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Abstract We study the performance of Fictitious Play (FP), when used as a heuristic
for finding an approximate Nash equilibrium of a two-player game. We exhibit a class
of two-player games having payoffs in the range [0, 1] that show that FP fails to find
a solution having an additive approximation guarantee significantly better than 1/2.
Our construction shows that for n × n games, in the worst case both players may
perpetually have mixed strategies whose payoffs fall short of the best response by an
additive quantity 1/2− O(1/n1−δ) for arbitrarily small δ. We also show an essentially
matching upper bound of 1/2 − O(1/n).

Keywords Fictitious play · Approximate Nash equilibria · Decentralized dynamics

1 Introduction

We study the computation of approximate Nash equilibria of games, usually called
ε-Nash equilibria, where ε is a measure of the quality of the approximation. For an
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approximate Nash equilibrium, we replace the “no incentive to deviate” criterion of a
classical Nash equilibrium with “low incentive to deviate”. In particular, a player can
improve his payoff by at most ε by playing an alternative strategy. For positive ε, this
is of course a less demanding objective than Nash equilibrium.

In the literature on equilibrium computation, a central issue is fast algorithms: in
order for an outcome to be plausible, it should be possible to compute it in a reasonable
amount of time. This leads to a focus on algorithms that run in polynomial time. On
this topic, the PPAD-completeness results of Daskalakis et al. (2009b) and Chen et al.
(2009) provide compelling evidence that there is no polynomial-time algorithm that
can solve unrestricted normal-form games. These results have led to subsequent work
on the polynomial-time computability of approximate Nash equilibria, and the study
of how good an approximation can be computed in polynomial time. We continue by
describing this line of work, followed by the motivation for studying the Fictitious
Play procedure in this setting. We concentrate on two-player normal-form games.

1.1 Approximate Nash equilibria: details and background

An ε-Nash equilibrium is one where every player’s strategy has a payoff of at most ε

less than a best response; ε is called regret in this context. Formally, for two players
with pure strategy sets M , N and payoff functions ui : M × N → R for i ∈ {1, 2},
the mixed strategy σ is an ε-best-response against the mixed strategy τ , if for any
m ∈ M , we have u1(σ, τ ) ≥ u1(m, τ ) − ε. A pair of strategies σ , τ is an ε-Nash
equilibrium if they are ε-best responses to each other. For what values of ε > 0 is
it possible to compute ε-Nash equilibria in time polynomial in the size of a game?
To make the question meaningful, we have to assume that the payoffs of the game
lie in some limited range; by convention the range [0, 1]. (Without that assumption,
we could, in a trivial way, boost the performance of an algorithm by scaling up (by a
factor 10, say) the payoffs of a game of interest, so that a solution achieving value ε

for the scaled-up game would achieve ε/10 for the original game.)
In one of the first papers to consider this question, Daskalakis et al. (2009a) gave the

following very simple algorithm that achieves an approximation guarantee of ε = 1
2 .

Suppose the row player allocates probability 1
2 to some fixed pure strategy sr , the

column player plays a pure best response sc to sr , and the row player allocates the
remaining 1

2 to a best response to sc. It is not hard to check that this guarantees
an ε = 1

2 approximate Nash equilibrium, for any game. It would seem that more
sophisticated algorithms ought to be able to perform much better (achieve much lower
values of ε). However, progress in improving this approximation guarantee has been
rather incremental. Daskalakis et al. (2007) gave an algorithm that achieves ε =
0.38197, and an improvement due to Bosse et al. Bosse et al. (2007) attains ε =
0.36392. The best known approximation guarantee, ε = 0.3393, is due to Tsaknakis
and Spirakis Tsaknakis and Spirakis (2008). These algorithms that have improved on
ε = 1

2 work by solving one or more linear programs derived from the input game, and
are in a sense centralized since it is necessary to integrate both players’ payoffs into the
LP. It is also known from Feder et al. (2007) that for ε < 1

2 , an ε-Nash equilibrium may
require the size of the support of the players’ mixed strategies to be logarithmic in the
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number of pure strategies (in contrast with the algorithm of Daskalakis et al. (2009a),
where only three pure strategies are used by the players). The main open question
being addressed by this line of work is the possible existence of a polynomial-time
approximation scheme, an algorithm that given any ε > 0 finds an ε-Nash equilibrium
in polynomial time.

The notion of approximation we work with here is distinct from the related notion
of ε-well-supported equilibria, where a player must allocate probability 0 to any pure
strategy whose payoff is more than ε less than optimal. The notion of well-supported
equilibrium is more demanding than the ε-approximate equilibria considered here.
Kontogiannis and Spirakis (2010) gave a polynomial-time algorithm that achieves
ε = 2

3 , and recently Fearnley et al. (2012) introduced a modification to the algorithm
of Kontogiannis and Spirakis Kontogiannis and Spirakis (2010) that leads to a slight
improvement of the approximation guarantee, but is still only slightly below 2

3 . Thus,
less progress has been made in reducing ε for well-supported equilibria. Indeed, the
mixed-strategy profiles that arise from applying FP to the games we construct here are
not well-supported for any ε < 1.

1.2 Fictitious play

FP (see Fudenberg and Levine 1998, Chapter 2 for more details) is a very simple
iterative process for computing equilibria of games. When it converges, it necessarily
converges to a Nash equilibrium. For two-player games, it is known to converge for
zero-sum games (Robinson 1951), non-degenerate 2 × 2 games (Miyasawa 1961), or
if one player has just two pure strategies (Berger 2005). On the other hand, Shapley
exhibited a 3 × 3 game for which it fails to converge (Fudenberg and Levine 1998;
Shapley 1964).

FP works as follows. Suppose that each player has a number of actions, or pure
strategies. Initially (at iteration 1) each player starts with a single action. Thereafter,
at iteration t , each player has a sequence of t − 1 actions that is extended with a t-th
action chosen as follows. Each player makes a best response to a distribution that
selects an opponent’s action uniformly at random from his sequence. (To make the
process precise, a tie-breaking rule should also be specified; however, in the games
constructed here, we can avoid ties.) Thus the process generates a sequence of mixed-
strategy profiles (viewing the sequences as probability distributions), and the hope
is that they converge to a limiting distribution, which would necessarily be a Nash
equilibrium.

1.3 FP and approximate equilibria

We consider the extent to which, after some number of steps, the empirical distributions
obtained by the players are good (albeit not optimal) responses to each other. A recent
paper of Conitzer (2009) shows that FP obtains an approximation guarantee of ε =
(t + 1)/2t for two-player games, where t is the number of FP iterations, and further-
more, if both players have access to infinitely many actions, then FP cannot do better
than this. The intuition behind the upper bound is that an action that appears most
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recently in a player’s sequence has an ε-value close to 0 (at most 1/t); generally an
action that occurs a fraction γ back in the sequence has an ε-value of at most slightly
more than γ (it is a best response to slightly less than 1 − γ of the opponent’s distrib-
ution), and the ε-value of a player’s mixed strategy is at most the overall average, i.e.,
(t + 1)/2t , which approaches 1

2 as t increases.
However, as soon as the number of available actions is exceeded by the number

of iterations of FP, various actions must get re-used, and this re-usage means, for
example, that every previous occurrence of the most recent action has ε-value 1

t . This
appears to hold up the hope that FP may ultimately guarantee a significantly better
additive approximation. Indeed, experiments suggest that it nearly always does better
than the ε = 1

2 guaranteed by the results of Conitzer (2009). On Shapley’s game
(1964) mentioned above, FP obtains ε of about 1

4 . We show that unfortunately that is
not what results in the worst case. Our hope is that this result may either guide the
design of more “intelligent” dynamics having a better approximation performance, or
alternatively generalize to a wider class of related algorithms, for example the ones
discussed by Daskalakis et al. (2010).

