
player selects arow i € [n], and the column player selects a column j € [n]. The row
player then receives R; ;, and the column player receives C; ;.

A mixed strategy is a probability distribution over [n]. We denote a mixed strategy
as a vector x of length n, such that x; is the probability that the pure strategy i is played.
The support of mixed strategy x, denoted Supp(x), is the set of pure strategies i with
x; > 0. If x and y are mixed strategies for the row and column player, respectively,
then we call (x, y) a mixed strategy profile.

Let y be a mixed strategy for the column player. The best responses against y for
the row player is the set of pure strategies that maximize the payoff against y. More
formally, a pure strategy i € [n] is a best response against y if, for all pure strategies
i" € [n] wehave: 3", ¥j - Ri,j = 2 ;e - Riv.j. Column player best responses
are defined analogously. A mixed strategy profile (x, y) is a mixed Nash equilibrium if
every pure strategy in Supp(x) is a best response against y, and every pure strategy in
Supp(y) is a best response against x. Nash [12] showed that all bimatrix games have
a mixed Nash equilibrium.

An approximate well-supported Nash equilibrium weakens the requirements of a
mixed Nash equilibrium. For a mixed strategy y of the column player, a pure strategy
i € [n] is an e-best response for the row player if, for all pure strategies i’ € [n]
we have: 37, ¥ - Rij = 2 ¥j - Rir,j — €. We define e-best responses for
the column player analogously. A mixed strategy profile (X, y) is an e-well-supported
Nash equilibrium (e-WSNE) if every pure strategy in Supp(X) is an e-best response
against y, and every pure strategy in Supp(y) is an e-best response against X.

3 Outline

Before we give a technical presentation of our algorithm, we begin by giving the
high level ideas behind our techniques. Our approach builds upon the algorithm of

@ Springer

300 Algorithmica (2016) 76:297-319

11 11
l r 4 r
I I
1 1 1
! 5 3 3
T T
1 1 1
3 1 -3 3
0 0 0 0
B B
0 0 0 0

(@) (b)

Fig. 1 The left figure shows a worst case example for the KS algorithm. The right figure shows the
corresponding zero-sum game (D, — D)

Kontogiannis and Spirakis for finding a %—WSNE, so let us begin by describing their
algorithm. Given a bimatrix game (R, C), the KS algorithm performs two steps:

1. Check if there is a pure strategy profile under which both players get payoff at
least % If so, that pure strategy profile is a %—WSNE.

2. Construct the zero-sum game (D, —D) where D = %(R —C),and let (x,y) bea
Nash-equilibrium of (D, — D).

Kontogiannis and Spirakis showed that if step 1 failed to find a pure %—WSNE of
(R, C), then (x,y) is a %-WSNE of (R, C). Our goal is to show that the WSNEs
found by the KS algorithm can be improved: either by shifting probabilities, or by
finding a matching pennies sub-game. We now show the motivation behind these two
procedures.

3.1 Shifting Probabilities

Figure 1a shows an example for which the KS algorithm actually produces a %-WSNE.
For simplicity of exposition, we have ignored the first part of the algorithm here: note
that in (7, £) and (T, r) both players have payoff greater than or equal to % If we
replace both % payoffs with % — &, for some arbitrarily small § > 0, then this issue is
avoided, and the properties of the example do not significantly change.

Figure 1b shows the corresponding zero-sum game. Let (X, y) be a strategy profile
in which the row player plays B, and the column player mixes equally between ¢
and r. Observe that (X, y) is a Nash equilibrium of the zero-sum game, and that it is
%-WSNE of (R, C), and no better. Therefore, this example is a worst-case example
for the KS-algorithm.

Our observation is that (X, y) can be improved by shifting probabilities. We can
improve things for the row player by transferring some of the column player’s probabil-
ity from r to £. This reduces the payoff of 7" while leaving the payoff of B unchanged.
Thus, B becomes an e-best response for € < % and we obtain a better WSNE.

@ Springer

Algorithmica (2016) 76:297-319 301

11 11
V4 r V4 r
I I
1 1 1
1 3 3 -3
T T
1 1 1
3 1 -3 3
1 1 1
3 1 3 3
M M
1 1 1
1 3 3 —3
0 0 0 0
B B
0 0 0 0
(a) (b)

Fig. 2 The left figure shows an example for which the approach of shifting probabilities fails. The right
figure shows the corresponding zero-sum game

3.2 Matching Pennies

Figure 2 shows a game in which the approach of shifting probabilities does not work.
To see this, observe that the strategy profile (x, y) where the row player plays B, and
the column player mixes uniformly over £ and r is a Nash equilibrium of the game
shown in Fig. 2b. When (x, y) is played in the original game in Fig. 2a, this gives a
%—WSNE and no better. However, in this case, the column player cannot make the row
player happier by shifting probabilities: if probability is shifted to £, then the payoff
of strategy T will increase, and if probability is shifted to r then the payoff of strategy
M will increase.

In this case, we use a different approach. We observe that the 2 x 2 subgame
induced by ¢, r, T, and M, is similar to a matching pennies game. If the row player
mixes uniformly over M and T, while the column player mixes uniformly of £ and r,
then both players will obtain payoff at least 0.5, which yields a 0.5-WSNE.

3.3 Our Approach

We will show that one of these two techniques can always be applied. Our algorithm
will first perform a brute force search over all 2 x 2 sub-games in order to determine
whether there is a matching pennies sub game. If such a game is not found, then we run
the KS algorithm and attempt to shift probabilities in the resulting strategy profile. Ulti-
mately, we show that this algorithm always produces a (% — 0.005913759) -WSNE.

4 Our Algorithm
In this section we formally describe our algorithm for finding a WSNE. We begin by

describing a method for finding the best WSNE on a given pair of supports, and then
move on to describe the three procedures that make up our algorithm.

