
ELSEVIER

DISCRETE
APPLIED
MATHEMATICS

Discrete Applied Mathematics 71 (1996) I I l-136

Minimizing phylogenetic number
evolutionary trees *

to find good

Leslie Ann Goldberg a,‘,2, Paul W. Goldberg b,‘, Cynthia A. Phillips c,‘,
Elizabeth Sweedyk d, Tandy Warnow e.*,3

aDepartment of Computer Science, University of Warwick, Coventry CV4 7AL, UK

bDepurtment of Computer Science and Applied Mathematics, Aston Universit);. Birmingham B4 7ET,

UK

CSundia National Laboratories, MS 1110. P 0 Box 5800, Alhuquerqur. NM 87185, (ISA

d593 Soda Hall, Dept. of Computer Science, UC Berkeley, Berkeley. CA 94720, USA

eDepurtment of Computer and Information Science, University of Pennsylvania. Philadelphia, PA 19104,

USA

Received 1 June 1996; accepted 20 April 1996

Abstract

Inferring phylogenctic trees is a fundamental problem in computational biology. We present
a new objective criterion, the phylogenetic number, for evaluating evolutionary trees for species
defined by biomolecular sequences or other qualitative characters. The phylogenetic number of a
tree T is the maximum number of times that any given character state arises in T. By contrast,
the classical parsimony criterion measures the total number of times that different character
states arise in T. We consider the following related problems: finding the tree with minimum
phylogenetic number, and computing the phylogenetic number of a given topology in which
only the leaves are labeled by species. When the number of states is bounded (as is the case for
biomolecular sequence characters), we can solve the second problem in polynomial time. Given
the topology for an evolutionary tree, we can also compute a phylogeny with phylogenetic
number 2 (when one exists) for an arbitrary number of states. This algorithm can be used to
further distinguish trees that are equal under parsimony. We also consider a number of other
related problems.

i” Full version of a paper presented at the 6th (1995) Annual Symposium on Combinatorial Pattern

Matching.
* Corresponding author. E-mail: tandy@central.as.npenn.edn.
’ This work was performed at Sandia National Laboratories supported by the US Department of Energy

under contract DE-AC04-76AL85000.
*Part of this work was supported by the ESPRIT Haslc Research ActIon Programme of the K under

contract 7141 (project ALCOM-IT).
3 This work was supported in part by NSF grants CCR-9457800 and SBR-95120Y2, by an AR0 grant

DAAL0389-C0031, by the Institute for Research in Cognitive Science at the University of Pennsylvania, by
the US Department of Energy under contract DE-AC04-76AL85000, and by generous financial support from
Paul Angello.

0166-218X/96/$15.00 0 1996 Elsevier Science B.V. All rights reserved
PII SO 166-2 18X(96)00060-1

112 L. A. Goldberg I Discrete Applied Mathematics 71 (1996) I I l-I36

1. Introduction

The problem of evolutionary tree construction involves taking a given set of species,

and constructing a tree which describes the evolutionary history of that set of species.

We would expect a pair of species to be close together in the tree if they are closely

related. Numerous variants of this general problem have been studied, the variants

arising from the differing kinds of information that may be assumed to be available

concerning the species.

In character-based phylogeny, the scenario is the following. A character c is a

function from the species set S to some set R, of states. For example, the charac-

ter vertebrate-invertebrate has two states, so we can choose R, = (0, l} and we can

define c so that c(s) = 0 for every species s that is a vertebrate and c(s) = 1 for

every species s that is an invertebrate. As another example, we could define a char-

acter c based on average life-span. In this case R, might be a set of ranges such as

R, = (O-10 yr, lo-20yr, 20-60yr, more than 60 yr}. Then the function c could be

defined to map each species s to the range containing its average life-span. We can

think of a sequence of k characters cl , . . . , ck as mapping each species s in the species

set to a vector (cl(s), . . . , c,+(s)) in R,, x x R,, The species sets that we will con-

sider will have the property that for any two distinct species, s and s’, that are in

a species set, (cl(s), . . . , CR(s)) # (cl (s’), . . . , cp(s’)). Thus, we will be able to identify

each species s with a vector (c,(s), . . , c&(s)) in R,, x . x R,, . Furthermore, we will

think of the set R,, x . . . x R,, as being the set containing all possible species, including

those in S.

The inputs to the phylogeny construction problem are the species set S (we will

use n to denote the size of S) and a sequence of characters, cl,. . . , ck. We will let r,,

denote IR,, 1, and r denote maxi r,, . A phylogenetic tree for the input is a node-labeled

tree in which every node of the tree is labeled with a vector in R,, x . x R,,, and

each species in S is the label of some node of the tree. 4 Thus, each character cj can

be extended to a function from the set of vertices of T to R,,.

A species is naturally described using a string of length k over the alphabet { 1,. . . , r}.
A phylogeny is a way of expressing similarity amongst a set of strings rather than

expressing similarity between pairs of strings. Subsets of strings with strong similarities

(as measured by matches in many locations) are located closer to each other in the

tree than those that are more disparate. The output tree is the pattern of similarity

amongst the entire set of input strings.

Classically, the quality of a phylogenetic tree is evaluated using optimization criteria.

When the data are believed to be generated under a stochastic model, then the likelihood

4 A phylogenetic tree for the input S, ~1,. , ck is sometimes defined to be a node-labeled tree in which

every node of the tree is labeled with a vector in R,, x x R,, , and each species in S is the label of some

leaf of the tree. It is clear that every tree satisfying this alternative definition also satisfies our definition

above. The alternative definition is equivalent to ours in the sense that we can convert a tree T satisfying

our definition into a tree T’ satisfying the alternative definition by adding extra leaves. Under all reasonable
measures of fitness for phylogenetic trees, T and T’ will have the same measure of fitness.

L. A. Goldberg I Discrete Applied Mathematics 71 II 996) 11 l-136 113

of the tree is calculated, and the tree with the highest likelihood score is considered

optimal.

Other popular criteria do not explicitly presume a statistical model for the data.

In parsimony, a tree is sought on which the total amount of evolutionary change is

minimized. This can be calculated in several ways. One way is to count the total number

of changes indicated over all the edges, where the evolutionary change indicated by

an edge is quantified by the number of characters which change state over that edge.

Another way to calculate this is to sum over all the characters the total number of

times the character changes. The tree with the minimum total number of changes is

called the maximum parsimony tree.

Although the parsimony criterion is very popular, there are data for which the evolu-

tionary process produces characters which are very unlikely to have very many changes,

or else few returns to states which have previously appeared on the tree. An example

of such a character is the morphological character vertebrute-invertebrate; any pro-

posed tree for this character in which the vertebrates and invertebrates are not clearly

separated by a single edge would be rejected. Correspondingly, multi-state characters

of this type would have each character state occupying a single connected subset of

the tree; such characters are said to be compatible or convex on the tree. When work-

ing with data of this type, the parsimony criterion is inadequate because it does not

express the constraint indicated by the characters. Instead, the compatibility criterion

may be used; in this case, the tree on which the maximum number of characters are

compatible is sought.

Thus, parsimony and compatibility each targets a different type of character data and

handle deviations from the assumptions differently. Parsimony targets the case where

characters evolve slowly but not necessarily so as to produce compatible characters,

and penalizes for each extra character state change without regard to how the extra

changes are distributed. Compatibility targets the case where characters are presumed

to evolve in such a way as to produce compatible characters, and penalizes for each

churucter that is not compatible on the tree. Both criteria are used in practice for

different types of datasets. Both criteria, compatibility and parsimony, result in NP-

hard optimization problems [6, 71. An ideal tree is one in which all characters are

compatible (i.e., all characters are convex on the tree). Such a tree is optimal under

parsimony and compatibility criteria and is called a perjkct phylogeny. The question

of whether a perfect phylogeny exists for a given input is NP-complete [4, 171.

In this paper, we propose an alternative optimization criterion for evaluating phy-

logenetic trees which combine the good aspects of both parsimony and compatibility.

Specifically, we allow the characters to be of varying types; thus, some can evolve

quickly, and can potentially have many extra character state changes, while others

may be compatible on the evolutionary tree, and others can fall between the two ex-

tremes. Our model presumes that for each character c and state i, we have a bound

L’,i, the number of times each state i of character c arises in the tree. Given these

bounds, we would seek a tree T satisfying the constraints given by the bounds, if

possible.

114 L. A. Goldberg! Discrete Applied Mathematics 71 (1996) Ill-136

We will say that a phylogenetic tree T for an input consisting of a species set S

and a sequence of characters cl,. . ,ck is an /-phylogeny if, for every character Cj and

every state i E R,, the set of vertices c,:‘(i) form at most e connected components

in T. (A l-phylogeny is the same as a perfect phylogeny). The tf-phylogeny problem

is the problem of determining whether an input has an e-phylogeny. The phylogenetic

number of an input is the minimum e such that the input has an e-phylogeny. The

phylogenetic number problem is the problem of determining the phylogenetic number

of an input.

The e-phylogeny problem and the phylogenetic number problem both have fixed-

topology versions which are defined as follows. The input is a species set S, a sequence

of characters cl,. . . , ck, and a tree T in which internal nodes are unlabeled and each

leaf is labeled with a species s E S. Each species s E S is the label of exactly one leaf

of T. A phylogenetic tree for the input is formed by taking T and labeling the internal

nodes of T with vectors in R,, x . . . x R,, . The fixed-topology L-phylogeny problem is

the problem of determining whether the input has an /-phylogeny. The fixed-topology

phylogenetic number problem is defined analogously.

