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Abstract 

Inferring phylogenctic trees is a fundamental problem in computational biology. We present 
a new objective criterion, the phylogenetic number, for evaluating evolutionary trees for species 
defined by biomolecular sequences or other qualitative characters. The phylogenetic number of a 
tree T is the maximum number of times that any given character state arises in T. By contrast, 
the classical parsimony criterion measures the total number of times that different character 
states arise in T. We consider the following related problems: finding the tree with minimum 
phylogenetic number, and computing the phylogenetic number of a given topology in which 
only the leaves are labeled by species. When the number of states is bounded (as is the case for 
biomolecular sequence characters), we can solve the second problem in polynomial time. Given 
the topology for an evolutionary tree, we can also compute a phylogeny with phylogenetic 
number 2 (when one exists) for an arbitrary number of states. This algorithm can be used to 
further distinguish trees that are equal under parsimony. We also consider a number of other 
related problems. 
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1. Introduction 

The problem of evolutionary tree construction involves taking a given set of species, 

and constructing a tree which describes the evolutionary history of that set of species. 

We would expect a pair of species to be close together in the tree if they are closely 

related. Numerous variants of this general problem have been studied, the variants 

arising from the differing kinds of information that may be assumed to be available 

concerning the species. 

In character-based phylogeny, the scenario is the following. A character c is a 

function from the species set S to some set R, of states. For example, the charac- 

ter vertebrate-invertebrate has two states, so we can choose R, = (0, l} and we can 

define c so that c(s) = 0 for every species s that is a vertebrate and c(s) = 1 for 

every species s that is an invertebrate. As another example, we could define a char- 

acter c based on average life-span. In this case R, might be a set of ranges such as 

R, = (O-10 yr, lo-20yr, 20-60yr, more than 60 yr}. Then the function c could be 

defined to map each species s to the range containing its average life-span. We can 

think of a sequence of k characters cl , . . . , ck as mapping each species s in the species 

set to a vector (cl(s), . . . , c,+(s)) in R,, x x R,, The species sets that we will con- 

sider will have the property that for any two distinct species, s and s’, that are in 

a species set, (cl(s), . . . , CR(s)) # (cl (s’), . . . , cp(s’)). Thus, we will be able to identify 

each species s with a vector (c,(s), . . , c&(s)) in R,, x . x R,, . Furthermore, we will 

think of the set R,, x . . . x R,, as being the set containing all possible species, including 

those in S. 

The inputs to the phylogeny construction problem are the species set S (we will 

use n to denote the size of S) and a sequence of characters, cl,. . . , ck. We will let r,, 

denote IR,, 1, and r denote maxi r,, . A phylogenetic tree for the input is a node-labeled 

tree in which every node of the tree is labeled with a vector in R,, x . x R,,, and 

each species in S is the label of some node of the tree. 4 Thus, each character cj can 

be extended to a function from the set of vertices of T to R,,. 

A species is naturally described using a string of length k over the alphabet { 1,. . . , r}. 
A phylogeny is a way of expressing similarity amongst a set of strings rather than 

expressing similarity between pairs of strings. Subsets of strings with strong similarities 

(as measured by matches in many locations) are located closer to each other in the 

tree than those that are more disparate. The output tree is the pattern of similarity 

amongst the entire set of input strings. 

Classically, the quality of a phylogenetic tree is evaluated using optimization criteria. 

When the data are believed to be generated under a stochastic model, then the likelihood 

4 A phylogenetic tree for the input S, ~1,. , ck is sometimes defined to be a node-labeled tree in which 

every node of the tree is labeled with a vector in R,, x x R,, , and each species in S is the label of some 

leaf of the tree. It is clear that every tree satisfying this alternative definition also satisfies our definition 

above. The alternative definition is equivalent to ours in the sense that we can convert a tree T satisfying 

our definition into a tree T’ satisfying the alternative definition by adding extra leaves. Under all reasonable 
measures of fitness for phylogenetic trees, T and T’ will have the same measure of fitness. 
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of the tree is calculated, and the tree with the highest likelihood score is considered 

optimal. 

Other popular criteria do not explicitly presume a statistical model for the data. 

In parsimony, a tree is sought on which the total amount of evolutionary change is 

minimized. This can be calculated in several ways. One way is to count the total number 

of changes indicated over all the edges, where the evolutionary change indicated by 

an edge is quantified by the number of characters which change state over that edge. 

Another way to calculate this is to sum over all the characters the total number of 

times the character changes. The tree with the minimum total number of changes is 

called the maximum parsimony tree. 

Although the parsimony criterion is very popular, there are data for which the evolu- 

tionary process produces characters which are very unlikely to have very many changes, 

or else few returns to states which have previously appeared on the tree. An example 

of such a character is the morphological character vertebrute-invertebrate; any pro- 

posed tree for this character in which the vertebrates and invertebrates are not clearly 

separated by a single edge would be rejected. Correspondingly, multi-state characters 

of this type would have each character state occupying a single connected subset of 

the tree; such characters are said to be compatible or convex on the tree. When work- 

ing with data of this type, the parsimony criterion is inadequate because it does not 

express the constraint indicated by the characters. Instead, the compatibility criterion 

may be used; in this case, the tree on which the maximum number of characters are 

compatible is sought. 

Thus, parsimony and compatibility each targets a different type of character data and 

handle deviations from the assumptions differently. Parsimony targets the case where 

characters evolve slowly but not necessarily so as to produce compatible characters, 

and penalizes for each extra character state change without regard to how the extra 

changes are distributed. Compatibility targets the case where characters are presumed 

to evolve in such a way as to produce compatible characters, and penalizes for each 

churucter that is not compatible on the tree. Both criteria are used in practice for 

different types of datasets. Both criteria, compatibility and parsimony, result in NP- 

hard optimization problems [6, 71. An ideal tree is one in which all characters are 

compatible (i.e., all characters are convex on the tree). Such a tree is optimal under 

parsimony and compatibility criteria and is called a perjkct phylogeny. The question 

of whether a perfect phylogeny exists for a given input is NP-complete [4, 171. 

In this paper, we propose an alternative optimization criterion for evaluating phy- 

logenetic trees which combine the good aspects of both parsimony and compatibility. 

Specifically, we allow the characters to be of varying types; thus, some can evolve 

quickly, and can potentially have many extra character state changes, while others 

may be compatible on the evolutionary tree, and others can fall between the two ex- 

tremes. Our model presumes that for each character c and state i, we have a bound 

L’,i, the number of times each state i of character c arises in the tree. Given these 

bounds, we would seek a tree T satisfying the constraints given by the bounds, if 

possible. 
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We will say that a phylogenetic tree T for an input consisting of a species set S 

and a sequence of characters cl,. . ,ck is an /-phylogeny if, for every character Cj and 

every state i E R,, the set of vertices c,:‘(i) form at most e connected components 

in T. (A l-phylogeny is the same as a perfect phylogeny). The tf-phylogeny problem 

is the problem of determining whether an input has an e-phylogeny. The phylogenetic 

number of an input is the minimum e such that the input has an e-phylogeny. The 

phylogenetic number problem is the problem of determining the phylogenetic number 

of an input. 

The e-phylogeny problem and the phylogenetic number problem both have fixed- 

topology versions which are defined as follows. The input is a species set S, a sequence 

of characters cl,. . . , ck, and a tree T in which internal nodes are unlabeled and each 

leaf is labeled with a species s E S. Each species s E S is the label of exactly one leaf 

of T. A phylogenetic tree for the input is formed by taking T and labeling the internal 

nodes of T with vectors in R,, x . . . x R,, . The fixed-topology L-phylogeny problem is 

the problem of determining whether the input has an /-phylogeny. The fixed-topology 

phylogenetic number problem is defined analogously. 

The e-phylogeny problem and the phylogenetic number problem also have restricted 

versions in which new ancestral species may not be added, as in[8]. The restricted 

versions are defined as follows. The input is a species set S and a sequence of char- 

acters cl,..., ck. A restricted phylogenetic tree for the input is a node-labeled tree in 

which every node of the tree is labeled with a vector in S, and each species in S is the 

label of some node of the tree. The restricted e-phylogeny problem is the problem of 

determining whether the input has a restricted e-phylogeny. The restricted phylogenetic 

number problem is defined analogously. 

The e-phylogeny problem can be generalized as follows. Fix positive integers 

r,e, ,..., d,. Suppose that S,ci ,..., ck is a phylogeny input such that maxi r,, < r. An 

(/I,. . . , d,)-phylogeny for an input is defined to be a phylogenetic tree for the input 

such that, for each character cj and each integer i < IR,, 1, the set of vertices that are 

mapped to the ith state in R,, by cj forms at most ei connected components in T. The 

(e,,..., e,.)-phylogeny problem is the problem of determining whether an input has an 

(6,..., e,)-phylogeny. A generalized version of the restricted e-phylogeny problem is 

defined analogously. 