1.4 Why FP?

A detailed motivation for studying the performance of FP is given by Conitzer (2009).
Amongst others, we mention the following observations made by Conitzer (2009). FP
has practical relevance. For example, FP is implemented and run to calculate (approxi-
mate) equilibria for several variants of poker (Dudziak 2006; Ganzfried and Sandholm
2008) and, in some cases, the solutions based on FP are provably better than those
using alternative approaches (McMahan and Gordon 2007). Moreover, due to its sim-
plicity, FP is more believable as a model of human behavior than more complicated
algorithms. Finally, FP is appealing to different scientific communities with similar
interests in games and complementary points of view: its practical relevance makes it
relevant to the artificial intelligence/multiagent systems community, its appropriate-
ness to describe rationality (and the fact that people may actually use it) appeals to the
classical game theory community, and formal analysis of its approximation guarantee
makes it interesting to the theoretical computer science community. In relation to the
latter community, we also observe that FP has been studied as a heuristic for generic
optimization (Lambert et al. 2005).

An additional motivation behind this work can be found in the fact that FP is an
uncoupled dynamics, i.e., it is a dynamics in which the decision of a player on the
action to play next does not depend on the payoffs of the other players. In other words,
in an uncoupled dynamics the decisions of a player are functions of his own payoff
and the history only. Hart and Mas-Colell (2003, 2006) try to demarcate the border
between those classes of dynamics for which convergence to “good” approximate
Nash equilibria can be obtained and those for which it cannot. Our result is another
step in this direction and complements the results of Hart and Mas-Colell in that
FP is a discrete-time deterministic uncoupled dynamics; Hart and Mas-Colell study
deterministic, continuous-time uncoupled dynamics (Hart and Mas-Colell 2003) and
stochastic, discrete-time uncoupled dynamics (Hart and Mas-Colell 2006).
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1.5 Our contribution

Like most of the work on approximate Nash equilibrium computation, we focus on
two-player normal-form games. Our main result is a class of n × n games for which
we show that FP fails to obtain any constant ε < 1

2 , thus extending Conitzer (2009)
result from the infinite to the finite case. The result holds without any constraints on
the number of iterations; we show that a kind of cyclical behavior persists.

In Sect. 2 we give our main result, the lower bound on ε of 1/2 − O(1/n1−δ) for
any δ > 0, and in Sect. 3 we give the corresponding upper bound of 1/2 − O(1/n).

Our main result thus highlights a kind of weakness or limitation of FP. We noted
above that Shapley (1964) already exhibited a 3×3 game where FP does not converge,
which is perhaps the first result showing a weakness of FP. However, on Shapley’s
example, FP finds an ε-Nash equilibrium for ε ≈ 1

4 in only a few iterations, and
thereafter the approximation never gets much worse. Thus, it raises the question of
whether the short-term or long-term behavior of FP are ever as bad as Conitzer’s (2009)
upper bound of 1

2 . Our example shows that both the short-term and the long-term
approximation quality may indeed be arbitrarily close to the upper bound of 1

2 . Our
result does require the initial (pure) strategies at iteration 0 to be fixed; it may be seen
that if both players begin by using their last rather their first strategies, that immediately
we have a very good approximate equilibrium. Thus, it may still be that certain variants
of FP can in fact perform better. This issue is discussed further in Sect. 4.

1.6 Other related work

We conclude this introduction by mentioning some further negative results for FP, and
how they relate to the results presented here.

Brandt et al. (2010) consider classes of games where FP is known to converge, such
as 2 × n games, or potential games (Monderer and Shapley 1996), or constant-sum
games. They exhibit examples of these in which FP may take exponentially many steps
(as a function of the size of the representation of the game) for the players to select
some strategy that must be played with non-zero probability in any Nash equilibrium
of the game. This represents an alternative critique of FP, that it is slow in finding Nash
equilibrium strategies. In their games however, the mixed-strategy profiles obtained
by FP in the short term, are good when viewed as approximate Nash equilibria.

Fudenberg and Levine (1995) develop a “cautious” version of FP, in which an
agent’s mixed strategy is not excessively sensitive to the exact relative frequencies of
actions played by the other player(s). It is designed to address the well-known problem
that FP is not safe, in that since it is deterministic, a player could be “ripped off” at
each step by an adversary, and his realised payoff can be less than his minmax payoff.
Indeed, it is useful to consider the following “battle of the sexes” type game, discussed
in detail in Fudenberg and Kreps (1993, p. 339). It is worth revisiting here since it has
some features in common with the more complicated games we construct below, in
particular that since it is symmetric, FP will let the players use the same sequence (top
corresponding with left and bottom with right).
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Fig. 1 The game G5 belonging to the class of games used to prove the lower bound

(
(0, 0) (2, 1)

(1, 2) (0, 0)

)

Suppose that the players begin with a prior distribution on their opponents’ distribution,
having probabilities in the ratio 1 : √

2.1 Thereafter, a player’s estimate of the oppo-
nent’s distribution is the average of the prior with the observed sequence of actions.
By symmetry, both players will copy each other, and will repeatedly alternate between
(top, le f t) and (bottom, right). As a result, the players’ realised payoffs (of zero)
fall short of the expected payoffs they could have obtained with their (mixed) minimax
strategies. In this paper, the quantities we are comparing are different; we compare the
payoff arising from randomizing over the players’ observed behavior (which, depend-
ing on the game, may be either higher or lower than the realised payoff) with the payoff
resulting from best-responding to the opponent’s observed behavior. In that respect,
FP performs well on the above game, converging quickly to the mixed equilibrium.

2 Lower bound

We specify a class of symmetric games with parameter n, whose general idea is
conveyed by Fig. 1, which shows the row player’s payoff matrix for n = 52; since the
game is symmetric, the column player’s matrix is its transpose. A blank entry indicates

1 An irrational number is used in order to guarantee that there is never an issue with tie-breaking.
2 It is notationally convenient to let the n-th game be of size 4n × 4n; our bounds in terms of n use the
big-O notation, so this is safe.
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a payoff of zero; let α = 1 + 1
n1−δ and β = 1 − 1

n2(1−δ) for δ > 0. We assume both
players start FP at action 1 (top left).

Generally, let Gn = (R, RT) be a 4n × 4n game in which the row player’s payoff
matrix R is specified as follows. Let [a : b], a ≤ b, be the set of integers between a
and b. For i, j ∈ [1 : 4n] we have

• If i ∈ [2 : n], Ri,i−1 = 1. If i ∈ [n + 1 : 4n], Ri,i = 1.
• If i ∈ [n + 1 : 4n], Ri,i−1 = α. Also, R2n+1,4n = α.
• Otherwise, if i > j and j ≤ 2n, Ri, j = β.
• Otherwise, if i > j and i − j ≤ n, Ri, j = β. If j ∈ [3n + 1 : 4n], i ∈ [2n + 1 :

j − n], Ri, j = β.
• Otherwise, Ri j = 0.