The e-phylogeny problem and the phylogenetic number problem also have restricted

versions in which new ancestral species may not be added, as in[8]. The restricted

versions are defined as follows. The input is a species set S and a sequence of char-

acters cl,..., ck. A restricted phylogenetic tree for the input is a node-labeled tree in

which every node of the tree is labeled with a vector in S, and each species in S is the

label of some node of the tree. The restricted e-phylogeny problem is the problem of

determining whether the input has a restricted e-phylogeny. The restricted phylogenetic

number problem is defined analogously.

The e-phylogeny problem can be generalized as follows. Fix positive integers

r,e, ,..., d,. Suppose that S,ci ,..., ck is a phylogeny input such that maxi r,, < r. An

(/I,. . . , d,)-phylogeny for an input is defined to be a phylogenetic tree for the input

such that, for each character cj and each integer i < IR,, 1, the set of vertices that are

mapped to the ith state in R,, by cj forms at most ei connected components in T. The

(e,,..., e,.)-phylogeny problem is the problem of determining whether an input has an

(6,..., e,)-phylogeny. A generalized version of the restricted e-phylogeny problem is

defined analogously.

1.1. Summary of results and outline of paper

The l-phylogeny problem is also known as the perfect phylogeny problem. It was

shown to be NP-hard by Bodlaender et al. [4] and Steel [171. The hardness of l-

phylogeny implies that the phylogenetic number problem is NP-hard. In Section 2 of

this paper we show that for any fixed e > 1 the e-phylogeny problem is also NP-hard.

Having shown that the L’-phylogeny problem is NP-hard, we consider in Section 3 the

fixed-topology I-phylogeny problem. It is known that the fixed-topology l-phylogeny

problem can be solved in polynomial time [9]. We show that the fixed-topology 2-

phylogeny problem can also be solved in polynomial time and that the fixed-topology

L. A. Goldberg I Discrete Applied Mathematics 71 (1996) 11 l-136 115

G-phylogeny problem is NP-hard for fixed G > 2. (We show that the fixed-topology

e-phylogeny problem is NP-hard for fixed e > 2 even when the input is guaranteed to

have an e + l-phylogeny and the degree of the topology is restricted to be at most 3.)

In Section 4 we consider the restricted e-phylogeny problem. We show that there is

a polynomial-time algorithm for the restricted l-phylogeny problem, but the restricted

d-phylogeny problem is NP-hard for fixed P 3 2.

Although the l-phylogeny problem is NP-hard, it can be solved in polynomial time

if the number, II, of species is fixed, or the number, k, of characters is fixed [2, 151,

or the quantity r = maxj r,, is fixed [1, 131. A full analysis of fixed parameter C-

phylogeny problems is outside the scope of this paper. However, we observe that all

of the phylogeny problems can be solved in polynomial time (by brute force) if n is

fixed. In Section 5 we use interesting combinatorial techniques to show that for k = 2

the phylogenetic number problem can be solved in O(n2) time. The complexity of the

P-phylogeny problem remains open for fixed C? > 1 and fixed k > 2. The difficulty of

fixed-topology phylogeny problems does not change if k is fixed. In Section 6 we show

that the fixed-topology phylogenetic number problem can be solved in polynomial time

for fixed Y. On a related note, we show that if Y is fixed, there is a polynomial-delay

algorithm for listing fixed-topology d-phylogenies. We also show that for fixed Y > 2

and fixed & 2 3 the restricted e-phylogeny problem is NP-hard. (This result follows

from a more general result. Namely, we show that the restricted (et,dz)-phylogeny

problem is NP-hard for fixed di 3 2 and (1 2 2 as long as one of dl,L’2 is greater

than 2.)

Finally, in Section 7 we offer some concluding remarks and present some open

problems.

1.2. Preliminary facts

The following fact is used in some of the proofs and in the restricted l-phylogeny

algorithm.

Fact 1. Zf an input S, cl,. . . , Ck has an d-phylogeny then it has an e-phylogeny in

which

(i) Each leaf has a label from S.

(ii) Each species is the label of at most one node.

(iii) Every node whose label is not in S has degree at least 3.

(iv) There are at most max(O,n - 2) nodes with labels that are not in S.

Proof. It is easy to see that conditions (i)-(iii) can be satisfied. (One can convert an

&-phylogeny into one that satisfies conditions (i)-(iii) by removing leaves with labels

that are not in S, combining branches of the tree to accomplish condition (ii), and

then “splicing out” the appropriate degree 2 nodes to accomplish condition (iii).) To

prove that condition (iv) can also be satisfied, suppose that T is an L-phylogeny for

the input that satisfies conditions (i)-(iii) and contains at least one node, w, with a

116 L. A. Goldberg I Discrete Applied Mathematics 71 (1996) 111-136

label that is not in S. Let T’ be the tree obtained from T by splicing out any nodes of

degree 2. (Condition (iii) guarantees that no node with a label outside of S is spliced

out in this process.) Consider T’ to be rooted at w. We can add one or more new

internal nodes to T’ to obtain a complete binary tree T” which is rooted at w and has

the same leaves as T’. 5 Conditions (i) and (ii) imply that T, and therefore T’ and T”,

have at most n leaves. Since T” has at most n leaves, it has at most n - 1 internal

nodes. Therefore, T’ has at most a - 2 internal nodes, and T has at most n - 2 nodes

with labels that are not in S. 0

Fact 1 implies that if an input has an /-phylogeny then it has a polynomial-sized

e-phylogeny.

2. The hardness of t-phylogeny

In this section we show that for any fixed e > 1, the e-phylogeny problem is NP-

hard. Our reduction is from the l-phylogeny problem, which was shown to be NP-hard

in [4, 171.

We define the weight of an edge (vi, 02) in a phylogeny to be the number of char-

acters cj such that cj(Vi) # Cj(V2). That is, the weight of (u~,II~) is the number of

characters on which the species labeling vi and vz disagree, i.e. the hamming distance

between their vectors of character values. We define the weight of a phylogeny to be

the sum of the weights of its edges. We start with the following observation.

Remark 2. Let S,CI , . . . , ck be any input to the e-phylogeny problem and let r denote

maxj rC,. Any e-phylogeny for this input has weight at most k(Lr - 1).

We will use the following lemma (in which species are referred to by strings over

their character values).

Lemma 3. For every integer L there is an input If =&cl,. . . ,CZ/ in which ISI = 2e3 -

2l+ 1 and R,, = (0,. . . ,/-l}for 1 <j<2&such that

0)
(ii)

(iii)

(iv)

For every state i in the range 0 < i < &, the species i2” is in S.

I/ has an e-phylogeny

In any C-phylogeny for I, the subgraph induced by aN of the nodes with any

given label is connected.

In any l-phylogeny for If all of the nodes are labeled by species in S. (That is,

~to new species are introduced.)

5 To see how to construct T”, let the “level” of a vertex denote its distance from the root. Start with

level 0 of T’ and proceed through the levels of the tree in increasing order. Consider each vertex v on

each level. If u has children xl,. . ,Xj with j > 2 remove the edges (u,x~),. ,(u,xj) and add a new node y

which is a child of u and the parent of nodes x2,. .,xi. Note that at least one new internal node is added

in the process, as w has at least three children in T’.

L. A. Goldberg I Discrete Applied Mathematics 71 (1996) II I-136 117

122111

22;111

2222 11

2221221

22;222- /

022222- 002222- 002202- 102202- 112202- 112212

220222- 220022- 220020- 221020- 221120- 221121

Fig. 1. The input 13

(v) In any /-phylogeny for It the path between the species i2’ and j*’ for i # j

passes through at least 2e - 1 distinct species.

Example (The Input 13). The species set S of input 13 consists of 49 species. The

values of the six characters on these species are defined as in Fig. 1.

The Input I, has the 3-phylogeny shown in Fig. 1. By Remark 2 any 3-phylogeny

for 1, has weight at most 48. However, 48 edges with positive weight are needed just

to hook up the 49 species in S into a tree. We conclude that any 3-phylogeny for 13

consists of 48 edges with weight 1 plus possibly some edges with weight 0. Thus, the

subgraph induced by all of the nodes with any given label forms a single connected

component. Furthermore, no new species are introduced. Finally, since i6 and j6 differ

in 6 characters (for i #j), any path between them in any 3-phylogeny for 1, passes

through at least 5 distinct species.

Construction of 1, = S, cl,. . , c2/:

For 1 dj~2&wesetR,,={O,...,/-l}.ForeachstateiintherangeO~i<~we

put the species i2’ mto S. The other species in S will be the species in the following

phylogeny:

For each state i in the range 0 6 i < G we will choose a unique partition P; of

the 2C characters into two sets of size e. (In the construction of 13 above we used

P0={0,1,2},(3,4,5},P1 ={0,2,4},{1,3,5} andP2={0,1,4},{2,3,5}.)
We will use each of the parts of the partition Pi to form a “row” of species which

will be connected to the species z ‘*’ To construct each row, consider the ordered list .

ci,, . , ci, consisting of the characters in the appropriate part of the partition. From the

species i*’ form a new species by changing the state of character c;, to (i + 1) mod I.

118 L. A. Goldberg/ Discrete Applied Mathematics 71 (1996) III-136

Then form a new species by changing the state of character ciz to (i + 1) mod e.