1.1. Summary of results and outline of paper 

The l-phylogeny problem is also known as the perfect phylogeny problem. It was 

shown to be NP-hard by Bodlaender et al. [4] and Steel [ 171. The hardness of l- 

phylogeny implies that the phylogenetic number problem is NP-hard. In Section 2 of 

this paper we show that for any fixed e > 1 the e-phylogeny problem is also NP-hard. 

Having shown that the L’-phylogeny problem is NP-hard, we consider in Section 3 the 

fixed-topology I-phylogeny problem. It is known that the fixed-topology l-phylogeny 

problem can be solved in polynomial time [9]. We show that the fixed-topology 2- 

phylogeny problem can also be solved in polynomial time and that the fixed-topology 
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G-phylogeny problem is NP-hard for fixed G > 2. (We show that the fixed-topology 

e-phylogeny problem is NP-hard for fixed e > 2 even when the input is guaranteed to 

have an e + l-phylogeny and the degree of the topology is restricted to be at most 3.) 

In Section 4 we consider the restricted e-phylogeny problem. We show that there is 

a polynomial-time algorithm for the restricted l-phylogeny problem, but the restricted 

d-phylogeny problem is NP-hard for fixed P 3 2. 

Although the l-phylogeny problem is NP-hard, it can be solved in polynomial time 

if the number, II, of species is fixed, or the number, k, of characters is fixed [2, 151, 

or the quantity r = maxj r,, is fixed [ 1, 131. A full analysis of fixed parameter C- 

phylogeny problems is outside the scope of this paper. However, we observe that all 

of the phylogeny problems can be solved in polynomial time (by brute force) if n is 

fixed. In Section 5 we use interesting combinatorial techniques to show that for k = 2 

the phylogenetic number problem can be solved in O(n2) time. The complexity of the 

P-phylogeny problem remains open for fixed C? > 1 and fixed k > 2. The difficulty of 

fixed-topology phylogeny problems does not change if k is fixed. In Section 6 we show 

that the fixed-topology phylogenetic number problem can be solved in polynomial time 

for fixed Y. On a related note, we show that if Y is fixed, there is a polynomial-delay 

algorithm for listing fixed-topology d-phylogenies. We also show that for fixed Y > 2 

and fixed & 2 3 the restricted e-phylogeny problem is NP-hard. (This result follows 

from a more general result. Namely, we show that the restricted (et,dz)-phylogeny 

problem is NP-hard for fixed di 3 2 and (1 2 2 as long as one of dl,L’2 is greater 

than 2.) 

Finally, in Section 7 we offer some concluding remarks and present some open 

problems. 

1.2. Preliminary facts 

The following fact is used in some of the proofs and in the restricted l-phylogeny 

algorithm. 

Fact 1. Zf an input S, cl,. . . , Ck has an d-phylogeny then it has an e-phylogeny in 

which 

(i) Each leaf has a label from S. 

(ii) Each species is the label of at most one node. 

(iii) Every node whose label is not in S has degree at least 3. 

(iv) There are at most max(O,n - 2) nodes with labels that are not in S. 

Proof. It is easy to see that conditions (i)-(iii) can be satisfied. (One can convert an 

&-phylogeny into one that satisfies conditions (i)-(iii) by removing leaves with labels 

that are not in S, combining branches of the tree to accomplish condition (ii), and 

then “splicing out” the appropriate degree 2 nodes to accomplish condition (iii).) To 

prove that condition (iv) can also be satisfied, suppose that T is an L-phylogeny for 

the input that satisfies conditions (i)-(iii) and contains at least one node, w, with a 
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label that is not in S. Let T’ be the tree obtained from T by splicing out any nodes of 

degree 2. (Condition (iii) guarantees that no node with a label outside of S is spliced 

out in this process.) Consider T’ to be rooted at w. We can add one or more new 

internal nodes to T’ to obtain a complete binary tree T” which is rooted at w and has 

the same leaves as T’. 5 Conditions (i) and (ii) imply that T, and therefore T’ and T”, 

have at most n leaves. Since T” has at most n leaves, it has at most n - 1 internal 

nodes. Therefore, T’ has at most a - 2 internal nodes, and T has at most n - 2 nodes 

with labels that are not in S. 0 

Fact 1 implies that if an input has an /-phylogeny then it has a polynomial-sized 

e-phylogeny. 

2. The hardness of t-phylogeny 

In this section we show that for any fixed e > 1, the e-phylogeny problem is NP- 

hard. Our reduction is from the l-phylogeny problem, which was shown to be NP-hard 

in [4, 171. 

We define the weight of an edge (vi, 02) in a phylogeny to be the number of char- 

acters cj such that cj(Vi) # Cj(V2). That is, the weight of (u~,II~) is the number of 

characters on which the species labeling vi and vz disagree, i.e. the hamming distance 

between their vectors of character values. We define the weight of a phylogeny to be 

the sum of the weights of its edges. We start with the following observation. 

Remark 2. Let S,CI , . . . , ck be any input to the e-phylogeny problem and let r denote 

maxj rC,. Any e-phylogeny for this input has weight at most k(Lr - 1). 

We will use the following lemma (in which species are referred to by strings over 

their character values). 

Lemma 3. For every integer L there is an input If =&cl,. . . ,CZ/ in which ISI = 2e3 - 

2l+ 1 and R,, = (0,. . . ,/-l}for 1 <j<2&such that 

0) 
(ii) 

(iii) 

(iv) 

For every state i in the range 0 < i < &, the species i2” is in S. 

I/ has an e-phylogeny 

In any C-phylogeny for I, the subgraph induced by aN of the nodes with any 

given label is connected. 

In any l-phylogeny for If all of the nodes are labeled by species in S. (That is, 

~to new species are introduced.) 

5 To see how to construct T”, let the “level” of a vertex denote its distance from the root. Start with 

level 0 of T’ and proceed through the levels of the tree in increasing order. Consider each vertex v on 

each level. If u has children xl,. . ,Xj with j > 2 remove the edges (u,x~),. ,(u,xj) and add a new node y 

which is a child of u and the parent of nodes x2,. .,xi. Note that at least one new internal node is added 

in the process, as w has at least three children in T’. 
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122111 

22;111 

2222 11 

2221221 

22;222- / 

022222- 002222- 002202- 102202- 112202- 112212 

220222- 220022- 220020- 221020- 221120- 221121 

Fig. 1. The input 13 

(v) In any /-phylogeny for It the path between the species i2’ and j*’ for i # j 

passes through at least 2e - 1 distinct species. 

Example (The Input 13). The species set S of input 13 consists of 49 species. The 

values of the six characters on these species are defined as in Fig. 1. 

The Input I, has the 3-phylogeny shown in Fig. 1. By Remark 2 any 3-phylogeny 

for 1, has weight at most 48. However, 48 edges with positive weight are needed just 

to hook up the 49 species in S into a tree. We conclude that any 3-phylogeny for 13 

consists of 48 edges with weight 1 plus possibly some edges with weight 0. Thus, the 

subgraph induced by all of the nodes with any given label forms a single connected 

component. Furthermore, no new species are introduced. Finally, since i6 and j6 differ 

in 6 characters (for i #j), any path between them in any 3-phylogeny for 1, passes 

through at least 5 distinct species. 

Construction of 1, = S, cl,. . , c2/: 

For 1 dj~2&wesetR,,={O,...,/-l}.ForeachstateiintherangeO~i<~we 

put the species i2’ mto S. The other species in S will be the species in the following 

phylogeny: 

For each state i in the range 0 6 i < G we will choose a unique partition P; of 

the 2C characters into two sets of size e. (In the construction of 13 above we used 

P0={0,1,2},(3,4,5},P1 ={0,2,4},{1,3,5} andP2={0,1,4},{2,3,5}.) 
We will use each of the parts of the partition Pi to form a “row” of species which 

will be connected to the species z ‘*’ To construct each row, consider the ordered list . 

ci,, . , ci, consisting of the characters in the appropriate part of the partition. From the 

species i*’ form a new species by changing the state of character c;, to (i + 1) mod I. 
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Then form a new species by changing the state of character ciz to (i + 1) mod e. 

Continue on until the state of character ci, is changed to (i + 1) mod e. Then change 

the state of character ci, to (i + 2) mod ! and continue on in this manner until finally 

the state of character ci, is changed to (i + (e - 1)) mod &. 

Finally, we will add species to connect the species i2’ to the species (i + 1)2” in 

the vertical spine (for i in the range 0 6 i < e - 1). Let c;. be the second character in 

the first part of the partition corresponding to i and construct a new species from i2” 

by changing the state of character CJ. to i + 1. Next, let c;, be the first character such 

that c;, and c;. are in different parts of i’s partition and cl and cf are in different parts 

of (i + 1)‘s partition. Construct a new species by changing the state of character c; 

to i + 1. Now, construct 2e - 3 more species by considering each remaining character 

in turn and changing it from state i to state i + 1. 

