
Constructing Computer Virus Phylogenies

Leslie Ann Goldberg, 1 Paul W. G o l d b e r g ?
Cyn t h i a A. Phi l l ips? and Gregory B. Sorkin 4

I University of Warwick, Coventry CV4 7AL, United Kingdom t
2 Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom s

8 Sandia National Labs, P.O. Box 5800, Albuquerque NM 87185 ~
4 IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights NY 10598

A b s t r a c t . There has been much recent algorithmic work on the problem
of reconstructing the evolutionary history of biological species. Computer
virus specialists are interested in finding the evolutionary history of com-
puter viruses - - a virus is often written using code fragments from one or
more other viruses, which are its immediate ancestors. A phylogeny for
a collection of computer viruses is a directed acyclic graph whose nodes
are the viruses and whose edges map ancestors to descendants and sat-
isfy the property that each code fragment is "invented" only once. To
provide a simple explanation for the data, we consider the problem of
constructing such a phylogeny with a minimum number of edges. This
optimization problem is NP-hard, and we present positive and negative
results for associated approximation problems. When tree solutions exist,
they can be constructed and randomly sampled in polynomial time.

1 Introduct ion

There are now several thousand different computer viruses in existence, with
new ones being wri t ten at a rate of 3 to 4 per day. Most of these are based upon
previous ones: someone copies and modifies a virus, or creates a new virus with
subrout ines borrowed f rom one or more a n c e s t o r s .

For mos t purposes, a compute r virus can be regarded as a fixed str ing of
bytes, each byte consist ing of eight bits. If one virus is based on another , long
substr ings of the ancestor, say 20 bytes or more, will appear in the descendant .
Using probabi l i ty models similar to those employed in speech recognit ion it is
possible to es t imate the probabi l i ty tha t a given byte str ing occurs in several
viruses by chance [14]; if the probabi l i ty is low but the str ing does occur in several

t Par t of this work was performed at Sandia National Laboratories and was supported
by the U.S. Department of Energy under contract DE-AC04-76AL85000. Part of this
work was supported by the ESPRIT Basic Research Action Programme of the EC
under contract 7141 (project ALCOM-IT).

w Part of this work was performed at Sandia National Laboratories and was supported
by the U.S. Department of Energy under contract DE-AC04-76AL85000.
This work was performed under U.S. Department of Energy contract DE-AC04-
76AL85000.

254

viruses then we conclude that it was written for one virus, and copied into the
others.

We wish to infer an evolutionary or phylogenetic history for a set of computer
viruses. As most phylogenetic literature to date has been based upon biologi-
cal evolution, we adopt that terminology. Thus, the viruses in the input set
8 --" {sl, ..., s,~} are called species . The species are defined by a set of b i n a r y
characters C - - { c l , ck}. A binary character is a function c : 8 --* {0, 1}.
(In general, the range of a character can be arbitrary, but the presence or ab-
sence of byte strings can be modeled with binary characters.) Each character c
corresponds to a byte string, with e(s) = 1 if the string occurs in species s and
c(s) = 0 otherwise. If c(s) = 1, we say that species s has or contains character c.
In analogy with terminology from the logic synthesis area of computer circuit
design, we define the on - se t Sc of a character c to be the set of all species on
which its value is 1: Sc = {s e 8 [c(s) = 1). A character c is t r i v i a l if ISc] < 1.
A trivial character can be ignored since it imposes no constraints on possible
solutions.

We assume that the input species are all related: that the bipartite graph
joining species to characters that have them is connected. Otherwise, the con-
nected components can be considered independently.

We also assume that each code fragment is invented only once. For sufficiently
long fragments this is justified by differences in programming style, the many
possible orderings of unconstrained events, etc. We model the evolution of a
set of viral species with a directed graph in which an edge si---*sj indicates that
species si is an ancestor of species sj (i.e. s i inherited some character(s) from si) .

Defini t ion 1. A p h y l o D A G for input species 8 and characters C is a directed
acyclic graph (DAG) with node set 8. For each character c E C, the subgraph
induced by on-set Sc is connected, in the sense that from a single a r c h e t y p e
ac 6 Sc there is a directed path, within So, to every other s E So.

The phyloDAG model allows the possibility that a species may be derived
from several ancestors rather than from a single ancestor. We will explain the
motivation behind this new degree of freedom right after some brief comments
on the mathematics of the model.

A phyloDAG exists for any inputs (S, C): for any chronology ascribed to the
species (i.e. any total ordering of the species set), the directed graph with edges
from each species to all later species is a phyloDAG. However, every pair of
species is related by an edge in this graph. Since most virus species presumably
have few ancestors, we seek a M i n i m u m P h y l o D A G , one with a minimum
number of directed edges.

We assume that the input is given in the following compact format: for each
species s G S, we are given a list of the characters c for which c(s) -- 1.

Def in l t lon2 . The input length e : e(8, C) = ~ c ~ o [Sc[�9 The size is n : 18[.
The number of characters is k : IC I.

255

Our approach to the evolution problem corresponds to a restricted model
of evolution: one in which we are not allowed to introduce hypothetical species
outside of the input set. This model is well-suited to computer viruses, where
because of good world-wide communications, sharing of data between anti-virus
organizations, and the brief history involved, there are likely to be very few gaps
in our viral database w a situation quite different from that in biology. Previous
work on restricted models of evolution will be discussed in Section 1.4. For our
model, if additional species could be introduced into a phyloDAG, there would
always be a trivial sparse phyloDAG: a star graph with the center an added
species s such that c(s) = I for all c E C.

1.1 P r o b l e m motivat ion

Sorkin's study of computer virus evolution [17] motivated our study of the phy-
loDAG model. There are about 6,000 computer virus species in existence, of
which many are simple modifications of predecessors. The Jerusalem, Vienna,
and Blackjack virus families, for instance, each contain from scores to hundreds
of related species. The author of a computer virus can equally well incorporate
computer code (instructions) from several existing viruses, which is how multi-
ple ancestry arises. Experts disagree as to the frequency with which this occurs,
and one of our eventual aims is to resolve this issue. (Another form of multiple
ancestry is well established, but not addressed here. It comes from virus "toolk-
its": collections of mix-and-match software components from which viruses can
be assembled.)

