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A b s t r a c t .  There has been much recent algorithmic work on the problem 
of reconstructing the evolutionary history of biological species. Computer 
virus specialists are interested in finding the evolutionary history of com- 
puter viruses - -  a virus is often written using code fragments from one or 
more other viruses, which are its immediate ancestors. A phylogeny for 
a collection of computer viruses is a directed acyclic graph whose nodes 
are the viruses and whose edges map ancestors to descendants and sat- 
isfy the property that each code fragment is "invented" only once. To 
provide a simple explanation for the data, we consider the problem of 
constructing such a phylogeny with a minimum number of edges. This 
optimization problem is NP-hard, and we present positive and negative 
results for associated approximation problems. When tree solutions exist, 
they can be constructed and randomly sampled in polynomial time. 

1 Introduct ion 

There  are now several thousand  different computer  viruses in existence, with 
new ones being wri t ten at a rate of 3 to 4 per day. Most of  these are based upon  
previous ones: someone copies and modifies a virus, or creates a new virus with 
subrout ines  borrowed f rom one or more  a n c e s t o r s .  

For mos t  purposes,  a compute r  virus can be regarded as a fixed str ing of  
bytes,  each byte  consist ing of eight bits. If  one virus is based on another ,  long 
substr ings of  the ancestor,  say 20 bytes or more,  will appear  in the descendant .  
Using probabi l i ty  models  similar to those employed in speech recognit ion it is 
possible to es t imate  the probabi l i ty  tha t  a given byte  str ing occurs in several 
viruses by chance [14]; if the probabi l i ty  is low but  the str ing does occur in several 
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viruses then we conclude that it was written for one virus, and copied into the 
others. 

We wish to infer an evolutionary or phylogenetic history for a set of computer  
viruses. As most phylogenetic literature to date has been based upon biologi- 
cal evolution, we adopt that terminology. Thus, the viruses in the input set 
8 --" {sl, ..., s,~} are called species .  The species are defined by a set of b i n a r y  
characters C - - { c l  . . . .  , ck}. A binary character is a function c : 8 --* {0, 1}. 
(In general, the range of a character can be arbitrary, but the presence or ab- 
sence of byte strings can be modeled with binary characters.) Each character c 
corresponds to a byte string, with e(s)  = 1 if the string occurs in species s and 
c(s )  = 0 otherwise. If c(s)  = 1, we say that species s has or contains  character c. 
In analogy with terminology from the logic synthesis area of computer circuit 
design, we define the on - se t  Sc of a character c to be the set of all species on 
which its value is 1: Sc = {s e 8 [ c(s)  = 1). A character c is t r i v i a l  if ISc] < 1. 
A trivial character can be ignored since it imposes no constraints on possible 
solutions. 

We assume that  the input species are all related: that  the bipartite graph 
joining species to characters that have them is connected. Otherwise, the con- 
nected components can be considered independently. 

We also assume that  each code fragment is invented only once. For sufficiently 
long fragments this  is justified by differences in programming style, the many 
possible orderings of unconstrained events, etc. We model the evolution of a 
set of viral species with a directed graph in which an edge si---*sj indicates that  
species si is an ancestor of species sj (i.e. s i inherited some character(s) from si) .  

Defini t ion 1. A p h y l o D A G  for input species 8 and characters C is a directed 
acyclic graph (DAG) with node set 8. For each character c E C, the subgraph 
induced by on-set Sc is connected, in the sense that  from a single a r c h e t y p e  
ac 6 Sc there is a directed path, within So, to every other s E So. 

The phyloDAG model allows the possibility that  a species may be derived 
from several ancestors rather than from a single ancestor. We will explain the 
motivation behind this new degree of freedom right after some brief comments 
on the mathematics of the model. 

A phyloDAG exists for any inputs (S, C): for any chronology ascribed to the 
species (i.e. any total ordering of the species set), the directed graph with edges 
from each species to all later species is a phyloDAG. However, every pair of 
species is related by an edge in this graph. Since most virus species presumably 
have few ancestors, we seek a M i n i m u m  P h y l o D A G ,  one with a minimum 
number of directed edges. 

We assume that  the input is given in the following compact format: for each 
species s G S, we are given a list of the characters c for which c(s) -- 1. 

Def in l t lon2 .  The input length e : e(8, C) = ~ c ~ o  [Sc[ �9 The size is n : 18[. 
The number of characters is k : IC I. 
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Our approach to the evolution problem corresponds to a restricted model 
of evolution: one in which we are not allowed to introduce hypothetical species 
outside of the input set. This model is well-suited to computer viruses, where 
because of good world-wide communications, sharing of data  between anti-virus 
organizations, and the brief history involved, there are likely to be very few gaps 
in our viral database w a situation quite different from that  in biology. Previous 
work on restricted models of evolution will be discussed in Section 1.4. For our 
model, if additional species could be introduced into a phyloDAG, there would 
always be a trivial sparse phyloDAG: a star graph with the center an added 
species s such that  c(s) = I for all c E C. 

1.1 P r o b l e m  motivat ion 

Sorkin's study of computer virus evolution [17] motivated our study of the phy- 
loDAG model. There are about 6,000 computer virus species in existence, of 
which many are simple modifications of predecessors. The Jerusalem, Vienna, 
and Blackjack virus families, for instance, each contain from scores to hundreds 
of related species. The author of a computer virus can equally well incorporate 
computer code (instructions) from several existing viruses, which is how multi- 
ple ancestry arises. Experts disagree as to the frequency with which this occurs, 
and one of our eventual aims is to resolve this issue. (Another form of multiple 
ancestry is well established, but not addressed here. It comes from virus "toolk- 
its": collections of mix-and-match software components from which viruses can 
be assembled.) 

The evolutionary classification of computer viruses can be helpful in several 
ways. First, a taxonomy provides a natural organization for the sizeable libraries 
of computer  viruses that  anti-virus organizations must maintain. Second, new 
viruses must  be analyzed to tailor counter-measures, in a process that  can be 
part ly but  not completely automated. If a new virus is related to one that  has 
previously been analyzed, the analysis may be simplified. 