Proof of Lemma 3. By construction, S contains the species i2’ for every state i in 

the range 0 < i < d. To see that the phylogeny constructed above is indeed an e- 

phylogeny for If note that for each state i and for each state j # i a character cj, 

only has state i in one of the two rows connected to j2” and the species with c;, in 

state i are connected in this row. Furthermore, there is a single connected component 

with character c), in state i in the rows connected to i2’ and this connected component 

contains all species on the vertical spine with character ci in state i. We now wish 

to show that all of the species introduced in the construction are distinct. Suppose 

that instead two species si and s2 have identical labels. Note that, by construction, 

si and s2 could not be of the form I ‘2’ Furthermore, they could not be on the same . 

horizontal row and they could not both be on the vertical spine. There are three cases to 

consider: 

(i) sr and s2 are on different rows, both of which are attached to i2/. In this case st 

has state i for all of the characters in one part of the partition Pi and s2 has state i 

for all of the characters in the other part of the partition Pi so it must be the case 

that sr = s2 = i2/ which is a contradiction. 

(ii) si is on a horizontal row connected to i2” and s2 is on a horizontal row connected 

to j2’ for some j # i. In this case si has state i for all of the characters in some 

part of the partition P; so s2 must have character i for all of the characters in 

that part of the partition Pi and character j on all other characters. But then the 

partition Pj is the same as the partition Pi, which is not true by construction. 

(iii) sr is on the vertical spine between i2’ and (i + 1)2’ and s2 is on a horizontal 
row. By construction s2 must be on a row attached to i or on a row attached 

to i + 1. However, the choice of cl. and ci ensures that s2 cannot be on either of 

these rows. 

Now that we know that the species are distinct, we count them. There are / species 

of the form i2’. Each of the 2& horizontal rows has e(e - 1) species. Finally, there 

are (8 - 1)(2[ - 1) additional species on the vertical spine. We conclude that S has 

2e3 - 2e + 1 distinct species. By Remark 2, any e-phylogeny for Zt has weight at most 

2t!(e2 - 1) = 2e3 - 2/. However, 2e3 - 2/ edges with positive weight are needed just to 
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hook up the 2e3 -2L+ 1 species in S into a tree. We conclude that any e-phylogeny for 

I/ consists of 2e3 - 2& edges with weight 1 plus possibly some edges with weight 0. 

Thus, the subgraph induced by all of the nodes with any given label forms a single 

connected component. Furthermore, no new species are introduced. Finally, since i2’ 

'2f and J differ in 2t? characters, any path between them in any C-phylogeny for If passes 

through at least 2& - 1 distinct species. 0 

We will use Lemma 3 to prove the following theorem. 

Theorem 4. For any jxed P > 1 the L-phylogeny problem is NP-hard. 

Proof. The reduction is from the l-phylogeny problem. Let S, cl,. . , ck be an input to 

the 1 -phylogeny problem such that R,., C{O, . . . , Y - 1 } for 1 6 j 6 k. Let S’, ci , . . . , tit 
be an input to the L-phylogeny problem satisfying the conditions in Lemma 3. Let 

S*={~V~~SES’}. Foreachiin therangeO<i<Glet5’,={i2’ylyES}. LetS”= 

S* u U. Gi<J S;. Let I be the input to the P-phylogeny problem with species set S” and 

characters c{, , CT;/, cl,. . . ,ck. (Note that in input I the range of Cj has been extended 

from R,, to R,, U {r}.) 

(4) Suppose that T is a l-phylogeny for S, ~1,. . , ck. For each i in the range 

0 d i < G let 7; be a copy of T in which each label y has been changed to i2’ y. (E 

is a l-phylogeny for S;, c{, . , tic, cl , . . . ,ck.) Let T* be an d-phylogeny for S*,c{, . . . , 

CL cl,. . . ,ck. (Part (ii) of Lemma 3 guarantees that T* exists.) Now for each i in 

the range 0 < i < L’ connect an arbitrary node in 7; to the node i2’rk in T*. (The 

construction, together with Part (i) of Lemma 3 guarantees that there is a vertex of T* 

labeled i2’rk.) The resulting tree is an !-phylogeny for I. 

(-) Suppose that T is an t-phylogeny for 1. If we restrict our attention to characters 

4 , . . . , cir, we still have an e-phylogeny. Therefore, by Part (iii) of Lemma 3, the 

subgraph induced by all of the species which have some particular set of states for 

characters c;, . . . , tit is connected. We will use the notation T, to refer to the induced 

subtree of T containing those species that have state i for characters c/1,. . . , cif. 

We claim that for any j in the range 1 d j < k any path in T between a node t, E 7; 

and a node th E T,, (for h # i) contains some species s with cj(s)=Y. Clearly, this claim 

implies that To is a l-phylogeny for So, c/I,. . , ckr, cl,. . . ,ck. Hence, &cl,. . . ,ck has a 

1 -phylogeny. 

To prove the claim note that by Part (v) of Lemma 3 the path between Ti and T,, 

passes through at least 2d - 1 nodes ~1,. . , v~/_I, no two of which agree on all of 

characters c{, . , ci/. By construction and by Part (i) of Lemma 3, S” contains the 

species i2’rk and by Part (iii) of Lemma 3 it is part of Ti. Similarly, S” contains the 

species h2’rk and it is part of Th. Furthermore, (by construction and by Part (iv) of 

Lemma 3) for each node v,, S” contains a species vh that agrees with v, on characters 

4 , . . . ,& and has characters cl,. . . ,ck in state r. By Part (iii) of Lemma 3 v; is in 

the connected subgraph of T induced by species which agree with v, on characters 

c{, ,&. Now suppose that none of vi,. . . , VZI_1 has character c, in state r. Then the 
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sub-graph of T induced by those nodes that have character cj in state r has 2L + 1 

connected components, which contradicts the fact that T is an e-phylogeny. q 

3. The fixed-topology &phylogeny problem 

It is known that the fixed-topology l-phylogeny problem can be solved in polynomial 

time [9]_ In Section 3.1, we show that the fixed-topology 2-phylogeny problem can 

also be solved in polynomial time. In Section 3.2 we show that the fixed-topology 

e-phylogeny problem is NP-hard for fixed L > 2. (We show that the fixed-topology 

e-phylogeny problem is NP-hard for fixed L > 2 even when the input is guaranteed 

to have an e + l-phylogeny and the degree of the topology is restricted to be at 

most 3.) 

3.1. The fixed-topology 2-phylogeny problem 

In this subsection, we show that the fixed-topology 2-phylogeny problem can be 

solved in polynomial time. The algorithm runs in time O(nrk) where n is the number 

of species, r is the maximum number of states in any character, and k is the number 

of characters. If a 2-phylogeny exists, then our algorithm computes a labeling that 

achieves a 2-phylogeny. 

Since the topology is fixed, the characters are independent and can be handled one 

at a time. We will now show how to compute the labels for a single character in 

time O(w), where in this case r is the number of states for this character. The overall 

bound then follows. 

Although the input tree is unrooted, for this algorithm, we root this tree from an ar- 

bitrary internal node. The choice of root does not affect the existence of a 2-phylogeny, 

but it may affect the labeling. 

Let T be the input tree with leaves labeled by states 1,2,. . . , r. Consider a single 

state i and let T, be the subtree of tree T consisting of all the leaves labeled i and the 

unique set of paths connecting this set of leaves. For state i to have a single connected 

component in tree T, every node in 7;: must be labeled i. For state i to have at most 

two connected components, every node in tree Ti with degree greater than 2 must be 

labeled i (otherwise state i would be split into at least 3 components). We call such 

nodes branch points of tree Ti. The branch points and the leaves already labeled i are 

the forced points of tree Ti. At most one path of degree-2 nodes between two forced 

points can be labeled something other than i. 
We begin by computing 7;: for i = 1,. , r. Each branch point of T, is labeled as 

such, each path between two forced points is given a unique label, and each degree-2 

node in I;: is labeled with its path label. Note that the root of tree Ti need not be a 

branch point. If each node of tree T is given a length-r vector, then information for 

all r trees T; can be stored in this vector. For example, node v could be a branch point 

for tree K (ith slot of the vector indicates branch point), on the Ith path for tree Ti 
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(the jth slot of the vector has the number I), and not in tree Th (the hth slot is null). 

We can compute all Y trees in time O(nr) using depth-first search. 

The first phase of the algorithm (the forced phase) computes all forced labels. For 

each tree r,, each branch point of T; is labeled i and a pointer to the node is placed into 

a queue. If at any time we try to label a node that is already labeled with something 

else, then we stop and report that there is no 2-phylogeny for this topology. 

