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Abstract— We show that the widely used homotopy
method for solving fixpoint problems, as well as the Harsanyi-
Selten equilibrium selection process for games, are PSPACE-
complete to implement. Extending our result for the Harsanyi-
Selten process, we show that several other homotopy-based
algorithms for finding equilibria of games are also PSPACE-
complete to implement. A further application of our tech-
niques yields the result that it is PSPACE-complete to compute
any of the equilibria that could be found via the classical
Lemke-Howson algorithm, a complexity-theoretic strengthen-
ing of the result in [24]. These results show that our tech-
niques can be widely applied and suggest that the PSPACE-
completeness of implementing homotopy methods is a general
principle.
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1. INTRODUCTION

According to Roger Myerson [20], the 1950 publi-
cation of Nash’s paper on equilibria was a watershed
event not just for Game Theory, but for Economics in
general. The new general equilibrium concept, and its
established universality, was an impetus for understand-
ing rationality in much more general economic contexts,
and inspired the important price equilibrium results by
Arrow and Debreu. Myerson argues convincingly in
[20] that the concept of Nash equilibrium lies at the
foundations of modern economic thought.

Seen from an algorithmic perspective, however, the
Nash equilibrium suffers from two important problems:
First, it is not clear how to find it efficiently (the
same is true for the Arrow-Debreu variety for mar-
kets and prices). This shortcoming had already been
identified by economists since the 1950s, and much
effort has been devoted to algorithms for finding Nash
equilibria, see [25, 19, 14] for examples from a very
extensive literature. None of these algorithms came with
polynomial-time guarantees, however, and the recent
result [6, 4] establishing that the problem is PPAD-
complete explains why. Of the many algorithmic ap-
proaches proposed by economists over the past 50 years
for finding Nash equilibria, most have been shown
by now to require exponential time in the worst case
[24, 16]. One exception is an important algorithmic
genre known as homotopy methods [7]; see [15] for a
recent survey.

In topology, a homotopy is a continuous transfor-
mation from one function to another (as, for example,

between two paths joining two points on a map). The
homotopy method starts with a fixpoint problem that is
easy to solve (say, a rotation of a disc around its center),
and continuously transforms it into the problem in hand,
by “pivoting” to new fixpoints along the way. A theorem
by Browder [2] establishes the validity of this method
in the limit, by showing the existence of a continuous
path of fixpoints that joins two fixpoints of the initial
and the final problems.

The second algorithmic obstacle for the Nash equi-
librium concept is multiplicity. Games have multiple
equilibria, and markets many price equilibria, and
thus the corresponding equilibrium concepts are only
nondeterministic predictions (oxymoron intended). In
price equilibria, this multiplicity has been blamed for
economic crises: The path guaranteed by Browder’s
theorem is non-monotonic, going back and forth in time.
As a result, equilibria vanish at its folds, leaving the
market in turmoil [1]. In games, a proposed remedy
for multiplicity is the so-called focal point theory see,
e.g., [18] p. 414, postulating that players implicitly
coordinate their equilibrium choice by focusing on the
most obvious, or mutually advantageous, equilibrium;
repeated play and learning (see, e.g., [9]) can also be
considered a remedy for multiplicity. In 1975, Harsanyi
proposed the tracing procedure [10] for battling equi-
librium multiplicity, a theory further explicated in his
joint 1988 book “A General Theory of Equilibrium
Selection in Games” with Selten [11] (Harsanyi and
Selten shared in 1994 the Nobel prize with Nash). The
tracing procedure asserts that players engaged in a game
G play at first a simple game G0, in which their prior
beliefs about the other players’ behavior result in a
dominant strategy. As time t progresses, and their priors
are falsified by life, they play a more and more realistic
game Gt = (1− t)· G0 + t· G, until, at time t = 1, they
end up playing the intended game G. They show that,
for almost all games, tracing the equilibrium path of
this process results in a unique equilibrium. Notice the
parallel with the homotopy method; apparently the two
were discovered independently.