The most practical application of evolutionary information may be in increas- 
ing the efficiency of virus scanners. In a slightly simplified mathematical  view, 
each of the 6,000 computer virus species is represented as a byte string, typically 
2,000 bytes long. When anti-virus programs "scan" for infected files (and anti- 
virus programs do more than just this) they use a "signature" of about 20 bytes 
to stand in for each virus: the signature must always occur in the corresponding 
virus, and must never occur in legitimate computer code. If one signature can be 
used for several viruses, savings (in space more than time) can be achieved: the 
scanner requires only a minimum-sized set of signatures which together "cover" 
all the computer virus species. 

In fact, the characters we will use to form a basis for computer virus phyloge- 
nies are such shared signatures. They are defined as, say, all strings of 20 bytes 
or more that  occur in at least 2 viruses but in no legitimate programs. They  can 
be found, using linear space and time, by straightforward application of suffix 
trees [7]. All viral and legitimate strings are concatenated together, separated 
by a special character, and a suffix tree is constructed. Its leaves represent all 
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suffixes of the input string, and its internal nodes -- viewed as paths from root 
part-way to leaf -- denote prefixes of suffixes, which is to say substrings of the 
input string. Depth-first search can be used to propagate, from leaves to root, 
the number of times each substring appears, or in fact the number of times it 
appears in viruses and (separately) in legitimate strings. 

1.2 Biological application 

Beyond the computer virus realm for which it was conceived, the phyloDAG 
is also a plausible model for evolution of bacterial populations. Bacteria repro- 
duce through simple cell division. A single cell divides into two daughter cells 
which each receive an exact copy of the parent cell's genetic information (other 
than mutations that occur in transcription). However, there are at least three 
known methods whereby bacteria of different populations can exchange genetic 
information: transformation, transduction, and conjugation [12]. 

In transformation, a bacterium transports exogenous (outside the cell) DNA 
into the cell, where it can become incorporated into the bacterium's DNA. The 
exogenous DNA can come from another bacterium that has lysed (broken apart) 
and released its DNA into the medium. Only certain types of bacteria can do 
this and only under certain circumstances; some bacteria only bring in DNA 
that is quite similar to their own, while others will bring in any DNA, but will 
incorporate it only if it is suitably similar. 

Transduction involves the transfer of genes from one bacterium to another via 
a bacteriophage (a virus that infects bacteria). Normally a virus infects a cell by 
binding to the cell and injecting its DNA. The virus then takes over the cell and 
forces it to make many more viruses. The infected cell then lyses (breaks apart), 
releasing the new virus particles. There are two mechanisms whereby viruses 
transmit genetic information. The first is generalized transduction: sometimes 
when the bacterial cell is producing new viruses, the viral package is filled with 
DNA from the host bacterium rather than the viral DNA. The process is random 
and so any piece of DNA can be packaged this way. When this "virus" is released, 
it can "infect" a cell by injecting its contents, but these contents are just bacterial 
DNA. This DNA will not kill the cell, and can become incorporated into the new 
host's DNA. The second mechanism is specialized transduction via lysogenic 
viruses. These viruses, upon infecting a bacterium, insert their DNA into the 
host DNA at a particular spot and coexist. When given the proper stimuli, the 
viral DNA is excised from the host DNA to carry out the normal infection cycle. 
Sometimes this excision isn't done correctly, and pieces of the host DNA are 
excised as well. They are then packaged into the new viruses and transmitted to 
new hosts. Only genes near the attachment sites are transmitted this way, but 
the transmission is very efficient. 

Conjugation involves the direct contact of two bacteria and the transmission 
of plasmids from one (donor) to the other (recipient). Plasmids are rings of DNA 
that are much smaller than the bacterial genome. They exist in the bacterial cell 
independently from the genome and are capable of replicating when the cell di- 
vides. Conjugative plasmids encode the proteins, etc, necessary for conjugation, 
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thus engineering their own transmission. Conjugative plasmids can bring other 
genes with them into new cells, and can also allow the transmission of arbi- 
t rary  plasmids. These plasmids can become incorporated into the cell DNA; for 
example, the genetic material of E. Cols F plasmid, which allows sexual conju- 
gation, is incorporated into the host genome at a rate of 10 - s  per cell division. 
This is an important  mechanism, since it is the primary way bacteria transfer 
drug resistance. 

Since these mechanisms allow arbitrary exchange of genes from one popu- 
lation to another, bacterial evolution does not seem to follow the "divergent 
evolution" implied by a tree: populations can evolve from multiple sources. Bac- 
teria reproduce very rapidly and some regions of their genome mutate  frequently. 
Therefore, characters based on single-site mutations may not have a single ar- 
chetype. However, for genes with sufficiently large mutat ion differences from any 
genes seen previously, it is reasonable to assume that as a rule there is unique 
evolution, and therefore a unique archetype. 

1.3 P a p e r  o r g a n i z a t i o n  a n d  r e s u l t s  

We will show in Section 3.3 that  the Minimum PhyloDAG problem is "hard": 
in polynomial time, it cannot be solved exactly unless P = NP, nor can 
it approximated to within better than a logarithmic factor unless NP C_ 

DTIME(n~176 In fact, we know of no way to approximate Minimum Phy- 
loDAG to within a logarithmic factor: Section 3.3 shows that  various natural  
greedy strategies (including randomized ones) do not even approximate within 
a factor of on. 

Because of the difficulty of the phyloDAG problem, we consider two variants. 
In the first variant, we require that  each species have just one ancestor, so that  
the phyloDAG is an arborescence (a tree with edges directed away from a root). 
If the arborescence's vertices are labeled with the values of one character, the 
postulate that  no character is "invented" twice corresponds to an assertion that  
there is at most one directed edge labeled 0--,1. Thus the sequence of labels along 
any source-to-leaf path is described by the regular expression 0"1"0", that  is, 
zero or more O's, followed by zero or more l's, and finally zero or more O's again. 
In Section 2 we define a 0 - 1 - 0  p h y l o g e n y  to be an arborescent phyloDAG's un- 
derlying undirected tree. Species $ and characters C may be consistent with zero, 
one, or multiple 0-1-0 phylogenies. We give two polynomial-time algorithms to 
randomly sample 0-1-0 phylogenies if any exist. 