For ease of presentation we analyze FP on Gn ; the obtained results can be seen to apply
to a version of Gn with payoffs rescaled into [0, 1] (cf. the proof of Theorem 2).

The sub-game given by the first n × n actions is similar to Conitzer’s lower bound
game (Conitzer 2009) in that when players start from action 1, they will play each
action only once. However, differently from Conitzer’s game, in our case players’ best
responses are unique.

2.1 Overview

In this section, we give a general overview and intuition on how our main result works,
before embarking on the technical details. Number the actions 1, . . . 4n from top to
bottom and left to right, and assume that both players start at action 1. FP proceeds in
a sequence of steps, which we index by the positive integer t , so that step t consists
of both players adding the t th element to their sequences of length t − 1. We have the
following observation:

Observation 1 Since the game is symmetric and both players start with the same
action, there is an FP sequence in which both players play the same action in every
step.

This simplifies the analysis since we can analyze a single sequence of numbers (the
shared indices of the actions chosen by the players). In fact, the FP sequence is unique
as multiple best responses never arise.

A basic insight into the behavior of FP on the games in question is provided by
Lemma 1, which tells us a great deal about the structure of the players’ sequence. Let
st be the action played at step t . We set s1 = 1.

Lemma 1 For any time step t, if st �= st+1 then st+1 = st + 1 (or st+1 = 2n + 1 if
st = 4n).

Proof It is not hard to check that for t ≤ n, at step t each player plays action t .
(As we noted, the sub-game given by the first n × n actions is similar to Conitzer’s
(2009) construction, in which FP behaves in this way.) For step t > n, suppose the
players play st �= 4n (by Observation 1, we assume that the two players play the
same action). st is a best response at step t , and since Rst +1,st > Rst ,st > R j,st
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( j �∈ {st , st +1}), action st +1 is the only other candidate to become a better response
after st is played. Thus, if st+1 �= st , then st+1 = st + 1. A similar argument applies
to the case st = 4n. 	


Lemma 1 implies that the FP sequence consists of a block of consecutive 1’s fol-
lowed by some consecutive 2’s, and so on through all the actions in ascending order
until we get to a block of consecutive 4n’s. The blocks of consecutive actions then
cycle through the actions {2n + 1, . . . , 4n} in order, and continue to do so repeatedly.

As it stands, Lemma 1 makes no promise about the lengths of these blocks, and
indeed it does not itself rule out the possibility that one of these blocks is infinitely
long (which would end the cycling process described above and cause FP to converge
to a pure Nash equilibrium). The subsequent results say more about the lengths of the
blocks. They show that in fact the process never converges (it cycles infinitely often)
and furthermore, the lengths of the blocks increase in a geometric progression. The
parameters α and β in Gn govern the ratio between the lengths of consecutive blocks.
We choose a ratio large enough to ensure that the n most recently played actions occupy
all but an exponentially small fraction of the FP sequence. At the same time, the ratio
is small enough that the corresponding probability distribution does not allocate much
probability to any individual action.

In more detail, Lemma 3 analyses the first pass through actions n +1, . . . , 3n made
by the players, and shows that the number of times that each action i in this set is
played is somewhat greater than the number of times i − 1 was played. The ratio
between these two numbers is slightly more than 1. Lemma 4 obtains a very similar
result, for actions 3n + 1, . . . , 4n. Consequently by the time action 4n is reached, we
note that

• most of the empirical probability is placed on the more recently-played actions,
and

• the amount of empirical probability on the first actions 1, . . . , 2n is very low
indeed, an exponentially small fraction.

Lemma 5 makes precise the second of the above two points: the effect of the initial play
of actions 1, . . . , 2n is by now negligible. By this stage then, we can effectively ignore
actions 1, . . . , 2n and focus on the sub-game that uses actions 2n + 1, . . . , 4n. The
general point next is that from now on, there is a “current action” i being played, and i
and its recent predecessors in the sequence 2n + 1, . . . , 4n have the highest empirical
probability. (The predecessor of 2n + 1 is 4n, in this context.) Theorem 1 gives a
precise statement of this, that the ratio between empirical probabilities of consecutive
actions is approximately 1 plus an inverse polynomial in n. Thus Theorem 1 gives
a fairly precise description of the empirical distributions obtained by the players.
Theorem 2 deduces that at any point in time, the best response by either player is
worth approximately 1, while the average payoff of his current empirical distribution
is approximately 1/2.

As an aside, we conclude this section with the following observation, which is not
hard to check from the structure of the game.

Observation 2 The game has a mixed Nash equilibrium in which both players use
the uniform distribution over actions {2n + 1, . . . , 4n}. The equilibrium has payoff
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approximately 1
2 to each player. There are no pure Nash equilibria, although if both

players use the same action in the range {n+1, . . . , 4n} then they would receive payoff
1. Recall that α > 1, so a payoff of 1 to each player does not imply an equilibrium.

2.2 The proof

We now identify some properties of the probabilities that FP assigns to actions. Let
	t (i) be the number of times that action i is played by the players until time step t . Let
pt (i) be the corresponding probability assigned to action i at step t , and for a subset
of actions S let pt (S) denote the total probability of elements in S. So it is immediate
to observe that

pt (i) = 	t (i)∑4n
j=1 	t ( j)

= 	t (i)

t
.

The next fact follows easily from the FP rule.

Lemma 2 For all actions i ≤ n, pt (i) = 1
t and therefore 	t (i) = 1 for any time step

t ≥ i .

Proof At step 1, each player sets p1(1) = 1 and p1(i) = 0 for i > 1. For t ≤ n
the sequence chosen by both players is (1, 2, . . . , t), so pt (i) = 1

i for i ≤ t and 0
otherwise. Lemma 1 implies that none of the first n actions will be a best response
subsequently, which implies the claim. 	


By Lemma 1, each action is played a number of consecutive times, in order, until
action 4n is played; at this point, this same pattern repeats but only for the actions in
{2n + 1, . . . , 4n}. We let t
 be the length of the longest sequence containing all the
actions in ascending order, that is, t
 is the last step of the first consecutive block of
4n’s. We also let ti be the last time step in which i is played during the first t
 steps,
i.e., ti is such that 	ti (i) = 	ti −1(i) + 1 and 	t (i) = 	t
 (i) for t ∈ {ti , . . . , t
}.
Lemma 3 For all actions n + 1 ≤ i ≤ 3n and all t ∈ {ti , . . . , t
},

α − β

α − 1
pt (i − 1) ≤ pt (i) ≤ 1

t
+ α − β

α − 1
pt (i − 1),

and therefore

α − β

α − 1
	t (i − 1) ≤ 	t (i) ≤ 1 + α − β

α − 1
	t (i − 1).

Proof By definition of ti , action i is played at step ti . This means that i is a best
response for the players given the probability distributions at step ti − 1. In particular,
the expected payoff of i is better than the expected payoff of i + 1, that is,
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β

i−2∑
j=1

pti −1( j) + αpti −1(i − 1) + pti −1(i)

≥ β

i−2∑
j=1

pti −1( j) + βpti −1(i − 1) + αpti −1(i).