@ Springer

302 Algorithmica (2016) 76:297-319

4.1 The Best WSNE on a Pair of Supports

Let S, and S, be supports for the column and row player, respectively. We first define
an LP, which assumes that the row player uses a strategy with support S,, and then
finds a strategy on S, that minimizes the difference between the row player’s best
response payoff, and the payoff of the strategies in ;.

Definition 1 For each S,, S C [n], we define BestR(S,, S¢) to be the following
linear program with variables ¢ € Randy € R":

Minimize: €

Subject to: Ri-y— R -y<e i€, i'eln]
y;j =0 J & Se (D
y; >0 J €ln]
Zje[n] Yji = 1

Similarly, the following LP assumes that the column player uses a strategy with support
S¢, and finds a strategy on S, that minimizes the difference between the column player’s
best response payoff, and the payoff of the strategies in S,.

Definition 2 For each S, S. C [n], we define BestC(S,, S¢) to be the following
linear program with variables € € R and x € R”":

Minimize: €

Subject to: c} x—C]-x<e jeS., j el
x; =0 i¢s, (2)
x; >0 i €[n]
2jemXi =1

We now prove that these two LPs give a WSNE that is at least as good as the best
WSNE on the supports S, and S.. Let (y*, €y) be a solution of BestR(S;, S.), let
(x*, ex) be a solution of BestC(S;, Sc), and let €* to be max(ex, €y).

Proposition 3 We have:

1. (x*,y") is an €*-WSNE.
2. For every e-WSNE (x, y) with Supp(x) = S, and Supp(y) = S., we have €* < €.

Proof The first claim is straightforward, because Constraint 1 ensures that every
strategy i € Supp(x*) C S, is an ey-best response against y*, and every strategy
J € Supp(y*) € S. is an ex-best response against x*. Therefore (x*,y*) is a €*-
WSNE.

For the second claim, let (x,y) be an e-WSNE on the supports S, and S.. Since
every row i € Supp(x) = S, is an e-best response against y, we must have that y and
€ are feasible in Best R(S,, S.). For the same reason, we have that x and € are feasible
in BestC(S,, S.). Therefore, we must have €* < €. O

Proposition 3 implies that (x*, y*) is at least as good as the best WSNE on the
supports S, and S.. Note that it is possible that (x*, y*) may actually be better than

@ Springer

Algorithmica (2016) 76:297-319 303

any WSNE on these supports, because the LPs do not require that x* places probability
on all strategies in S, or that y* places probability on all strategies in S,.

4.2 Our Algorithm

We now describe our algorithm for finding a WSNE in a bimatrix game. Our algorithm
for finding a WSNE consists of three distinct procedures.

— Procedure 1: find the best pure WSNE The KS algorithm requires a preprocessing
step that eliminates all games that have a pure %-WSNE, and this is a generalisation
of that step. Suppose that the row player plays row 7, and that the column player
plays column j. Let: €, = max;(Ry ;) — R; j, and €, = max;/(C; ;1) — C; ;.
Thus i is an €,-best response against j, and that j is an €.-best response against
i. Therefore, (i, j) is a max(e,, €.)-WSNE. We can find the best pure WSNE by
checking all O (n?) possible pairs of pure strategies. Let € p be the best approxi-
mation guarantee that is found by this procedure.

— Procedure 2: find the best WSNE with 2 x 2 support We can use the linear programs
from Definitions 1 and 2 to implement this procedure. For each of the on"
possible 2 x 2 supports, we solve the LPs to find a WSNE. Proposition 3 implies
that this WSNE is at least as good as the best WSNE on those supports. Let €, be
the best approximation guarantee that is found by this procedure.

— Procedure 3: find an improvement over the KS algorithm The KS algorithm finds an
exact Nash equilibrium (X, y) of the zero-sum game (D, — D), where D = %(R —
C). To find an improvement over the KS algorithm we use the linear programs
from Definitions 1 and 2 with parameters S, = Supp(x) and S, = Supp(y). Let
(x*, y*) be the mixed strategy profile returned by the LPs, and let ¢; be the smallest
value such that (x*, y*) is a ¢;-WSNE.

Note that one could replace Procedures 1 and 2 with a single procedure that searches
for the best WSNE on supports of size up to 2. However, since Procedures 1 and 2
play different roles in our proof, we have chosen to keep them separate here.

After executing these three procedures, we take the smallest of €, €,,, and €;, and
return the corresponding WSNE. Since all three procedures can be implemented in
polynomial time, this is a polynomial time algorithm. The rest of this paper is dedicated
to proving the following theorem.

Theorem 4 Our algorithm finds a (% — 0.005913759)-WSNE.

5 Proof Outline

In order for our proof to be as informative as possible, we will parameterize it using a
constant z > 0. We will show the conditions under which our algorithm can produce a
(% - Z) -WSNE. At the end of the proof we will show that these conditions are satisfied
for z = 0.005913759, which provides a proof of Theorem 4.

Our approach is to assume that Procedures 1 and 2 did not produce a (% - Z)-
WSNE, and then to use that assumption to determine the conditions under which

Procedure 3 does find a (% - z)-WSNE. This comprises of the following steps.

@ Springer

304 Algorithmica (2016) 76:297-319

— Reanalyze the KS algorithm The original analysis for the KS algorithm assumed
that the game does not have a pure %-WSNE. However, in our analysis, we have
assumed only that Procedure 1 did not find a pure (% - z)-WSNE, so the original
KS analysis is no longer valid. In Sect. 6 we show that, assuming there is no pure
(% — z)—WSNE, the KS algorithm will produce a strategy profile (x, y) where all

strategies have payoff at most % + 2z, and therefore (x,y) is a (% + Zz)-WSNE.