The evolutionary classification of computer viruses can be helpful in several
ways. First, a taxonomy provides a natural organization for the sizeable libraries
of computer viruses that anti-virus organizations must maintain. Second, new
viruses must be analyzed to tailor counter-measures, in a process that can be
part ly but not completely automated. If a new virus is related to one that has
previously been analyzed, the analysis may be simplified.

The most practical application of evolutionary information may be in increas-
ing the efficiency of virus scanners. In a slightly simplified mathematical view,
each of the 6,000 computer virus species is represented as a byte string, typically
2,000 bytes long. When anti-virus programs "scan" for infected files (and anti-
virus programs do more than just this) they use a "signature" of about 20 bytes
to stand in for each virus: the signature must always occur in the corresponding
virus, and must never occur in legitimate computer code. If one signature can be
used for several viruses, savings (in space more than time) can be achieved: the
scanner requires only a minimum-sized set of signatures which together "cover"
all the computer virus species.

In fact, the characters we will use to form a basis for computer virus phyloge-
nies are such shared signatures. They are defined as, say, all strings of 20 bytes
or more that occur in at least 2 viruses but in no legitimate programs. They can
be found, using linear space and time, by straightforward application of suffix
trees [7]. All viral and legitimate strings are concatenated together, separated
by a special character, and a suffix tree is constructed. Its leaves represent all

256

suffixes of the input string, and its internal nodes -- viewed as paths from root
part-way to leaf -- denote prefixes of suffixes, which is to say substrings of the
input string. Depth-first search can be used to propagate, from leaves to root,
the number of times each substring appears, or in fact the number of times it
appears in viruses and (separately) in legitimate strings.

1.2 Biological application

Beyond the computer virus realm for which it was conceived, the phyloDAG
is also a plausible model for evolution of bacterial populations. Bacteria repro-
duce through simple cell division. A single cell divides into two daughter cells
which each receive an exact copy of the parent cell's genetic information (other
than mutations that occur in transcription). However, there are at least three
known methods whereby bacteria of different populations can exchange genetic
information: transformation, transduction, and conjugation [12].

In transformation, a bacterium transports exogenous (outside the cell) DNA
into the cell, where it can become incorporated into the bacterium's DNA. The
exogenous DNA can come from another bacterium that has lysed (broken apart)
and released its DNA into the medium. Only certain types of bacteria can do
this and only under certain circumstances; some bacteria only bring in DNA
that is quite similar to their own, while others will bring in any DNA, but will
incorporate it only if it is suitably similar.

Transduction involves the transfer of genes from one bacterium to another via
a bacteriophage (a virus that infects bacteria). Normally a virus infects a cell by
binding to the cell and injecting its DNA. The virus then takes over the cell and
forces it to make many more viruses. The infected cell then lyses (breaks apart),
releasing the new virus particles. There are two mechanisms whereby viruses
transmit genetic information. The first is generalized transduction: sometimes
when the bacterial cell is producing new viruses, the viral package is filled with
DNA from the host bacterium rather than the viral DNA. The process is random
and so any piece of DNA can be packaged this way. When this "virus" is released,
it can "infect" a cell by injecting its contents, but these contents are just bacterial
DNA. This DNA will not kill the cell, and can become incorporated into the new
host's DNA. The second mechanism is specialized transduction via lysogenic
viruses. These viruses, upon infecting a bacterium, insert their DNA into the
host DNA at a particular spot and coexist. When given the proper stimuli, the
viral DNA is excised from the host DNA to carry out the normal infection cycle.
Sometimes this excision isn't done correctly, and pieces of the host DNA are
excised as well. They are then packaged into the new viruses and transmitted to
new hosts. Only genes near the attachment sites are transmitted this way, but
the transmission is very efficient.

Conjugation involves the direct contact of two bacteria and the transmission
of plasmids from one (donor) to the other (recipient). Plasmids are rings of DNA
that are much smaller than the bacterial genome. They exist in the bacterial cell
independently from the genome and are capable of replicating when the cell di-
vides. Conjugative plasmids encode the proteins, etc, necessary for conjugation,

257

thus engineering their own transmission. Conjugative plasmids can bring other
genes with them into new cells, and can also allow the transmission of arbi-
t rary plasmids. These plasmids can become incorporated into the cell DNA; for
example, the genetic material of E. Cols F plasmid, which allows sexual conju-
gation, is incorporated into the host genome at a rate of 10 - s per cell division.
This is an important mechanism, since it is the primary way bacteria transfer
drug resistance.

Since these mechanisms allow arbitrary exchange of genes from one popu-
lation to another, bacterial evolution does not seem to follow the "divergent
evolution" implied by a tree: populations can evolve from multiple sources. Bac-
teria reproduce very rapidly and some regions of their genome mutate frequently.
Therefore, characters based on single-site mutations may not have a single ar-
chetype. However, for genes with sufficiently large mutat ion differences from any
genes seen previously, it is reasonable to assume that as a rule there is unique
evolution, and therefore a unique archetype.

1.3 P a p e r o r g a n i z a t i o n a n d r e s u l t s

We will show in Section 3.3 that the Minimum PhyloDAG problem is "hard":
in polynomial time, it cannot be solved exactly unless P = NP, nor can
it approximated to within better than a logarithmic factor unless NP C_

DTIME(n~176 In fact, we know of no way to approximate Minimum Phy-
loDAG to within a logarithmic factor: Section 3.3 shows that various natural
greedy strategies (including randomized ones) do not even approximate within
a factor of on.