Our results: This paper is a complexity-theoretic
critique of the tracing procedure and the homotopy
method: we show that finding the solutions they pre-
scribe requires the power of PSPACE. In particular,
finding the Brouwer fixpoint that would have been



discovered by the homotopy method, for a simple start-
ing function and an adversarial final one, is PSPACE-
complete. The same is true, via standard reductions, for
price equilibria. We also construct examples where the
homotopy method not only will undergo an exponential
number of pivots (this was expected since [16]), but will
suffer an exponential number of direction reversals. As
for the tracing procedure, we show that it is PSPACE-
complete to find the Nash equilibrium selected by it,
even in two-player games, and even if the initial game
has dominant strategies obtained from priors, exactly as
prescribed by Harsanyi and Selten. We extend this result
to homotopy-based algorithms where the starting game
depends on the final game and show that it is PSPACE-
complete to implement the Herings-van den Elzen,
Herings-Peeters, and van den Elzen-Talman algorithms
for finding equilibria in games. Finally, it is particularly
noteworthy that PSPACE-completeness prevails even
for finding the solutions that would be returned by
the classical Lemke-Howson algorithm, a simplex-like
method that had long been considered an oasis of
conceptual simplicity and (until [24]) of algorithmic
hope in this field. This reinforces the “exponentially
long paths” result of [24] with a new result which says
that, subject only to the hardness of PSPACE, no short
cuts to Lemke-Howson solutions are possible (for any
of the different initial choices of the algorithm). Since
it is known that the Lemke-Howson algorithm can be
expressed as a homotopy [15], this result can also be
seen as a powerful specialization of our first result.

The algorithms we consider solve problems in the
complexity class PPAD, which is contained in TFNP,
the class of all total function problems in NP. Another
prominent complexity class contained in TFNP is PLS
(for polynomial local search). Many common problems
in PLS (e.g., local max cut and finding pure equilibria
of congestion games) are complete under a so-called
tight PLS-reduction, implying that the corresponding
standard local search algorithm is exponential (for cer-
tain starting configurations and any choices of the local
search algorithm). Furthermore, one can conclude that
the computational problem of finding a local optimum
reachable from a given starting configuration by local
search is PSPACE-complete.

No such concept of tight reductions is known for
PPAD, and our results can be seen as addressing
this deficiency. Specifically, we show the PSPACE-
completeness (and exponential worst-case behaviour)
of a number of homotopy-based algorithms for finding
equilibria. Our reductions start with the problem OTHER
END OF THIS LINE (OEOTL), which is related to the
problem END OF THE LINE used in the definition is
PPAD, seeking not just any end of a path, but the other
end of the particular path starting at the origin. OEOTL
was known to be PSPACE-complete since [23], but this
fact has so far remained unexploited for proving lower
bounds for other problems.

Outline of the paper: In Section 2.1, we give an
overview of the linear homotopy method as applied to
Brouwer functions and games. In Section 2.2, we recall

the PSPACE-complete problem OEOTL (OTHER END
OF THIS LINE), which serves as the starting point for
all our main reductions. In Section 3, we show that the
linear homotopy method to compute a Brouwer fixpoint
is PSPACE-complete, which is proved in Section 3.3. In
Section 4, we establish the PSPACE-completeness of the
linear tracing procedure for two-player strategic form
games for a special starting game that is independent
of the final game. These results are extended to starting
games that depend on the final game in Section 5, where
we show that it is PSPACE-complete to implement the
Herings-van den Elzen, Herings-Peeters, and van den
Elzen-Talman algorithms for computing equilibria of
games. The techniques of [4, 6] are central to both
Section 3 and Section 4 and are recalled and extended
along the way. Finally, in Section 6, we show that it is
PSPACE-complete to find any solution of a two-player
game by the Lemke-Howson algorithm.

2. PRELIMINARIES

2.1. Homotopies
A Brouwer function F is a continuous function from

a convex and compact domain D to itself; by Brouwer’s
fixpoint theorem there exists x ∈ D such that F(x) = x.
A homotopy between two functions F0 : X −→ Y
and F1 : X −→ Y (where X and Y are topological
spaces) is a continuous function H : [0, 1] ×X −→ Y
such that for all x ∈ X , H(0, x) = F0(x) and
H(1, x) = F1(x). In this paper, we are interested
in the special case where X = Y = D, for D a
closed compact subset of Euclidean space, such as a
cube. Thus, F0 and F1 are Brouwer functions on D.
Given two continuous functions F0,F1 : D −→ D, the
linear homotopy is given by the expression H(t, x) =
(1− t)F0(x) + tF1(x), and (if D is convex) results in
a continuum of Brouwer functions Ft : D −→ D given
by Ft = (1− t)· F0 + t· F1 for t ∈ [0, 1].