— Study the bad strategies Our goal is to show that (X, y) can be improved from a
(% +2z)-WSNEtoa (% — z)-WSNE. To achieve this, we show how to reduce the
payoffs of all strategies from % +2zto % — z. While describing our approach, we
will focus on the row player, but all of our techniques will actually be applied to
both players. We define a bad row to be a row that has payoff strictly more than
% — z. In Sect. 7 we study the properties of bad rows, and we prove that all bad
rows are similar in structure to the games shown in Figs. 1 and 2. That is, most of
the columns in a bad row are either big (ie. close to 1,) or small (ie. close to %.) We
prove lower bounds on the amount of probability that the column player’s strategy
assigns to big and small payoffs. We then define a new strategy for the column
player y™P, that finds the worst bad row 7 (ie. the row with the largest payoff,) and
shifts all probability from the big columns in 7 to the small columns in 7.

— Apply the matching pennies argument In Sect. 8 we use the fact that Procedure
2 did not find an e-WSNE on a 2 x 2 support with € < % — z. Intuitively, this
corresponds to ruling out cases like the one shown in Fig. 2. We prove that, if
Procedure 2 failed to find a (% — z)-WSNE, then the bad rows cannot be arranged
like they are in Fig. 2. This gives a formal condition on how the probability of y
can be distributed over the columns of the bad rows, which will be used later in
the proof.

— Find an improved strategy Since the strategy shifts all probability from big payoffs
in row 7 to small payoffs in row 7, by definition, we must have that the payoff of
i against y'™P is small. However, the payoff of other rows may increase as we
move from y and y'™P. We must find a trade-off between the bad rows decreasing
in payoff, and other rows increasing in payoff, so we define a strategy y(t) =
(1—1)-y+1-y™, which mixes between y and y™P. We show that there exists a
¢ such that all rows i have payoff less than or equal to % — z against y(¢). In Sect. 9
we develop a computer-assisted proof for this task. For each z and # we formulate
a linear program that gives the largest possible payoff of a row against y(¢), and
then we perform a grid search over z and ¢ in order to find a strategy y(¢) against
which all rows have payoff at most % — z. Ultimately, we find that this occurs for
z = 0.005913759, which proves Theorem 4.

Before we continue with the proof, we justify why it is possible to treat the two
players independently in our analysis. In our proof, we will start with a strategy profile
(X,y). Atahighlevel, the idea is to rearrange the probabilities in X to create X’ such that
the column player is happier when he plays y against x’. Simultaneously, we rearrange
the probabilities in y to create y’ such that the row player is happier when he plays x
against y'. We then claim that both players are happier in the profile (x',y’). To see
why, observe that an approximate well supported Nash equilibrium is defined entirely
by the supports that the strategies use. Since we only rearrange probabilities, ie. we

@ Springer

Algorithmica (2016) 76:297-319 305

have Supp(x’) C Supp(x) and Supp(y’) C Supp(y), it is sufficient to consider only x’
played against y and y’ played against x in order to prove properties of (x',y’).

6 Reanalyzing the KS Algorithm

In this section we analyse the KS algorithm under the assumption that Procedure 1
did not find a (— - z) -WSNE. Note that if there is a pure strategy profile (i, j), such
that R; ; >3 L 4 zand Cij=3 Ly z, then (7, j) is a (— — z) -WSNE. Therefore, our
assumption allows us to conclude that for all i and j we have:

4
05R,~),~+Ci,j§§+z. 3)

This inequality replaces the inequality 0 < R; ; + C; j < %, which was used in the
original analysis.

From now on, our analysis will be stated for the row player, with the understanding
that all of our proofs can be apply symmetrically to the column player. Our goal is to
show that all “worst-case” examples for the KS algorithm are similar to Figs. 1 and 2.
More precisely, if (X, y) is the strategy profile returned by the KS algorithm, then we
are interested in the following properties of Figs. 1 and 2:

— There exists a row i € Supp(x) such that R; y =0and C; -y =
— Everyrow i with R; -y = % alsohas C; -y =

We will show that our “worst-case” examples have similar properties.

We begin with the first property. Here we show that, if (x,y) is not a (% - Z)-
WSNE, then there exists a row in the row player’s support where both players have
payoff close to 0.

Proposition 5 If (x,y) is a solution of (D, —D) such that there is an i € Supp(X)
where i is not a (% - Z)-best response against'y in (R, C), then there is a row i €
Supp(X) such that both of the following hold:

Ri-y<3z, Ci-y<3z

Proof We begin by noting that, since D = %(R —-0),if X = ——(R + C), then we
have two equalities:

R=D-X, C=-D-X.

Since x is a min-max strategy in (D, — D), if i is a row in Supp(x), then for all rows
i’ we have:

D;-y>Dy-y,
(R+X)i-y=(R+X)ir-y,
Ri-y=Ry-y—(Xi—Xi)-y.

@ Springer

306 Algorithmica (2016) 76:297-319

Leti € Supp(x) be arow that is not a (% - z)-best response against y, which exists
by assumption, and let i’ be a best-response against y. We have:

2
Ri/-y—(g—z) > R;-y,

>Ry-y—(Xi—Xi)-y.

X, — X; 2
(X; — ,/)-y>(§—z).

Note that, by Eq. (3), all entries of X must lie in the range [—% — %z, 0]. In particular,

this implies that:
2 1 2
-3 Hi=Xyy<Xi-y—-\73-27]-

Hence, we have:

3 2 3

This implies that —%z < X; -y < 0. Now, using the definition of X we obtain:

! (R+0O))
—_— P > ——
2 1 y 2Za
which is equivalent to:
(R+C);-y <3z

Since both R and C are non-negative, we have completed the proof. O

We now consider the second property. Here we show that, if (x, y) is not a (% - z)-

WSNE, then every row has payoff at most % + 2z, and that for all rows i we have that
R; -y — C; -yis small

Proposition 6 If (x,y) is a solution of (D, —D) such that there is an i € Supp(X)
where i is not a (% -)-best response againsty in (R, C), then for all rows i’ both of
the following hold:

2
Ri'~y§§+2z, Ryy-y—Cy-y <3z

Proof Let i be the row in Supp(x) whose existence is implied by Proposition 5. This
proposition, along with the fact that all entries in R and C are non-negative, implies
that:

O0<Rj-y<3z, 0<C;j-y<3z

By definition we have D = %(R — (), and therefore, we have:

3 3
—§Z<Di‘y<§Z.