Because of the difficulty of the phyloDAG problem, we consider two variants.
In the first variant, we require that each species have just one ancestor, so that
the phyloDAG is an arborescence (a tree with edges directed away from a root).
If the arborescence's vertices are labeled with the values of one character, the
postulate that no character is "invented" twice corresponds to an assertion that
there is at most one directed edge labeled 0--,1. Thus the sequence of labels along
any source-to-leaf path is described by the regular expression 0"1"0", that is,
zero or more O's, followed by zero or more l's, and finally zero or more O's again.
In Section 2 we define a 0 - 1 - 0 p h y l o g e n y to be an arborescent phyloDAG's un-
derlying undirected tree. Species $ and characters C may be consistent with zero,
one, or multiple 0-1-0 phylogenies. We give two polynomial-time algorithms to
randomly sample 0-1-0 phylogenies if any exist.

The first a t o m i c - s e t algorithm (Section 2.1) computes a concise da ta struc-
ture tha t represents all 0-1-0 phylogenies for the input data and can be used to
select a phylogeny uniformly at random in time O(nt). When no solution exists
the algori thm returns a w i t n e s s set: a concise indication of why there can be
no phylogenetic tree.

The second m i n i m u m s p a n n i n g t r e e algorithm (Section 2.2) characterizes
a 0-1-0 phylogeny of the input species set as a minimum spanning tree (MST)
of a particular undirected edge-weighted graph. With it, 0-1-0 phylogenies can
be constructed in deterministic time O(t n + n 2 log n) or (with high probability)

258

in randomized time O(ln) , and sampled uniformly at random in t ime O(s n +
M(n)) , where M(n) is the t ime needed to multiply two n x n matrices. It does
not produce a concise witness when there is no 0-1-0 phylogeny.

The second variant of phyloDAG is simply its undirected analogue. A p h y -
l o g r a p h for species S and characters C is an undirected graph with vertex set
S, with the property that the subgraph induced by the on-set of each character
c E C is connected. The M i n i m u m P h y l o g r a p h problem is find a phylograph
with the minimum number of edges. Theorem 17 shows that it is hard to approx-
imate Minimum Phylograph within a factor less than ~ ln t , while Theorem 18
shows that approximating it within a factor of In l is easy.

The model of computation used in this paper is the uniform-cost random-
access machine.

1.4 R e l a t e d work

Previous work in phylogeny has focused on constructing phylogenetic trees. How-
ever, the problem of modeling virus evolution is more suited to phylographs and
phyloDAGs, in which undirected cycles may arise. As far as we know, ours is the
first phylogenetic work that allows cycles.

There is substantial literature on character-based phylogenies where each
subgraph induced by all species sharing a state for a character is required to
be connected. This problem is called the p e r f e c t p h y l o g e n y problem, and is
NP-complete for the "unrestricted" case (where putative species may be added)
with general characters [3, 18]. For the unrestricted case with binary characters
Gusfield gives an elegant O(nk) algorithm [11], and for the restricted case with
general characters Goldberg et al. [10] give an algorithm analogous to the MST
algorithm of Section 2.2.

Our 0-1-0 phylogeny problem is similar to a restricted version of the g e n e r a l
character c o m p a t i b i l i t y problem of Benham et al. [2]. There a character c
maps each species s to a subset c(s) C {0, 1, 2} rather than to a single value; the
leaves of the tree are the species 3; for each c and s a single value from c(s) is
chosen as a label; and the goal is to find a rooted perfect phylogeny in which
the sequence of labels along any root-to-leaf path is of the form 0 ---* 1 --* 2. The
problem is NP-hard [2].

2 C o m p u t i n g a 0 - 1 - 0 p h y l o g e n y

The case in which each species has only one ancestor is of special interest, and
corresponds to cases in which the phyloDAG is an arborescence - - a tree with
all edges directed away from some root. There is a straightforward n:l cor-
respondence between arborescences and undirected trees: the undirected graph
underlying an arborescence is a tree; and each of the n possible rootings of a tree
is an arborescence, s Therefore we concentrate on undirected 0-1-0 phylogenies:

s There exist phyloDAGs whose underlying graphs are trees but which are not arbores-
cences. An example, for species with characters (a), (ab), and (b), is (a) --, (ab) ~ (b).

259

Def in i t lon3 . An (undirected) 0 - 1 - 0 p h y l o g e n y , or p h y l o g e n e t i c t r e e , is a
tree T on species 5 with characters C such that each on-set Sc induces a sub-tree
of T.

If T is a phyloDAG whose underlying graph is a tree T, then T is a 0-
1-0 phylogeny as defined above: as each on-set Sc was connected in T , it is
connected in T. Also, if T is a 0-1-0 phylogeny, any arborescence based on T
is a phyloDAG: the archetype of any character c is the species in Sc closest
to the root. In this section, we will show how to generate 0-1-0 phylogenies,
and how to generate them uniformly at random. Given a uniformly random
phylogenetic tree, choosing a root uniformly at random generates a uniformly
random arborescent phyloDAG.

Because an arborescence can be rooted anywhere, a 0-1-0 phylogeny alone
does not determine an evolutionary chronology, but it can be useful in com-
bination with external information. For example if the first species' identity is
known, the rest of the evolutionary history follows.

2.1 T h e a t o m i c - s e t a l g o r i t h m for c o m p u t i n g 0 - 1 - 0 p h y l o g e n i e s

As described in the Introduction, our atomic-set algorithm produces a data struc-
ture, an AS-tree, which concisely represents all 0-1-0 phylogenies for species S
and characters C, and can be used to generate an arbitrary solution or a solution
chosen uniformly at random.

Generalizing the definition of the on-set of a character, define the on-set of
a collection of characters to be the species having all those characters: Sc =

D e f i n i t i o n 4 . Let C C_ C be a maximal (not necessarily mazimum) set of char-
acters for which ISOI > 2. Then A = S o is an a t o m i c set with d e f i n i n g

c h a r a c t e r s C.