Continue on until the state of character ci, is changed to (i + 1) mod e. Then change

the state of character ci, to (i + 2) mod ! and continue on in this manner until finally

the state of character ci, is changed to (i + (e - 1)) mod &.

Finally, we will add species to connect the species i2’ to the species (i + 1)2” in

the vertical spine (for i in the range 0 6 i < e - 1). Let c;. be the second character in

the first part of the partition corresponding to i and construct a new species from i2”

by changing the state of character CJ. to i + 1. Next, let c;, be the first character such

that c;, and c;. are in different parts of i’s partition and cl and cf are in different parts

of (i + 1)‘s partition. Construct a new species by changing the state of character c;

to i + 1. Now, construct 2e - 3 more species by considering each remaining character

in turn and changing it from state i to state i + 1.

Proof of Lemma 3. By construction, S contains the species i2’ for every state i in

the range 0 < i < d. To see that the phylogeny constructed above is indeed an e-

phylogeny for If note that for each state i and for each state j # i a character cj,

only has state i in one of the two rows connected to j2” and the species with c;, in

state i are connected in this row. Furthermore, there is a single connected component

with character c), in state i in the rows connected to i2’ and this connected component

contains all species on the vertical spine with character ci in state i. We now wish

to show that all of the species introduced in the construction are distinct. Suppose

that instead two species si and s2 have identical labels. Note that, by construction,

si and s2 could not be of the form I ‘2’ Furthermore, they could not be on the same .

horizontal row and they could not both be on the vertical spine. There are three cases to

consider:

(i) sr and s2 are on different rows, both of which are attached to i2/. In this case st

has state i for all of the characters in one part of the partition Pi and s2 has state i

for all of the characters in the other part of the partition Pi so it must be the case

that sr = s2 = i2/ which is a contradiction.

(ii) si is on a horizontal row connected to i2” and s2 is on a horizontal row connected

to j2’ for some j # i. In this case si has state i for all of the characters in some

part of the partition P; so s2 must have character i for all of the characters in

that part of the partition Pi and character j on all other characters. But then the

partition Pj is the same as the partition Pi, which is not true by construction.

(iii) sr is on the vertical spine between i2’ and (i + 1)2’ and s2 is on a horizontal
row. By construction s2 must be on a row attached to i or on a row attached

to i + 1. However, the choice of cl. and ci ensures that s2 cannot be on either of

these rows.

Now that we know that the species are distinct, we count them. There are / species

of the form i2’. Each of the 2& horizontal rows has e(e - 1) species. Finally, there

are (8 - 1)(2[- 1) additional species on the vertical spine. We conclude that S has

2e3 - 2e + 1 distinct species. By Remark 2, any e-phylogeny for Zt has weight at most

2t!(e2 - 1) = 2e3 - 2/. However, 2e3 - 2/ edges with positive weight are needed just to

L. A. Goldberg1 Discrete Applied Mathematics 71 11996) III-136 119

hook up the 2e3 -2L+ 1 species in S into a tree. We conclude that any e-phylogeny for

I/ consists of 2e3 - 2& edges with weight 1 plus possibly some edges with weight 0.

Thus, the subgraph induced by all of the nodes with any given label forms a single

connected component. Furthermore, no new species are introduced. Finally, since i2’

'2f and J differ in 2t? characters, any path between them in any C-phylogeny for If passes

through at least 2& - 1 distinct species. 0

We will use Lemma 3 to prove the following theorem.

Theorem 4. For any jxed P > 1 the L-phylogeny problem is NP-hard.

Proof. The reduction is from the l-phylogeny problem. Let S, cl,. . , ck be an input to

the 1 -phylogeny problem such that R,., C{O, . . . , Y - 1 } for 1 6 j 6 k. Let S’, ci , . . . , tit
be an input to the L-phylogeny problem satisfying the conditions in Lemma 3. Let

S*={~V~~SES’}. Foreachiin therangeO<i<Glet5’,={i2’ylyES}. LetS”=

S* u U. Gi<J S;. Let I be the input to the P-phylogeny problem with species set S” and

characters c{, , CT;/, cl,. . . ,ck. (Note that in input I the range of Cj has been extended

from R,, to R,, U {r}.)

(4) Suppose that T is a l-phylogeny for S, ~1,. . , ck. For each i in the range

0 d i < G let 7; be a copy of T in which each label y has been changed to i2’ y. (E

is a l-phylogeny for S;, c{, . , tic, cl , . . . ,ck.) Let T* be an d-phylogeny for S*,c{, . . . ,

CL cl,. . . ,ck. (Part (ii) of Lemma 3 guarantees that T* exists.) Now for each i in

the range 0 < i < L’ connect an arbitrary node in 7; to the node i2’rk in T*. (The

construction, together with Part (i) of Lemma 3 guarantees that there is a vertex of T*

labeled i2’rk.) The resulting tree is an !-phylogeny for I.

(-) Suppose that T is an t-phylogeny for 1. If we restrict our attention to characters

4 , . . . , cir, we still have an e-phylogeny. Therefore, by Part (iii) of Lemma 3, the

subgraph induced by all of the species which have some particular set of states for

characters c;, . . . , tit is connected. We will use the notation T, to refer to the induced

subtree of T containing those species that have state i for characters c/1,. . . , cif.

We claim that for any j in the range 1 d j < k any path in T between a node t, E 7;

and a node th E T,, (for h # i) contains some species s with cj(s)=Y. Clearly, this claim

implies that To is a l-phylogeny for So, c/I,. . , ckr, cl,. . . ,ck. Hence, &cl,. . . ,ck has a

1 -phylogeny.

To prove the claim note that by Part (v) of Lemma 3 the path between Ti and T,,

passes through at least 2d - 1 nodes ~1,. . , v~/_I, no two of which agree on all of

characters c{, . , ci/. By construction and by Part (i) of Lemma 3, S” contains the

species i2’rk and by Part (iii) of Lemma 3 it is part of Ti. Similarly, S” contains the

species h2’rk and it is part of Th. Furthermore, (by construction and by Part (iv) of

Lemma 3) for each node v,, S” contains a species vh that agrees with v, on characters

4 , . . . ,& and has characters cl,. . . ,ck in state r. By Part (iii) of Lemma 3 v; is in

the connected subgraph of T induced by species which agree with v, on characters

c{, ,&. Now suppose that none of vi,. . . , VZI_1 has character c, in state r. Then the

120 L.A. Goldberg/ Discrete Applied Mathematics 71 (1996) 111-136

sub-graph of T induced by those nodes that have character cj in state r has 2L + 1

connected components, which contradicts the fact that T is an e-phylogeny. q

3. The fixed-topology &phylogeny problem

It is known that the fixed-topology l-phylogeny problem can be solved in polynomial

time [9]_ In Section 3.1, we show that the fixed-topology 2-phylogeny problem can

also be solved in polynomial time. In Section 3.2 we show that the fixed-topology

e-phylogeny problem is NP-hard for fixed L > 2. (We show that the fixed-topology

e-phylogeny problem is NP-hard for fixed L > 2 even when the input is guaranteed

to have an e + l-phylogeny and the degree of the topology is restricted to be at

most 3.)

3.1. The fixed-topology 2-phylogeny problem

In this subsection, we show that the fixed-topology 2-phylogeny problem can be

solved in polynomial time. The algorithm runs in time O(nrk) where n is the number

of species, r is the maximum number of states in any character, and k is the number

of characters. If a 2-phylogeny exists, then our algorithm computes a labeling that

achieves a 2-phylogeny.

Since the topology is fixed, the characters are independent and can be handled one

at a time. We will now show how to compute the labels for a single character in

time O(w), where in this case r is the number of states for this character. The overall

bound then follows.

Although the input tree is unrooted, for this algorithm, we root this tree from an ar-

bitrary internal node. The choice of root does not affect the existence of a 2-phylogeny,

but it may affect the labeling.

Let T be the input tree with leaves labeled by states 1,2,. . . , r. Consider a single

state i and let T, be the subtree of tree T consisting of all the leaves labeled i and the

unique set of paths connecting this set of leaves. For state i to have a single connected

component in tree T, every node in 7;: must be labeled i. For state i to have at most

two connected components, every node in tree Ti with degree greater than 2 must be

labeled i (otherwise state i would be split into at least 3 components). We call such

nodes branch points of tree Ti. The branch points and the leaves already labeled i are

the forced points of tree Ti. At most one path of degree-2 nodes between two forced

points can be labeled something other than i.
We begin by computing 7;: for i = 1,. , r. Each branch point of T, is labeled as

such, each path between two forced points is given a unique label, and each degree-2

node in I;: is labeled with its path label. Note that the root of tree Ti need not be a

branch point. If each node of tree T is given a length-r vector, then information for

all r trees T; can be stored in this vector. For example, node v could be a branch point

for tree K (ith slot of the vector indicates branch point), on the Ith path for tree Ti

L.A. Goldberg/ Discrete Applied Mathematics 71 (19961 111-136 121

(the jth slot of the vector has the number I), and not in tree Th (the hth slot is null).

We can compute all Y trees in time O(nr) using depth-first search.

The first phase of the algorithm (the forced phase) computes all forced labels. For

each tree r,, each branch point of T; is labeled i and a pointer to the node is placed into

a queue. If at any time we try to label a node that is already labeled with something

else, then we stop and report that there is no 2-phylogeny for this topology.