The first a t o m i c - s e t  algorithm (Section 2.1) computes a concise da ta  struc- 
ture tha t  represents all 0-1-0 phylogenies for the input data  and can be used to 
select a phylogeny uniformly at random in time O(nt). When no solution exists 
the algori thm returns a w i t n e s s  set:  a concise indication of why there can be 
no phylogenetic tree. 

The second m i n i m u m  s p a n n i n g  t r e e  algorithm (Section 2.2) characterizes 
a 0-1-0  phylogeny of the input species set as a minimum spanning tree (MST) 
of a particular undirected edge-weighted graph. With it, 0-1-0 phylogenies can 
be constructed in deterministic time O(t  n + n 2 log n) or (with high probability) 
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in randomized time O( ln ) ,  and sampled uniformly at random in t ime O(s n + 
M(n)) ,  where M(n)  is the t ime needed to multiply two n x n matrices. It does 
not produce a concise witness when there is no 0-1-0 phylogeny. 

The second variant of phyloDAG is simply its undirected analogue. A p h y -  
l o g r a p h  for species S and characters C is an undirected graph with vertex set 
S, with the property that  the subgraph induced by the on-set of each character 
c E C is connected. The M i n i m u m  P h y l o g r a p h  problem is find a phylograph 
with the minimum number of edges. Theorem 17 shows that  it is hard to approx- 
imate Minimum Phylograph within a factor less than ~ ln t ,  while Theorem 18 
shows that  approximating it within a factor of In l is easy. 

The model of computation used in this paper is the uniform-cost random- 
access machine. 

1.4 R e l a t e d  work 

Previous work in phylogeny has focused on constructing phylogenetic trees. How- 
ever, the problem of modeling virus evolution is more suited to phylographs and 
phyloDAGs, in which undirected cycles may arise. As far as we know, ours is the 
first phylogenetic work that allows cycles. 

There is substantial literature on character-based phylogenies where each 
subgraph induced by all species sharing a state for a character is required to 
be connected. This problem is called the p e r f e c t  p h y l o g e n y  problem, and is 
NP-complete  for the "unrestricted" case (where putative species may be added) 
with general characters [3, 18]. For the unrestricted case with binary characters 
Gusfield gives an elegant O(nk) algorithm [11], and for the restricted case with 
general characters Goldberg et al. [10] give an algorithm analogous to the MST 
algorithm of Section 2.2. 

Our 0-1-0  phylogeny problem is similar to a restricted version of the g e n e r a l  
character  c o m p a t i b i l i t y  problem of Benham et al. [2]. There a character c 
maps each species s to a subset c(s) C {0, 1, 2} rather than to a single value; the 
leaves of the tree are the species 3; for each c and s a single value from c(s) is 
chosen as a label; and the goal is to find a rooted perfect phylogeny in which 
the sequence of labels along any root-to-leaf path is of the form 0 ---* 1 --* 2. The 
problem is NP-hard [2]. 

2 C o m p u t i n g  a 0 - 1 - 0  p h y l o g e n y  

The case in which each species has only one ancestor is of special interest, and 
corresponds to cases in which the phyloDAG is an arborescence - -  a tree with 
all edges directed away from some root. There is a straightforward n:l  cor- 
respondence between arborescences and undirected trees: the undirected graph 
underlying an arborescence is a tree; and each of the n possible rootings of a tree 
is an arborescence, s Therefore we concentrate on undirected 0-1-0  phylogenies: 

s There exist phyloDAGs whose underlying graphs are trees but which are not arbores- 
cences. An example, for species with characters (a), (ab), and (b), is (a) --, (ab) ~ (b). 
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Def in i t lon3 .  An (undirected) 0 - 1 - 0  p h y l o g e n y ,  or p h y l o g e n e t i c  t r e e ,  is a 
tree T on species 5 with characters C such that  each on-set Sc induces a sub-tree 
of T. 

If T is a phyloDAG whose underlying graph is a tree T, then T is a 0-  
1-0 phylogeny as defined above: as each on-set Sc was connected in T ,  it is 
connected in T. Also, if T is a 0-1-0 phylogeny, any arborescence based on T 
is a phyloDAG: the archetype of any character c is the species in Sc closest 
to the root. In this section, we will show how to generate 0-1-0 phylogenies, 
and how to generate them uniformly at random. Given a uniformly random 
phylogenetic tree, choosing a root uniformly at random generates a uniformly 
random arborescent phyloDAG. 

Because an arborescence can be rooted anywhere, a 0-1-0 phylogeny alone 
does not determine an evolutionary chronology, but it can be useful in com- 
bination with external information. For example if the first species' identity is 
known, the rest of the evolutionary history follows. 

2.1 T h e  a t o m i c - s e t  a l g o r i t h m  for  c o m p u t i n g  0 - 1 - 0  p h y l o g e n i e s  

As described in the Introduction, our atomic-set algorithm produces a data  struc- 
ture, an AS-tree, which concisely represents all 0-1-0 phylogenies for species S 
and characters C, and can be used to generate an arbitrary solution or a solution 
chosen uniformly at random. 

Generalizing the definition of the on-set of a character, define the on-set of 
a collection of characters to be the species having all those characters: Sc = 

D e f i n i t i o n 4 .  Let C C_ C be a maximal (not necessarily mazimum) set of char- 
acters for which ISOI > 2. Then A = S o is an a t o m i c  set  with d e f i n i n g  

c h a r a c t e r s  C. 

L e m m a  5. For  any atomic set A and character c, either Sc D A (c is a defining 
character), or ISc n A I -- 1 (c is a n o n - d e f i n l n g  character o w n e d  by the sole 
species s E S c n  A),  or Sc N A = 0 (c is an a v o i d i n g  character). 

Proof. The only logical possibility missing is that ]S~ M A] >_ 2 but S~ n A # A, 
which would contradict the maximality of A's set of defining characters. 

An atomic set can be constructed in time O(kn): start with 6' = 0 (so 
S@ - 8), sweep through all characters c E C in turn, reject c if [SoAS~ ] _< 1, but 
otherwise add c to the defining set, so C := CU{c). An O(g)-time implementation 
of this algorithm is described in the Appendix. 