L e m m a 5. For any atomic set A and character c, either Sc D A (c is a defining
character), or ISc n A I -- 1 (c is a n o n - d e f i n l n g character o w n e d by the sole
species s E S c n A), or Sc N A = 0 (c is an a v o i d i n g character).

Proof. The only logical possibility missing is that]S~ M A] >_ 2 but S~ n A # A,
which would contradict the maximality of A's set of defining characters.

An atomic set can be constructed in time O(kn): start with 6' = 0 (so
S@ - 8), sweep through all characters c E C in turn, reject c if [SoAS~] _< 1, but
otherwise add c to the defining set, so C := CU{c). An O(g)-time implementation
of this algorithm is described in the Appendix.

But since such phyloDAGs imply multiple ancestors for some species, they are not
especially interesting.

260

L e m m a 6. Suppose all species in $ are connected, i.e. the bipartite graph joining
characters to species that have them is connected. Then if sx, s2 E S have no
characters in common, no phylogeny contains the edge (sx, sz)~

Proof. Suppose a phylogenetic tree T contained (sx, s2), and delete (sx, s2) to
create a forest T', consisting of two trees. For any character c and any s, s' E S~,
T has a path s , . . . , s' within S~. The path does not include the edge (sl, s2),
since not both sx and s2 can be in S~, so T' contains the same path. Thus
in T' there is a path from any species having character c to any other. Given
the connectedness of the species-character graph, a series of such paths joins
any species in ,.q to any other, contradicting the fact that T' is not a connected
graph.

L e m m a 7. I f A is an atomic set, then in any 0-1-0 phylogeny, A's induced
subgraph is a subtree.

Proof. In a 0-1-0 phylogenetic tree T, the on-set of any character c G C induces
a connected subgraph, therefore a subtree. A is the intersection of the subtrees
corresponding to A's defining characters, and the intersection of subtrees is itself
a subtree.

L e m m a S . For any phylogeny T and atomic set A, if the subtree TA is replaced
by any other tree T~ on the set A, the resultant overall tree T' is also a phylogeny.

Proof. For any character c and species s, s' G Sr consider the (unique) path
s , . . . , s' in T. If Sc N A = 0, the path never enters A, so it is unaffected (i.e.
the identical path exists in T'). If ISc N A I = 1, the path touches at most one
vertex in A, hence no edges within A, and is unaffected. Otherwise (by Lemma 5)
Sc D A, and if the path through T included any sub-paths through TA (in
fact there can be at most one), those sections could be replaced by sub-paths
through T~ (and thus still within So). So connectedness of all characters in T
implies the same for T', and T' is a phylogeny.

L e m m a 9. For any phylogeny T and atomic set A, i ra is co l l apsed - - replaced
by a single species "a n having all defining and non-defining characters of A
(but not its avoiding characters), and the subtree TA is contracted to the single
species a, then the resultant overall tree T' is a phylogeny for S' = (S \ A) U {a}.

Proof. Same as previous.

L e m m a l 0 . I f (S,C) has an atomic set A, with species sl,s2 E A owning non-
defining characters el, c2 respectively, and if Sc, N Sc2 • @, then there is no
0-1-0 phylogeny for S.

Proof. Suppose there is a phylogeny T for S. Root T at any s3 G Sc~ N S~2,
and let s= be the lowest common ancestor of gl and s2. Then the path (all
paths in a tree are unique) from sl to s2 passes through sz; the path from s3
to sl passes through s| (since s~ is an ancestor of sl); and the path from g3

261

to s2 passes through s| (since s= is an ancestor of s2). By Lemma 7, A induces
a subtree, so sx, s2 G A implies that the s l - - s2 path is contained in A, and
in particular s| G A. Similarly $1, s 3 E Sct implies s= G Sr and s2,ss G Sc2
implies s| E Sr Therefore s= G ANSc.nSr But cl and c2 are nondefining
characters with distinct owners, so AnSc,nSc2 = ~, a contradiction.

If the hypotheses of Lemma 10 are satisfied, we say that the atomic set A,
characters cl,c2, and species sl , s2 provide a w i t n e s s attesting to the non-
existence of any 0-1-0 phylogenetic tree.

L e m m a 1 1 . Let A be an atomic set, and suppose that no sx,s2,cl, c2 satisfy the
conditions of Lemma 10. As before, "collapse" A to the single species a having all
defining and non-defining characters of a . ff S' = (S \ A) U { a } has a phulogenu,
so does ,9.

Proof. Let T ' be a phylogeny for 8 ' . Delete a and its incident edges, and replace
them with the set A and any tree on A. Additionally, replace each edge (s, a)
with a single edge as follows.

By Lemma 6, s and a must share some character(s), which (since a has
them) must be defining or nondefining characters of A. If s and a share any
non-defining characters, those characters must have a single owner s' (or else A,
these characters, and their owners are a negative witness), in which case add
the edge (s, s'). Otherwise, s and a only share defining characters of A, in which
case add any edge (s, s') with s' G A.

Replacement of each edge (s, a) with an edge (s, s'), s' G A, means that the
tree components created by a's deletion are all connected to the tree on A, creat-
ing a single tree T. Using arguments similar to those in Lemma 8, all characters
induce connected components in T as they did in T ' .

In fact, the constructive nature of the proof of Lemma 11 immediately sug-
gests the a t o m l c - s e t a l g o r i t h m . Starting from 80 := S, repeatedly, find an
atomic set Ai and check for a witness as per Lemma 10. If one is found, termi-
nate negatively. Otherwise, collapse Ai to a single new species ai, and re-define
the species set to be ,-qi := (S~-1 \ A~) U {ai}. Since each atomic set contains at
least two species, this reduces the number of species, and needs to be performed
at most n - 1 times.

We construct the AS-tree during this contraction phase. The leaves of the
AS-tree are the species in S, and all elements of any set Ai have ai as their
parent. Equivalently, the final ai is the root of the AS-tree, and each aj has all
species in Aj as children. This tree concisely represents all possible phylogenies.