Since α > 1, the above implies that pti −1(i) ≤ α−β
α−1 pti −1(i −1). By explicitly writing

the probabilities, we get

	ti −1(i)

ti − 1
≤ α − β

α − 1

	ti −1(i − 1)

ti − 1
⇐⇒ 	ti (i) − 1 ≤ α − β

α − 1
	ti (i − 1) ⇐⇒ (1)

	ti (i)

ti
≤ 1

ti
+ α − β

α − 1

	ti (i − 1)

ti
⇐⇒ pti (i) ≤ 1

ti
+ α − β

α − 1
pti (i − 1). (2)

At step ti + 1 action i is not a best response to the opponent’s strategy. Then, by
Lemma 1, i + 1 is the unique best response and so the expected payoff of i + 1 is
better than the expected payoff of i given the probability distributions at step ti , that
is,

β

i−2∑
j=1

pti ( j) + αpti (i − 1) + pti (i) ≤ β

i−2∑
j=1

pti ( j) + βpti (i − 1) + αpti (i).

Since α > 1, the above implies that

pti (i) ≥ α − β

α − 1
pti (i − 1), (3)

and then that

	ti (i) ≥ α − β

α − 1
	ti (i − 1). (4)

By definition of ti action i will not be played again until time step t
. Similarly,
Lemma 1 shows that i − 1 will not be a best response twice in the time interval [1, t
]
and so will not be played until step t
. Therefore, the claim follows from (1), (2), (3)
and (4). 	

Lemma 4 For all actions i ∈ {3n + 1, . . . , 4n − 1} and all t ∈ {ti , . . . , t
},

α − β

α − 1
pt (i − 1) ≤ pt (i) ≤ 1

t
+ α − β

α − 1
pt (i − 1) + β

α − 1
pt (i − n),

and therefore

α − β

α − 1
	t (i − 1) ≤ 	t (i) ≤ 1 + α − β

α − 1
	t (i − 1) + β

α − 1
	t (i − n).
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Proof By definition of ti , action i is played at time step ti . This means that i is a best
response for the players after ti − 1 steps. In particular, the expected payoff of i is
better than the expected payoff of i + 1, that is,

β

⎛
⎝ 2n∑

j=1

pti −1( j) +
i−2∑

j=i−n

pti −1( j)

⎞
⎠ + αpti −1(i − 1) + pti −1(i)

≥ β

⎛
⎝ 2n∑

j=1

pti −1( j) +
i−2∑

j=i−n+1

pti −1( j)

⎞
⎠ + βpti −1(i − 1) + αpti −1(i).

Since α > 1, the above implies that pti −1(i) ≤ α−β
α−1 pti −1(i − 1) + β

α−1 pti −1(i − n).
Similarly to the proof of Lemma 3 above this can be shown to imply

pti (i) ≤ 1

ti
+ α − β

α − 1
pti (i − 1) + β

α − 1
pti (i − n), (5)

	ti (i) ≤ 1 + α − β

α − 1
	ti (i − 1) + β

α − 1
	ti (i − n). (6)

At time step ti + 1 action i is not a best response to the opponent’s strategy. By
Lemma 1, i + 1 is the unique best response and so the expected payoff of i + 1 is
better than the expected payoff of i , thus implying that

pti (i) ≥ α − β

α − 1
pti (i − 1) + β

α − 1
pti (i − n) ≥ α − β

α − 1
pti (i − 1), (7)

	ti (i) ≥ α − β

α − 1
	ti (i − 1) + β

α − 1
	ti (i − n) ≥ α − β

α − 1
	ti (i − 1). (8)

Similarly to Lemma 3, the claim follows from (5), (6), (7) and (8), the definition of ti
and the fact that, by Lemma 1, there are no two disjoint sub-intervals of [1, t
] such
that an action belonging to {3n + 1, . . . , 4n − 1} is a best response. 	


The next lemma shows that we can “forget” about the first 2n actions at the cost of
paying an exponentially small addend in the payoff function.

Lemma 5 For any δ > 0, α = 1 + 1
n1−δ and β = 1 − 1

n2(1−δ) ,
∑2n

j=1 pt
 ( j) ≤ 2−nδ
.

Proof We first rewrite and bound from above the sum of the probabilities we are
interested in:

2n∑
j=1

pt
 ( j) =
2n∑
j=1

[
	t
 ( j)∑4n
j=1 	t
 ( j)

]
=

∑2n
j=1 	t
 ( j)∑4n
j=1 	t
 ( j)

= 1∑4n
j=2n+1 	t
 ( j)

≤ 1

	t
 (4n − 1)
.
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Note that by Lemmas 2, 3 and 4 we have that

	t
 (4n − 1) ≥ α − β

α − 1
	t
 (4n − 2) ≥

(
α − β

α − 1

)2

	t
 (4n − 3)

≥
(

α − β

α − 1

)3n−1

	t
 (n) =
(

α − β

α − 1

)3n−1

.

By plugging in the values of α and β given in the hypothesis we have that

2n∑
j=1

pt
 ( j) ≤ 1((
1 + 1

n1−δ

)n1−δ
)3nδ− 1

nδ

≤ 1

23nδ− 1
nδ

≤ 1

2nδ
,

where the penultimate inequality follows from the observation that the function (1 +
1/x)x > 2 for x > 2. 	


The theorem below generalizes the above arguments to the cycles that FP visits in the
last block of the game, i.e., the block which comprises actions S = {2n + 1, . . . , 4n}.
Since we focus on this part of the game, to ease the presentation, our notation uses
circular arithmetic on the elements of S. For example, the action j + 2 will denote
action 2n +2 for j = 4n and the action j −n will be the action 3n +1 for j = 2n +1.
Note that under this notation j − 2n = j + 2n = j for each action j in the block.

Theorem 1 For any δ > 0, α = 1 + 1
n1−δ and β = 1 − 1

n2(1−δ) , n sufficiently large,
any t ≥ t
 we have

pt (i)

pt (i − 1)
≥ 1 + 1

n1−δ
for all i ∈ S with i �= st , st + 1,

pt (i)

pt (i − 1)
≤ 1 + 3

n1−δ
for all i ∈ S.

Proof The proof proceeds by induction on t .
Base For the base of the induction, consider t = t
 and note that at that point st
 = 4n
and st
 + 1 = 2n + 1. Therefore we need to show the lower bound for any action
i ∈ {2n + 2, . . . , 4n − 1}. From Lemmas 3 and 4 we note that for i �= 4n, 2n + 1,

pt
 (i)

pt
 (i − 1)
≥ α − β

α − 1
= 1 + 1

n1−δ
.

As for the upper bound, we first consider the case of i �= 4n, 2n + 1. Lemma 3
implies that for i = 2n + 2, . . . , 3n,

pt
 (i)

pt
 (i − 1)
≤ 1

t

+ α − β

α − 1
,

while Lemma 4 implies that for i = 3n + 1, . . . , 4n − 1,
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pt
 (i)

pt
 (i − 1)
≤ 1

t

+ α − β

α − 1
+ β

α − 1

pt
 (i − n)

pt
 (i − 1)
= 1

t

+ α − β

α − 1
+ β

α − 1

	t
 (i − n)

	t
 (i − 1)
.

(9)

To give a unique upper bound for both cases, we only focus on (9) (since it is
weaker) and next focus on the ratio 	t
 (i−n)

	t
 (i−1)
. We use Lemmas 3 and 4 and get

	t
 (i − 1) ≥ α − β

α − 1
	t
 (i − 2) ≥

(
α − β

α − 1

)2

	t
 (i − 3) ≥
(

α − β

α − 1

)n−1

	t
 (i − n).