Browder’s fixpoint theorem [2] (not to be confused
with Brouwer’s fixpoint theorem) asserts that given a
homotopy connecting F0 and F1, there is a path in
[0, 1] × D from some fixpoint of F0 to some fixpoint
of F1, such that for every point (t, x) on that path, x
is a fixpoint of Ft. The homotopy method [7, 15] for
finding a fixpoint of F1 selects F0 to have a unique
and easy to find fixpoint, and essentially follows such a
path. As noted in [15], we do not expect the path to be
monotonic in t — indeed, we show in the full paper that
an exponential number of direction reversals is possible.

We are often interested in approximate fixpoints1. If
F is a Brouwer function, an ε-approximate fixpoint
is a point x such that |F(x) − x| ≤ ε (we shall
use the L∞ metric throughout). It follows from Brow-
der’s theorem that, for any F0,F1, there is a finite
sequence x0, xt1 , . . . , xtk , x1 of ε-approximate fixpoints
of F0,Ft1 , . . . ,Ftk ,F1, for some k and t1, . . . , tk, such

1A very interesting alternative consideration [8] focuses on exact
fixpoints, resulting in higher complexity of the search problem; here
we could also consider exact fixpoints and equilibria without much
effect on our results, since we are dealing with PSPACE-completeness.
It is known from [8] that this harder problem belongs to PSPACE.



that any two consecutive fixpoints in the sequence are
at most ε apart.

We shall be interested in the following problem,
which we call BROWDER FIXPOINT: Given two arith-
metic circuits computing two functions F0 and F1

from [0, 1]d to itself with Lipschitz constant `, an
ε > 0, where F0 has a unique fixpoint x0, find an ε-
approximate fixpoint x1 of F1 that is connected via a
sequence of ε-approximate fixpoints to x0. (To make
this definition precise, we of course have to identify
classes of functions from which F0 and F1 may be
drawn.) Notice that the homotopy method for computing
Brouwer fixpoints provides a solution to this problem.

Homotopies can be defined very similarly also for
games. Given two games G0,G1 of the same type
(number of players and strategies), we consider Gt =
(1− t)· G0 + t· G1, where it is the players’ utilities that
are interpolated. It is routine to extend this definition
to more general classes of games, such as graphical
games [17] (in which case, in addition to the players and
strategies, the two graphs must be the same). Browder’s
theorem, via Nash’s reduction, establishes that there is
a path of approximate Nash equilibria here as well. The
problem LINEAR TRACING is the following: Given two
games G0 and G1, an ε > 0, and a Nash equilibrium x0
of G0, find an ε-approximate Nash equilibrium x1 of G1
that is connected via a sequence of ε-approximate Nash
equilibria to x0.

It is easy to see that LINEAR TRACING is in PSPACE,
and it can be checked that the algorithm of Herings and
van den Elzen [13] achieves this. BROWDER FIXPOINT
is also in PSPACE.

2.2. OTHER END OF THIS LINE

We consider directed graphs on 2n vertices repre-
sented as n-bit vectors. The arcs are represented by two
polynomial-size circuits S and P , each having n inputs
and outputs, as follows. There is an arc from vertex v
to w provided that S(v) = w and P (w) = v. Notice
that all vertices of the graph have both indegree and
outdegree 0 or 1, that is, the graph consists of paths,
cycles, and isolated vertices.

Definition 1: An (S, P )-graph with parameter n is
a graph on {0, 1}n specified by circuits S and P , as
described above, subject to the constraint that vertex 0n

has no incoming arc but does have an outgoing arc.
The problem END OF THE LINE is the problem of

finding a vertex of a given (S, P )-graph other than
0n which has at most one incident arc. Note that
this problem is in the class TFNP of total search
problems in NP: there exists a solution that could be
obtained by following the directed path that starts at
0n, and any given solution may be efficiently checked
for correctness. The class PPAD [23] is defined as all
search problems polynomial-time reducible to END OF
THE LINE. The problem OTHER END OF THIS LINE
(which we will subsequently abbreviate to OEOTL) is
the problem of finding the end of the particular path
that starts at 0n. In contrast with END OF THE LINE, a
given solution to an instance of OEOTL has no obvious

concise certificate that it is the correct endpoint, so
while OEOTL is a total search problem, it is apparently
not an NP total search problem. In fact, we have the
following (Theorem 2 of [23]), which is the starting-
point of our reductions.

Theorem 1: [23] OEOTL is PSPACE-complete.
We build on the ideas of [6, 4] (showing that unre-

stricted Nash equilibria can efficiently encode END OF
THE LINE solutions) to show how equilibria defined by
homotopies can efficiently encode OEOTL solutions.