But since such phyloDAGs imply multiple ancestors for some species, they are not 
especially interesting. 
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L e m m a  6. Suppose all species in $ are connected, i.e. the bipartite graph joining 
characters to species that have them is connected. Then if sx, s2 E S have no 
characters in common, no phylogeny contains the edge (sx, sz)~ 

Proof. Suppose a phylogenetic tree T contained (sx, s2), and delete (sx, s2) to 
create a forest T', consisting of two trees. For any character c and any s, s' E S~, 
T has a path s , . . . ,  s' within S~. The path does not include the edge (sl, s2), 
since not both sx and s2 can be in S~, so T'  contains the same path. Thus 
in T'  there is a path from any species having character c to any other. Given 
the connectedness of the species-character graph, a series of such paths joins 
any species in ,.q to any other, contradicting the fact that  T'  is not a connected 
graph. 

L e m m a  7. I f  A is an atomic set, then in any 0-1-0 phylogeny, A's induced 
subgraph is a subtree. 

Proof. In a 0-1-0 phylogenetic tree T, the on-set of any character c G C induces 
a connected subgraph, therefore a subtree. A is the intersection of the subtrees 
corresponding to A's defining characters, and the intersection of subtrees is itself 
a subtree. 

L e m m a S .  For any phylogeny T and atomic set A, if the subtree TA is replaced 
by any other tree T~ on the set A, the resultant overall tree T' is also a phylogeny. 

Proof. For any character c and species s, s' G Sr consider the (unique) path 
s , . . . ,  s' in T. If Sc N A = 0, the path never enters A, so it is unaffected (i.e. 
the identical path exists in T'). If ISc N A I = 1, the path touches at most one 
vertex in A, hence no edges within A, and is unaffected. Otherwise (by Lemma 5) 
Sc D A, and if the path through T included any sub-paths through TA (in 
fact there can be at most one), those sections could be replaced by sub-paths 
through T~ (and thus still within So). So connectedness of all characters in T 
implies the same for T',  and T'  is a phylogeny. 

L e m m a  9. For any phylogeny T and atomic set A, i ra  is co l l apsed  - -  replaced 
by a single species "a n having all defining and non-defining characters of A 
(but not its avoiding characters), and the subtree TA is contracted to the single 
species a, then the resultant overall tree T' is a phylogeny for S' = (S \ A) U {a}. 

Proof. Same as previous. 

L e m m a l 0 .  I f  (S,C) has an atomic set A, with species sl,s2 E A owning non- 
defining characters el, c2 respectively, and if Sc, N Sc2 • @, then there is no 
0-1-0 phylogeny for S. 

Proof. Suppose there is a phylogeny T for S. Root T at any s3 G Sc~ N S~2, 
and let s= be the lowest common ancestor of gl and s2. Then the path (all 
paths in a tree are unique) from sl to s2 passes through sz; the path from s3 
to sl passes through s| (since s~ is an ancestor of sl); and the path from g3 
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to s2 passes through s| (since s= is an ancestor of s2). By Lemma 7, A induces 
a subtree, so sx, s2 G A implies that the s l - - s2  path is contained in A, and 
in particular s| G A. Similarly $1, s 3 E Sct implies s= G Sr and s2,ss G Sc2 
implies s| E Sr Therefore s= G ANSc.nSr But cl and c2 are nondefining 
characters with distinct owners, so AnSc,nSc2 = ~, a contradiction. 

If the hypotheses of Lemma 10 are satisfied, we say that the atomic set A, 
characters cl,c2, and species sl ,  s2 provide a w i t n e s s  attesting to the non- 
existence of any 0-1-0  phylogenetic tree. 

L e m m a 1 1 .  Let A be an atomic set, and suppose that no sx,s2,cl, c2 satisfy the 
conditions of Lemma 10. As before, "collapse" A to the single species a having all 
defining and non-defining characters of a .  ff  S' = ( S \ A ) U { a }  has a phulogenu, 
so does ,9. 

Proof. Let T '  be a phylogeny for 8 ' .  Delete a and its incident edges, and replace 
them with the set A and any tree on A. Additionally, replace each edge (s, a) 
with a single edge as follows. 

By Lemma 6, s and a must share some character(s), which (since a has 
them) must be defining or nondefining characters of A. If s and a share any 
non-defining characters, those characters must have a single owner s' (or else A, 
these characters, and their owners are a negative witness), in which case add 
the edge (s, s'). Otherwise, s and a only share defining characters of A, in which 
case add any edge (s, s') with s' G A. 

Replacement of each edge (s, a) with an edge (s, s'), s' G A, means that  the 
tree components created by a's deletion are all connected to the tree on A, creat- 
ing a single tree T. Using arguments similar to those in Lemma 8, all characters 
induce connected components in T as they did in T ' .  

In fact, the constructive nature of the proof of Lemma 11 immediately sug- 
gests the a t o m l c - s e t  a l g o r i t h m .  Starting from 80 := S, repeatedly, find an 
atomic set Ai and check for a witness as per Lemma 10. If one is found, termi- 
nate negatively. Otherwise, collapse Ai to a single new species ai, and re-define 
the species set to be ,-qi := (S~-1 \ A~) U {ai}. Since each atomic set contains at 
least two species, this reduces the number of species, and needs to be performed 
at most n -  1 times. 

We construct the AS-tree during this contraction phase. The leaves of the 
AS-tree are the species in S, and all elements of any set Ai have ai as their 
parent. Equivalently, the final ai is the root of the AS-tree, and each aj has all 
species in Aj as children. This tree concisely represents all possible phylogenies. 

Now, starting at the root of the AS-tree, we expand any node ai whose parent 
is already expanded using the method suggested by the proof of Lemma 11: 
Replace a/ with Ai and form any tree T/ on Ai. For each old edge (s, ai), if s 
has a nondefining character c of Ai, add edge (s, ownera,(c)); otherwise s must 
have only defining characters, in which case add any edge (s, s'), s' GAi .  