Now, starting at the root of the AS-tree, we expand any node ai whose parent
is already expanded using the method suggested by the proof of Lemma 11:
Replace a/ with Ai and form any tree T/ on Ai. For each old edge (s, ai), if s
has a nondefining character c of Ai, add edge (s, ownera,(c)); otherwise s must
have only defining characters, in which case add any edge (s, s'), s' GAi .

T h e o r e m 12. The algorithm above produces a phylogeny for 8, C if one ezists,
and otherwise produces a negative witness. If ~he algorithm is implemented to

262

choose trees Ti uniformly at random, and to choose s' G Ai uniformly at ran-
dom for defining-character edges (s, sl), then it produces a uniformly random
undirected 0-1-0 phylogeny.

Proof. The first assertion follows directly from the preceding sequence of lemmas.
If we detect a negative witness, we correctly terminate negatively by Lemma 10
coupled with Lemmag. Otherwise, by Lemmas 9 and 11, we can collapse the
atomic set, solve the problem on the new set, and "expand" the collapsed set to
a 0-1-0 phylogeny. The choices made in the expansion phase are independent
and lead to different phylogenies. The uniform generation of phylogenies follows
from this one-to-one correspondence between phylogenies, and choices in the
algorithm.

Since we can generate a random 0-1-0 phylogeny from the AS-tree, it con-
cisely represents all possible 0-1-0 phylogenies.

The atomic-set algorithm produces an AS-tree in time O(nl): in each of the
O(n) collapsing iterations, we find an atomic set, check for a witness, and collapse
the set, each such operation taking time O(l). (See the Appendix.)

The expansion can be completed in time O(nl). There are O(n) expansions.
To expand node a~, we can produce a random tree on the set Ai in time O([Ai[),
since a labeled tree on r nodes can be selected uniformly at random in time O(r).
(See, for example, [15].) If we store pointers to owners of non-defining characters
when constructing the AS-tree, we can connect this tree to its neighbors in time
o(t).

2.2 The M i n i m u m Spanning Tree a lgo r i thm

In this section we give a second algorithm for computing 0-1-0 phylogenies. It is
very simple, and is based on the observation that 0-1-0 phylogenies for species S
and characters C correspond to minimum-weight spanning trees (MSTs) of a
particular undirected edge-weighted graph G(S, C). (This observation was also
used in [10] to obtain an algorithm finding restricted perfect phylogenies.)

The graph G(S,C) is a complete graph on S, with edge weights w(sl, s2) :
k - I{c E C I c(sl) = c(s2) = 1}]. It can be constructed in O(s time.

T h e o r e m 13. 0-1-0 phylogenies for (S, C) are spanning trees of G(S, C) with
weight nk - g. Furthermore, G(S, C) has no spanning trees of smaller weight.

Proof. Every spanning tree of G(S) has weight at least nk - s since the con-
tribution of each character c to the total weight is at least (n - 1) - (ISc]- 1).
Spanning trees of G(S) with weight nk - s correspond to trees in which each
on-set Sc is connected (see [10]).

Because of this correspondence, phylogenies can be constructed (or randomly
sampled) by established algorithms for constructing (or randomly sampling)
MSTs. Prim's algorithm[16, 9] constructs an MST of G in O(mlogm) time,
where m is the number of edges inG, and m = (i) for G : G(S,C). I r a

263

faster algorithm is required, Karger, Klein and Tarjan's randomized algorithm
constructs an MST, with high probability, in O(m) time [13]. (Their model of
computation is a unit-cost random-access machine with the restriction that the
only operations allowed on edge weights are binary comparisons. See also the
other algorithms discussed in [13].)

Given an unweighted n-vertex graph, an algorithm of Colbourn, Myrvold
and Neufeld [5] selects a spanning tree uniformly at random in O(M(n)) time. ~
(Here M(n) = O(n 2"a7~ is the time needed to multiply two n x n matrices [6].)
Colbourn and Jerrum [4] note that the algorithm can be used to select an MST of
a weighted graph G uniformly at random in O(M(n)) time: construct a random
spanning tree on each connected component of the subgraph of G induced by the
edges of minimum weight, put the spanning trees' edges into the final solution,
contract the spanning trees, and repeat.

Compared with the atomic-set algorithm, the MST approach has the advan-
tage of using an unusually widely understood and simple paradigm, a benefit
echoed in the availability and efficiency of computer programs. However, it does
not supply a structural representation of all possible phylogenies, nor a concise
witness when no phylogeny exists.

3 P h y l o g r a p h s a n d p h y l o D A G s

Having considered the problem of constructing phylogenetic trees, we now turn
to phylogenies that are not trees. In particular, we consider the phylograph and
phyloDAG problems that were defined in the Introduction. In Section 3.1 we
prove that it is hard to approximate the optimal phylograph within better than
a logarithmic factor, and in Section 3.2 that the natural greedy algorithm gives
an approximation within such a factor. In Section 3.3 we show both that it is
hard to approximate the optimal phyloDAG within better than a logarithmic
factor, and that in this case the natural greedy algorithm can perform very badly,
even on average.

3.1 Hardness of approx ima t ion of phy lograph

Hardness results for Minimum Phylograph follow from those known for Mini-
m u m Set Cover and problems equivalent to it in terms of approximation ratio,
notably M i n i m u m Domina t ing Set.

De f in i t i on l4 . The ne ighborhood of a vertex v of a graph G = (V, E) is the
set N(v) = {v} U {w: (v, w) C E). A domina t i ng set of G is a set of vertices
D C V whose neighborhoods cover the graph: Ud~D N(d) = V.

0 Another randomized algorithm, due to Wilson [19], has an expected running time
equal to the mean hitting time of the graph; this is often smaller than M(~), but
can be larger.