3. THE HOMOTOPY METHOD FOR BROUWER
FIXPOINTS

In this section we give detailed definitions of classes
of fixpoint and approximate fixpoint computation prob-
lems. In Section 3.1, we review the definition of
Brouwer-mapping functions —and related concepts—
from Chen et al. [4], here applied to a three dimensional
domain. In Section 3.2, we review the techniques of [6,
4] for implementing Brouwer-mapping functions as
arithmetic circuits. In Section 3.3, we prove Theorem 3,
the main result of Section 3, in which we establish the
PSPACE-completeness of a linear homotopy for finding
a fixpoint of a Brouwer function. n ∈ IN will denote a
complexity parameter of problem instances. We define
a sequence F (n)

0 of “basic Brouwer functions” having
unique known fixpoints. For each n we define a class
of Brouwer functions whose members encode (S, P )-
graphs on {0, 1}n. The homotopy of Equation (1)
defines a class of functions Ft, t ∈ [0, 1], that interpolate
between F0 and F1 and specifies a particular fixpoint
of F1. We will show that from that fixpoint, we can
efficiently recover a solution to OEOTL for the graph
encoded by F1.

3.1. Definitions and notation
Notation 1: Let K be the unit 3-D cube [0, 1]3. For

n ∈ IN let K(n) denote a partition of K into 23n

“cubelets”, K(n) = {Kijk : 0 ≤ i, j, k ≤ 2n − 1};
Kijk is an axis-aligned cube of length 2−n whose vertex
closest to the origin has coordinates 2−n(i, j, k).

We define a Brouwer-mapping circuit in a similar way
to the definition in [4], here specialized to the case of
3 dimensions. We also introduce some variations of the
definition, as follows:

Definition 2: A Brouwer-mapping circuit (bmc) is a
directed boolean circuit with 3n input nodes and 2
output nodes. Note that any bmc B has an associ-
ated Brouwer-mapping function (bmf) fB : K(n) −→
{0, 1, 2, 3} that maps any cubelet Kijk to one of the four
colors {0, 1, 2, 3}. We require the colors of all exterior
cubelets to be predetermined as follows. For i = 0,
fB(Kijk) = 1. For j = 0, i > 0, fB(Kijk) = 2.
For k = 0, i, j > 0, fB(Kijk) = 3. All other exterior
cubelets are mapped to 0.

The basic bmf f (n)0 : K(n) −→ {0, 1, 2, 3} has the
additional property that all internal cubelets get mapped
to 0. Notice that f (n)0 is computable by a bmc of size
polynomial in n.



A DGP-style bmf is one that is derived from an
(S, P )-graph in the manner of [6], and so is computable
with a bmc of size polynomial in the size of circuits S
and P . (Proposition 1 notes the relevant property of
DGP-style bmf’s.)

A partial bmf f is defined with respect to a set S ⊆
K(n); f assigns a color to elements of S but f may be
undefined on non-elements of S.

Proposition 1: The following problem is PSPACE-
complete. Given a Brouwer-mapping circuit B, find a
point in K that is a vertex of 4 cubelets mapped to all 4
colors by the associated bmf fB , and which is connected
to the origin via cubelets having colors other than 0.

This is a total search problem: the topological intu-
ition is that there is a line that is adjacent to the colors
{1, 2, 3} and has one end at 2−n(1, 1, 0). The other end
must be inside K and adjacent to color 0, since no other
exterior point is adjacent to the colors {1, 2, 3}.

The proof of Proposition 1 in the full paper, applies
the reduction of [6] from END OF THE LINE to the
version of the problem where a panchromatic vertex
is sought that is adjacent to all colors. The resulting
{1, 2, 3}-colored line has a structure that faithfully
simulates the arcs of the (S, P )-graph from which is
was derived. Panchromatic vertices correspond to END
OF THE LINE solutions, and are linked-up with the
{1, 2, 3}-colored line, whose structure corresponds to
the END OF THE LINE graph, and whose orientation
arises from the clockwise order of {1, 2, 3} around it.

3.2. Implementing Brouwer-mapping functions as arith-
metic circuits

We review a class of functions used to establish
PPAD-completeness of graphical and strategic-form
games. Recall that K denotes the 3-dimensional unit
cube; we consider continuous functions F : K −→ K
having the following structure. Each function is an
arithmetic circuit composed of nodes, with each node
taking inputs from up to 2 other nodes, and producing
an output, for example, the sum of its inputs. All values
are constrained to [0, 1], so a node that adds its inputs
would output 1 if their sum is greater than 1. Identify 3
nodes as “input nodes” and another 3 as “output nodes”,
so if F is a continuous function from K to K, it has a
Brouwer fixpoint.