Now all path conflicts have to be settled for the labeled nodes. We remove the first 

node from the queue. Suppose it is node c and it is labeled i. If this node is also in 

path 1 of tree Ti for some j # i, then tree r, must give up path 1. Once path I is 

broken, then in order to achieve 2 connected components for state j, every other path 

in tree T, must be labeled j. We traverse tree Tj, clearing path 1 (setting slot j to 

null for all nodes on path 1 of tree Tj) and labeling all other nodes j. If we attempt 

to label a node that is already labeled, then we stop. There can be no 2-phylogeny. 

Otherwise, the newly labeled nodes are added to the queue. We do this for all paths 

that go through node v, then clear path conflicts on all the other nodes in the queue. 

Because each node can be labeled, enqueued, dequeued, and processed at most once, 

and each tree can be traversed at most once, this phase can be completed in time 

O(m). 

The final phase completes the labeling of the tree. If we succeed in emptying the 

queue without encountering a fatal conflict, it is still possible that some nodes remain 

unlabeled. We show that there is always a 2-phylogeny. Let trees 7; and T, be left 

undetermined by the forced phase of the algorithm. If the intersection of these two trees 

is empty, there is no conflict between them. Otherwise, the intersection is connected6 

and contains exactly one path from each tree.’ Furthermore, the root of one of the 

trees (possibly both) is in the intersection. * Suppose that the root of 7;: is contained 

in 7; f? T,. Then tree T; gives up the path through its root (if both roots are contained 

in T, n T,, one of the trees chosen arbitrarily will give up the path through its root). 

By the structure of the intersection, this clears the conflict between tree Ti and T;. We 

can solve all conflicts between pairs of trees in a similar manner. Since each tree was 

not forced to give up a path in the forced phase of the algorithm (otherwise it would 

have been fully determined then), it is free to give up one path in this phase. Each 

tree will give up at most one path, namely the one through its root. Therefore, all 

conflicts are resolved and we have a 2-phylogeny. This phase of the algorithm can be 

implemented in O(w) time by processing each remaining tree in order (determining 

whether it must relinquish the path through its root, and claiming all other paths). 

’ If two nodes UI and 02 are both in r, and both in 7’,, then every node on the unique path in T between 

UI and 1:~ must also be in both trees. 
7 If the intersection contained pieces of two paths from tree r,, then it must contain a branch point for 

tree Ti and therefore tree r, would have been forced to relinquish a path and left completely determined by 

the forced phase. 

* Consider a node in the intersection. If its parent in T is in the intersection, move up to it. Continue until 

some parent is no longer in the intersection. That node is the root of at least one of T, and 7). 
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Thus we have shown how to compute the labelings of the internal nodes of the 

input tree 2’ in time O(nr) per character for an overall time of O(nrk). Thus, we have 

proved the following theorem. 

Theorem 5. The $xed-topology 2-phylogeny problem can be solved in polynomial 

time. 

3.2. The fixed-topology e-phylogeny problem for L > 2 

In this subsection we prove the following theorem. 

Theorem 6. The jixed-topology tY-phylogeny problem is NP-hard for jixed e > 2. 

Proof. The proof is by reduction from 3SAT. Let e > 2 be fixed. Suppose that we 

are given an input to 3SAT. We will show how to construct a one-character input 

S, c, T to the fixed-topology e-phylogeny problem such that the phylogeny input has 

an d-phylogeny if and only if the input to 3SAT is satisfiable. 

The species set S, the set R, of states, and the character c are constructed as fol- 

lows. For each of the n variables, x, in the satisfiability input we have states s, and s,- 

and species q,,i), . . . ,Q,/+I) and q~,l), . . . , SW+ I) where 4+,j) I= 3, and c(s(,j)) = G. 
For each of the m clauses, C, in the satisfiability input we have state SC and species 

S(C,l), . . . 2 s(c,/+~) where c(s(c,j))=sc. For the ith occurrence of the literal x in the satis- 

fiability input, we have state s,, and species +,,I), . . . ,s(,J+~) where c(s(x,,j))=Sx!. Sim- 

ilarly, for the ith occurance of the literal X in the satisfiability input, we have state s,-~ 

and species S(J), . . . P(Y,J+I) where c(s(r,,j))=sF,. Let N denote n(2&3)+m(4e-- 11). 

For each h in the range 1 6 h < N we have a state s; and species &t), . . . ,s[~,(+,) 

where c(s&~)) = s;. 

We will show how to construct a tree T in which internal nodes are unlabeled and 

each leaf is labeled with a species in S. Each species in S will be the label of exactly 

one leaf of T. To construct T we will first construct trees TI, . . . , TN. Finally, we will 

hook Ti to Ti+l for 1 < i < N 

We start by showing how to hook tree z to tree z+i. Let ti be an internal node 

in Ti of degree at most 2 and let ti+l be an internal node in Ti+l of degree at most 2 

(it will be clear from the construction that such small-degree internal nodes exist in T 

and Ti+l). Connect ti and ti+l with a chain of e + 1 new internal nodes. Finally, 

give each of the internal nodes in the chain a leaf and label the new leaves with the 

species sli,ij ,..., &+,). For example, if e = 3 then connect ti and ti+l as in Fig. 2: 

Note that in any e-phylogeny for the input, at least one of the internal nodes in 

the chain will be labeled with a species s such that c(s) = .si. Since we have now 

used all 8 + 1 species s with c(s) = si, neither Ti nor Tii+i contains a leaf s such 

that c(s) = si. Therefore when Ti is hooked to Ti+l as above, any leaves ei E z and 

ei+i E 1;+i with c(ei) = c(ei+i) are in different connected components in the subgraph 

induced by c-‘(c(ei)). 
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Fig. 2. Example for C = 3. 

Fig. 3. Example for e = 3, i = 1, j = 2. 

We next show how to construct the trees TI,. , TN. Trees Tl,. . . , TN+_~ will each 

consist of a single internal node connected to a single leaf. In particular, we will 

construct one such tree for each of the following species: for each variable x, species 

s(,,i ), . . . , SW-~) and s(,-,I ), . . ,s(,-,f-2); for each clause C, species s(c,J), . . . ,s(c,p_3); for 

the ith occurance of the literal X, species .Q,,~),. . ,.~(,~,/_3); for the ith occurance of 

the literal X, species s(r,,i), . . , s(i,,+3). 

Trees TN_~_,,,+~, . . . , TN_, will be used for truth setting. For each variable x in 

the satisfiability input we will construct a tree as follows. Suppose that the literal x 

appears i times in the satisfiability input and that the literal X appears j times in 

the satisfiability input. Construct a tree consisting of a chain of 2i + 2j + 6 internal 

nodes. Each internal node will have one leaf, and the species at the leaves will be (in 

order): first, +,/-I); then, +,,Gz), +,,/-I ), q,,,~), +,,P-I), . . . , 3(,,,/-2), +,+I); 

then q,t),.q,-,~l), q,t+~), SW); then q~,,~-2), q:,,i-~),. , , q,-,,/-2), ~YJ-I); finally, 
s(,-,/+~). For example, if e = 3, i = 1, and j = 2 construct a tree as in Fig. 3: 

Because we have already introduced single-leaf trees for the species s(,,JJ, . . . , s(,,g_2) 

and SC,-,I), . . . , s(~,+2), we observe that in any e-phylogeny, the truth-setting tree for vari- 

able x must have at most 2 connected components for each of the states s, and ST. We 

will say that an L’-phylogeny sets the satisfiability variable x to “true” if and only if the 

leaves qX,,q and +,/+I) are in the same connected component for state s,. If the vari- 

able x is set to “true” then the leaf s(,,/_ 1) can be in a different connected component 

for state s,. Therefore, for 1 6 h < i, state s,,~ can form a single connected component 

in the truth-setting tree for x. Otherwise, state s,~, must have two connected compo- 

nents in the truth-setting tree for x. Similarly, if x is set to “false” then leaves s~~,~--]) 

and s(r,c) can be in the same connected component for state SF and leaf s(,,g+i) can 

be in a different connected component. Therefore, for 1 < h < j, state s,, can form a 

single connected component in the truth-setting tree for x. Otherwise, state SF, must 

have two connected components in the truth-setting tree for x. 
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‘(C,l)‘(Xi,3) ‘(Xi.4) '(C,Z) "'~j,3/ "fjjr4) s(c,3) s(Zk’3) s{zk’4) s(c,4) 

Fig. 4. Example for C = 3 

Trees TN-~+, , . . . , TN will be used for clause checking. For each clause C=Xi V yj V 

zk in the satisfiability input we will construct a tree consisting of a chain of 10 internal 

nodes. Each internal node will have one leaf, and the species at the leaves will be 

(in order): ~(c,/-~),~(~,,P),~(,~,/+I),s(c,/-I), qy,,r), s(~,,T+I), S(C,O, qs,/), qzk,/+~),q~,/+~). 