By setting α and β as in the hypothesis and noticing that t
 ≥ n ≥ n1−δ we then
obtain that

pt
 (i)

pt
 (i − 1)
≤ 1 + 2

n1−δ
+

(
1 + 1

n1−δ

)1−n n2(1−δ) − 1

n1−δ
. (10)

We end this part of the proof by showing that the last addend on the right-hand side
of (10) is bounded from above by 1

4n1−δ . To do so we need to prove

(
1 + 1

n1−δ

)1−n

≤ 1

4n1−δ

n1−δ

n2(1−δ) − 1
, (11)

which is equivalent to

((
1 + 1

n1−δ

)n1−δ
)nδ− 1

n1−δ

≥ 4(n2(1−δ) − 1).

We now bound from below the left-hand side of the latter inequality:

((
1 + 1

n1−δ

)n1−δ
)nδ− 1

n1−δ

>
2nδ

2
1

n1−δ

>
2nδ

2
,

where the first inequality follows from the fact that the function (1 + 1/x)x is greater

than 2 for x > 2 and the second one follows from the fact that 2
1

n1−δ < 2 for n1−δ > 1.
Then, since for n ≥ 2(1−δ)

√
4, 5n2(1−δ) ≥ 4(n2(1−δ) − 1), to prove (11) it is enough to

show

2nδ ≥ 2(5n2(1−δ)) ⇐⇒ nδ ≥ 2(1 − δ) log2(10n).

To prove the latter, since δ > 0, it is enough to observe that the function nδ is certainly
bigger than the function 2 log2(10n) > 2(1 − δ) log2(10n) for n large enough (e.g.,
for δ = 1/2, this is true for n > 639).

The following claim, whose proof is given in an appendix, concludes the proof of
the base of the induction.
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Claim 1 The upper bound holds at time step t
 for i = 4n, 2n + 1.

Induction step Now we assume the claim is true until time step t −1 and we show it for
time step t . By the inductive hypothesis, the following is true, with j �= st−1, st−1 + 1

1 + 1

n1−δ
≤ pt−1( j)

pt−1( j − 1)
≤ 1 + 3

n1−δ
, (12)

pt−1(st−1)

pt−1(st−1 − 1)
≤ 1 + 3

n1−δ
,

pt−1(st−1 + 1)

pt−1(st−1)
≤ 1 + 3

n1−δ
. (13)

We first consider the case in which st �= st−1. By Lemma 1, the action played at time
t is st−1 + 1, i.e., st = st−1 + 1. Let st−1 = i and then we have st = i + 1. By the
inductive hypothesis, for all the actions j �= i, i + 1, i + 2 we have

α − β

α − 1
= 1 + 1

n1−δ
≤ pt ( j)

pt ( j − 1)
≤ 1 + 3

n1−δ
. (14)

Indeed, for these actions j , 	t−1( j) = 	t ( j) and 	t−1( j − 1) = 	t ( j − 1). Therefore
the probabilities of j and j − 1 at time t are simply those at time t − 1 rescaled
by the same amount and the claim follows from (12). The upper bound on the ratio
pt (i+2)
pt (i+1)

easily follows from the upper bound in (12) as 	t−1(i + 2) = 	t (i + 2) and
	t−1(i + 1) < 	t (i + 1) = 	t−1(i + 1) + 1. However, as st = i + 1 here we need
to prove lower and upper bound also for the ratio pt (i)

pt (i−1)
and the upper bound for the

ratio pt (i+1)
pt (i)

.

Claim 2 The following inequalities hold: 1 + 1
n1−δ ≤ pt (i)

pt (i−1)
≤ 1 + 3

n1−δ .

The proof of Claim 2 is in the Appendix.

Claim 3 It holds that pt (i+1)
pt (i)

≤ 1 + 3
n1−δ .

The proof of Claim 3 is in the Appendix.
Finally, we consider the case in which st−1 = st . In this case, for the actions

j �= st , st + 1 it holds 	t−1( j) = 	t ( j) and 	t−1( j − 1) = 	t ( j − 1). Therefore,
similarly to the above, for these actions j the claim follows from (12). The upper
bound for the ratio pt (st +1)

pt (st )
easily follows from (13) as 	t−1(st + 1) = 	t (st + 1) and

	t−1(st ) < 	t (st ) = 	t−1(st ) + 1. The remaining case to analyze is the upper bound
on the ratio pt (st )

pt (st −1)
. To prove this we can use mutatis mutandis the proof of the upper

bound contained in Claim 2 with st = i . 	

The claimed performance of FP, in terms of the approximation to the best response

that it computes, follows directly from the following theorem.

Theorem 2 For any δ > 0 and any time step t, FP returns an ε-Nash equilibrium

with ε ≥ 1
2 − O

(
1

n1−δ

)
.
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Proof For t ≤ n the result follows since the game is similar to Conitzer (2009). In
detail, for t ≤ n the payoff associated with the best response, which in this case is
st + 1, is bounded from above by 1. On the other hand, the payoff associated with
the current strategy prescribed by FP is bounded from below by β

i2

∑i−1
j=0 j where

i = st . Therefore, the regret of either player normalized to the [0, 1] interval satisfies
ε ≥ 1

α
− β

α
i−1
2i . Since i−1

2i < 1/2, the fact that 1 − β
2 − α

2 + α
n1−δ ≥ 0 (which is

true given the values of α and β) yields the claim. For t ≤ t
 the result follows from
Lemmas 3 and 4; while the current action st (for t ≤ t∗) has payoff approximately 1,
the players’ mixed strategies have nearly all their probability on the recently played
actions, but with no action having very high probability, so that some player is likely
to receive zero payoff; by symmetry each player has a payoff of approximately 1

2 . This
is made precise below, where it is applied in more detail to the case of t > t
.

We now focus on the case t > t
. Recall that for a set of actions S, pt (S) =∑
i∈S pt (i). Let St be the set {2n + 1, . . . , st } ∪ {st + n, . . . , 4n} if st ≤ 3n, or the

set {st − n, . . . , st } in the case that st > 3n. Let S′
t = {2n + 1, . . . , 4n} \ St . Also, let

smax
t = arg maxi∈{2n+1,...,4n}(pt (i)); note that by Theorem 1, smax

t is equal to either st

or s−
t , where s−

t = st − 1 if st > 2n, or 4n if st = 2n.
We start by establishing the following claim:

Claim 4 For sufficiently large n, pt (St ) ≥ 1 − 2n
2nδ .

Proof To see this, note that for all x ∈ S′
t , by pt (smax

t ) ≥ pt (smax
t −1) and Theorem 1

we have

pt (smax
t )

pt (x)
= pt (smax

t )

pt (smax
t − 1)

pt (smax
t − 1)

pt (smax
t − 2)

. . .
pt (x + 1)

pt (x)
≥

(
1 + 1

n1−δ

)k−1

,

where k is the number of factors on the right-hand side of the equality above, i.e., the
number of actions between x and smax

t . Thus, as k ≥ n,

pt (x) ≤ pt (smax
t )(

1 + 1
n1−δ

)k−1 ≤
(

1 + 1

n1−δ

)1−k

≤
(

1 + 1

n1−δ

)1−n

≤ 4(1−n)/(n1−δ).

Hence pt (S′
t ) ≤ (2n)4(1−n)/(n1−δ) = n41/n1−δ

2nδ ≤ 2n−1
2nδ , where the last inequality

follows from the fact that, for large n, 41/n1−δ
< 2 − 1

n . Then pt (St ) ≥ 1 − pt (S′
t ) −

pt ({1, . . . , 2n}), which establishes the claim, since Lemma 5 establishes a strong
enough upper bound on pt ({1, . . . , 2n}). 	