T h e o r e m  12. The algorithm above produces a phylogeny for 8, C if one ezists, 
and otherwise produces a negative witness. If  ~he algorithm is implemented to 
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choose trees Ti uniformly at random, and to choose s' G Ai uniformly at ran- 
dom for defining-character edges (s, sl), then it produces a uniformly random 
undirected 0-1-0 phylogeny. 

Proof. The first assertion follows directly from the preceding sequence of lemmas. 
If we detect a negative witness, we correctly terminate negatively by Lemma 10 
coupled with Lemmag. Otherwise, by Lemmas 9 and 11, we can collapse the 
atomic set, solve the problem on the new set, and "expand" the collapsed set to 
a 0-1-0 phylogeny. The choices made in the expansion phase are independent 
and lead to different phylogenies. The uniform generation of phylogenies follows 
from this one-to-one correspondence between phylogenies, and choices in the 
algorithm. 

Since we can generate a random 0-1-0 phylogeny from the AS-tree, it con- 
cisely represents all possible 0-1-0 phylogenies. 

The atomic-set algorithm produces an AS-tree in time O(nl): in each of the 
O(n) collapsing iterations, we find an atomic set, check for a witness, and collapse 
the set, each such operation taking time O(l). (See the Appendix.) 

The expansion can be completed in time O(nl). There are O(n) expansions. 
To expand node a~, we can produce a random tree on the set Ai in time O([Ai[), 
since a labeled tree on r nodes can be selected uniformly at random in time O(r). 
(See, for example, [15].) If we store pointers to owners of non-defining characters 
when constructing the AS-tree, we can connect this tree to its neighbors in time 
o(t). 

2.2 The  M i n i m u m  Spanning  Tree a lgo r i thm 

In this section we give a second algorithm for computing 0-1-0 phylogenies. It is 
very simple, and is based on the observation that 0-1-0 phylogenies for species S 
and characters C correspond to minimum-weight spanning trees (MSTs) of a 
particular undirected edge-weighted graph G(S, C). (This observation was also 
used in [10] to obtain an algorithm finding restricted perfect phylogenies.) 

The graph G(S,C) is a complete graph on S, with edge weights w(sl, s2) : 
k - I{c E C I c(sl) = c(s2) = 1}]. It can be constructed in O(s time. 

T h e o r e m  13. 0-1-0 phylogenies for (S, C) are spanning trees of G(S, C) with 
weight nk - g. Furthermore, G(S, C) has no spanning trees of smaller weight. 

Proof. Every spanning tree of G(S) has weight at least nk - s since the con- 
tribution of each character c to the total weight is at least (n - 1) - (ISc]- 1). 
Spanning trees of G(S) with weight nk - s correspond to trees in which each 
on-set Sc is connected (see [10]). 

Because of this correspondence, phylogenies can be constructed (or randomly 
sampled) by established algorithms for constructing (or randomly sampling) 
MSTs. Prim's algorithm[16, 9] constructs an MST of G in O(mlogm) time, 
where m is the number of edges inG, and m = (i) for G : G(S,C). I r a  
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faster algorithm is required, Karger, Klein and Tarjan's randomized algorithm 
constructs an MST, with high probability, in O(m) time [13]. (Their model of 
computation is a unit-cost random-access machine with the restriction that the 
only operations allowed on edge weights are binary comparisons. See also the 
other algorithms discussed in [13].) 

Given an unweighted n-vertex graph, an algorithm of Colbourn, Myrvold 
and Neufeld [5] selects a spanning tree uniformly at random in O(M(n)) time. ~ 
(Here M(n) = O(n 2"a7~ is the time needed to multiply two n x n matrices [6].) 
Colbourn and Jerrum [4] note that the algorithm can be used to select an MST of 
a weighted graph G uniformly at random in O(M(n)) time: construct a random 
spanning tree on each connected component of the subgraph of G induced by the 
edges of minimum weight, put the spanning trees' edges into the final solution, 
contract the spanning trees, and repeat. 

Compared with the atomic-set algorithm, the MST approach has the advan- 
tage of using an unusually widely understood and simple paradigm, a benefit 
echoed in the availability and efficiency of computer programs. However, it does 
not supply a structural representation of all possible phylogenies, nor a concise 
witness when no phylogeny exists. 

3 P h y l o g r a p h s  a n d  p h y l o D A G s  

Having considered the problem of constructing phylogenetic trees, we now turn 
to phylogenies that are not trees. In particular, we consider the phylograph and 
phyloDAG problems that were defined in the Introduction. In Section 3.1 we 
prove that it is hard to approximate the optimal phylograph within better than 
a logarithmic factor, and in Section 3.2 that the natural greedy algorithm gives 
an approximation within such a factor. In Section 3.3 we show both that it is 
hard to approximate the optimal phyloDAG within better than a logarithmic 
factor, and that in this case the natural greedy algorithm can perform very badly, 
even on average. 

3.1 Hardness  of  approx ima t ion  of  phy lograph  

Hardness results for Minimum Phylograph follow from those known for Mini-  
m u m  Set Cover and problems equivalent to it in terms of approximation ratio, 
notably M i n i m u m  Domina t ing  Set. 

De f in i t i on l4 .  The ne ighborhood  of a vertex v of a graph G = (V, E) is the 
set N(v) = {v} U {w: (v, w) C E). A domina t i ng  set of G is a set of vertices 
D C V whose neighborhoods cover the graph: Ud~D N(d) = V. 

0 Another randomized algorithm, due to Wilson [19], has an expected running time 
equal to the mean hitting time of the graph; this is often smaller than M(~), but 
can be larger. 
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It is well known and easily proved that the natural greedy algorithm for 
Minimum Dominating Set (or the related problems) is a In n approximation al- 
gorithm: for a graph G = (V, E), the dominating set produced by the greedy 
algorithm is at most In IV] times larger than the minimum dominating set. In [8], 
Feige shows that this is a threshold: 

T h e o r e m  15 Feige. Let c be a constant in the range 0 < c < 1. Unless NP C 
DTIME(n~176176 there is no polynomial-time algorithm that takes as input 
a graph G and outputs a dominating set D of G such that IDI is within a factor 
of cln [V[ of the minimum possible value. 