For example, if e = 3, construct a tree as in Fig. 4: 

Because we have already introduced single-leaf trees for the species s(c,J), . . . , stc,/_-)), 

we observe that in any 6-phylogeny, the clause-checking component for clause C must 

have at most 3 connected components for the state SC. This is possible if one of the 

literals in the clause has been set to “true” by the truth checking component and not 

otherwise. The correctness of the reduction follows. 0 

The input to the fixed-topology 6-phylogeny problem that is constructed in the proof 

of Theorem 6 had two notable features. First (because there are only e+ 1 species with 

each state), the input is guaranteed to have an e + l-phylogeny. Second, the degree of 

the tree T is at most 3. Therefore, the fixed-topology L-phylogeny problem is NP-hard 

for fixed b > 2 even when the input is guaranteed to have an L + l-phylogeny and the 

degree of the topology is restricted to be at most 3. 

4. The restricted &-phylogeny problem 

In this section we show that there is a polynomial-time algorithm for the restricted l- 

phylogeny problem. We then show that the restricted e-phylogeny problem is NP-hard 

for fixed L 2 2. 

We start by describing the algorithm for solving the restricted l-phylogeny problem. 

Suppose that S, cl,. . . , Ck is an input to the restricted l-phylogeny problem. If the input 

has a restricted l-phylogeny, it has one in which each species in S is the label of 

exactly one node (if not, combine branches). 

We define the weight of an edge (vi, 02) in a phylogeny to be the number of char- 

acters cj such that cj(Ui) # Cj(U2). That is, the weight of (u~,zJ~) is the number of 

characters on which the species labeling vi and v2 disagree. We define the weight of 

a phylogeny to be the sum of the weights of its edges. 

Let G denote the complete graph with vertex set S. We seek a spanning tree T of G 

in which, for every character cj and every state i E R,, , the set of vertices c,‘(i) form 

a connected component in T. Let the weight of an edge (s,s’) in G be the number 
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of characters c,~ such that cj(S) # cj(s’). Then a spanning tree of G is a l-phylogeny 

for the input if and only if its weight is $=,(‘;, - l), and any spanning tree that 

is not a l-phylogeny will have a greater weight. Therefore, the restricted l-phylogeny 

problem reduces to the minimum weight spanning tree problem, which can be solved 

in polynomial time [16]. We have proved the following theorem: 

Theorem 7. The restricted l-phylogeny problem can be solved in polynomial time. 

In the remainder of this section, we prove the following theorem. 

Theorem 8. The restricted P-phylogeny problem is NP-hard for jixed L 3 2. 

Proof. The reduction is from the t-consecutive ones problem, which is defined as 

follows: 

Instance: A (0,l )-matrix M. 

Question: Can the rows of M be permuted in such a way that for each column in 

the resulting matrix, there are at most & sequences of consecutive ones. 

The P-consecutive ones problem is known to be solvable in polynomial time for e = 

l[ lo]. However, it is NP-complete for fixed e > 1 [ 111. 

Let t be a positive integer that is greater than or equal to 2. Suppose that we are 

given an input M to the d-consecutive ones problem with n rows and m columns. (We 

will assume that n 3 3e.) We will show how to construct an input 

S, c I,...,(‘m+(,“,) 

to the restricted e-phylogeny problem such that the phylogeny input has a restricted 

e-phylogeny if and only if the rows of M can be permuted in such a way that for each 

column in the resulting matrix there are at most ( sequences of consecutive ones. 

The phylogeny input is constructed as follows. Let M’ be a matrix derived from M 

by replacing the zeroes in each column of M with integers in the range 2,. . . , n + 1 in 

such a way that each column of M’ has at most one occurence of each integer in the 

range 2,. . . , n + 1. The species set S will have n species - one for each row of M’. 

For j in the range 1 < j 6 m character cj will map the species corresponding to row r 

of A4 to the entry in column j of row r of 44’. We will define the remaining (,“,) 

characters as follows. For j in the range 1,. . . , (,“,) we will have R,,,,,, = (0, 1). We 

will let S, denote the jth size-(C - 1) subset of S and we will set c~+~(.s) = 1 for s E Sj 

and Cj+m(S) = 0 for s 6 S,. 

(4) Suppose that T is a restricted t-phylogeny for 

s, c I>...,Cm+(,r,). 

Using Fact 1, we can assume that each species in S is the label of exactly one node 

in T. Let V = {VI,. . . , v/-1} be any set of e - 1 vertices of T and let j be the integer 

such that the species labeling the vertices in V’ correspond to the set Sj. Observe that 

the graph obtained by removing the vertices in V from T has at most G connected 
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components (otherwise, the set of vertices c,&(O) form more than e connected com- 

ponents in T, so T is not an /-phylogeny). We will show that every node in T has 

degree at most 2. Suppose instead that T has a vertex, vi, of degree greater than or 

equal to 3. We will show that there are e - 2 other vertices, 212,. . . , q-1 such that 

the graph obtained by removing the vertices in V = {VI,. , v/-l} from T has at least 

e + 1 connected components. This will be a contradiction, so we will conclude that 

every node in T has degree at most 2. To show that ~2,. . . , v/_1 exist, note that the 

subgraph of T formed by removing vertex VI has at least 3 connected components. 

Furthermore, if any subgraph T’ of T that is formed by removing up to e - 1 ver- 

tices has fewer than e + 1 connected components, it is possible to remove a vertex 

so as to increase the number of connected components 9 . Let v2 be a vertex such that 

removing v2 from T - VI increases the number of connected components. Similarly, 

let 03 be a vertex such that removing us from T - {VI, ~2) increases the number of 

connected components. Continuing this process we identify 02,. . . , v/-l. We have now 

shown that T is a path. It follows that we can arrange the rows of A4 in the order 

that the corresponding species occur on path T and that, in such an arrangement, each 

column has at most e sequences of consecutive ones. 

(t) Suppose that p = {PI,. . . , pn} is a permutation of { 1,. . . , n} such that when 

the rows of A4 are permuted according to p each column has at most e sequences of 

consecutive ones. Let T be a path consisting of the species in S, arranged according 

to permutation p. Then T is a restricted e-phylogeny for 

5. Two-character phylogeny 

In this section we show that for k=2 the phylogenetic number problem can be solved 

in O(n2) time, where n is the number of species. We start by proving the following 

fact. 

Fact 9. If a phylogeny input S, cl, c2 has an d-phylogeny then it has a restricted e- 
phylogeny T in which each species in S is the label of exactly one node and for each 
character j E { 1,2} and each state i E R,, , at most one of the connected components 

in the subgraph of T induced by the set of vertices c,:‘(i) has more than one vertex. 

Proof. Suppose that T’ is a an e-phylogeny for S, cl, ~2. We start by showing that 

S, cl, c2 has a restricted /-phylogeny in which each species in S is the label of exactly 

one node. We can assume that each species is the label of at most one node of T’ (if 

not, combine branches). Now, suppose that a species s @ S is the label of some node 

of T’. We can assume that this node, v, is an internal node of T’ (otherwise delete it). 

Let Ui be the set of neighbors u of v such that ci (u) = cl(v). Let UZ be the the set 

9 To see this, note that (since n > 30 T’ has some connected component with more than 2 vertices. 
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of neighbors u of v such that Q(U) = Q(V). Note that Ui fl U2 = t?~ since s is the only 

species that can label a node in Ui n U2 and c is the only node with label s. Let U3 be 

the set of neighbors of v that are not in U, or U2. We can form a new d-phylogeny 

for S, cl, c2 by deleting node v, connecting the vertices in U1 in a path, connecting the 

vertices in U2 in a path, connecting the vertices in Us in a path, and connecting some 

node from U1 to some node in U2 and some node from iJ2 to some node from U,. 

We have now shown that S,CI,CJ has a restricted e-phylogeny in which each species 

in S is the label of exactly one node. Let T be such an L-phylogeny. Suppose that 

for character j E { 1,2} and state i E R,, , C and Cl are two non-singleton connected 

components in the subgraph of T induced by the set of vertices c]:‘(i). Let c E C and 

c’ E C’ be vertices such that the path connecting c to c’ in T does not include any 

other vertices in C or C’. (Note that c and c’ are uniquely defined.) For every v E C 

which is adjacent to c note that the path between v and c’ passes through vertex c. 