@ Springer

Algorithmica (2016) 76:297-319 307

Now, since x is a min-max strategy for the zero-sum game (D, — D), we must have,
for all rows i’:

3
Di"YSDi'y<§Z.

Thus, we have:
1 3
E(Ri’ —Cin) y< 5%

Rearranging this yields one of our two conclusions:
Ry -y <Cy-y+3z. 4

We can obtain the other conclusion by rearranging Eq. (3), to argue that for all rows
i and all columns j we have:

4
Cij<z+z—Ri;.
3
Then, Eq. (4) implies that:
4
Ry -y < Ci"y+3Z§ §+4Z_Ri"y-

This implies that 2 - Ry -y < %‘ + 4z, and so we have R,/ -y < % + 2z. O

Proposition 6 shows that R;s -y < % + 2z holds for all rows i’. Using the same
argument symmetrically, we can also show that Cj/ - x < % + 2z for all columns j'.
Thus, we have shown that if there is no pure (3 — z)-WSNE, then the KS algorithm

will produce a mixed strategy pair (x, y) thatis a (% + 21) -WSNE.

The main goal of our proof is to show that the probabilities in x and y can be
rearranged to construct a (% — z)—WSNE. From this point onwards, we only focus
on improving the strategy y, with the understanding that all of our techniques can be
applied in the same way to improve the strategy x. For the rest of the paper, we will
fix (x, y) to be the strategy profile produced by the KS algorithm, and we will assume

that it is not a (% —2)-WSNE.

7 Bad Rows

In order to transform (x, y) to a (% — Z)-WSNE, we will ensure that there are no rows

with payoff greater than % — z. Thus, we define a bad row to be a row i whose payoff

lies in the range % —zZ <R -y < % + 2z. Furthermore, we classify the bad rows
according to how bad they are.

Definition 7 A row i is g-bad if R; -y = 2 + 2z — gz.

Since (x,y) is a (% + 21)—WSNE, we have that every row is ¢g-bad for some ¢ > 0.
Moreover, we are interested in improving the g-bad rows with 0 < ¢ < 3. In this

@ Springer

308 Algorithmica (2016) 76:297-319

section, we study the properties of g-bad rows, and we show that they must look similar
to the bad rows in Figs. 1 and 2.

To begin, we observe that if i is a g-bad row, then we can apply the second inequality
of Proposition 6 to obtain:

2
Ci'YZg—Z—CIZ- ©)

Now consider a g-bad row i with ¢ < 3. We can deduce the following three properties
about row .

— Definition 7 tells us that R; -y is close to %

— Equation (5) tells us that C; -y is close to %

— The fact that there are no pure (% — Z)-WSNES implies that, for each column j,
we must either have R; ; < % +zorC;; < % + z, because otherwise (7, j) would
be a pure (% - Z)-WSNE.

In order to satisfy all three of these conditions simultaneously, the row i must have
a very particular form: approximately half of the probability assigned by y must be
given to columns j where R; ; is close to 1 and C; ; is close to %, and approximately
half of the probability assigned by y must be given to columns j where R; ; is close
to % and C; j isclose to 1.

Building on this observation, we split the columns of each row i into three sets. We
define the set B; of big columnstobe B; = {j : R;; > % + 2z}, and the set S; of
small columns to be §; = {j : Ci; > % + 2z}. Finally, we have the set of other
columns O; = {1,2,...,n}\ (B; US;), which contains all columns that are neither
big nor small.

We now formalise our observations by giving inequalities about the amount of
probability that y can assign to B;, S;, and O;, for every g-bad row i. The following
proposition proves three inequalities. The first inequality is proved using Markov’s
inequality. The second and third inequalities arise from substituting the first inequality
into Definition 7 and Eq. (5), respectively. The full proof of this proposition is presented
in 1.

Proposition 8 Ifi is a g-bad row then:

2gz
A<—’
IR

JjeO; 3

Sy %+Z—qz—2(%+2)2jeoiy1-,
jeB; 372

Zyj‘i %_Zz_qz_z(%jLZ)Zjeoin.
JES; 3

@ Springer

Algorithmica (2016) 76:297-319 309

7.1 The Strategies

y™ and y(r) We now define our improved strategies. Let I to be a worst bad row.
That is 7 is a row that satisfies arg max; (R; - y), and therefore 7 is a g-bad row such
that there is no g-bad row with ¢ < ¢. We fix 7 and g to be these choices for the rest
of this paper. Note that we can assume that g < 3, because if this is not the case, then
all rows have payoff less than or equal to % — z, and y does not need to be improved.

We begin by defining a strategy that improves row . We will improve row 7 by
moving the probability assigned to B; to S;. Formally, we define the strategy y'™P as
follows. For each j with 1 < j < n, we have:

0 if j € By,
i Vi ke Yk
yi© =y b if) e Sy ©)
Y otherwise.

The strategy y'™P improves the specific bad row 7, but other rows may not improve,
or even get worse in y'™P. Therefore, we will study convex combinations of y and
y'™. More formally, for the parameter ¢ € [0, 1], we define the strategy y(¢) to be
(I—1)-y+t-ym,

8 Applying the Matching Pennies Argument

So far, we have not used the assumption that Procedure 2 did not find a (% - z) -WSNE.
In this section we will see how this assumption can be used to prove properties about
the g-bad rows. We begin by defining the concept of a matching pennies sub-game.