Feige's is the latest in (and contains a good review of) a sequence of works on 
this problem. Another which is relevant here, because of its weaker hypothesis, 
is that of Bellare et al. [1]: 

T h e o r e m  16 B G L R .  Unless P : NP, there is no polynomial-time algorithm 
�9 that approzimates Minimum Dominating Set to within any constant factor. 

From these results we can show that Minimum Phylograph cannot be approx- 
imated to within any constant factor unless P = NP, and cannot be approxi- 
mated to better than a logarithmic factor unless NP C_ DTIME(n~176176 

T h e o r e m  17. Unless P = NP, for any constant c > O, there is no polynomial- 
time algorithm that takes as input species S and characters C and outputs a 
phylograph G = (S, E)  such that IEI is within a factor of c of the minimum 
possible value. 

Similarly, for any c < 1/4, unless NP _C DTIME(n~176176 there is no 
polynomial-time algorithm approzimatin 9 Minimum Phylograph within a factor 
c ln t (where t is the input length defined earlier). 

Proof. We use an approximation-preserving reduction from Minimum Dominat- 
ing Set to Minimum Phylograph. Given an input G = (V, Ea) with IVl = ~, 
construct an instance P to Minimum Phylograph as follows: The species set is 
S = V U X where X is a set of u 3 "auxiliary vertices". For each pair of vertices 
{vl, vz} E V (2), define a character with on-set {vx, vz}. Thus any phylograph for 
P contains each edge in the complete graph on V. In addition, for each pair of 
vertices (v, z) E V x X we define a character with on-set {z} U N(v) .  

If Po = (S, E0) is an optimal phylograph for P,  and Do is a minimum domi- 
nating set for G, then IE01 = (~)+IX] IDol. To see this, observe that the complete 
graph on V added to X x Do is a phylograph for P,  so I~01 _< (~) + IXl IDol. On 
the other hand, every phylograph for P has at least (~) edges connecting species 
in V and has at least IDol edges adjacent to each z E X. 

Suppose we had an algorithm A that could produce a phylograph (S, EA) for 
P with IE~tl _< cln(t)IE01 edges. By the construction of P, some vertex z E X is 
connected to a dominating set D for G with IDI < IEAI/IXI <_ cln( l ) lEoI / IX I 
edges. Since IEol = (~) + IXI IDol, we have 

IDI < cln(t) (~) + IX[ IDol 
- I x l  
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Thus (since IXl = v 3 and ID01 > 1), IDI < c(1 + o(1))InCe)lDol. Now note that 
l = v(v - 1) + 2v[X[ + 2[Ea[ IX[ = O(vh). Thus, [D[ _< 5c(1 + o(1))ln(v)[Do[, 
w h i c h  is contrary to Theorem 15 if c < 1/5, unless NP C_ DTIME(n~176176 
Using IX] = v 2+' instead of v 3 gives the constant 1/4. 

Similarly, a constant-approximation algorithm is forbidden by Theorem 16, 
unless P = NP.  

3.2 G r e e d y  a lgo r i t hm for phy lograph  

There is a natural greedy algorithm for the Minimum Phylograph problem. In 
a phylograph, every character's induced subgraph consists of a single connected 
component, so the greedy algorithm "grows" a solution by iteratively adding an 
edge that maximally reduces the number of connected components. 

The same notation needed to define the algorithm more precisely can be used 
in the proof of its quality. Given species $ and characters C, and a set of edges 
E C 8(2) define the "cost" of E to be 

S(E) = ~ components(So)- IcI, 
e6C 

where components(So) denotes the number of connected components in the sub- 
graph of (8, E) induced by the on-set of c. Thus/(0)  = ~ce  c ]S~I-[el = l - [C[ ,  
and if E is a phylograph, f (E)  = ~r 1 - [C[ = 0. 

For any edge set E and any edge e, let AE(e) = / (E)  - / ( E  U {e}) be 
the amount by which e decreases the cost f .  The greedy algorithm begins with 
each species an isolated vertex, and iteratively adds the edge which maximally 
decreases the cost, until the cost is 0. In pseudocode: 

Let i := 0 and Ea(O) := 0 
While f (Ea(i))  > 0 do 
begin 

Let i := i + 1 
Let e be an edge maximizing AEo(i_l)(e ) 
Let Ea(i) := Ea(i -- 1) U {e} 

end 
Return the set EG = Ea(i) 

T h e o r e m  18. Suppose that for species S and characters C, o/total input length 
l, the minimum phylograph {e(1), . . . ,e(r)} has cardinality r. Then the greedy 
algorithm produces a phylograph Ea of size [EG] < r ln ( s  IV[). 

Proof. If we have any partial solution, adding in all r edges of a minimum phy- 
lograph will certainly yield a phylograph. Since r more edges are enough to 
complete the job, some edge (one of these, even) must take care of at least 1/rth 
of the cost. If the initial cost was f(r and the greedy algorithm reduces it by 
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1 - 1 / r  at each step, after r In f(O) steps the cost must be reduced below 1, and 
the algorithm must have terminatedJ ~ 

More formally, for any edge set E(O) define a series of sets E(O) C_... C_ E(r) ,  
where E(i)  = E(0)U{e(1) , . . . ,  e(i)) and the edges e(i) are those of the minimum 
phylograph. Note that  E(r)  is a phylograph, since it contains the minimum 
phylograph. Because components (with respect to any character) only become 
more connected as i increases, for any e, if i < j then z~g(~)(e) >_ AE0)(e ). Thus 
for any starting set E0, 

r 

r .  max A~(0)(e ) > Z A~(0)(e(i)) 
eES(2) i--1 

T 

> 

,----1 

= [/(ECi - 1)) - / ( E C i ) ) ]  
i = l  

= f(E(O)) - f(E(r)) 
= f(E(O)). 

Comparing the first and last quantities, we conclude that  there always exists an 
edge e for which _ > / ( E o ) / , .  