Remove the edge (v,c) from T and add the edge (t.,c’). Note that the resulting tree 

is an 6-phylogeny for &cl, ~2. (To see this, note that since the species labeling u is 

different from the species labeling c, the character other than character j disagrees on v 

and c.) 0 

In this section, we represent the phylogeny input S, cl, c2 as a bipartite graph. One 

set of vertices in the graph will be the set R,, and the other set of vertices in the 

graph will be the set RC2. For i E R,, and j E RC2 the edge (i, j) will be present in the 

graph if and only if S contains a species s such that cl(s) = i and Q(S) = j. (This 

is the partition intersection graph [14, 51.) Let d(u) denote the degree of a vertex u 

in this graph. We will define a special e-coloring of the graph to be a coloring of 

the edges with the colors white, blue, red, and purple such that each vertex i in R,, 

has max(O, d(i) - G + 1) of its neighboring edges colored either red or purple and the 

rest of its neighboring edges colored either white or blue and each vertex j in RC2 has 

max(O, d(j) - e + 1) of its neighboring edges colored either blue or purple and the rest 

of its neighboring edges colored either white or red. (Intuitively, think of each edge as 

starting out white. Then each vertex i in R,, adds red color to max(O, d(i) - e + 1) of its 

neighboring edges and each vertex j in RC2 adds blue color to max(O, A(j) - e + 1) of 

its neighboring edges. Edges that get colored both red and blue in this process become 

purple.) We will prove the following lemma. 

Lemma 10. A phylogeny input S, cl, c2 has an e-phylogeny if and only if the corre- 

sponding bipartite graph has a special L-coloring with no purple cycle. 

Proof. First, suppose that the input S,ci, c2 has an d-phylogeny. By Fact 9 it has 

a restricted e-phylogeny T in which each species in S is the label of exactly one 

node and for each character h E { 1,2} and each state i E R,,,, at most one of the 

connected components in the subgraph of T induced by the set of vertices c;‘(i) has 

more than one vertex. Construct a special e-coloring as follows. For each vertex i E R,, 
let C; be the largest connected component in the subgraph of T induced by the set of 
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vertices c;‘(i). Arbitrarily choose max(O, d(i) - e + 1) of the vertices in C, and add 

red color to the corresponding edges in the graph. For each vertex j E R,, let Cj be the 

largest connected component in the subgraph of T induced by the set of vertices c;‘(j). 

Arbitrarily choose max(O, d(j) - e + 1) of the vertices in Cj and add blue color to 

the corresponding edges in the graph. We will now argue that the special L-colored 

graph has no purple cycle. Suppose instead that the special 8-colored graph has a 

purple cycle consisting of the edges (it, jt ), (iz, jt ),(iz, j,), . . , (im, j,),(it, j,,,). Then, 

by construction, there is a path in T between the species (i, , jl ) and the species (i2, jt ) 

which is contained in Cj,. Similarly, there is a path in T between the species (i2, jl) 

and the species (iz, j2) which is contained in Ci,. These paths intersect exactly at the 

species (iz, jt ). Continuing in this manner, we construct a cycle in T, which contradicts 

the fact that T is a phylogeny. 

Next, suppose that the graph has a special &-coloring with no purple cycle. Construct 

an d-phylogeny T as follows. The nodes of T are the species in S. For each vertex 

i E R,, , let Ci be the set of species in cl’(i) such that the corresponding edges in the 

graph have red color. Add a path to T which traverses the nodes in C,. All of the 

species on this path have the same state in character 1. Also, these species correspond 

to red edges in the special e-coloring. For the purpose of the proof, we will think 

of the corresponding nodes in the path as having red color. For each vertex j E R,,, 

let Cj be the set of species in cz’( j) such that the corresponding edges in the graph 

have blue color. Add a path to T which traverses the nodes in Cj. All of the species 

on this path have the same state in character 2. Also, these species correspond to 

blue edges in the special /-coloring. For the purpose of the proof, we will think of 

the corresponding nodes in the path as having blue color. We will now argue that T 

has no cycle. Suppose instead that T has a cycle. Note by construction that every 

edge in the cycle either fixes character 1 or fixes character 2 (but not both). For 

example, the cycle might look like (6, jl ), (h , j2 ), (h, j3 ), (i2, j3 ), (h, j4 ), (b, js ), (h , j, ). 

Let 61, Y I ), . . . , (x,,,, ym) be the sequence of nodes that we get when we traverse the 

nodes in the cycle in order, skipping any node such that the edge into the node fixes 

the same character as the edge out of the node. (For the above example, we get the 

sequence (it, jt),(it, js),(i,, js),(i,, j,),(it, js).) Each species (x,, ya) is colored purple 

in T, so each edge (x,, ya) is colored purple in the graph. (To see that species (x,, ya) 

is colored purple in T, note that it is part of a path fixing the state of character 1 

(hence, red color is added). It is also part of a path fixing the state of character 2 

(hence, blue color is added).) Finally, we observe that the edges (x,, y,) form a cycle 

in the graph, which contradicts the fact that the graph has no purple cycle. We conclude 

that T has no cycle. If T is disconnected, we arbitrarily add edges making it into a 

tree. 0 

We now present a polynomial-time algorithm that takes as input an integer 8 and a 

bipartite graph G and determines whether G has a special t!-coloring with no purple 

cycle. The algorithm proceeds by considering a sequence of special e-colored graphs 

{Go, Gt , . . .}. Graph Go is an arbitrary special /-coloring of the graph G. For t 2 1, Gt 
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is constructed by modifying the coloring in Gr_ I. We will use the notation E( G,) to de- 

note the set of edges that are contained in some purple cycle in G,. When the algorithm 

considers the graph Gr_l it will either produce a graph G, such that E(G,) C &(Gt_l ) 

or it will terminate with the answer “no”. If the algorithm ever produces a graph G, 

such that &(G,) = 8 it will terminate with the answer “yes”. 

We now show how to construct the graph G, from Gt_ 1 (or to terminate with the 

answer “no”). Fix an edge e E E(Gt_r ). The procedure will consider a sequence of spe- 

cial t-colored graphs Gh={ Gt_r, G{, Gi,. .}. For each graph Gj in the sequence, e will 

be a member of E(G:). For each graph Gi, let P(G.0 be the graph that is obtained by 

considering all of the purple edges in Gi (and no other edges) and let (U,(GJ), V&G:)) 

be the vertices of the connected component in P(Gj) that contains e. Let M,(Gj) be 

the set of edges in the connected component in P(G:) that contains e. To transform 

G( into Gj,, the algorithm may make one e-move in which it either selects a ver- 

tex u E U,(Gj) and transfers the red color from one edge adjacent to u to another 

edge adjacent to u that does not already have red color or the procedure selects a 

vertex c’ E V,(Gj) and transfers the blue color from one edge adjacent to t’ to another 

edge adjacent to z’ that does not already have blue color. The move is legal if and 

only if &(Gj+,)cE(G;). Such a move is called a finishing move if E(Gj+,)cE(GJ). 

It is called an e-continuing move if it is not finishing, but M,(G.i+, ) c M,(Gi). When it 

considers the special e-colored graph Gj, the algorithm checks every possible e-move. 

If it finds a legal e-move, it constructs Gj,, by making this move. If the move is fin- 

ishing, then the procedure returns the graph G, = Gi,, . If the move is not finishing, but 

it is e-continuing, the procedure now considers the graph Gi,,. (Note that in this case 

&(Gi+, ) = I(G.j) so e E cC(G:).) If there are no legal e-moves that are finishing or e- 

continuing, the algorithm terminates with the answer “no”. Note that at most IM,(Gk)I 

continuing moves can be made, so the procedure terminates in polynomial time. 

The correctness of the algorithm follows from the following lemma. 

Lemma 11. If’ u bipartite graph G has a special /-coloring with no purple cycle 

and H is u special L-coloring of G with e E &(H) then there is a legal e-move 
from H that is either jinishing or e-continuing. 

Proof. Let G,, be the subgraph of G induced by U,(H) U V,(H) and let S, denote the 

set of edges in G,. We wish to compute an upper bound for \&I. To do so, let d’(w) 

denote the degree of vertex w in graph G,. Since G has a special e-coloring with 

no purple cycle, G, has a special /-coloring with no purple cycle. Let H: be such 

a special /-coloring of G,. The number of edges with red color added in HL is at 

least C uEuC,I,(Nj(d’(u) - G + 1). The number of edges with blue color added is at least 

City<,&%) - e + 1). Th e number of purple edges (which have both red color and 

blue color) is at most lU,(H)I + 1 V,(H)1 - 1. Hence, 

I& 2 c (d’(u) - cr + 1) 
utUAH) 

+ CtC$(t9 - / + 1) - (lUO)I + IVe(W - 1) 

and therefore IS,1 < /((U,(H)\ + (V,(H;). 
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Now consider H. Let Si be the set of edges that are adjacent to vertices in U, and 

do not have red color. Let Sz be the set of edges that are adjacent to vertices in V, and 

do not have blue color. Suppose that some edge e’ is in Si n SZ. Let e” be a purple 

edge that is adjacent to e’. Clearly, the e-move that transfers color from e” to e’ is 

legal. Suppose that it is not finishing and let H’ be the graph obtained from H by 

making this move. Then M,(H’) GM,(H) - {e”}. H ence, the move is e-continuing. 