Now all path conflicts have to be settled for the labeled nodes. We remove the first

node from the queue. Suppose it is node c and it is labeled i. If this node is also in

path 1 of tree Ti for some j # i, then tree r, must give up path 1. Once path I is

broken, then in order to achieve 2 connected components for state j, every other path

in tree T, must be labeled j. We traverse tree Tj, clearing path 1 (setting slot j to

null for all nodes on path 1 of tree Tj) and labeling all other nodes j. If we attempt

to label a node that is already labeled, then we stop. There can be no 2-phylogeny.

Otherwise, the newly labeled nodes are added to the queue. We do this for all paths

that go through node v, then clear path conflicts on all the other nodes in the queue.

Because each node can be labeled, enqueued, dequeued, and processed at most once,

and each tree can be traversed at most once, this phase can be completed in time

O(m).

The final phase completes the labeling of the tree. If we succeed in emptying the

queue without encountering a fatal conflict, it is still possible that some nodes remain

unlabeled. We show that there is always a 2-phylogeny. Let trees 7; and T, be left

undetermined by the forced phase of the algorithm. If the intersection of these two trees

is empty, there is no conflict between them. Otherwise, the intersection is connected6

and contains exactly one path from each tree.’ Furthermore, the root of one of the

trees (possibly both) is in the intersection. * Suppose that the root of 7;: is contained

in 7; f? T,. Then tree T; gives up the path through its root (if both roots are contained

in T, n T,, one of the trees chosen arbitrarily will give up the path through its root).

By the structure of the intersection, this clears the conflict between tree Ti and T;. We

can solve all conflicts between pairs of trees in a similar manner. Since each tree was

not forced to give up a path in the forced phase of the algorithm (otherwise it would

have been fully determined then), it is free to give up one path in this phase. Each

tree will give up at most one path, namely the one through its root. Therefore, all

conflicts are resolved and we have a 2-phylogeny. This phase of the algorithm can be

implemented in O(w) time by processing each remaining tree in order (determining

whether it must relinquish the path through its root, and claiming all other paths).

’ If two nodes UI and 02 are both in r, and both in 7’,, then every node on the unique path in T between

UI and 1:~ must also be in both trees.
7 If the intersection contained pieces of two paths from tree r,, then it must contain a branch point for

tree Ti and therefore tree r, would have been forced to relinquish a path and left completely determined by

the forced phase.

* Consider a node in the intersection. If its parent in T is in the intersection, move up to it. Continue until

some parent is no longer in the intersection. That node is the root of at least one of T, and 7).

122 L.A. Goldberg/ Discrete Applied Mathematics 71 (1996) 111-136

Thus we have shown how to compute the labelings of the internal nodes of the

input tree 2’ in time O(nr) per character for an overall time of O(nrk). Thus, we have

proved the following theorem.

Theorem 5. The $xed-topology 2-phylogeny problem can be solved in polynomial

time.

3.2. The fixed-topology e-phylogeny problem for L > 2

In this subsection we prove the following theorem.

Theorem 6. The jixed-topology tY-phylogeny problem is NP-hard for jixed e > 2.

Proof. The proof is by reduction from 3SAT. Let e > 2 be fixed. Suppose that we

are given an input to 3SAT. We will show how to construct a one-character input

S, c, T to the fixed-topology e-phylogeny problem such that the phylogeny input has

an d-phylogeny if and only if the input to 3SAT is satisfiable.

The species set S, the set R, of states, and the character c are constructed as fol-

lows. For each of the n variables, x, in the satisfiability input we have states s, and s,-

and species q,,i), . . . ,Q,/+I) and q~,l), . . . , SW+ I) where 4+,j) I= 3, and c(s(,j)) = G.
For each of the m clauses, C, in the satisfiability input we have state SC and species

S(C,l), . . . 2 s(c,/+~) where c(s(c,j))=sc. For the ith occurrence of the literal x in the satis-

fiability input, we have state s,, and species +,,I), . . . ,s(,J+~) where c(s(x,,j))=Sx!. Sim-

ilarly, for the ith occurance of the literal X in the satisfiability input, we have state s,-~

and species S(J), . . . P(Y,J+I) where c(s(r,,j))=sF,. Let N denote n(2&3)+m(4e-- 11).

For each h in the range 1 6 h < N we have a state s; and species &t), . . . ,s[~,(+,)

where c(s&~)) = s;.

We will show how to construct a tree T in which internal nodes are unlabeled and

each leaf is labeled with a species in S. Each species in S will be the label of exactly

one leaf of T. To construct T we will first construct trees TI, . . . , TN. Finally, we will

hook Ti to Ti+l for 1 < i < N

We start by showing how to hook tree z to tree z+i. Let ti be an internal node

in Ti of degree at most 2 and let ti+l be an internal node in Ti+l of degree at most 2

(it will be clear from the construction that such small-degree internal nodes exist in T

and Ti+l). Connect ti and ti+l with a chain of e + 1 new internal nodes. Finally,

give each of the internal nodes in the chain a leaf and label the new leaves with the

species sli,ij ,..., &+,). For example, if e = 3 then connect ti and ti+l as in Fig. 2:

Note that in any e-phylogeny for the input, at least one of the internal nodes in

the chain will be labeled with a species s such that c(s) = .si. Since we have now

used all 8 + 1 species s with c(s) = si, neither Ti nor Tii+i contains a leaf s such

that c(s) = si. Therefore when Ti is hooked to Ti+l as above, any leaves ei E z and

ei+i E 1;+i with c(ei) = c(ei+i) are in different connected components in the subgraph

induced by c-‘(c(ei)).

L. A. Goldberg/ Discrete Applied Mathematics 71 (1996) Ill-136 123

Fig. 2. Example for C = 3.

Fig. 3. Example for e = 3, i = 1, j = 2.

We next show how to construct the trees TI,. , TN. Trees Tl,. . . , TN+_~ will each

consist of a single internal node connected to a single leaf. In particular, we will

construct one such tree for each of the following species: for each variable x, species

s(,,i), . . . , SW-~) and s(,-,I), . . ,s(,-,f-2); for each clause C, species s(c,J), . . . ,s(c,p_3); for

the ith occurance of the literal X, species .Q,,~),. . ,.~(,~,/_3); for the ith occurance of

the literal X, species s(r,,i), . . , s(i,,+3).

Trees TN_~_,,,+~, . . . , TN_, will be used for truth setting. For each variable x in

the satisfiability input we will construct a tree as follows. Suppose that the literal x

appears i times in the satisfiability input and that the literal X appears j times in

the satisfiability input. Construct a tree consisting of a chain of 2i + 2j + 6 internal

nodes. Each internal node will have one leaf, and the species at the leaves will be (in

order): first, +,/-I); then, +,,Gz), +,,/-I), q,,,~), +,,P-I), . . . , 3(,,,/-2), +,+I);

then q,t),.q,-,~l), q,t+~), SW); then q~,,~-2), q:,,i-~),. , , q,-,,/-2), ~YJ-I); finally,
s(,-,/+~). For example, if e = 3, i = 1, and j = 2 construct a tree as in Fig. 3:

Because we have already introduced single-leaf trees for the species s(,,JJ, . . . , s(,,g_2)

and SC,-,I), . . . , s(~,+2), we observe that in any e-phylogeny, the truth-setting tree for vari-

able x must have at most 2 connected components for each of the states s, and ST. We

will say that an L’-phylogeny sets the satisfiability variable x to “true” if and only if the

leaves qX,,q and +,/+I) are in the same connected component for state s,. If the vari-

able x is set to “true” then the leaf s(,,/_ 1) can be in a different connected component

for state s,. Therefore, for 1 6 h < i, state s,,~ can form a single connected component

in the truth-setting tree for x. Otherwise, state s,~, must have two connected compo-

nents in the truth-setting tree for x. Similarly, if x is set to “false” then leaves s~~,~--])

and s(r,c) can be in the same connected component for state SF and leaf s(,,g+i) can

be in a different connected component. Therefore, for 1 < h < j, state s,, can form a

single connected component in the truth-setting tree for x. Otherwise, state SF, must

have two connected components in the truth-setting tree for x.

124 L.A. Goldberg/ Discrete Applied Mathematics 71 (1996) Ill-136

0 v l

l l 0 l l l l l l

‘(C,l)‘(Xi,3) ‘(Xi.4) '(C,Z) "'~j,3/ "fjjr4) s(c,3) s(Zk’3) s{zk’4) s(c,4)

Fig. 4. Example for C = 3

Trees TN-~+, , . . . , TN will be used for clause checking. For each clause C=Xi V yj V

zk in the satisfiability input we will construct a tree consisting of a chain of 10 internal

nodes. Each internal node will have one leaf, and the species at the leaves will be

(in order): ~(c,/-~),~(~,,P),~(,~,/+I),s(c,/-I), qy,,r), s(~,,T+I), S(C,O, qs,/), qzk,/+~),q~,/+~).

For example, if e = 3, construct a tree as in Fig. 4:

Because we have already introduced single-leaf trees for the species s(c,J), . . . , stc,/_-)),

we observe that in any 6-phylogeny, the clause-checking component for clause C must

have at most 3 connected components for the state SC. This is possible if one of the

literals in the clause has been set to “true” by the truth checking component and not

otherwise. The correctness of the reduction follows. 0

The input to the fixed-topology 6-phylogeny problem that is constructed in the proof

of Theorem 6 had two notable features. First (because there are only e+ 1 species with

each state), the input is guaranteed to have an e + l-phylogeny. Second, the degree of

the tree T is at most 3. Therefore, the fixed-topology L-phylogeny problem is NP-hard

for fixed b > 2 even when the input is guaranteed to have an L + l-phylogeny and the

degree of the topology is restricted to be at most 3.