Definition 9 (Marching Pennies) Let y be a column player strategy, let i and i’ be two
rows, and let j and j’ be two columns. If j € B; N S;» and j € B;s N S;, then we say
that i, i’, j, and j’ form a matching pennies sub-game iny.

An example of a matching pennies sub-game is given by /, r, T, and M in Fig. 2,
because we have [€ By; N St, and we have r € By N Sy;. In this example, we can
obtain an exact Nash equilibrium by making the row player mix uniformly between T
and M, and making the column player mix uniformly between / and r. However, in
general we can only expect to obtain an (% —)-WSNE using this technique, as the
following proposition shows.

Proposition 10 Let y be a column player strategy. If there is a matching pennies
sub-game in'y, then we can construct a (% — z)—WSNE with a 2 x 2 support.

Proof Leti,i’, j,and j' be amatching pennies sub-game in y. We define two strategies
x’ and y’ as follows:

Xk=

0 otherwise.

, _Jos ifk=iork=i', , |05 ifk=jork=j,
0 otherwise. Ye=

@ Springer

310 Algorithmica (2016) 76:297-319

Row 7

Row i | B;

Si‘Oi

Fig.3 The nine possible intersections between the partition (Bj;, S;, O;), and the partition (B;, S;, O;) for
the rows i and 7

We will prove that (x',y’) is a (% -)-WSNE. Note that when the column player
plays y’, the payoff to the row player from row i is:

Rl' . y/ =0.5- Ri,j +0.5- R,"j/.

Since j € B; we have R; ; > % + 2z, Hence, we have:
, 2 1
Ry >=0.5x §+21 +O.5XO=§+Z.

An identical argument can be used to argue that R;s - y’, C Tj .x',and CT j - x are all
greater than or equal to % + z.

Thus, we have shown that all pure strategies in the support of x" and y’ are (% - z)-

best responses. Hence, (x',y') is a (% —z)-WSNE. O

Proposition 10 allows us to assume that the game does not contain a matching
pennies sub-game, because otherwise Procedure 2 would have found a (% - z) -WSNE.
Note that, by definition, if the game does not contain a matching pennies sub-game,
then for all rows i we must have either B; N S; = @, or B; N S; = @.

9 An Improved Strategy Exists

Our goal is to show that there exists a t in therange 0 < ¢t < 1 and az > 0 such that for
every row i, we have R; -y(¢) < % — z. In this section, we develop a computer-assisted
proof of this fact. ‘

Recall that the strategy y™ is defined by moving all probability from the columns
in B; to the columns in S;. We are interested in how other rows i are affected by
this operation. This will depend on how much probability mass is shared between the
partition (B;, S;, O;), and the partition (B;, S7, O;). Figure 3 shows the nine possible
intersections.

We are interested in the amount of probability that y assigns to each of these nine
sets. We define a shorthand for this purpose:

bb = Z Y sb = Z Y/ ob = Z Y

JEBINB; JESINB J€ONB;

bs = Z Y ss = Z Yj 0s = Z Yi
jeBNS; jesins; jeons;

bo = z yi, so = E Y, 00 = Z yj-
J€BINO; J€SINO; J€omno;

@ Springer

Algorithmica (2016) 76:297-319 311

As t is increased away from 0, probability will be shifted from bb, bs, and bo to sb,
ss, and so, while the amount of probability assigned to ob, os, and oo will remain
constant.

For each fixed ¢ in the range 0 < ¢t < 1, and each fixed z > 0, we are interested in
the worst-case value of R; - y(#). We will show that an upper bound on R; - y(¢) can
be obtained by solving a linear program. The linear program has eleven variables. We
use nine variables, bb, bs, bo, sb, ss, so, ob, os, and oo, to represent the amount of
probability assigned to the columns in i. We use two additional variables q and q to
represent how bad the rows 7 and i are. These two variables should be interpreted as
follows: row 7 is a q-bad row and row i is a g-bad row.

We can now define the linear program. We begin by defining a helper function
¢(z, q) as follows:

1 -

_ x+2+4qz
$(z,q) =1+ - —.
3-2-4z—(3+2) 75

Wl

9.1 The Linear Program

LP(z,t, k).
Maximize:

(1—t)(§~|—2z—q-z)+t-(¢(z,3)(sb+(%+z)-ss+(§+2z)~so)
b ! 2 2
+o0 +(§+z)-os+(§+ z)~00)

Subject to:
%+z—(‘1~z—(%+z)(0b+os+00)
bb + bs + bo > (7
2_
1 1
3+z2—q-z—(3+2)(bo+so+ 00
bb + sb + ob > 2 4 (g)¢))
3 <
1 = 1
7—22—q-z— (35 +2)(ob+o0s+ 00
s+ 55450 = 4z- ()¢) ©
32
1 1
3—22—q-z— (3 +z)(bo+so+ o0
bs + ss + 0s > 3 q (23)¢) (10)
3%
2-qQ-2
ob +o0s+o00 < 5 (11
3—22
2-q-z
bo + so + 00 < 1 (12)
g—ZZ

@ Springer

312 Algorithmica (2016) 76:297-319

_ [bs ifk =0 (13)
ifk=1

q=3 (14)

q=q (15)

1 = bb + bs + bo + sb + ss + so + ob + os + oo (16)

0 < bb, bs, bo, sb, ss, so, ob, os, 00, q, q a7

Our linear program will be parameterised: for each z with z > 0, each ¢ in the range
0 <t <1, andeach k € {0, 1} we define LP(z, t, k) to be the linear program shown
here. The rest of this section is dedicated to showing that this linear program can be
used to find an upper bound on R; - y(¢), for all rows i.

9.2 The Constraints

We begin by arguing that all of the constraints in the LP are valid. Firstly, since z
and ¢ are both constants, it can be seen that all of the constraints are indeed linear.
Constraints (7) through (12) are taken directly from Proposition 8. Each inequality in
Proposition 8 appears twice: once for the row i and once for the row 7.