264

It is well known and easily proved that the natural greedy algorithm for
Minimum Dominating Set (or the related problems) is a In n approximation al-
gorithm: for a graph G = (V, E), the dominating set produced by the greedy
algorithm is at most In IV] times larger than the minimum dominating set. In [8],
Feige shows that this is a threshold:

T h e o r e m 15 Feige. Let c be a constant in the range 0 < c < 1. Unless NP C
DTIME(n~176176 there is no polynomial-time algorithm that takes as input
a graph G and outputs a dominating set D of G such that IDI is within a factor
of cln [V[of the minimum possible value.

Feige's is the latest in (and contains a good review of) a sequence of works on
this problem. Another which is relevant here, because of its weaker hypothesis,
is that of Bellare et al. [1]:

T h e o r e m 16 B G L R . Unless P : NP, there is no polynomial-time algorithm
�9 that approzimates Minimum Dominating Set to within any constant factor.

From these results we can show that Minimum Phylograph cannot be approx-
imated to within any constant factor unless P = NP, and cannot be approxi-
mated to better than a logarithmic factor unless NP C_ DTIME(n~176176

T h e o r e m 17. Unless P = NP, for any constant c > O, there is no polynomial-
time algorithm that takes as input species S and characters C and outputs a
phylograph G = (S, E) such that IEI is within a factor of c of the minimum
possible value.

Similarly, for any c < 1/4, unless NP _C DTIME(n~176176 there is no
polynomial-time algorithm approzimatin 9 Minimum Phylograph within a factor
c ln t (where t is the input length defined earlier).

Proof. We use an approximation-preserving reduction from Minimum Dominat-
ing Set to Minimum Phylograph. Given an input G = (V, Ea) with IVl = ~,
construct an instance P to Minimum Phylograph as follows: The species set is
S = V U X where X is a set of u 3 "auxiliary vertices". For each pair of vertices
{vl, vz} E V (2), define a character with on-set {vx, vz}. Thus any phylograph for
P contains each edge in the complete graph on V. In addition, for each pair of
vertices (v, z) E V x X we define a character with on-set {z} U N(v) .

If Po = (S, E0) is an optimal phylograph for P, and Do is a minimum domi-
nating set for G, then IE01 = (~)+IX] IDol. To see this, observe that the complete
graph on V added to X x Do is a phylograph for P, so I~01 _< (~) + IXl IDol. On
the other hand, every phylograph for P has at least (~) edges connecting species
in V and has at least IDol edges adjacent to each z E X.

Suppose we had an algorithm A that could produce a phylograph (S, EA) for
P with IE~tl _< cln(t)IE01 edges. By the construction of P, some vertex z E X is
connected to a dominating set D for G with IDI < IEAI/IXI <_ cln(l) lEoI / IX I
edges. Since IEol = (~) + IXI IDol, we have

IDI < cln(t) (~) + IX[IDol
- I x l

265

Thus (since IXl = v 3 and ID01 > 1), IDI < c(1 + o(1))InCe)lDol. Now note that
l = v(v - 1) + 2v[X[+ 2[Ea[IX[= O(vh). Thus, [D[_< 5c(1 + o(1))ln(v)[Do[,
w h i c h is contrary to Theorem 15 if c < 1/5, unless NP C_ DTIME(n~176176
Using IX] = v 2+' instead of v 3 gives the constant 1/4.

Similarly, a constant-approximation algorithm is forbidden by Theorem 16,
unless P = NP.

3.2 G r e e d y a lgo r i t hm for phy lograph

There is a natural greedy algorithm for the Minimum Phylograph problem. In
a phylograph, every character's induced subgraph consists of a single connected
component, so the greedy algorithm "grows" a solution by iteratively adding an
edge that maximally reduces the number of connected components.

The same notation needed to define the algorithm more precisely can be used
in the proof of its quality. Given species $ and characters C, and a set of edges
E C 8(2) define the "cost" of E to be

S(E) = ~ components(So)- IcI,
e6C

where components(So) denotes the number of connected components in the sub-
graph of (8, E) induced by the on-set of c. Thus/(0) = ~ce c]S~I-[el = l - [C[,
and if E is a phylograph, f (E) = ~r 1 - [C[= 0.

For any edge set E and any edge e, let AE(e) = / (E) - / (E U {e}) be
the amount by which e decreases the cost f . The greedy algorithm begins with
each species an isolated vertex, and iteratively adds the edge which maximally
decreases the cost, until the cost is 0. In pseudocode:

Let i := 0 and Ea(O) := 0
While f (Ea(i)) > 0 do
begin

Let i := i + 1
Let e be an edge maximizing AEo(i_l)(e)
Let Ea(i) := Ea(i -- 1) U {e}

end
Return the set EG = Ea(i)

T h e o r e m 18. Suppose that for species S and characters C, o/total input length
l, the minimum phylograph {e(1), . . . ,e(r)} has cardinality r. Then the greedy
algorithm produces a phylograph Ea of size [EG] < r ln (s IV[).

Proof. If we have any partial solution, adding in all r edges of a minimum phy-
lograph will certainly yield a phylograph. Since r more edges are enough to
complete the job, some edge (one of these, even) must take care of at least 1/rth
of the cost. If the initial cost was f(r and the greedy algorithm reduces it by

266

1 - 1 / r at each step, after r In f(O) steps the cost must be reduced below 1, and
the algorithm must have terminatedJ ~

More formally, for any edge set E(O) define a series of sets E(O) C_... C_ E(r) ,
where E(i) = E(0)U{e(1) , . . . , e(i)) and the edges e(i) are those of the minimum
phylograph. Note that E(r) is a phylograph, since it contains the minimum
phylograph. Because components (with respect to any character) only become
more connected as i increases, for any e, if i < j then z~g(~)(e) >_ AE0)(e). Thus
for any starting set E0,

r

r . max A~(0)(e) > Z A~(0)(e(i))
eES(2) i--1

T

>

,----1

= [/(ECi - 1)) - / (E C i))]
i = l

= f(E(O)) - f(E(r))
= f(E(O)).