4. The restricted &-phylogeny problem

In this section we show that there is a polynomial-time algorithm for the restricted l-

phylogeny problem. We then show that the restricted e-phylogeny problem is NP-hard

for fixed L 2 2.

We start by describing the algorithm for solving the restricted l-phylogeny problem.

Suppose that S, cl,. . . , Ck is an input to the restricted l-phylogeny problem. If the input

has a restricted l-phylogeny, it has one in which each species in S is the label of

exactly one node (if not, combine branches).

We define the weight of an edge (vi, 02) in a phylogeny to be the number of char-

acters cj such that cj(Ui) # Cj(U2). That is, the weight of (u~,zJ~) is the number of

characters on which the species labeling vi and v2 disagree. We define the weight of

a phylogeny to be the sum of the weights of its edges.

Let G denote the complete graph with vertex set S. We seek a spanning tree T of G

in which, for every character cj and every state i E R,, , the set of vertices c,‘(i) form

a connected component in T. Let the weight of an edge (s,s’) in G be the number

L. A. Goldbery I Discrete Applied Mathematics 71 II 996) 1 I l-136 125

of characters c,~ such that cj(S) # cj(s’). Then a spanning tree of G is a l-phylogeny

for the input if and only if its weight is $=,(‘;, - l), and any spanning tree that

is not a l-phylogeny will have a greater weight. Therefore, the restricted l-phylogeny

problem reduces to the minimum weight spanning tree problem, which can be solved

in polynomial time [16]. We have proved the following theorem:

Theorem 7. The restricted l-phylogeny problem can be solved in polynomial time.

In the remainder of this section, we prove the following theorem.

Theorem 8. The restricted P-phylogeny problem is NP-hard for jixed L 3 2.

Proof. The reduction is from the t-consecutive ones problem, which is defined as

follows:

Instance: A (0,l)-matrix M.

Question: Can the rows of M be permuted in such a way that for each column in

the resulting matrix, there are at most & sequences of consecutive ones.

The P-consecutive ones problem is known to be solvable in polynomial time for e =

l[lo]. However, it is NP-complete for fixed e > 1 [111.

Let t be a positive integer that is greater than or equal to 2. Suppose that we are

given an input M to the d-consecutive ones problem with n rows and m columns. (We

will assume that n 3 3e.) We will show how to construct an input

S, c I,...,(‘m+(,“,)

to the restricted e-phylogeny problem such that the phylogeny input has a restricted

e-phylogeny if and only if the rows of M can be permuted in such a way that for each

column in the resulting matrix there are at most (sequences of consecutive ones.

The phylogeny input is constructed as follows. Let M’ be a matrix derived from M

by replacing the zeroes in each column of M with integers in the range 2,. . . , n + 1 in

such a way that each column of M’ has at most one occurence of each integer in the

range 2,. . . , n + 1. The species set S will have n species - one for each row of M’.

For j in the range 1 < j 6 m character cj will map the species corresponding to row r

of A4 to the entry in column j of row r of 44’. We will define the remaining (,“,)

characters as follows. For j in the range 1,. . . , (,“,) we will have R,,,,,, = (0, 1). We

will let S, denote the jth size-(C - 1) subset of S and we will set c~+~(.s) = 1 for s E Sj

and Cj+m(S) = 0 for s 6 S,.

(4) Suppose that T is a restricted t-phylogeny for

s, c I>...,Cm+(,r,).

Using Fact 1, we can assume that each species in S is the label of exactly one node

in T. Let V = {VI,. . . , v/-1} be any set of e - 1 vertices of T and let j be the integer

such that the species labeling the vertices in V’ correspond to the set Sj. Observe that

the graph obtained by removing the vertices in V from T has at most G connected

126 L. A. Goldberg/ Discrete Applied Mathematics 71 (1996) Ill-136

components (otherwise, the set of vertices c,&(O) form more than e connected com-

ponents in T, so T is not an /-phylogeny). We will show that every node in T has

degree at most 2. Suppose instead that T has a vertex, vi, of degree greater than or

equal to 3. We will show that there are e - 2 other vertices, 212,. . . , q-1 such that

the graph obtained by removing the vertices in V = {VI,. , v/-l} from T has at least

e + 1 connected components. This will be a contradiction, so we will conclude that

every node in T has degree at most 2. To show that ~2,. . . , v/_1 exist, note that the

subgraph of T formed by removing vertex VI has at least 3 connected components.

Furthermore, if any subgraph T’ of T that is formed by removing up to e - 1 ver-

tices has fewer than e + 1 connected components, it is possible to remove a vertex

so as to increase the number of connected components 9 . Let v2 be a vertex such that

removing v2 from T - VI increases the number of connected components. Similarly,

let 03 be a vertex such that removing us from T - {VI, ~2) increases the number of

connected components. Continuing this process we identify 02,. . . , v/-l. We have now

shown that T is a path. It follows that we can arrange the rows of A4 in the order

that the corresponding species occur on path T and that, in such an arrangement, each

column has at most e sequences of consecutive ones.

(t) Suppose that p = {PI,. . . , pn} is a permutation of { 1,. . . , n} such that when

the rows of A4 are permuted according to p each column has at most e sequences of

consecutive ones. Let T be a path consisting of the species in S, arranged according

to permutation p. Then T is a restricted e-phylogeny for

5. Two-character phylogeny

In this section we show that for k=2 the phylogenetic number problem can be solved

in O(n2) time, where n is the number of species. We start by proving the following

fact.

Fact 9. If a phylogeny input S, cl, c2 has an d-phylogeny then it has a restricted e-
phylogeny T in which each species in S is the label of exactly one node and for each
character j E { 1,2} and each state i E R,, , at most one of the connected components

in the subgraph of T induced by the set of vertices c,:‘(i) has more than one vertex.

Proof. Suppose that T’ is a an e-phylogeny for S, cl, ~2. We start by showing that

S, cl, c2 has a restricted /-phylogeny in which each species in S is the label of exactly

one node. We can assume that each species is the label of at most one node of T’ (if

not, combine branches). Now, suppose that a species s @ S is the label of some node

of T’. We can assume that this node, v, is an internal node of T’ (otherwise delete it).

Let Ui be the set of neighbors u of v such that ci (u) = cl(v). Let UZ be the the set

9 To see this, note that (since n > 30 T’ has some connected component with more than 2 vertices.

L.A. Goldberg1 Discrete Applied Mathematics 71 (1996) Ill-136 127

of neighbors u of v such that Q(U) = Q(V). Note that Ui fl U2 = t?~ since s is the only

species that can label a node in Ui n U2 and c is the only node with label s. Let U3 be

the set of neighbors of v that are not in U, or U2. We can form a new d-phylogeny

for S, cl, c2 by deleting node v, connecting the vertices in U1 in a path, connecting the

vertices in U2 in a path, connecting the vertices in Us in a path, and connecting some

node from U1 to some node in U2 and some node from iJ2 to some node from U,.

We have now shown that S,CI,CJ has a restricted e-phylogeny in which each species

in S is the label of exactly one node. Let T be such an L-phylogeny. Suppose that

for character j E { 1,2} and state i E R,, , C and Cl are two non-singleton connected

components in the subgraph of T induced by the set of vertices c]:‘(i). Let c E C and

c’ E C’ be vertices such that the path connecting c to c’ in T does not include any

other vertices in C or C’. (Note that c and c’ are uniquely defined.) For every v E C

which is adjacent to c note that the path between v and c’ passes through vertex c.

Remove the edge (v,c) from T and add the edge (t.,c’). Note that the resulting tree

is an 6-phylogeny for &cl, ~2. (To see this, note that since the species labeling u is

different from the species labeling c, the character other than character j disagrees on v

and c.) 0

In this section, we represent the phylogeny input S, cl, c2 as a bipartite graph. One

set of vertices in the graph will be the set R,, and the other set of vertices in the

graph will be the set RC2. For i E R,, and j E RC2 the edge (i, j) will be present in the

graph if and only if S contains a species s such that cl(s) = i and Q(S) = j. (This

is the partition intersection graph [14, 51.) Let d(u) denote the degree of a vertex u

in this graph. We will define a special e-coloring of the graph to be a coloring of

the edges with the colors white, blue, red, and purple such that each vertex i in R,,

has max(O, d(i) - G + 1) of its neighboring edges colored either red or purple and the

rest of its neighboring edges colored either white or blue and each vertex j in RC2 has

max(O, d(j) - e + 1) of its neighboring edges colored either blue or purple and the rest

of its neighboring edges colored either white or red. (Intuitively, think of each edge as

starting out white. Then each vertex i in R,, adds red color to max(O, d(i) - e + 1) of its

neighboring edges and each vertex j in RC2 adds blue color to max(O, A(j) - e + 1) of

its neighboring edges. Edges that get colored both red and blue in this process become

purple.) We will prove the following lemma.

Lemma 10. A phylogeny input S, cl, c2 has an e-phylogeny if and only if the corre-

sponding bipartite graph has a special L-coloring with no purple cycle.