Definition 3: A linear arithmetic circuit is an arith-
metic circuit that computes a function from K to
K, represented by a directed graph whose nodes are
“gates” that perform certain basic arithmetic operations
on their inputs as follows. Each gate takes as input 0,
1 or 2 real values in [0, 1] and outputs a single real
value in [0, 1], where the output of a gate may be the
sum/difference/max/min of two inputs, or a constant
multiple of a single input, or no input and constant
output. (An output value is set to 1 if for example two
inputs that sum to more than 1 are input to a “sum”
gate.) We also allow “comparator gates” in which the
output of such a gate evaluates to 1 (respectively, 0)
if its first input is greater (respectively, less) than the
second input, and may take any value if they are equal.

Notation 2: Let α = 2−2n. Let δ1 = (α, 0, 0), δ2 =
(0, α, 0), δ3 = (0, 0, α), δ0 = (−α,−α,−α).

Definition 4: We shall say that a Brouwer-mapping
function f is implemented by an arithmetic circuit C if
whenever f(Kijk) = c, then C(x)−x = δc when x is at
the center of Kijk. For x not at a center, C(x)−x should
be a convex combination of values of C(z) − z for
cubelet centers z within L∞ distance 2−n of x. Given
F : K −→ K computed by such a C, we shall similarly
say that F implements f .

Observation 1: If F implements f , then any fix-
points of F must lie within distance 2−n of panchro-
matic vertices of f , and vice versa.

Theorem 2: A Brouwer-mapping function having
complexity parameter n can be implemented using
a linear arithmetic circuit having poly(n) gates, that
computes a continuous function.

The proof gives a new technique to implement any
Brouwer-mapping function f as a continuous function
F that uses a linear arithmetic circuit. This is in contrast
with the corresponding techniques of [4, 6] that used a
sampling-based approach in order to smooth the transi-
tion between distinct cubelets. The sampling-based ap-
proach results in discontinuous functions, where Brow-
der’s theorem would not be applicable (although it
could still be applied to a continuous approximation).
The technique only works in constant dimension; if
can be extended to higher dimension using the “snake-
embeddings” of [4].

Proof: Let f : K(n) −→ {0, 1, 2, 3} be a Brouwer-
mapping function. We construct a continuous Brouwer
function F : K −→ K computed by a linear arithmetic
circuit C as follows.

For x at the center of cubelet Kijk, set F(x)−x = δc
where c = f(Kijk). For x a vertex of cubelets Kx ⊂
K(n), set F(x)−x to be the average of F(z)−z for all
points z at the centers of members of Kx. The relevant
points z can be obtained using a polynomial-sized piece
of circuitry.

Let S be a simplicial decomposition of the unit cube
consisting of 12 simplices that share a vertex at the
center of the cube, and all other vertices are vertices
of the cube. Let Sijk be the simplicial decomposition
of cubelet Kijk obtained by scaling S down to Kijk.
Applied to all cubelets in K(n) this results in a highly
regular decomposition S(n) of K into 12.23n simplices.

For any x ∈ K, F (x) is obtained by linearly
interpolating between the vertices of the simplex in S(n)
that contains x. Clearly F is continuous.

The result follows from the following claim:
Proposition 2: F as defined above, may be computed

by a linear arithmetic circuit of size polynomial in n.
Proof: If x is not a vertex of S(n), the circuit can

determine the vertices of a simplex Sx ∈ S(n) that
contains x. There may be more than one such simplex,
in which case it does not matter which is chosen.

The circuit has 12 cases to consider, depending on
the orientation of Sx. Each case can be handled in
the same general manner, by subtracting some vertex
v of Sx from x, and multiplying (x − v) by some



constants (the coefficients of the linear function that
interpolated between the vertices of Sx). Note that
we never need to multiply two computed quantities
together, multiplication only ever takes place between
a computed quantity and a constant, as required for a
linear arithmetic circuit.