Suppose instead that Si n Sz = 0. Every vertex w E U,(H) U V,(H) has d(w) 2 e. (If 

d(w) < e then w will not add color to its neighboring edges in any special e-coloring 

of G so w will not be in the connected component containing e in P(H).) Therefore 

ISrl 2 ZEU,(H) (J - I) and I&l 3 CVeVPcH, (e - 1). Let S, be the set of purple edges 

with endpoints in U,(H) U V,(H). Note that IS,/ 3 iU,l + IV,l. & is disjoint from Si 

and S2 so ISi u S2 U ,931 3 Q/U,(H)1 + I V,(H)I). We conclude that some edge in Si 

or S, must have an endpoint outside of G,. 

Without loss of generality, assume that there is an edge e’ E Si that has endpoint 

u E U,(H) and its other endpoint, u, outside of V,(H). There are two cases. Suppose 

that u is contained in a purple cycle in H. Let (u,w) be an edge in such a cycle. 

Consider the e-move that transfers color from (u, w) to e’. This move is legal. (Since a 

is not in V,(H) no purple cycles are created by the move.) Let H’ be the graph 

obtained from H by making this move. E(H’) C E(H) - {(u,w)}, so the move is 

finishing. Suppose instead that u is not contained in a purple cycle in H. Let (u, w) 

be the first edge on the unique path from u to e in P(H). Consider the legal e-move 

that transfers color from (u,w) to e’. Suppose that it is not finishing and let H’ be 

the graph obtained from H by making this move. Then M,(H’) GM,(H) - {(u, w)}. 

Hence, the move is e-continuing. 0 

In Lemma 10 we showed that a phylogeny input S, cl, c2 has an e-phylogeny if 

and only if the corresponding bipartite graph has a special e-coloring with no purple 

cycle. We then described a polynomial-time algorithm that takes as input an integer e 

and a bipartite graph G and determines whether G has a special d-coloring with no 

purple cycle. Hence, we have shown that there is a polynomial-time algorithm that 

takes input 4 and a phylogeny input 8, ci,c2 and determines whether the phylogeny 

input has an e-phylogeny. (In fact, our algorithm constructs an e-phylogeny if one 

exists.) Using binary search (or even linear search) on /, we obtain a polynomial-time 

algorithm that takes as input a phylogeny input S, cl, c2 and determines the phylogenetic 

number of the input. Hence, we have proved the following theorem. 

Theorem 12. The phylogenetic number problem can be solved in polynomial time for 

k = 2. 

Unfortunately, Fact 9 no longer holds if we add a third character cg. Hence, our 

approach does not solve the phylogenetic number problem (or even the e-phylogeny 

problem) for fixed k > 3. (To see that Fact 9 does not hold for k > 2, consider the 

3-species 3-character input {100,010,001}. One can construct a l-phylogeny for this 
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input by attaching each species to the new species 000. However, the input does not 

have a restricted 1 -phylogeny.) 

We now show how to implement the two-character algorithm just described in time 

0(n2), where n is the number of species in the input set (hence the number of edges 

in the bipartite partition-intersection graph). In particular, given a special e-coloring of 

the graph, we give an O(n)-time algorithm to perform an e-finishing move, perhaps 

through a series of e-continuing moves. Because there can be at most O(n) e-finishing 

moves, the 0(n2)-result follows. 

Let G be the partition-intersection graph for input S, cl, ~2. Construct a special e- 

coloring in O(n) time by having each node i choose max(O, d(i) - G + 1) neighbors to 

color red (if node i is in R,,) or blue (if node i is in R,,). Compute the biconnected 

components of graph P(G) (purple edges only) in time O(n) [3]. If all biconnected 

components are isolated nodes, then there are no purple cycles and we are done. 

Otherwise, mark all the active vertices: those which belong to a biconnected com- 

ponent of size greater than one and therefore participate in a purple cycle. Pick an 

arbitrary active node v. In O(n) time, compute the connected component of node t’ in 

P(G) using depth-first search. We call these nodes inside nodes and all other nodes 

outside nodes. An edge (vi, c,) is useful if r, is an inside node, c‘, is an outside node, 

and it is not colored by node u,. For example, if t’, E R,, , then it controls the color red, 

so a useful edge going outward from vi is white or blue. 

If any active node v, is adjacent to a useful edge, then we can make a finishing 

move by transferring color from an edge in a purple cycle adjacent to v, to the useful 

edge (see the proof of Lemma 1 1 ), and we are done. If there are no such edges, find 

all the useful edges adjacent to the remaining inside nodes. Place them in a continuing 

list and keep a pointer from the inside node to the corresponding record in this list. 

Pick the first edge on the continuing list (vi, u,). Let up be the inside node that is ci’s 

parent in the depth-first search tree created above. Then (u,,t:i) is the first edge on 

the unique path to the distinguished node v. We make an e-continuing move (where 

e is any purple-cycle edge adjacent to node v) by transferring color from (up, Vi) to 

(vi,vo). This breaks the component of node v in P(G) into two pieces. Node vi and 

all its descendants in the depth-first search tree are now no longer part of node r’s 

component. 

We update the continuing list as follows. Starting at node vi, trace each newly 

severed node by walking the old depth-first tree. For each node x, consider all adjacent 

nodes y. If y is an inside node, then edge (y,x) is now useful. If node y is active, 

then add it to a second finishing list with a pointer from node y. Otherwise add it to 

the continuing list. If node y is outside, then this edge is no longer useful, so remove 

it from whatever list it is part of. Note that if node y is inside now, but is moved 

outside in this tracing, then the edge (y,x) will be added and then removed from a list. 

If there is an edge in the finishing list, we can make a finishing move and be done. 

Otherwise, we pick the first edge on the continuing list and iterate until we find a 

finishing move. Heuristically it would be better to pick a useful (continuing) edge 

from the node that is closest to node v. 
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The process of finding a finishing move requires time O(n). Each edge that was 

purple at the start of the phase is traced (perhaps in each direction) at most twice: 

once when the first connected component is determined and once when the piece 

containing the edge is severed by an e-continuing move. Each edge that was originally 

not purple is considered at most four times: once for each endpoint that is initially 

inside, and once as these endpoints move outside. Each of these edges can be added 

to a list once and removed once. 

6. Phylogeny with a fixed number of states 

In Section 6.1 we show that the fixed-topology phylogenetic number problem can 

be solved in polynomial time for fixed Y. On a related note, we show that if Y is 

fixed, there is a polynomial-delay algorithm for listing fixed-topology e-phylogenies. 

In Section 6.2 we show that for fixed r 3 2 and fixed & 3 3 the restricted t!-phylogeny 

problem is NP-hard. (This result follows from a more general result. Namely, we show 

that the restricted (61, dz)-phylogeny problem is NP-hard for fixed Ct 2 2 and t!* 3 2 

as long as one of /I,[* is greater than 2.) 

6.1. Fixed-topology phylogeny with a jixed number of states 

In this subsection we prove the following theorem. 

Theorem 13. The fixed-topology phylogenetic number problem can be solved in poly- 

nomial time for fixed r. 

It suffices to consider each character independently. We are given an input tree T 

with each of its n leaves labeled by a state in the range { 1,. . . , r}. We wish to label the 

internal nodes of T to construct a phylogeny with the smallest possible phylogenetic 

number. We root the tree at an arbitrary node, constructing the child and parent pointers. 

The choice of root will not affect the phylogenetic number of the tree. 

For a given character, this problem can be solved by a two-pass algorithm: once up 

the tree and once down. In the upward phase, for each node v, and for each vector in 

the set 

we construct, if possible, a labeling of the nodes in the subtree rooted at v such that v 

is labeled with state i and, in the subtree rooted at v, the subgraph induced by nodes la- 

beled j has exactly L’j connected components. We call such a labeling a configuration 

of the subtree rooted at v, or a configuration of v for short. If there are no leaves in 

this subtree labeled j for some j E { 1,. . . , r}, then we have L’j = 0 for all configurations 

(there are no connected components labeled j in the subtree rooted at v). 

There are O(rnr) possible configurations for the subtree rooted at any node, with 

one possible configuration for each leaf. Once the possible configurations have been 
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constructed for the children of a node, we can construct the possible configurations 

for the parent by combining configurations of the children incrementally. Consider the 

first two children zjl and ~2 of parent node c’. For each pairing of a configuration for 

~1 with a configuration for ~2, we construct Y configurations for the subtree consisting 

of parent node v and the subtrees rooted at children 1’1 and ~2, one configuration for 

each possible labeling of the parent c. If node L’ is labeled i, and the configurations 

of ~‘1 and v2 are represented by the vectors (il,(li,ll2,...,Pl,.) and (i2,/21,/22....,Jz,.) 

respectively, then the resulting configuration is (i, 11, /2,. , C,.) where tj = /I, + (2, 

for all j # i, and Pi = rli + dli + 1 - m, where m E (0, 1,2} is the number of children 

(considering only 01 and 02) which are labeled i. That is, the number of components 

of state j is the sum of the number of components in each child for most states. The 

only state that can differ is the state with which node v is labeled (i). In this case, if 

neither ti1 nor v2 is labeled i, then we create a new component of state i (the node v) 

in addition to the components present in the children. If exactly one child is labeled i, 

then the label of node t’ becomes part of that component. If both cl and 7~2 are labeled 

i, then one component of state i from each child can merge through node c, and the 

number of components in the combination is one fewer than the sum. 