Therefore the greedy algorithm reduces the cost by a factor 1 - 1/r  at each 
step. Since the initial cost is t - ICI, the cost after , ln(s  - ICI) steps of the 

greedy algorithm is at most ( 1 -  l / r )  ~ ln(s163 ICI) < 1. The greedy algorithm 
therefore terminates within r l n ( l -  ICI) steps, producing a phylograph of the 
s a l ' f l e  s i l l e .  

This complements the result of Theorem 17: Minimum Phylograph is ap- 
parently hard to approximate to better than a factor of �88 In s but easy to ap- 
proximate to a factor ln(l - IC[) _< lnL  It would be of some interest to derive 
better bounds on the constant c, �88 < c < 1, for which (c lng)-approximability is 
possible. 

3.3 P h y l o D A G s  

We begin by observing that  a phyloDAG cannot always be obtained by directing 
the edges of a phylograph. Consider four species with sl defined by characters 
(b, c, d), s2 by (a, c, d), ss by (a, b, d), and s4 by Ca, b, c). The cycle sl ,  s2, s3, s4, sl 
is a 4-edge phylograph, but there is no way to direct the edges of the cycle to 
obtain a phyloDAG: any acyclic orientation will create two archetypes for some 
character's on-set. 

We now prove the following theorem, which is analogous to Theorem 17. 

10 The same approach will not work for phyloDAG. Since directed cycles are forbidden, 
chosen edges constrain the addition of future ones, and even if there was a solution 
of size r initially, there may not be once some edges have been chosen sub-optimally. 
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T h e o r e m  19. Unless P = NP, for any constant c > O, there is no polynomial- 
time algorithm that takes as input species S and characters C and outputs a 
phyloDAG G = (S, E)  such that IEI is within a factor of c of the minimum 
possible ~alue. 

Similarly, for any c < 1/4, unless NP C DTIME(n~176176 there is no 
polynomial-time algorithm approzimatin9 within a factor c lu s 

Proof. The proof uses the same reduction as the proof of Theorem 17. Let E0 
be the edge set in an opt imal  phyloDAG for P.  We must  show tha t  IEol = (~) + 
IXI IDol. The  direction tha t  differs from the proof of Theorem 17 is showing tha t  
given a dominat ing set Do, we can construct a phyloDAG of si~e (~ )+ lXl ID0  [. To 
do so, first construct a phylograph (as in the proof of Theorem 17). Then direct 
edges having both end-points in V according to a ~otal order on ~he vertices 
in V, and direct all remaining edges from vertices in V toward vertices in X.  
The resulting digraph has no directed cycles and each character has a unique 
archetype. Therefore, it is a phyloDAG. The rest of the proof is identical to that  
of Theorem 17. 

As already noted, the natural  greedy algorithm does not work well for phy_ 
loDAGs: the phyloDAG problem seems to be more difficult because the pro- 
hibition of cycles means that  it is possible for the greedy algori thm to add a 
"bad" edge which prevents other "good" edges from being added later. In the 
remainder  of this section, we give an example of a species set for which various 
natural  greedy approaches for constructing a phyloDAG lead to an 12(n) ratio 
between the size (number of edges) of the constructed phyloDAG and the size 
of the opt imal  phyloDAG. A randomized strategy has an l-2(n) expected ratio 
and has a ratio of l'2(n/log n) with high probability. 

We construct a species set as follows. There are n species sl ,  . . . ,  sn, and two 
distinguished species s I and s". Now we add 

- 2n characters shared by s t and s ' ;  
- 2 characters shared by s' and si, for i = 1, ..., n 
- 1 character shared by s ' ,  si and sj,  for 1 < i, j < n, i ~ j .  

Duplicating characters forces the order in which a greedy algori thm connects 
species. We hide this duplication from an algori thm that  checks for it by adding 
a set Sa of d u m m y  species, where Igal = [log(4n)l. There are 2 [l~ > an 
distinct subsets of Sa. We add one such subset to each of the 4n nonunique 
characters. 11 An opt imal  solution has O(n) edges, consisting of an edge f rom s / 
to s ' ,  edges f rom s ~ and s" to each of the si, and edges from S I to each species 
in Sd. 

21 An algorithm may Mso check for domination, where sd contains a subset of the 
characters contained by s. We can remove the dominated species sa from the instance 
and later direct an edge from s to sa in the phylogeny for the reduced set. To avoid 
this situation here, we add a character {s~(i), s~(i + 1)} for i = 1 , . . . ,  [4nq, which 
chains the dummies together. This does not change the asymptotic size of the optimal 
solution. 
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A phyloDAG has exactly one archetype for each character. A greedy algo- 
r i thm begins with each species an isolated node, thus an archetype for each 
character it contains. A natural edge to add in a greedy fashion is one that  max- 
imally reduces the number of archetypes (over all characters). Of course, we may 
not introduce directed cycles. 

There may be times where we can choose the direction of the edge to be 
introduced (for example at the first iteration) and we show that  the algorithm 
performs badly for any of the following strategies: 

- The direction is chosen arbitrarily. 
- The direction is chosen uniformly at random. (The expected performance of 

the aigorithm is bad for this example, and the example can be modified so 
that  the bad performance occurs with high probability.) 

- The edge is directed out from the node with the larger number of characters. 
(This a natural way of breaking ties, since we expect ancestral nodes to have 
many characters.) 

A greedy algorithm starts by putting an edge between s r and s' ,  and an edge 
between s ~ (or possibly s") and each species in Sd. Then it adds edges between 
s ~ and the si. If directions are chosen arbitrarily we may assume that  these edges 
are from s ~ to s", and from each of the s~ to s ~. Hence it is now impossible to 
add edges from s" to any of the si, since they would create directed cycles. This 
means that  in order to prevent there being two archetypes for a character shared 
by s ' ,  8 / and  sj, species si must be connected to sj by an edge. This results in 
(~) edges. 

Now consider the variant where the direction of an edge is chosen uniformly at 
random whenever it is equally good to direct it either way. With high probability 
(i.e. with complement probability that  is exponentially small in n), there will be 
at  least n/4 edges directed from the si's to s ~. If the edge between s ~ and s" 
is directed the wrong way (i.e. from s ~ to s") then these si nodes will have to 
be connected in a clique, resulting in a quadratic number of edges. If we now 
consider a species set consisting of a log(n) copies of the species set as described 
(for a positive constant a) ,  we see that  the optimal solution has O(n log n) nodes 
and edges, and with probability at least 1 - n - a ,  at least one of those copies 
will have the edge between s' and s" directed the wrong way, resulting in G(n 2) 
edges. 