Constraint (13) encodes the matching pennies argument. By Proposition 10 if we
have both bs > 0 and sb > 0, then we can find a (— — z)-WSNE. Thus, we can
assume that either sb = 0 or sb = 0. Constraint (13) encodes this using the parameter
k: if k = 0 then bs is constrained to be 0, and if £ = 1, then sb is constrained to be 0.

Constraints (14) and (15) provide bounds for q and q. Recall that a row i is g-bad
if Ry = % + 2z — gz. Since q is the g-value for a worst bad row, and since a
worst bad row 7 must have R; -y > % — z, we must have q < 3. This is encoded in
Constraint (14). Constraint (15) again uses the fact that q is the g-value of a worst bad
row: the g value for every other row must be greater than or equal to q.

Finally, Constraints (16) and (17) specify that the nine variables must be a proba-
bility distribution. They also specify that both q and q must be non-negative, which
is valid because Proposition 6 implies that no row i can have R; -y > % + 2z.

9.3 The Objective

We now show that the objective function of the linear program provides an upper
bound on R; - y(¢). To prove this, we first observe that by definition we have

Ri-y(t)=(—1)-Ri-y+1-R; -y™. (18)

Since i is a q-bad row, we have that R; -y = % + 2z — qz. In the following proposition,
we show an upper bound for R; - y™P.

@ Springer

Algorithmica (2016) 76:297-319 313

Proposition 11 We have that R; - y™ is less than or equal to:
bb+bs+b 1 2
(1—}—&) sb+{=-+z) -ss+|=-+2z) so
sb + ss + so 3 3
1 2
+ob + §+z -0s + 5—1—21 - 00.

Proof Since y'™ is obtained from y by shifting all probability from B; to S;, we have
that:

Ri . yimp = Z Ri,j . yimp + Z Ri,j . yimp

JEST Jj€Or
=2 Rij ¥™+ D Rij-y
jes; J€Or
bb + bs + bo
=1+ — Rii-y+ Ri;-y. 19
(sb—}—ss—l—so)z AR Z iy (19)
JES Jj€0;

The second and third equalities were obtained directly from the definition of y'™P
given in (6).
Now to obtain the claimed result we split the two sums into their constituent parts.
Firstly, we have that jes, ¥ = sb + ss + so, and by definition we have that:
<1 foreach j € B;,
- R ;< % + zforeach j € §;, and
< % + 2z for each j € O;.

Similarly, we split the sum jeo, Y into ob + os + 00, and apply the same bounds as
above. Combining all of these bounds and substituting them into Eq. (19) yields the
claimed result. O

Substituting our two bounds into Eq. (18) does give an upper bound on R; - y(?),
but this upper bound is not linear in the variables of the linear program. To resolve
this, in the next proposition we provide a constant upper bound for one of the terms
in the LP, using the auxiliary function ¢ (z, g) that was defined earlier.

Proposition 12 Ifz < %ﬁ ~ 0.02627, then

(1 bb + bs + bo

< ,3).
sb+ss+so) <¢@3)

3—22-4z— (%—&-z) (ob+-05-+00)

Proof Proposition 8 implies that sb + ss + so > . We can

2*2

3
apply this in order to determine the following upper bound for bb + bs + bo.

@ Springer

314 Algorithmica (2016) 76:297-319

bb + bs +bo =1 — (sb 4 ss 4 so0) — (ob + 0s + 00)
1 —2z—gz— (§ +2) (ob+ 0s + 00)

<1- 5 — (ob + 0s + 00)
32
I 5.z 1 2
_,_3~ z—qz+ (—3—z2+5 —z) (ob + 05 + 00)
- 2
1
1 —2z—gz+ (3 —22) (ob + 0s + 00)
§—Z
%—i—z—i—c}z—(%—Zz)(ob—i—OS—i—oo)
= 2
g—Z
<%+Z+67Z

Substituting this gives the following upper bound.

bb + bs + b L4744z
sb + ss + so (5 —z) - (sb +ss+s0)

In order to proceed we must now use a lower bound for (% - z) - (sb + ss + so0). By
Proposition 8 we have that:

2 1 1
(g—z)-(sb+ss+so)z5—21—éz—(§+z)(ob+os+oo)
1 _ 1 2gqz
>-—21—Ggz—(=+z)- . 21
Z 3% (3+z) T, 21

In order to substitute Inequality (21) into Inequality (20), we must have that 2z 4+ gz +
(% + Z) . 12q§Z < % because otherwise the denominator of Inequality (20) will be 0
k -

or negative. Since g can be at most 3, this holds whenever:

1 6z 1
52+ |3 +z2) 7 < -.
3 §—ZZ 3

Solving this inequality for z gives that z < %. Taking the smaller of the two
solutions gives z < %ﬁ ~ 0.02627.

So, if we have z < % V”, then we can conclude:

bb + bs + bo 1+z44z
I+ —————) < |1+ - 5z
sb + ss + so 1-22—gz— (3+2) &

322
= ¢(z,9)-

@ Springer

Algorithmica (2016) 76:297-319 315

To complete the proof we observe that, so long as 0 < z < , we have that
¢ (z, q) is monotonically increasing in g. This holds because g only occurs positively
in the numerator and negatively in the denominator, and because the denominator is
strictly positive. Thus, since g can be at most 3, we have ¢ (z,) < ¢(z, 3). O

13-3v17
24

Combining the upper bound from Proposition 12 with the upper bound from Propo-
sition 11, and substituting the result into Eq. (18) gives a linear upper bound on R; -y(¢),
and this linear bound is used as the objective function of the LP.

9.4 The Upper Bound

We can now prove that the linear program provides an upper bound on the quality
of WSNE provided by y(#). For each problem LP(z, ¢, k), let Sol(LP(z, t, k)) be the
value of the objective function in the solution of LP(z, t, k).