Claim 5 The current best response at time t, st , has payoff at least β

(
1 − 2n

2nδ

)
.

Proof The action st receives a payoff of at least β when the opponent plays any action
from St ; the claim follows using Claim 4. 	


Let Et denote the expected payoff to either player that would result if they both select
an action from the mixed distribution that allocates to each action x the probability
pt (x). The result will follow from the following claim:
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Claim 6 For sufficiently large n, Et ≤ α
2 + 6

n1−δ + α 2n
2nδ .

Proof The contribution to Et from actions in {1, . . . , 2n}, together with actions in
S′

t , may be bounded from above by α times the probability that any of those actions
get played. By Lemma 5 and Claim 4, this probability is exponentially small, namely
2n/2nδ

.
Now we consider the contribution to Et from the actions in St . If they play different

actions, their total payoff will be at most α, since one player receives payoff 0. If they
play the same action, they both receive payoff 1. We continue by bounding from above
the probability that they both play the same action. This is bounded from above by the
largest probability assigned to any single action, namely pt (smax

t ).
Suppose for contradiction that pt (smax

t ) > 6/n1−δ . At this point, note that by
Theorem 1, for any action s ∈ St , we have

pt (smax
t )

pt (s)
≤

(
1 + 3

n1−δ

)k

,

where k is the number of actions whose index is in between the indices of s and smax
t ;

note that as in the proof of Theorem 1 we are using circular arithmetic for the indices

of actions in St . Therefore, denoting r =
(

1 + 3
n1−δ

)−1
, we obtain

pt (St ) =
∑
s∈St

pt (s) = pt (st ) +
st −1∑

i=st −n

pt (i) ≥ pt (s
max
t )

n−1∑
k=0

rk .

Applying the standard formula for the partial sum of a geometric series we have

pt (St ) ≥ 6

n1−δ

(
1 − rn

1 − r

)
.

Noting that 1 − rn > 1
2 we have pt (St ) > 6

n1−δ · ( 1
2 ) ·

(
n1−δ

3

)
which is greater than 1,

a contradiction.
The expected payoff Et to either player is, by symmetry, half the expected total

payoff, so we have Et ≤
(

1 − 2n
2nδ − 6

n1−δ

)
α
2 + 6

n1−δ + 2n
2nδ α, which yields the claim.

	

We now show that FP never achieves an ε-value better than 1

2 − O
(

1
n1−δ

)
. From the

last two claims the regret of either player normalized to [0, 1] is

ε ≥ β

α

(
1 − 2n

2nδ

)
− 1

2
− 6

αn1−δ
− 2n

2nδ

=
(

1 − n1−δ + 1

n2(1−δ) + n1−δ

) (
1 − 2n

2nδ

)
− 1

2
− 6

n1−δ + 1
− 2n

2nδ
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= 1

2
− n1−δ + 1

n2(1−δ) + n1−δ
− n1−δ + 1

n2(1−δ) + n1−δ

2n

2nδ
− 6

n1−δ + 1
− 2n

2nδ

= 1

2
− O

(
1

n1−δ

)
.

This concludes the proof. 	


3 Upper bound

In this section, we consider an m×n game. Let a, b denote the FP sequences of actions
of length t , for players 1 and 2 respectively. For two iterations k, l ∈ {1, . . . , t} with
k ≤ l, let a[k:	] denote the subsequence of actions ak , . . . , a	. We overload notation and
use a to also denote the mixed strategy that is uniform on the corresponding sequence
of actions.

An action that appears most recently in a player’s sequence has an ε-value close
to 0 (at most 1/t); generally an action that occurs a fraction γ back in the sequence
has an ε-value of at most slightly more than γ (it is a best response to slightly less
than 1 − γ of the opponent’s distribution). When the number of available actions is
exceeded by the number of iterations of FP, various actions must get re-used, and
this re-usage means, for example, that every previous occurrence of the most recent
action has ε-value 1

t . Thus, to derive an upper bound on ε, we consider the most recent
occurrences of each action in a. For k ∈ {1, . . . , t}, let fk(a) denote the most recent
occurrence of ak in the sequence a, that is,

fk(a) := max
	∈{1,...,t}, a	=ak

	.

For brevity, we sometimes write fk in place of fk(a). Let z be a best response against
b, and let ε denote the smallest ε for which a is an ε-best-response against b. We have
the following.

ε = u1(z, b) − u1(a, b)
1

t

t∑
i=1

(u1(z, b) − u1(ai , b))

= 1

t

t∑
i=1

[
fi − 1

t

(
u1(z, b[1: fi −1]) − u1(ai , b[1: fi −1])

)

+ t − fi + 1

t

(
u1(z, b[ fi :t]) − u1(ai , b[ fi :t])

)]

≤ 1

t

t∑
i=1

[
t − fi + 1

t

(
u1(z, b[ fi :t]) − u1(ai , b[ fi :t])

)]
(15)

≤ 1

t

t∑
i=1

t − fi + 1

t
(16)
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= 1 + 1

t
− 1

t2

t∑
i=1

fi . (17)

Inequality (15) holds since, by definition, ai is a best response against b[1: fi −1].
Inequality (16) holds since payoffs are in the range [0, 1]. To provide a guarantee on
the performance of FP, we find a sequence that maximizes the RHS of (17), i.e., that
minimizes

∑t
i=1 fi (a).

Definition 1 For an FP sequence a, let S(a) := ∑t
i=1 fi (a) and let â ∈ arg mina S(a).

The following three lemmas allow us to characterize â.

Lemma 6 The entries of â take on exactly m distinct values.

Proof The entries of an FP sequence of player 1 can take on at most m distinct values,
since player 1 has only m actions. Suppose for the sake of contradiction that the entries
of â take on strictly less than m distinct values. Then there is an action, say z, that does
not appear in â and an action z′ that appears more than t/m times. Obtain a from â by
replacing a single occurrence of z′ in â with z. Then S(a) < S(â), a contradiction. 	


We now define a reordering of the actions in an FP sequence a to give new sequence
a′ so that S(a′) < S(a) if a �= a′. The reordering groups together occurrences of
actions and orders them according to their last occurrences in a.

Definition 2 Suppose the entries of a take on d distinct values. We define x1, . . . , xd

to be the last occurrences, { fi (a) | i ∈ [t]}, in ascending order. Formally, let xd := at

and for k < d let xk := ai be such that

i := arg max
j=1,...,t

{a j | a j /∈ {xk+1, . . . , xd}}.

For i = 1, . . . , d, let

#(xi ) := |{a j | j ∈ [t], a j = xi }|,
which is the number of occurrences of xi in a. Define a′ as

a′ := x1, . . . , x1︸ ︷︷ ︸
#(x1)

, x2, . . . , x2︸ ︷︷ ︸
#(x2)

, . . . , xd , . . . , xd︸ ︷︷ ︸
#(xd )

.

Lemma 7 For any FP sequence a, let a′ be as in Definition 2. If a′ �= a then S(a′) <

S(a).

Proof For all i = 1, . . . , t we have fi (a′) ≤ fi (a), and since a′ �= a there is at least
one i such that fi (a′) < fi (a).