Whenever a new possible configuration is achieved through a combination of config- 

urations in the two children, it is recorded along with pointers to the configurations of 

~‘1 and ~‘2 that achieve this phylogenetic configuration. Although there are y2n2r ways to 

pair up the configurations of two children, there can be at most rn’ configurations for 

the parent. If a configuration is achieved multiple ways, we only remember one way. 

After computing the O(rnr) configurations for the subtree consisting of node v with 

the subtrees rooted at tli and c2 (call this tree r’), we now add child ~3. The compuation 

is almost the same as before. Let possible configurations for T’ and the subtree rooted 

at ~3 be represented by vectors (i,t{,ti,. ,fi) and (j,t~i,!3?, . ,t3,.) respectively. 

Then the combined configuration is (i,e,,t,, ,C,.) where /k = rb + tjk for all k, 

unless i = j. In this case, we have L, = !( + G 31 - 1 because one component of state 

i from the subtree rooted at 74 can connect to components of state i from the other 

children through the parent c’. 

Each child of node v is added in this way until we have computed the O(rrf) pos- 

sible configurations for the entire subtree rooted at node c. We continue up the tree 

until we have computed all possible configurations for the root. This computation takes 

0(r2n2’+’ ) time. We then pick a possible configuration with the minimum phyloge- 

netic number and go down the tree generating labels by following the pointers to the 

subconfigurations that achieve the optimal configuration. 

The above algorithm makes it clear that if r is fixed, there is a polynomial-delay 

algorithm for listing fixed-topology /*-phylogenies. 

6.2. Restricted phylogeny with a fixed number of’ states 

In this subsection we show that for fixed r 3 2 and fixed / 2 3 the restricted r- 

phylogeny problem is NP-hard. 
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We start by proving the following more general theorem. 

Theorem 14. The restricted (/I, /,)-phylogeny problem is NP-hard for jixed dl B 2 

and e2 > 2 as long as one of [I, tf2 is greater than 2. 

Proof. Without loss of generality, assume that Lt 3 e2. The reduction is from the 

2-consecutive ones problem. 

Let M be the matrix in the input to the 2-consecutive ones problem. Let n’ denote the 
number of rows of M and m denote the number of columns of M. (We will assume that 

n’ 3 3,42.) We will show how to construct an input to the restricted (81, ez)-phylogeny 
problem such that the phylogeny input has a restricted (et,&)-phylogeny if and only 

if the rows of M can be permuted in such a way that for each column in the resulting 

matrix there are at most 2 sequences of consecutive ones. 
The phylogeny input is constructed as follows. Let M’ be a matrix derived from M 

by adding 2({2 - 2) rows to the bottom of M. The entries in the (n’+i)th row are equal 

to 0 for odd i > 0 and are equal to one for even i > 0. Let n denote n’ + 2(d2 - 2). 

Note that M’ has n rows. The species set S={sr , . . . , s,} will have n species. Species si 
will correspond to row i of M’. Let kr denote (,,“_,). Let k2 denote (,:I,). Let k3 

denote max(O, n - n’ - 1). Let k denote m + kl + k2 + k2k3. The input to the phylogeny 
problem will be &cl,. . . , ck. The characters cl,. . . ,ck will be defined as follows: 

(i) (Characters that describe M’) For j in the range 1 6 j < m character cj will map 
species si to the entry in column j of row i of 44’. 

(ii) (Characters that make every phylogeny a path) For j in the range 1 < j 6 kl 
let Sj denote the jth size-(/z - 1) subset of S. We set cm+j(s) = 0 for s E Sj and 

C*+j(S) = 1 for S $8 S,. 

(iii) (Characters that place sn at one end of the path) For j in the range 1 d j < k2 

let SJ denote the jth size-(e2 - 1) subset of (~1,. . . ,snt}. We set c,+k,+j(s) = 0 

for s E Sj and C,+k,+j(Sn) = 0 and cm+k,+j(s) = 1 for every other species s. 

(iv) (Characters that place s,j+t , . . . , s, consecutively at the end of the path) For j in 

the range 1 d j < k2 and i in the range 1 < i 6 k3 let rn’ denote m + kl + k2 + (i - 

l)kz+j. Wesetc,~(s,)=Ofors,~S~andc,~(s,)=l forsrE{str...,snt}-Sjl. 

Furthermore, we set c~~(s,~+~)=~~~=c,~(s,-~-~)=~ and we set cml(Sn_i)=.‘.= 

c,, (sn ) = 0. 

(3) Suppose that T is a restricted (er,ez)-phylogeny for &cl,. . . ,ck. Using Fact 1, 
we can assume that each species in S is the label of exactly one node in T. Following 

the proof of Theorem 8, we can show that every node in T has degree at most 2. That 

is, T is a path. If n = n’ (i.e., 82 = 2) then it follows that we can arrange the rows 

of M in the order that the species occur in path T and that, in such an arrangement, 

each column has at most 2 sequences of consecutive ones. Suppose instead that n > n’. 
We will now show that the node labeled s, has degree 1. Suppose instead that it has 

degree 2. We argue as in the proof of Theorem 8 that there is a size-(Lz - 1) set 

S’ C{sr, . ,snf} such that ifs, and the species in S’ are removed from T, the resulting 
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subgraph has at least e2 + 1 connected components. Let j be the integer such that 

S’ = SJ’. Then the set of vertices c;ik, +j (1) form more than e2 connected components 

in T, which is a contradiction. We conclude that the node labeled s, is an endpoint of 

the path. For i in the range 1 6 i < k3 we will now argue that the node labeled s,_i 

is adjacent to a node with a label in {s,-,+I, . . , sn}. Suppose that this is not the case. 

We argue as in the proof of Theorem 8 that there is a size-(k2 - 1) set S’ C{si, . ,s,,J} 

such that if the species in S’ U {s,-;, . . . ,s,} are removed from T then the resulting 

subgraph has at least e2 + 1 connected components. Let j be the integer such that 

S’ = SJ. Then the set of vertices ~,$+~~+(~_i~~~+~( 1) form more than e2 connected 

components in T, which is a contradiction. We conclude that T is a path consisting 

of the species in {s], . . . , snt} (in some order) followed by s,I+~, . , s,. It follows that 

we can arrange the rows of M in the order that the species occur in path T and that, 

in such an arrangement, each column has at most 2 sequences of consecutive ones. 

(-) Suppose that p={pi,...,pL} is a permutation of {l,...,n’} such that when the 

rows of A4 are permuted according to p each column has at most 2 sequences of con- 

secutive ones. If e2 = 2 then let T be the path consisting of the species in {si, . . ,snt }, 

arranged according to p. T is a restricted (3,2)-phylogeny for S, cl,. . . , Ck. Hence, T is 

a restricted ({I, L2)-phylogeny for S, cl,. . . , ck. Suppose instead that e2 > 2. Let T be a 

path consisting of the species in (~1,. ,s,,/}, arranged according to permutation p, fol- 

lowed by S,I+I , . . . , s,. Then T is a restricted (d2, &2)-phylogeny for S, cl,. . . , ck. Hence, 

T is a restricted (/i,el)-phylogeny for S,cl,. ,ck. 0 

Note that Theorem 14 has the following corollary 

Corollary 15. For jixed r > 2 and jixed e 3 3 the restricted e-phylogeny problem is 

NP-hard. 

7. Conclusions 

In this section we present some open problems. There are several restrictions of the 

parameters which yield problems for which the complexity is still open. Recall that k 

is the number of characters, r is the maximum number of states for any character, and 

e is the phylogenetic number. It is unknown whether the following restricted versions 

of the r!-phylogeny problem can be solved by polynomial-time algorithms: 

(i) Finding an e-phylogeny where the number k of characters is a constant greater 

than 2 (for e > 1 ), 

(ii) Finding an e-phylogeny where the number r of states per character is a constant. 

(iii) For the case where r = 2, determining whether an input has a (1,2)-phylogeny or 

a (2,2)-phylogeny. Recall that for r = 2, the problem of finding a (1, 1)-phylogeny 
is in P. Finding a (2,3)-phylogeny is n/p-complete in the restricted case. 

This paper also leaves open the problems of randomly generating phylogenies with 

constraints upon their phylogenetic number and approximation algorithms for the NP- 
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complete versions of the e-phylogeny problem. In particular, suppose that there exists 

a perfect phylogeny. For what & can we find an e-phylogeny in polynomial time (with 

C! possibly a function of k and Y)? 
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