Proof. First, suppose that the input S,ci, c2 has an d-phylogeny. By Fact 9 it has

a restricted e-phylogeny T in which each species in S is the label of exactly one

node and for each character h E { 1,2} and each state i E R,,,, at most one of the

connected components in the subgraph of T induced by the set of vertices c;‘(i) has

more than one vertex. Construct a special e-coloring as follows. For each vertex i E R,,
let C; be the largest connected component in the subgraph of T induced by the set of

128 L.A. Goldberg I Discrete Applied Mathematics 71 (1996) Ill-136

vertices c;‘(i). Arbitrarily choose max(O, d(i) - e + 1) of the vertices in C, and add

red color to the corresponding edges in the graph. For each vertex j E R,, let Cj be the

largest connected component in the subgraph of T induced by the set of vertices c;‘(j).

Arbitrarily choose max(O, d(j) - e + 1) of the vertices in Cj and add blue color to

the corresponding edges in the graph. We will now argue that the special L-colored

graph has no purple cycle. Suppose instead that the special 8-colored graph has a

purple cycle consisting of the edges (it, jt), (iz, jt),(iz, j,), . . , (im, j,),(it, j,,,). Then,

by construction, there is a path in T between the species (i, , jl) and the species (i2, jt)

which is contained in Cj,. Similarly, there is a path in T between the species (i2, jl)

and the species (iz, j2) which is contained in Ci,. These paths intersect exactly at the

species (iz, jt). Continuing in this manner, we construct a cycle in T, which contradicts

the fact that T is a phylogeny.

Next, suppose that the graph has a special &-coloring with no purple cycle. Construct

an d-phylogeny T as follows. The nodes of T are the species in S. For each vertex

i E R,, , let Ci be the set of species in cl’(i) such that the corresponding edges in the

graph have red color. Add a path to T which traverses the nodes in C,. All of the

species on this path have the same state in character 1. Also, these species correspond

to red edges in the special e-coloring. For the purpose of the proof, we will think

of the corresponding nodes in the path as having red color. For each vertex j E R,,,

let Cj be the set of species in cz’(j) such that the corresponding edges in the graph

have blue color. Add a path to T which traverses the nodes in Cj. All of the species

on this path have the same state in character 2. Also, these species correspond to

blue edges in the special /-coloring. For the purpose of the proof, we will think of

the corresponding nodes in the path as having blue color. We will now argue that T

has no cycle. Suppose instead that T has a cycle. Note by construction that every

edge in the cycle either fixes character 1 or fixes character 2 (but not both). For

example, the cycle might look like (6, jl), (h , j2), (h, j3), (i2, j3), (h, j4), (b, js), (h , j,).

Let 61, Y I), . . . , (x,,,, ym) be the sequence of nodes that we get when we traverse the

nodes in the cycle in order, skipping any node such that the edge into the node fixes

the same character as the edge out of the node. (For the above example, we get the

sequence (it, jt),(it, js),(i,, js),(i,, j,),(it, js).) Each species (x,, ya) is colored purple

in T, so each edge (x,, ya) is colored purple in the graph. (To see that species (x,, ya)

is colored purple in T, note that it is part of a path fixing the state of character 1

(hence, red color is added). It is also part of a path fixing the state of character 2

(hence, blue color is added).) Finally, we observe that the edges (x,, y,) form a cycle

in the graph, which contradicts the fact that the graph has no purple cycle. We conclude

that T has no cycle. If T is disconnected, we arbitrarily add edges making it into a

tree. 0

We now present a polynomial-time algorithm that takes as input an integer 8 and a

bipartite graph G and determines whether G has a special t!-coloring with no purple

cycle. The algorithm proceeds by considering a sequence of special e-colored graphs

{Go, Gt , . . .}. Graph Go is an arbitrary special /-coloring of the graph G. For t 2 1, Gt

L. A. Goldberg I Discrete Applied Mathemutics 71 (1996) II l-136 129

is constructed by modifying the coloring in Gr_ I. We will use the notation E(G,) to de-

note the set of edges that are contained in some purple cycle in G,. When the algorithm

considers the graph Gr_l it will either produce a graph G, such that E(G,) C &(Gt_l)

or it will terminate with the answer “no”. If the algorithm ever produces a graph G,

such that &(G,) = 8 it will terminate with the answer “yes”.

We now show how to construct the graph G, from Gt_ 1 (or to terminate with the

answer “no”). Fix an edge e E E(Gt_r). The procedure will consider a sequence of spe-

cial t-colored graphs Gh={ Gt_r, G{, Gi,. .}. For each graph Gj in the sequence, e will

be a member of E(G:). For each graph Gi, let P(G.0 be the graph that is obtained by

considering all of the purple edges in Gi (and no other edges) and let (U,(GJ), V&G:))

be the vertices of the connected component in P(Gj) that contains e. Let M,(Gj) be

the set of edges in the connected component in P(G:) that contains e. To transform

G(into Gj,, the algorithm may make one e-move in which it either selects a ver-

tex u E U,(Gj) and transfers the red color from one edge adjacent to u to another

edge adjacent to u that does not already have red color or the procedure selects a

vertex c’ E V,(Gj) and transfers the blue color from one edge adjacent to t’ to another

edge adjacent to z’ that does not already have blue color. The move is legal if and

only if &(Gj+,)cE(G;). Such a move is called a finishing move if E(Gj+,)cE(GJ).

It is called an e-continuing move if it is not finishing, but M,(G.i+,) c M,(Gi). When it

considers the special e-colored graph Gj, the algorithm checks every possible e-move.

If it finds a legal e-move, it constructs Gj,, by making this move. If the move is fin-

ishing, then the procedure returns the graph G, = Gi,, . If the move is not finishing, but

it is e-continuing, the procedure now considers the graph Gi,,. (Note that in this case

&(Gi+,) = I(G.j) so e E cC(G:).) If there are no legal e-moves that are finishing or e-

continuing, the algorithm terminates with the answer “no”. Note that at most IM,(Gk)I

continuing moves can be made, so the procedure terminates in polynomial time.

The correctness of the algorithm follows from the following lemma.

Lemma 11. If’ u bipartite graph G has a special /-coloring with no purple cycle

and H is u special L-coloring of G with e E &(H) then there is a legal e-move
from H that is either jinishing or e-continuing.

Proof. Let G,, be the subgraph of G induced by U,(H) U V,(H) and let S, denote the

set of edges in G,. We wish to compute an upper bound for \&I. To do so, let d’(w)

denote the degree of vertex w in graph G,. Since G has a special e-coloring with

no purple cycle, G, has a special /-coloring with no purple cycle. Let H: be such

a special /-coloring of G,. The number of edges with red color added in HL is at

least C uEuC,I,(Nj(d’(u) - G + 1). The number of edges with blue color added is at least

City<,&%) - e + 1). Th e number of purple edges (which have both red color and

blue color) is at most lU,(H)I + 1 V,(H)1 - 1. Hence,

I& 2 c (d’(u) - cr + 1)
utUAH)

+ CtC$(t9 - / + 1) - (lUO)I + IVe(W - 1)

and therefore IS,1 < /((U,(H)\ + (V,(H;).

130 L. A. Goldberg I Discrete Applied Mathematirs 71 (1996) III-136

Now consider H. Let Si be the set of edges that are adjacent to vertices in U, and

do not have red color. Let Sz be the set of edges that are adjacent to vertices in V, and

do not have blue color. Suppose that some edge e’ is in Si n SZ. Let e” be a purple

edge that is adjacent to e’. Clearly, the e-move that transfers color from e” to e’ is

legal. Suppose that it is not finishing and let H’ be the graph obtained from H by

making this move. Then M,(H’) GM,(H) - {e”}. H ence, the move is e-continuing.

Suppose instead that Si n Sz = 0. Every vertex w E U,(H) U V,(H) has d(w) 2 e. (If

d(w) < e then w will not add color to its neighboring edges in any special e-coloring

of G so w will not be in the connected component containing e in P(H).) Therefore

ISrl 2 ZEU,(H) (J - I) and I&l 3 CVeVPcH, (e - 1). Let S, be the set of purple edges

with endpoints in U,(H) U V,(H). Note that IS,/ 3 iU,l + IV,l. & is disjoint from Si

and S2 so ISi u S2 U ,931 3 Q/U,(H)1 + I V,(H)I). We conclude that some edge in Si

or S, must have an endpoint outside of G,.

Without loss of generality, assume that there is an edge e’ E Si that has endpoint

u E U,(H) and its other endpoint, u, outside of V,(H). There are two cases. Suppose

that u is contained in a purple cycle in H. Let (u,w) be an edge in such a cycle.

Consider the e-move that transfers color from (u, w) to e’. This move is legal. (Since a

is not in V,(H) no purple cycles are created by the move.) Let H’ be the graph

obtained from H by making this move. E(H’) C E(H) - {(u,w)}, so the move is

finishing. Suppose instead that u is not contained in a purple cycle in H. Let (u, w)

be the first edge on the unique path from u to e in P(H). Consider the legal e-move

that transfers color from (u,w) to e’. Suppose that it is not finishing and let H’ be

the graph obtained from H by making this move. Then M,(H’) GM,(H) - {(u, w)}.

Hence, the move is e-continuing. 0

In Lemma 10 we showed that a phylogeny input S, cl, c2 has an e-phylogeny if

and only if the corresponding bipartite graph has a special e-coloring with no purple

cycle. We then described a polynomial-time algorithm that takes as input an integer e

and a bipartite graph G and determines whether G has a special d-coloring with no

purple cycle. Hence, we have shown that there is a polynomial-time algorithm that

takes input 4 and a phylogeny input 8, ci,c2 and determines whether the phylogeny

input has an e-phylogeny. (In fact, our algorithm constructs an e-phylogeny if one

exists.) Using binary search (or even linear search) on /, we obtain a polynomial-time

algorithm that takes as input a phylogeny input S, cl, c2 and determines the phylogenetic

number of the input. Hence, we have proved the following theorem.