Comparing the first and last quantities, we conclude that there always exists an
edge e for which _ > / (E o) / , .

Therefore the greedy algorithm reduces the cost by a factor 1 - 1/r at each
step. Since the initial cost is t - ICI, the cost after , ln(s - ICI) steps of the

greedy algorithm is at most (1 - l / r) ~ ln(s163 ICI) < 1. The greedy algorithm
therefore terminates within r l n (l - ICI) steps, producing a phylograph of the
s a l ' f l e s i l l e .

This complements the result of Theorem 17: Minimum Phylograph is ap-
parently hard to approximate to better than a factor of �88 In s but easy to ap-
proximate to a factor ln(l - IC[) _< lnL It would be of some interest to derive
better bounds on the constant c, �88 < c < 1, for which (c lng)-approximability is
possible.

3.3 P h y l o D A G s

We begin by observing that a phyloDAG cannot always be obtained by directing
the edges of a phylograph. Consider four species with sl defined by characters
(b, c, d), s2 by (a, c, d), ss by (a, b, d), and s4 by Ca, b, c). The cycle sl , s2, s3, s4, sl
is a 4-edge phylograph, but there is no way to direct the edges of the cycle to
obtain a phyloDAG: any acyclic orientation will create two archetypes for some
character's on-set.

We now prove the following theorem, which is analogous to Theorem 17.

10 The same approach will not work for phyloDAG. Since directed cycles are forbidden,
chosen edges constrain the addition of future ones, and even if there was a solution
of size r initially, there may not be once some edges have been chosen sub-optimally.

267

T h e o r e m 19. Unless P = NP, for any constant c > O, there is no polynomial-
time algorithm that takes as input species S and characters C and outputs a
phyloDAG G = (S, E) such that IEI is within a factor of c of the minimum
possible ~alue.

Similarly, for any c < 1/4, unless NP C DTIME(n~176176 there is no
polynomial-time algorithm approzimatin9 within a factor c lu s

Proof. The proof uses the same reduction as the proof of Theorem 17. Let E0
be the edge set in an opt imal phyloDAG for P. We must show tha t IEol = (~) +
IXI IDol. The direction tha t differs from the proof of Theorem 17 is showing tha t
given a dominat ing set Do, we can construct a phyloDAG of si~e (~)+ lXl ID0 [. To
do so, first construct a phylograph (as in the proof of Theorem 17). Then direct
edges having both end-points in V according to a ~otal order on ~he vertices
in V, and direct all remaining edges from vertices in V toward vertices in X.
The resulting digraph has no directed cycles and each character has a unique
archetype. Therefore, it is a phyloDAG. The rest of the proof is identical to that
of Theorem 17.

As already noted, the natural greedy algorithm does not work well for phy_
loDAGs: the phyloDAG problem seems to be more difficult because the pro-
hibition of cycles means that it is possible for the greedy algori thm to add a
"bad" edge which prevents other "good" edges from being added later. In the
remainder of this section, we give an example of a species set for which various
natural greedy approaches for constructing a phyloDAG lead to an 12(n) ratio
between the size (number of edges) of the constructed phyloDAG and the size
of the opt imal phyloDAG. A randomized strategy has an l-2(n) expected ratio
and has a ratio of l'2(n/log n) with high probability.

We construct a species set as follows. There are n species sl , . . . , sn, and two
distinguished species s I and s". Now we add

- 2n characters shared by s t and s ' ;
- 2 characters shared by s' and si, for i = 1, ..., n
- 1 character shared by s ' , si and sj, for 1 < i, j < n, i ~ j .

Duplicating characters forces the order in which a greedy algori thm connects
species. We hide this duplication from an algori thm that checks for it by adding
a set Sa of d u m m y species, where Igal = [log(4n)l. There are 2 [l~ > an
distinct subsets of Sa. We add one such subset to each of the 4n nonunique
characters. 11 An opt imal solution has O(n) edges, consisting of an edge f rom s /
to s ' , edges f rom s ~ and s" to each of the si, and edges from S I to each species
in Sd.

21 An algorithm may Mso check for domination, where sd contains a subset of the
characters contained by s. We can remove the dominated species sa from the instance
and later direct an edge from s to sa in the phylogeny for the reduced set. To avoid
this situation here, we add a character {s~(i), s~(i + 1)} for i = 1 , . . . , [4nq, which
chains the dummies together. This does not change the asymptotic size of the optimal
solution.

268

A phyloDAG has exactly one archetype for each character. A greedy algo-
r i thm begins with each species an isolated node, thus an archetype for each
character it contains. A natural edge to add in a greedy fashion is one that max-
imally reduces the number of archetypes (over all characters). Of course, we may
not introduce directed cycles.

There may be times where we can choose the direction of the edge to be
introduced (for example at the first iteration) and we show that the algorithm
performs badly for any of the following strategies:

- The direction is chosen arbitrarily.
- The direction is chosen uniformly at random. (The expected performance of

the aigorithm is bad for this example, and the example can be modified so
that the bad performance occurs with high probability.)

- The edge is directed out from the node with the larger number of characters.
(This a natural way of breaking ties, since we expect ancestral nodes to have
many characters.)

A greedy algorithm starts by putting an edge between s r and s' , and an edge
between s ~ (or possibly s") and each species in Sd. Then it adds edges between
s ~ and the si. If directions are chosen arbitrarily we may assume that these edges
are from s ~ to s", and from each of the s~ to s ~. Hence it is now impossible to
add edges from s" to any of the si, since they would create directed cycles. This
means that in order to prevent there being two archetypes for a character shared
by s ' , 8 / and sj, species si must be connected to sj by an edge. This results in
(~) edges.