Lemma 8 Let m, t ∈ N be such that m|t . Let a be a sequence of length t of the form

a = 1, . . . , 1︸ ︷︷ ︸
c1

, 2, . . . , 2︸ ︷︷ ︸
c2

, . . . , m, . . . , m︸ ︷︷ ︸
cm

.

Then S(a) is minimized if and only if c1 = · · · = cm = t/m.
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Proof We refer to the maximal length subsequence of entries with value u ∈ {1, . . . m}
as block u. Consider two adjacent blocks u and u + 1, where block u starts at i and
ends at j − 1 and block u + 1 starts at j and finishes at k. The contribution of these
two blocks to S(a) is

j−1∑
i

( j − 1) +
k∑
j

k = j2 − (1 + i + k) j + (i + k + k2).

If 1 + i + k is even, this contribution is minimized when j = 1+i+k
2 . If 1 + i + k is

odd, this contribution is minimized for both values j = � 1+i+k
2 � and j = � 1+i+k

2 �.
Now suppose for the sake of contradiction that S(a) is minimized when c1 = · · · =

cm = t/m does not hold. There are two possibilities. Either there are two adjacent
blocks whose lengths differ by more than one, in which case we immediately have a
contradiction. If not, then it must be the case that all pairs of adjacent blocks differ in
length by at most one. In particular, there must be a block of length t/m+1 and another
of length t/m − 1 with all blocks in between of length t/m. Flipping the leftmost of
these blocks with its right neighbor will not change the sum S(a). Repeatedly doing
this until the blocks of lengths t/m + 1 and t/m − 1 are adjacent, does not change
S(a). Then we have two adjacent blocks that differ in length by more than one, which
contradicts the fact that S(a) was minimized. 	

Lemma 9 For m|t and FP strategies (a, b) we have that a is an ε∗-best-response
against b. where

ε∗ = 1

2
+ 1

t
− 1

2m
.

Proof We show that â is an ε∗-best-response against b. Applying Lemma 6, Lemma 7
and Lemma 8, we have that

â = z1, . . . , z1︸ ︷︷ ︸
t/m

, z2, . . . , z2︸ ︷︷ ︸
t/m

, . . . , zn, . . . , zn︸ ︷︷ ︸
t/m

,

where z1, . . . , zm is an arbitrary labeling of player 1’s actions. Using (17), we have
that

ε ≤ 1 + 1

t
− 1

t2

t∑
i=1

fi (â) = 1 + 1

t
− 1

t2

t

m

m∑
i=1

(
i · t

m

)

= 1 + 1

t
− m + 1

2m
= 1

2
+ 1

t
− 1

2m
.

This concludes the proof. 	

Combining Lemma 9 with the analogous result for player 2’s sequence b, we have

the following.
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Theorem 3 If m|t and n|t , the FP strategies (a, b) are an ε∗-equilibrium, where

ε∗ = 1

2
+ 1

t
− 1

2 max(m, n)
.

For a square n × n game and t superlinear in n, we achieve a (1/2 − O(1/n))-
approximate Nash equilibrium.

4 Conclusions

FP is a classical decentralized algorithm to solve games. In this paper, we analyze the
quality of strategy profiles output by FP in terms of their approximation guarantee as
ε-Nash equilibria. We exhibit a class of two-player n-action games with payoffs in
the range [0, 1] for which FP fails to guarantee an approximation better than 1/2 −
O(1/n1−δ) for any δ > 0. We complement this result by showing that FP returns
(1/2 − O(1/n))-approximate Nash equilibria thus proving that our lower bound is
essentially tight.

Our result suggests that further work on the topic might address the question of
whether 1

2 is a fundamental limit to the approximation performance obtainable by
certain types of algorithms that are in some sense simple or decentralized. We noted
in the introduction that ε = 1

2 is achieved by the simple algorithm of Daskalakis et al.
(2009a), but smaller values of ε seem to require more complex algorithms that solve an
LP. The question of specifying appropriate classes of algorithms is itself challenging; it
is also considered in Daskalakis et al. (2010) in the context of algorithms that (without
computational complexity theoretic assumptions) provably fail to find Nash equilibria.
This research agenda is likely to be challenging, as evidenced by the fact that we had
to construct a highly-artificial class of games to produce the worst-case performance
for FP. A more general result would seemingly have to rely on a general construction
of worst-case input games for unspecified algorithms belonging to some class.

The alternative direction is to aim for more positive results, saying that some variant
of FP can do rather better. We noted in the introduction that in our games, if FP
started at a different initial pure-strategy profile, we might immediately have a good
approximation. It may be that this, or some other simple “smarter” version of FP
could in fact get improved approximation guarantees. For that purpose, we hope that
the class of games exhibited here can help to indicate the kind of obstacles that may
need to be overcome.

Acknowledgements This work was supported by EPSRC grants EP/G069239/1 and EP/G069034/1 “Effi-
cient Decentralised Approaches in Algorithmic Game Theory.”

Appendix A: Proof of Claim 1

Proof We first show the claim for i = 4n. At time step t
, FP prescribes to play 4n.
This in particular means that the action 4n achieves a payoff which is at least as much
as that of action 2n + 1 after t
 − 1 time steps. We write down the inequality given
by this fact focusing only on the last 2n actions (we will consider actions 1, 2, . . . , n
below) and obtain:
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pt
−1(4n) + αpt
−1(4n − 1) + βpt
−1(3n) ≥ αpt
−1(4n)

+pt
−1(2n + 1) + βpt
−1(4n − 1) (18)

and then since α > 1

pt
−1(4n)

pt
−1(4n − 1)
≤ α − β

α − 1
+ β

α − 1

pt
−1(3n)

pt
−1(4n − 1)
− 1

α − 1

pt
−1(2n + 1)

pt
−1(4n − 1)
.

Similarly to the proof of Lemma 3 above this can be shown to imply

pt
 (4n)

pt
 (4n − 1)
≤ 1

t

+ α − β

α − 1
+ β

α − 1

pt
 (3n)

pt
 (4n − 1)
− 1

α − 1

pt
 (2n + 1)

pt
 (4n − 1)

≤ 1

t

+ α − β

α − 1
+ β

α − 1

pt
 (3n)

pt
 (4n − 1)
. (19)

We now bound from above the ratio β
α−1

pt
 (3n)

pt
 (4n−1)
. By repeatedly using Lemmas 3

and 4 we have that

pt
 (4n − 1) ≥ α − β

α − 1
pt
 (4n − 2) ≥

(
α − β

α − 1

)2

pt
 (4n − 3)

≥ · · · ≥
(

α − β

α − 1

)n−1

pt
 (3n).

This yields

β

α − 1

pt
 (3n)

pt
 (4n − 1)
≤ β

α − 1

(
α − 1

α − β

)n−1

≤ 1

4n1−δ
,

where the last inequality has been proved above (see 11). Therefore, since t ≥ n1−δ ,
(19) implies

pt
 (4n)

pt
 (4n − 1)
≤ 1 + 2

n1−δ
+ 1

4n1−δ
.