Theorem 12. The phylogenetic number problem can be solved in polynomial time for

k = 2.

Unfortunately, Fact 9 no longer holds if we add a third character cg. Hence, our

approach does not solve the phylogenetic number problem (or even the e-phylogeny

problem) for fixed k > 3. (To see that Fact 9 does not hold for k > 2, consider the

3-species 3-character input {100,010,001}. One can construct a l-phylogeny for this

L. A. Goldberg I Discrete Applied Mathematics 71 (1996) II I-136 131

input by attaching each species to the new species 000. However, the input does not

have a restricted 1 -phylogeny.)

We now show how to implement the two-character algorithm just described in time

0(n2), where n is the number of species in the input set (hence the number of edges

in the bipartite partition-intersection graph). In particular, given a special e-coloring of

the graph, we give an O(n)-time algorithm to perform an e-finishing move, perhaps

through a series of e-continuing moves. Because there can be at most O(n) e-finishing

moves, the 0(n2)-result follows.

Let G be the partition-intersection graph for input S, cl, ~2. Construct a special e-

coloring in O(n) time by having each node i choose max(O, d(i) - G + 1) neighbors to

color red (if node i is in R,,) or blue (if node i is in R,,). Compute the biconnected

components of graph P(G) (purple edges only) in time O(n) [3]. If all biconnected

components are isolated nodes, then there are no purple cycles and we are done.

Otherwise, mark all the active vertices: those which belong to a biconnected com-

ponent of size greater than one and therefore participate in a purple cycle. Pick an

arbitrary active node v. In O(n) time, compute the connected component of node t’ in

P(G) using depth-first search. We call these nodes inside nodes and all other nodes

outside nodes. An edge (vi, c,) is useful if r, is an inside node, c‘, is an outside node,

and it is not colored by node u,. For example, if t’, E R,, , then it controls the color red,

so a useful edge going outward from vi is white or blue.

If any active node v, is adjacent to a useful edge, then we can make a finishing

move by transferring color from an edge in a purple cycle adjacent to v, to the useful

edge (see the proof of Lemma 1 1), and we are done. If there are no such edges, find

all the useful edges adjacent to the remaining inside nodes. Place them in a continuing

list and keep a pointer from the inside node to the corresponding record in this list.

Pick the first edge on the continuing list (vi, u,). Let up be the inside node that is ci’s

parent in the depth-first search tree created above. Then (u,,t:i) is the first edge on

the unique path to the distinguished node v. We make an e-continuing move (where

e is any purple-cycle edge adjacent to node v) by transferring color from (up, Vi) to

(vi,vo). This breaks the component of node v in P(G) into two pieces. Node vi and

all its descendants in the depth-first search tree are now no longer part of node r’s

component.

We update the continuing list as follows. Starting at node vi, trace each newly

severed node by walking the old depth-first tree. For each node x, consider all adjacent

nodes y. If y is an inside node, then edge (y,x) is now useful. If node y is active,

then add it to a second finishing list with a pointer from node y. Otherwise add it to

the continuing list. If node y is outside, then this edge is no longer useful, so remove

it from whatever list it is part of. Note that if node y is inside now, but is moved

outside in this tracing, then the edge (y,x) will be added and then removed from a list.

If there is an edge in the finishing list, we can make a finishing move and be done.

Otherwise, we pick the first edge on the continuing list and iterate until we find a

finishing move. Heuristically it would be better to pick a useful (continuing) edge

from the node that is closest to node v.

132 L.A. Goldberg/ Discrete Applied Mathematics 71 (1996) Ill-136

The process of finding a finishing move requires time O(n). Each edge that was

purple at the start of the phase is traced (perhaps in each direction) at most twice:

once when the first connected component is determined and once when the piece

containing the edge is severed by an e-continuing move. Each edge that was originally

not purple is considered at most four times: once for each endpoint that is initially

inside, and once as these endpoints move outside. Each of these edges can be added

to a list once and removed once.

6. Phylogeny with a fixed number of states

In Section 6.1 we show that the fixed-topology phylogenetic number problem can

be solved in polynomial time for fixed Y. On a related note, we show that if Y is

fixed, there is a polynomial-delay algorithm for listing fixed-topology e-phylogenies.

In Section 6.2 we show that for fixed r 3 2 and fixed & 3 3 the restricted t!-phylogeny

problem is NP-hard. (This result follows from a more general result. Namely, we show

that the restricted (61, dz)-phylogeny problem is NP-hard for fixed Ct 2 2 and t!* 3 2

as long as one of /I,[* is greater than 2.)

6.1. Fixed-topology phylogeny with a jixed number of states

In this subsection we prove the following theorem.

Theorem 13. The fixed-topology phylogenetic number problem can be solved in poly-

nomial time for fixed r.

It suffices to consider each character independently. We are given an input tree T

with each of its n leaves labeled by a state in the range { 1,. . . , r}. We wish to label the

internal nodes of T to construct a phylogeny with the smallest possible phylogenetic

number. We root the tree at an arbitrary node, constructing the child and parent pointers.

The choice of root will not affect the phylogenetic number of the tree.

For a given character, this problem can be solved by a two-pass algorithm: once up

the tree and once down. In the upward phase, for each node v, and for each vector in

the set

we construct, if possible, a labeling of the nodes in the subtree rooted at v such that v

is labeled with state i and, in the subtree rooted at v, the subgraph induced by nodes la-

beled j has exactly L’j connected components. We call such a labeling a configuration

of the subtree rooted at v, or a configuration of v for short. If there are no leaves in

this subtree labeled j for some j E { 1,. . . , r}, then we have L’j = 0 for all configurations

(there are no connected components labeled j in the subtree rooted at v).

There are O(rnr) possible configurations for the subtree rooted at any node, with

one possible configuration for each leaf. Once the possible configurations have been

L. A. Goldberg I Discrete Applied Mathematics 71 (19961 111-136 133

constructed for the children of a node, we can construct the possible configurations

for the parent by combining configurations of the children incrementally. Consider the

first two children zjl and ~2 of parent node c’. For each pairing of a configuration for

~1 with a configuration for ~2, we construct Y configurations for the subtree consisting

of parent node v and the subtrees rooted at children 1’1 and ~2, one configuration for

each possible labeling of the parent c. If node L’ is labeled i, and the configurations

of ~‘1 and v2 are represented by the vectors (il,(li,ll2,...,Pl,.) and (i2,/21,/22....,Jz,.)

respectively, then the resulting configuration is (i, 11, /2,. , C,.) where tj = /I, + (2,

for all j # i, and Pi = rli + dli + 1 - m, where m E (0, 1,2} is the number of children

(considering only 01 and 02) which are labeled i. That is, the number of components

of state j is the sum of the number of components in each child for most states. The

only state that can differ is the state with which node v is labeled (i). In this case, if

neither ti1 nor v2 is labeled i, then we create a new component of state i (the node v)

in addition to the components present in the children. If exactly one child is labeled i,

then the label of node t’ becomes part of that component. If both cl and 7~2 are labeled

i, then one component of state i from each child can merge through node c, and the

number of components in the combination is one fewer than the sum.

Whenever a new possible configuration is achieved through a combination of config-

urations in the two children, it is recorded along with pointers to the configurations of

~‘1 and ~‘2 that achieve this phylogenetic configuration. Although there are y2n2r ways to

pair up the configurations of two children, there can be at most rn’ configurations for

the parent. If a configuration is achieved multiple ways, we only remember one way.

After computing the O(rnr) configurations for the subtree consisting of node v with

the subtrees rooted at tli and c2 (call this tree r’), we now add child ~3. The compuation

is almost the same as before. Let possible configurations for T’ and the subtree rooted

at ~3 be represented by vectors (i,t{,ti,. ,fi) and (j,t~i,!3?, . ,t3,.) respectively.

Then the combined configuration is (i,e,,t,, ,C,.) where /k = rb + tjk for all k,

unless i = j. In this case, we have L, = !(+ G 31 - 1 because one component of state

i from the subtree rooted at 74 can connect to components of state i from the other

children through the parent c’.

Each child of node v is added in this way until we have computed the O(rrf) pos-

sible configurations for the entire subtree rooted at node c. We continue up the tree

until we have computed all possible configurations for the root. This computation takes

0(r2n2’+’) time. We then pick a possible configuration with the minimum phyloge-

netic number and go down the tree generating labels by following the pointers to the

subconfigurations that achieve the optimal configuration.

The above algorithm makes it clear that if r is fixed, there is a polynomial-delay

algorithm for listing fixed-topology /*-phylogenies.

6.2. Restricted phylogeny with a fixed number of’ states

In this subsection we show that for fixed r 3 2 and fixed / 2 3 the restricted r-

phylogeny problem is NP-hard.

134 L.A. Goldberg1 Discrete Applied Mathematics 71 (1996) Ill-136

We start by proving the following more general theorem.

Theorem 14. The restricted (/I, /,)-phylogeny problem is NP-hard for jixed dl B 2

and e2 > 2 as long as one of [I, tf2 is greater than 2.

Proof. Without loss of generality, assume that Lt 3 e2. The reduction is from the

2-consecutive ones problem.