Now consider the variant where the direction of an edge is chosen uniformly at
random whenever it is equally good to direct it either way. With high probability
(i.e. with complement probability that is exponentially small in n), there will be
at least n/4 edges directed from the si's to s ~. If the edge between s ~ and s"
is directed the wrong way (i.e. from s ~ to s") then these si nodes will have to
be connected in a clique, resulting in a quadratic number of edges. If we now
consider a species set consisting of a log(n) copies of the species set as described
(for a positive constant a) , we see that the optimal solution has O(n log n) nodes
and edges, and with probability at least 1 - n - a , at least one of those copies
will have the edge between s' and s" directed the wrong way, resulting in G(n 2)
edges.

If edges are directed away from nodes with higher numbers of characters,
then the algorithm can be forced to take the "wrong" direction for the edges
by adding dummy characters at the nodes from which we want the edges to be
directed.

A c k n o w l e d g e m e n t s : We are grateful to Phil MacKenzie, Tom Martin,
Baruch Schieber, Madhu Sudan, Luca Trevisan, and David Wilson for useful
discussions, and to Luca for directing us to [8]. We also thank the three anony-
mous reviewers for their helpful comments.

269

4 Appendix

4.1 A n O (~) - t i m e a l g o r i t h m to c o m p u t e an a t o m i c set

We presume that each species is described by a sorted list of the characters it
possesses. From this, construct a description of each character, as a sorted list of
the species possessing it. This can be done in linear time: loop through species
i; loop through characters j on i; add species i to character j ' s list.

Now the basic algorithm is:

Let Ao := 8 (0th atomic set contains all species)
Let D := 0 (set of defining characters is initially empty)
Loop through characters i, and consider the list Si of species having character i

(1) size :---- [A~-I n Si[
(2) If size < 2 then A~ : : Ai-1
(3) If size ~_ 2 then Ai := A~-I n S~, and D : : D U {i}
(4) next i

We now show how to compute the intersection size (step 1) and the intersec-
tion itself (step 3) in linear time. This implemention gives a linear-time algorithm
overall. Let all the sets A be represented doubly, as both a sorted linked list, and
as a binary array of length/r (with 1's for species present in A, O's for species
absent from A).

Computing the size of A A S~ can be done in time ISi[: Over species s E S~,
sum up the binary array elements A[s]. Thus all iterations of step 1, together,
take time of order ~ i [S~[.

Computing A' := AN& can be done in time IAI + [S~ [: The ordered list for A'
is constructed by stepping through the ordered lists for A and S~ in synchrony,
advancing in the list with the smaller current value, and augmenting the list
for A' when the lists for A and Si have the same current value. The binary array
for A' is formed by modifying that of A, which is no longer needed for any other
purpose; the list for A is used to set all l 's in the array back to 0, and then the
list for A ~ is used to set l 's appropriately.

Thus over values i where step 3 is executed, the total time consumed is of
order

IA,-,I + ~ IS, I _< IAol + ~ IA, I + ~ IS, I
i i i i

_< ISl + 2 ~ l S , I,

since the execution of step 3 implies that IA~[_< IS~[. Thus the total time con-
sumed by all steps of the algorithm is at most of order I$1 + ~ IS~I = O(l)~

270

References

I. M. Bellsre, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically
checkable proofs and applications to approximation. In Proceedings of the ~5th
Annual A CM S~tmposium on the Theory of Computing, pages 294-304, 1993.

2. C. Benham, S. Karmas, M. Paterson, and T. Warnow. Hen's teeth and whale's
feet: Generalized characters and their compatibility. Journal of Mathematical Bi-
ology, 2(4):515-525, 1995.

3. H. Bodlaender, M. Fellows, and T. Warnow. Two strikes against perfect phy-
logeny. In Proceedings of the 19th International Colloquium on Automata, Lan-
guages, and Programming, Lecture Notes in Computer Science, pages 273-283.
Springer Verlag, 1992.

4. C. Colbourn and M. Jerrum, 1995. Personal communication.
5. C. Colbourn, W. Myrvold, and E. Neufeld. Two algorithms for unranking arbores-

eences. Journal of Algorithms. To appear.
6. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-

sions. Journal of Symbolic Computation, 9:251-280, 1990.
7. M. Crochemore and W. Rytter. Tezt Algorithms. Oxford University Press, 1994.
8. U. Feige. A threshold of In n for approximating set cover. In Proceedings of the

~Sth Annual ACM Symposium on the Theory of Computing, pages 286-293, 1996.
9. A. Gibbons. Algorithmic Graph Theory. Cambridge University Press, 1985.

10. L. Goldberg, P. Goldberg, C. Phillips, E. Sweedyk, and T. Warnow. Computing
the phylogenetic number to find good evolutionary trees. In Proceedings of the 6th
Symposium on Combinatorial Pattern Matching, July 1995.

11. D. Gusfield. Efficient algorithms for inferring evolutionary trees. Networks, 21:12-
28, 1991.

12. W. Joklik, H. Willett, D. Amos, and C. Wilfert, editors. Zinsser Microbiology.
Appleton & Lunge, Norwalk, Connecticut, 20th edition, 1992.

13. D. Karger, P. Klein, and It. Tarjan. A randomized linear-time algorithm to find
minimum spanning trees. Journal of the Association for Computing Machinery.l,
42(2), 1995.

14. J. Kephsrt and W. Arnold. Automatic extraction of computer virus signatures.
In It. Ford, editor, Proceedings of the 4th Virus Bulletin International Conference,
pages 179-194. Virus Bulletin Ltd; 1994.

15. A. N~jenhuis and H. Will. Combinatorial Algorithms for Computers and Calcula-
tors. Academic Press, 2nd edition, 1978.

16. It. Prim. Shortest connection networks and some generahzations. Bell System
Technical Journal, 36:1389-1401, 1957.

17. G. B. Sorkin. Grouping related computer viruses into families. In Proceedings of
the IBM Security ITS, Oct. 1994.

18. M. Steel. The complexity of reconstructing trees from qualitative characters and
subtrees. Journal of Classification, 9:91-116, 1992.

19. D. Wilson. Generating random spanning trees more quickly than the cover time.
Submitted for publication, 1995.