To conclude this part of the proof we must now consider the contribution to (18) of the
actions 1, . . . , 2n that are not in the last block. However, Lemma 5 shows that all those
actions are played with probability 1/2nδ

at time t
. Thus the overall contribution of
these actions is bounded from above by 1

2nδ (α − β) ≤ 1
2nδ . Similarly to the above,

we observe that, for n sufficiently large, nδ ≥ log2(4n) ≥ (1 − δ) log2(4n), which
implies that 1

2nδ ≤ 1
4n1−δ . This concludes the proof of the upper bound at time t
 for

i = 4n.
Consider now the case i = 2n + 1. At time step t
 + 1, 4n is not played by FP,

which means that 4n is not a best response after t
 time steps. By Lemma 1, the best
response is 2n + 1; then, in particular, the payoff of 2n + 1 is not smaller than the
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payoff of 4n at that time. We write down the inequality given by this fact focusing
only on the last 2n actions (we will consider the actions in {1, 2, . . . , 2n} below) and
obtain

pt
 (4n) + αpt
 (4n − 1) + βpt
 (3n) ≤ αpt
 (4n) + pt
 (2n + 1) + βpt
 (4n − 1)

and then since α > 1

pt
 (4n)

pt
 (4n − 1)
≥ α − β

α − 1
+ β

α − 1

pt
 (3n)

pt
 (4n − 1)
− 1

α − 1

pt
 (2n + 1)

pt
 (4n − 1)
. (20)

We next show that βpt
 (3n)−pt
 (2n+1)

(α−1)pt
 (4n−1)
≥ − 1

4n1−δ or equivalently that pt
 (3n)

pt
 (2n+1)
≥ 1

β
−

(α−1)pt
 (4n−1)

4βn1−δ pt
 (2n+1)
. To prove this it is enough to show that pt
 (3n)

pt
 (2n+1)
≥ 1

β
. We observe

that

pt
 (3n)

pt
 (2n + 1)
= pt
 (3n)

pt
 (3n − 1)

pt
 (3n − 1)

pt
 (3n − 2)
· · · pt
 (2n + 2)

pt
 (2n + 1)
≥

(
α − β

α − 1

)n−1

≥ 1

β
,

where the first inequality follows from Lemma 3 and the second inequality follows
from the observation (similar to the above) that for n sufficiently large nδ ≥ 2 log2(2n).
Then to summarize, for α and β as in the hypothesis, (20) implies that

pt
 (4n)

pt
 (4n − 1)
≥ 1 + 1

n1−δ
− 1

4n1−δ
.

As above we consider actions 1, . . . , 2n and observe that their contribution to the
payoffs is bounded from above by 1

4n1−δ . Now to conclude the proof of the claim for
the case i = 2n + 1 we simply notice that the above implies pt
 (4n − 1) < pt
 (4n)

and Lemmas 3 and 4 imply that pt
 (2n + 1) < pt
 (4n − 1) which together prove the
claim. 	


Appendix B: Proof of Claim 2

Proof To prove the claim we first focus on the last block of the game, i.e., the block in
which players have actions in {2n + 1, . . . , 4n}. Recall that our notation uses circular
arithmetic on the number of actions of the block.

The fact that action i + 1 is better than action i after t − 1 time steps implies that

pt−1(i) + αpt−1(i − 1) + βpt−1(i − n) ≤ αpt−1(i) + pt−1(i + 1) + βpt−1(i − 1),

and then since α > 1,

pt−1(i)

pt−1(i − 1)
≥ α − β

α − 1
+ β

α − 1

pt−1(i − n)

pt−1(i − 1)
− 1

α − 1

pt−1(i − 2n + 1)

pt−1(i − 1)
. (21)
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We next show that βpt−1(i−n)−pt−1(i−2n+1)
(α−1)pt−1(i−1)

≥ − 1
4n1−δ or equivalently

pt−1(i − n)

pt−1(i − 2n + 1)
≥ 1

β
− (α − 1)pt−1(i − 1)

4βn1−δ pt−1(i − 2n + 1)
.

To prove this it is enough to show that pt−1(i−n)
pt−1(i−2n+1)

≥ 1
β

. We observe that

pt−1(i − n)

pt−1(i − 2n + 1)
= pt−1(i − n)

pt−1(i − n − 1)
· · · pt−1(i − 2n + 2)

pt−1(i − 2n + 1)
≥

(
α − β

α − 1

)n−1

≥ 1

β
,

where the first inequality follows from inductive hypothesis (we can use the inductive
hypothesis as all the actions involved above are different from i and i + 1) and the
second inequality follows from the aforementioned observation that, for sufficiently
large n, nδ ≥ 2 log2(2n). Then to summarize, for α and β as in the hypothesis, (21)
implies that

pt (i)

pt (i − 1)
= pt−1(i)

pt−1(i − 1)
≥ 1 + 1

n1−δ
− 1

4n1−δ
,

where the first equality follows from 	t−1(i) = 	t (i) and 	t−1(i − 1) = 	t (i − 1),
which are true because st = i + 1.

Since action i + 1 is worse than action i at time step t − 1 we have that

pt−1(i) + αpt−1(i − 1) + βpt−1(i − n) ≥ αpt−1(i) + pt−1(i + 1) + βpt−1(i − 1)

and then since α > 1

pt−1(i)

pt−1(i − 1)
≤ α − β

α − 1
+ β

α − 1

pt−1(i − n)

pt−1(i − 1)
− 1

α − 1

pt−1(i − 2n + 1)

pt−1(i − 1)
.

Similarly to the proof of Lemma 3 above this can be shown to imply

pt (i)

pt (i − 1)
≤ 1

t
+ α − β

α − 1
+ β

α − 1

pt (i − n)

pt (i − 1)
− 1

α − 1

pt (i − 2n + 1)

pt (i − 1)

≤ 1

t
+ α − β

α − 1
+ β

α − 1

pt (i − n)

pt (i − 1)
. (22)

We now bound from above the ratio β
α−1

pt (i−n)
pt (i−1)

. By repeatedly using the inductive
hypothesis (14) we have that

pt (i − 1) ≥ α − β

α − 1
pt (i − 2) ≥

(
α − β

α − 1

)2

pt (i − 3) ≥
(

α − β

α − 1

)n−1

pt (i − n).
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(Note again that we can use the inductive hypothesis as none of the actions above is i
or i + 1.) This yields

β

α − 1

pt (i − n)

pt (i − 1)
≤ β

α − 1

(
α − 1

α − β

)n−1

≤ 1

4n1−δ
,

where the last inequality is proved above (see 11). Therefore, since t ≥ n1−δ , (22)
implies that

pt (i)

pt (i − 1)
≤ 1 + 2

n1−δ
+ 1

4n1−δ
.

To conclude the proof we must now consider the contribution to the payoffs of
the actions 1, . . . , 2n that are not in the last block. However, Lemma 5 shows that all
those actions are played with probability 1/2nδ

at time t
. Since we prove above (see
Lemma 1) that these actions are not played anymore after time step t
 this implies that∑2n

j=1 pt ( j) ≤ ∑2n
j=1 pt
 ( j) ≤ 2−nδ

. Thus the overall contribution of these actions

is bounded from above by 1
2nδ (α − β) ≤ 1

2nδ ≤ 1
4n1−δ where the last bound follows

from the aforementioned fact that, for n sufficiently large, nδ ≥ (1− δ) log2(4n). This
concludes the proof of Claim 2. 	


Appendix C: Proof of Claim 3

Proof From (21) (and subsequent arguments) we get pt (i) > pt (i − 1) and from
(14) we get pt (i − 1) > pt (i − 2) > . . . > pt (i − 2n + 1) = pt (i + 1). Therefore,
pt (i) > pt (i + 1) thus proving the upper bound. 	
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