Let M be the matrix in the input to the 2-consecutive ones problem. Let n’ denote the
number of rows of M and m denote the number of columns of M. (We will assume that

n’ 3 3,42.) We will show how to construct an input to the restricted (81, ez)-phylogeny
problem such that the phylogeny input has a restricted (et,&)-phylogeny if and only

if the rows of M can be permuted in such a way that for each column in the resulting

matrix there are at most 2 sequences of consecutive ones.
The phylogeny input is constructed as follows. Let M’ be a matrix derived from M

by adding 2({2 - 2) rows to the bottom of M. The entries in the (n’+i)th row are equal

to 0 for odd i > 0 and are equal to one for even i > 0. Let n denote n’ + 2(d2 - 2).

Note that M’ has n rows. The species set S={sr , . . . , s,} will have n species. Species si
will correspond to row i of M’. Let kr denote (,,“_,). Let k2 denote (,:I,). Let k3

denote max(O, n - n’ - 1). Let k denote m + kl + k2 + k2k3. The input to the phylogeny
problem will be &cl,. . . , ck. The characters cl,. . . ,ck will be defined as follows:

(i) (Characters that describe M’) For j in the range 1 6 j < m character cj will map
species si to the entry in column j of row i of 44’.

(ii) (Characters that make every phylogeny a path) For j in the range 1 < j 6 kl
let Sj denote the jth size-(/z - 1) subset of S. We set cm+j(s) = 0 for s E Sj and

C*+j(S) = 1 for S $8 S,.

(iii) (Characters that place sn at one end of the path) For j in the range 1 d j < k2

let SJ denote the jth size-(e2 - 1) subset of (~1,. . . ,snt}. We set c,+k,+j(s) = 0

for s E Sj and C,+k,+j(Sn) = 0 and cm+k,+j(s) = 1 for every other species s.

(iv) (Characters that place s,j+t , . . . , s, consecutively at the end of the path) For j in

the range 1 d j < k2 and i in the range 1 < i 6 k3 let rn’ denote m + kl + k2 + (i -

l)kz+j. Wesetc,~(s,)=Ofors,~S~andc,~(s,)=l forsrE{str...,snt}-Sjl.

Furthermore, we set c~~(s,~+~)=~~~=c,~(s,-~-~)=~ and we set cml(Sn_i)=.‘.=

c,, (sn) = 0.

(3) Suppose that T is a restricted (er,ez)-phylogeny for &cl,. . . ,ck. Using Fact 1,
we can assume that each species in S is the label of exactly one node in T. Following

the proof of Theorem 8, we can show that every node in T has degree at most 2. That

is, T is a path. If n = n’ (i.e., 82 = 2) then it follows that we can arrange the rows

of M in the order that the species occur in path T and that, in such an arrangement,

each column has at most 2 sequences of consecutive ones. Suppose instead that n > n’.
We will now show that the node labeled s, has degree 1. Suppose instead that it has

degree 2. We argue as in the proof of Theorem 8 that there is a size-(Lz - 1) set

S’ C{sr, . ,snf} such that ifs, and the species in S’ are removed from T, the resulting

L. A. Goldberg I Discrete Applied Mathematics 71 (I 996) II l-136 135

subgraph has at least e2 + 1 connected components. Let j be the integer such that

S’ = SJ’. Then the set of vertices c;ik, +j (1) form more than e2 connected components

in T, which is a contradiction. We conclude that the node labeled s, is an endpoint of

the path. For i in the range 1 6 i < k3 we will now argue that the node labeled s,_i

is adjacent to a node with a label in {s,-,+I, . . , sn}. Suppose that this is not the case.

We argue as in the proof of Theorem 8 that there is a size-(k2 - 1) set S’ C{si, . ,s,,J}

such that if the species in S’ U {s,-;, . . . ,s,} are removed from T then the resulting

subgraph has at least e2 + 1 connected components. Let j be the integer such that

S’ = SJ. Then the set of vertices ~,$+~~+(~_i~~~+~(1) form more than e2 connected

components in T, which is a contradiction. We conclude that T is a path consisting

of the species in {s], . . . , snt} (in some order) followed by s,I+~, . , s,. It follows that

we can arrange the rows of M in the order that the species occur in path T and that,

in such an arrangement, each column has at most 2 sequences of consecutive ones.

(-) Suppose that p={pi,...,pL} is a permutation of {l,...,n’} such that when the

rows of A4 are permuted according to p each column has at most 2 sequences of con-

secutive ones. If e2 = 2 then let T be the path consisting of the species in {si, . . ,snt },

arranged according to p. T is a restricted (3,2)-phylogeny for S, cl,. . . , Ck. Hence, T is

a restricted ({I, L2)-phylogeny for S, cl,. . . , ck. Suppose instead that e2 > 2. Let T be a

path consisting of the species in (~1,. ,s,,/}, arranged according to permutation p, fol-

lowed by S,I+I , . . . , s,. Then T is a restricted (d2, &2)-phylogeny for S, cl,. . . , ck. Hence,

T is a restricted (/i,el)-phylogeny for S,cl,. ,ck. 0

Note that Theorem 14 has the following corollary

Corollary 15. For jixed r > 2 and jixed e 3 3 the restricted e-phylogeny problem is

NP-hard.

7. Conclusions

In this section we present some open problems. There are several restrictions of the

parameters which yield problems for which the complexity is still open. Recall that k

is the number of characters, r is the maximum number of states for any character, and

e is the phylogenetic number. It is unknown whether the following restricted versions

of the r!-phylogeny problem can be solved by polynomial-time algorithms:

(i) Finding an e-phylogeny where the number k of characters is a constant greater

than 2 (for e > 1),

(ii) Finding an e-phylogeny where the number r of states per character is a constant.

(iii) For the case where r = 2, determining whether an input has a (1,2)-phylogeny or

a (2,2)-phylogeny. Recall that for r = 2, the problem of finding a (1, 1)-phylogeny
is in P. Finding a (2,3)-phylogeny is n/p-complete in the restricted case.

This paper also leaves open the problems of randomly generating phylogenies with

constraints upon their phylogenetic number and approximation algorithms for the NP-

136 L.A. Goldberg/ Discrete Applied Mathematics 71 (1996) III-136

complete versions of the e-phylogeny problem. In particular, suppose that there exists

a perfect phylogeny. For what & can we find an e-phylogeny in polynomial time (with

C! possibly a function of k and Y)?

References

VI

121

[31

[41

[51

[61

[71

VI

[91

[lOI

[Ill

[I21

[I31

[I41

[I51

1161

[I71

iI81

R. Agarwala and D. Femandez-Baca, A polynomial-time algorithm for the perfect phylogeny problem

when the number of character states is fixed, in: Proceedings of the 34th Annual Symposium on

Foundations of Computer Science, (1993) SIAM. J. Computing 23(6) (1996) 12161224.

R. Agarwala and D. Femandez-Baca, Fast and simple algorithms for perfect phylogeny and

triangulating colored graphs, DIMACS Tech. Report #94-51 (1994) Intemat. J. of Foundations of

Comput. Sci 7 (1) (1996).

A. Aho, J. Hopcroft and J. Ullman, The Design and Analysis of Computer Algorithms (Addison-

Wesley, Reading, MA, 1974).

H. Bodlaender, M. Fellows and T. Wamow, Two strikes against perfect phylogeny, in: Proceedings of

the 19th International Congress on Automata, Languages and Programming (ICALP) Lecture Notes in

Computer Science (Springer, Berlin, 1992) 273-287.

P. Buneman, A characterization of rigid circuit graphs, Discrete Math. 9 (1974) 205-212.

W.H.E. Day, Computationally difficult parsimony problems in phylogenetic systematics, J. Theoret.

Biology 103 (1983) 429-438.

W.H.E. Day and D. Sankoff, Computational complexity of inferring phylogenies by compatibility, Syst.

Zoology, 35(2) (1986) 224-229.

L. Exdoffier and P.E. Smouse, Using allele frequencies and geographic subdivision to reconstruct gene

trees within a species: molecular variance parsimony Genetics 136 (1994) 343-359.

Wm. Fitch, Toward defining the course of evolution: minimum change for a specified tree topology,

Syst. ZooI. 20 (1971) 406-416.

D.R. Fulkerson and D.A. Gross, Incidence matrices and interval graphs, Pacific J. Math. 15(3) (1965).

P.W. Goldberg, M.C. Golumbic, H. Kaplan and R. Shamir. Four Strikes Against Physical Mapping of

DNA, J. Comput. Biol. 2(l), (1995) 139-152.

S. Kannan and T. Wamow, Inferring evolutionary history from DNA sequences, SIAM J. Comput.

23(4) (August 1994) 713-737.

S. Kannan and T. Wamow, A fast algorithm for the computation and enumeration of perfect

phylogenies when the number of character states is fixed, in: Proceedings 6th ACM/SIAM Symposium

on Discrete Algorithms, (1995) 595603, SIAM J. on Computing, to appear.

F.R. McMorris and C.A. Meacham, Partition intersection graphs, Ars Combin. 16 (1983) 135-138.

F.R. McMorris, T. Wamow and T. Wimer, Triangulating colored graphs, SIAM J. Discrete Math. 7(2),

(I 994) 296-306.

R.C. Prim, Shortest connection networks and some generalisations, Bell System Tech. J. 36 (1957)

1389-1401.

M.A. Steel, The complexity of reconstructing trees from qualitative characters and subtrees,

J. Classification 9 (1992) 91-116.

T. Wamow, Efficient algorithms for the character compatibility problem, New Zealand J. Botany 31

(1993) 239-248.