If edges are directed away from nodes with higher numbers of characters, 
then the algorithm can be forced to take the "wrong" direction for the edges 
by adding dummy characters at the nodes from which we want the edges to be 
directed. 

A c k n o w l e d g e m e n t s :  We are grateful to Phil MacKenzie, Tom Martin, 
Baruch Schieber, Madhu Sudan, Luca Trevisan, and David Wilson for useful 
discussions, and to Luca for directing us to [8]. We also thank the three anony- 
mous reviewers for their helpful comments. 
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4 Appendix 

4.1  A n  O ( ~ ) - t i m e  a l g o r i t h m  to  c o m p u t e  an  a t o m i c  set  

We presume that each species is described by a sorted list of the characters it 
possesses. From this, construct a description of each character, as a sorted list of 
the species possessing it. This can be done in linear time: loop through species 
i; loop through characters j on i; add species i to character j ' s  list. 

Now the basic algorithm is: 

Let Ao := 8 (0th atomic set contains all species) 
Let D := 0 (set of defining characters is initially empty) 
Loop through characters i, and consider the list Si of species having character i 

(1) size :---- [A~-I n Si[ 
(2) If size < 2 then A~ : :  Ai-1 
(3) If size ~_ 2 then Ai := A~-I n S~, and D : :  D U {i} 
(4) next i 

We now show how to compute the intersection size (step 1) and the intersec- 
tion itself (step 3) in linear time. This implemention gives a linear-time algorithm 
overall. Let all the sets A be represented doubly, as both a sorted linked list, and 
as a binary array of length/r (with 1's for species present in A, O's for species 
absent from A). 

Computing the size of A A S~ can be done in time ISi[: Over species s E S~, 
sum up the binary array elements A[s]. Thus all iterations of step 1, together, 
take time of order ~ i  [S~[. 

Computing A' := AN& can be done in time IAI + [S~ [: The ordered list for A' 
is constructed by stepping through the ordered lists for A and S~ in synchrony, 
advancing in the list with the smaller current value, and augmenting the list 
for A' when the lists for A and Si have the same current value. The binary array 
for A' is formed by modifying that  of A, which is no longer needed for any other 
purpose; the list for A is used to set all l 's  in the array back to 0, and then the 
list for A ~ is used to set l 's  appropriately. 

Thus over values i where step 3 is executed, the total time consumed is of 
order 

IA,-,I  + ~ IS, I _< IAol + ~ IA, I + ~ IS, I 
i i i i 

_< ISl + 2 ~ l S ,  I, 

since the execution of step 3 implies that IA~[ _< IS~[. Thus the total time con- 
sumed by all steps of the algorithm is at most of order I$1 + ~ IS~I = O(l)~ 



270 

References  

I. M. Bellsre, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically 
checkable proofs and applications to approximation. In Proceedings of the ~5th 
Annual A CM S~tmposium on the Theory of Computing, pages 294-304, 1993. 

2. C. Benham, S. Karmas, M. Paterson, and T. Warnow. Hen's teeth and whale's 
feet: Generalized characters and their compatibility. Journal of Mathematical Bi- 
ology, 2(4):515-525, 1995. 

3. H. Bodlaender, M. Fellows, and T. Warnow. Two strikes against perfect phy- 
logeny. In Proceedings of the 19th International Colloquium on Automata, Lan- 
guages, and Programming, Lecture Notes in Computer Science, pages 273-283. 
Springer Verlag, 1992. 

4. C. Colbourn and M. Jerrum, 1995. Personal communication. 
5. C. Colbourn, W. Myrvold, and E. Neufeld. Two algorithms for unranking arbores- 

eences. Journal of Algorithms. To appear. 
6. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres- 

sions. Journal of Symbolic Computation, 9:251-280, 1990. 
7. M. Crochemore and W. Rytter. Tezt Algorithms. Oxford University Press, 1994. 
8. U. Feige. A threshold of In n for approximating set cover. In Proceedings of the 

~Sth Annual ACM Symposium on the Theory of Computing, pages 286-293, 1996. 
9. A. Gibbons. Algorithmic Graph Theory. Cambridge University Press, 1985. 

10. L. Goldberg, P. Goldberg, C. Phillips, E. Sweedyk, and T. Warnow. Computing 
the phylogenetic number to find good evolutionary trees. In Proceedings of the 6th 
Symposium on Combinatorial Pattern Matching, July 1995. 

11. D. Gusfield. Efficient algorithms for inferring evolutionary trees. Networks, 21:12- 
28, 1991. 

12. W. Joklik, H. Willett, D. Amos, and C. Wilfert, editors. Zinsser Microbiology. 
Appleton & Lunge, Norwalk, Connecticut, 20th edition, 1992. 

13. D. Karger, P. Klein, and It. Tarjan. A randomized linear-time algorithm to find 
minimum spanning trees. Journal of the Association for Computing Machinery.l, 
42(2), 1995. 

14. J. Kephsrt and W. Arnold. Automatic extraction of computer virus signatures. 
In It. Ford, editor, Proceedings of the 4th Virus Bulletin International Conference, 
pages 179-194. Virus Bulletin Ltd; 1994. 

15. A. N~jenhuis and H. Will. Combinatorial Algorithms for Computers and Calcula- 
tors. Academic Press, 2nd edition, 1978. 

16. It. Prim. Shortest connection networks and some generahzations. Bell System 
Technical Journal, 36:1389-1401, 1957. 

17. G. B. Sorkin. Grouping related computer viruses into families. In Proceedings of 
the IBM Security ITS, Oct. 1994. 

18. M. Steel. The complexity of reconstructing trees from qualitative characters and 
subtrees. Journal of Classification, 9:91-116, 1992. 

19. D. Wilson. Generating random spanning trees more quickly than the cover time. 
Submitted for publication, 1995. 