Proposition 13 For every z > 0 and t in the range 0 <t < 1:

- iijeB;mS,- y = O then R; - y(t) < Sol(LP(z,1t,0)).
- iijeS,—ﬂB,- y =0 then R; - y(t) < Sol(LP(z,t, 1)).

Proof We will prove only the case where > ;g s ¥ = 0, because the other case is
entirely symmetric. Let i be a row that maximizes R; - y(¢), and let 7 be the worst bad
row in y. It is not difficult to construct a feasible point in LP(z, ¢, 0) that represents
these two rows: the variables bb, bs, ... are set according to the probability assigned
to the corresponding intersection sets by y, while q and q are set to be the g-values of
i and 7, respectively.

Obviously, this point satisfies ¢ < 3 and q < 3, and it also satisfies the non-
negativities and the sum-to-one constraint. Furthermore, by assumption we have that
bs = 0, so Constraint (13) is satisfied. Since all other constraints of the LP were
derived from the properties of either q-bad or q-bad rows, we have that the point is
feasible in LP(z, t, 0).

Since Propositions 11 and 12 show that the objective function of the LP provides
an upper bound on R; - y(y), and since the LP is a maximization problem, we must
have R; - y(¢t) < Sol(LP(z,t,0)). O

9.5 Finding

z We now describe how the linear programs can be used to determine a value of z such
thaty(s)isa (% - z) -WSNE. For every z > 0, if we want to prove that we can produce
a (% —)—WSNE, we require a witness (z, f, f1) that satisfies both of the following
conditions:

— We have that 1y is in the range 0 < 7y < 1 and that Sol(z, fy, 0) < % —z.

— We have that #; is in the range 0 < #; < 1 and that Sol(z, 1, 1) < % —z.

If a pair (¢, #1) can be found that satisfy these properties, then y(#p) is a (% —)—

WSNE in the case where bs = 0, and y(#1) is a (% — z)-WSNE in the case where
sb = 0.

@ Springer

316 Algorithmica (2016) 76:297-319

Our strategy for finding a witness (z, fo, 1) was to perform a grid search over
all possible values for z, 7y, and #; using a suitably small increment. We imple-
mented this approach in Mathematica®, where for each candidate witness, we solved
the two linear programs in exact arithmetic. Ultimately, we were able to find a
witness (0.005913759, 0.120, 0.168), and we were unable to find a witness for
z = 0.005913760. Thus, we have completed the proof of Theorem 4.

10 Conclusion

We have shown that our algorithm always finds a (3 — 0.005913759)-WSNE. Our
computer assisted proof relied upon a linear program. We tried several ways to improve
this analysis, all of which were ultimately unsuccessful.

The current proof finds two values of ¢: one for the case where bb = 0, and one for
the case where sb = 0. One obvious approach towards improving the analysis is to split
the analysis into more cases, and compute a ¢ for each case. One of our unsuccessful
attempts in this direction was to parameterise the LP for different values of q. The
existing LP allows q to take any value in the range [0, 3], but we could, for example,
use one LP for the case where q € [0, 1.5] and another for the case where q € [1.5, 3],
and then compute two different values of ¢ for these two cases. Unfortunately, this did
not yield a better analysis no matter how many different bands we used.

The objective function of the LP uses a linear upper bound on the non-linear expres-
sion from Proposition 11. We could, in principle, attempt to solve the non-linear
optimization problem that is obtained when the expression from Proposition 11 is
used directly as the objective function. Unfortunately, it seems that this task is beyond
current technology. In particular, the need to solve the problem in exact arithmetic
thwarted our attempts to solve the problem within a reasonable running time.

Appendix: Proof of Proposition 8
We begin by proving the inequality for O;. The first thing that we note is that, if a
column j isin O;, then R; ; + C; ; must be significantly smaller than % + z.

Proposition 14 Foreachrowi, and eachcolumn j € O;, we have R; j+C; ; < 143z.

Proof For each column j € O; we have both of the following properties:

~ Since j ¢ B;, we have R; j < 3 +2z.
— Since j ¢ S;, we have C; ; < % + 2z.
Furthermore, our assumption that Procedure (1) does not find a pure (% — z)-WSNE
implies that:
~IfRij > % +2z then C; j <
~IfCij > %+z,then R <

2 Qur code is available in the appendix of the arXiv version of this paper, which is available at http://arxiv.
org/abs/1204.0707.

@ Springer

http://arxiv.org/abs/1204.0707
http://arxiv.org/abs/1204.0707

Algorithmica (2016) 76:297-319 317

This is because, if these inequalities did not hold for some pair i and j, then it is easy
to show that (7, j) is a (% - z)-WSNE. From these properties it is easy to see that
Rij+Cij<3+2z+5+z=1+3z o

We now use this proposition, along with Markov’s inequality, to prove the bound
for O; specified in Proposition 8.

ope .. 2
Proposition 15 Ifi is a g-bad row, then 3" ;. ¥j < f;z.

Wl

Proof Consider the random variable T = %‘ +z—R;j— C; j, wherei is fixed and j

is sampled from y. From Eq. (3), we have that T takes values in the range [0, % + zl.
Utilizing Definition 7 along with Eq. (5) gives the following:

4
Riy+ Ciy > 5 + (1 —29)z.

Therefore, we have the following expression for the expectation of 7':

4
E[T]= 3t+e- Ejy[Ri j+ Cijl

< 4 + 4 +(1=29)z) =2
=3 Z 3 q)z) =2qz
By Proposition 14, for each j € O;, we have R; ; + C;; < 1+ 3z. Hence, we

have T > % +z—(1+4+372) = % — 2z for each j € O;. Therefore, we must have
Pr(T > % —2z7)>> jeo, Yj- Applying Markov’s inequality completes the proof:

1 E[T 2
Pr(Tz——Zz)g i 71 <3 9z .
3 3—22 5—22

Now we prove the inequality that was given for B; in Proposition 8.

1 1
ri—gi=(3+2) Zjeo, vs
'

Proposition 16 Ifi is a g-bad row, then jeB Yi =

Proof Since the sets B;, S;, and O; are disjoint, we can write Definition 7 as:

2
D YiRij+ D yiRij+ D yiRij > 3 + 2z —qz.
JEB; JES; J€O;

We know that R; ; < 1foreach j € B;, that R; ; < % + 2z for each j € O, and that

R;j < % + z for each j € S;. Therefore we obtain the following inequality:

1.Zyj+(%+z).zyj+(§+zz).zyjzguz—qz.

JEB; JESi J€0;

@ Springer

318 Algorithmica (2016) 76:297-319

Furthermore, since > ;s ¥j =1 — 2 ;cp ¥j — 2. jc0, Yj» We have:

ZYJ (—i—z) I—Zy]' Zy] (+Zz)2y12§+2z—qz

JEB; jeB; je0; je0;
Rearranging this gives:
——z Zy,>—+z—qz— l+z Zyj.
3 :
jEB; J€O0;

Finally, this allows us to conclude that:

RTE 3ti-—az-(3+9 X0V
iz 3 .
3%

JEB;
O

Finally, we prove the inequality that was given for S; in Proposition 8. This proof
is very similar to the proof of Proposition 16, except that we substitute into Eq. (5)
rather than Definition 7.

1=2gi=(142) Sieo, v

Proposition 17 Ifi is a g-bad row then 3 ;5. y; >

Proof Since the sets B;, S;, and O; are disjoint, we can rewrite Eq. (5) as:

Z y;iCij+ ZY./CL,/ + Z y;iCij > % —z—9qz.

jEB,‘ jES,' jEO,’

We know that C; ; < 1foreach j € §;, that C; ; < % + 2z for each j € O;, and that
Cij < % + z for each j € B;. Therefore we obtain the following inequality:

2
1~Zy,~+() Zy, (+2z)~Zy,~Z§—z—qz.
jes; jEB; J€EO;
Furthermore, since 3 ;cp ¥j =1 — 2 ;c5, ¥j — 2 jc0, ¥j» We have:
Swt(3+e) (1-Zn-Tw)+(Grx) Trzi-w
jes; jes; je0; je0;

Rearranging this gives:

(——z) Zy, 23—2z—qz—(%+z) Zyj.

JES; jeO;

@ Springer

Algorithmica (2016) 76:297-319 319

Finally, this allows us to conclude that:

Zy> %—21—qz—(%+z)21€01y1
j= .

2
JESi 37 ¢

O

Now that we have shown Propositions 15, 16, and 17, we have completed the proof

of Proposition 8

References

11.

12.
13.

. Anbalagan, Y., Norin, S., Savani, R., Vetta, A.: Polylogarithmic supports are required for approximate

well-supported Nash equilibria below 2/3. In: Proceedings of WINE, pp. 15-23 (2013)

. Bosse, H., Byrka, J., Markakis, E.: New algorithms for approximate Nash equilibria in bimatrix games.

Theoret. Comput. Sci. 411(1), 164-173 (2010)

. Chen, X., Deng, X., Teng, S.H.: Settling the complexity of computing two-player Nash equilibria. J.

ACM 56(3), 14:1-14:57 (2009)

. Czumaj, A., Fasoulakis, M., Jurdziriski, M.: Approximate well-supported Nash equilibria in symmetric

bimatrix games. In: Proceedings of SAGT, pp. 244-254 (2014)

. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium.

SIAM J. Comput. 39(1), 195-259 (2009)

. Daskalakis, C., Mehta, A., Papadimitriou, C.H.: Progress in approximate Nash equilibria. In: Proceed-

ings of ACM-EC, pp. 355-358 (2007)

. Daskalakis, C., Mehta, A., Papadimitriou, C.H.: A note on approximate Nash equilibria. Theoret.

Comput. Sci. 410(17), 1581-1588 (2009)

. Fearnley, J., Goldberg, P.W., Savani, R., Sgrensen, T.B.: Approximate well-supported Nash equilibria

below two-thirds. In: Proceedings of SAGT, pp. 108-119 (2012)

. Fearnley, J., Igwe, T.P, Savani, R.: An empirical study of finding approximate equilibria in bimatrix

games. In: Proceedings of SEA, pp. 339-351 (2015)

. Kontogiannis, S.C., Spirakis, P.G.: Efficient algorithms for constant well supported approximate equi-

libria in bimatrix games. In: Proceedings of ICALP, pp. 595-606 (2007)

Kontogiannis, S.C., Spirakis, P.G.: Well supported approximate equilibria in bimatrix games. Algo-
rithmica 57(4), 653-667 (2010)

Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286295 (1951)

Tsaknakis, H., Spirakis, P.G.: An optimization approach for approximate Nash equilibria. Intern. Math.
5(4), 365-382 (2008)

@ Springer

	Approximate Well-supported Nash Equilibria Below Two-thirds
	Abstract
	1 Introduction
	1.1 Our Contribution

	2 Definitions
	3 Outline
	3.1 Shifting Probabilities
	3.2 Matching Pennies
	3.3 Our Approach

	4 Our Algorithm
	4.1 The Best WSNE on a Pair of Supports
	4.2 Our Algorithm

	5 Proof Outline
	6 Reanalyzing the KS Algorithm
	7 Bad Rows
	7.1 The Strategies

	8 Applying the Matching Pennies Argument
	9 An Improved Strategy Exists
	9.1 The Linear Program
	9.2 The Constraints
	9.3 The Objective
	9.4 The Upper Bound
	9.5 Finding

	10 Conclusion
	Appendix: Proof of Proposition 8
	References