3.3. The PSPACE reduction to linear arithmetic circuits
In this subsection, we establish the PSPACE-

completeness of the problem BROWDER FIXPOINT,
mentioned in the Introduction, which can now be made
precise as follows. We use two bmfs f0 and f1, where f0
is the basic bmf of Definition 2, and f1 shall be a DGP-
style bmf that encodes an instance of END OF THE LINE
as constructed in [6]. Let F0 and F1 be implementations
of f0 and f1 using linear arithmetic circuits as described
in the proof of Theorem 2. For F : K −→ K let F (i)

denote the i-th component of F . For i = 1, 2, 3 let

F̄ (i)
t =(F (i)

0 − t) + (F (i)
1 − (1− t))

F (i)
t =max(min(F (i)

0 ,F (i)
1 ), F̄ (i)

t )
(1)

where in (1), the outputs of operators + and − are
restricted to lie in [0, 1] (so, rounding to 0 or 1 if
needed). Ft interpolates continuously between F0 and
F1 and is constructed from them using elements of the
linear arithmetic circuits of Definition 3 (which is useful
later; the natural alternative Ft = tF0 + (1− t)F1 does
not have this property.)

Observation 2: For all t ∈ [0, 1], F (i)
t is Lipschitz

continuous, with Lipschitz value < 2.2−n.
F0 has a unique fixpoint close to 2−n(1, 1, 1). F0 is

a “basic Brouwer function” which forms the starting-
point of homotopies we consider. Hence Observation 2
and Browder’s fixpoint theorem implicitly define a
corresponding fixpoint of F1.

Define an approximate fixpoint of F : K −→ K
to be a point x ∈ K with |F(x) − x| ≤ α/5 (recall
α = 2−2n).

Theorem 3: It is PSPACE-complete to find, within
accuracy 2−n, the coordinates of the fixpoint of F1 that
corresponds to the homotopy of (1). It is also PSPACE-
complete to find the coordinates of an approximate
fixpoint of F1 that would be obtained by following
a sequence of approximate fixpoints of Ft in which
consecutive points are within distance α of each other.

Proof: We reduce from the problem defined in
Proposition 1 as follows. Let B be a Brouwer-mapping
circuit derived from OEOTL-instance (S, P ) using
Proposition 1 and let fB : K(n) −→ {0, 1, 2, 3} be the
function computed by B. Let F1 : K −→ K be the
function computed by a linear arithmetic circuit that
implements fB , and F0 be computed by a circuit that
implements the basic bmf f0 (where both implementa-
tions apply Theorem 2). Ft is given by (1).

Let P be a connected subset of K × [0, 1] such
that for any (x, t) ∈ P , x is a fixpoint of Ft, and
P contains x0 ∈ (K, 0) and x1 ∈ (K, 1). Browder’s
fixpoint theorem (with Observation 2) assures us that

such a P exists. We claim that x1 is within distance 2−n

of the unique solution to B of the problem specified
in Proposition 1 (and hence, given x1 we can easily
construct this solution).

Suppose otherwise. For x1 to be a fixpoint (even an
approximate one) of F1, by Observation 1 it must be
within distance 2−n of a panchromatic vertex v of fB .
But now, v is not connected to the origin via non-zero
cubelets of fB . By connectivity of P , there must exist
(x, t) ∈ P such that x lies within a cubelet Kx where
fB(Kx) = 0.

We may assume further that x is at least 2−n distant
from any non-zero cubelet of fB . This follows provided
we assume that connected components of non-zero
cubelets of fB are separated from each other by a layer
of 0-colored cubelets of thickness at least 3. This may
be safely assumed by increasing n by a factor of 3 and
subdividing the cubelets. We note that

1) each entry of vector F0(x)− x is < −α/5, and
2) each entry of F1(x)− x is < −α/5.

It follows that for t ∈ [0, 1], each entry of ft(x)− x is
less than −α/5, since coordinatewise, f0 ≤ ft ≤ fB .
That means that x cannot be an approximate fixpoint of
any ft, contradicting the assumption as required.

Since x is at least 2−n distant from any non-zero
cubelet of fB , it is also at least 2−n distant from any
non-zero cubelet of f0, since for any cubelet Kijk,
fB(Kijk) = 0 =⇒ f0(Kijk) = 0. The implementation
of any bmf f as a function F computed by a linear
arithmetic circuit, as referred to in Theorem 2, ensures
that F(x) − x is a convex combination of vectors
F(z) − z for cubelet centers z in the vicinity of x,
and since all those cubelet centers are colored 0, we
have that the entries of F(x) are all less than −α/5, as
required.

4. THE LINEAR TRACING PROCEDURE

We now turn to games and Nash equilibrium. Let G
denote an n×n game that we wish to solve, assumed to
be chosen by an adversary. G0 is a game with a unique
“obvious” solution. In G0 each player receives payoff 1
for his first action, and payoff 0 for all others, regardless
of what the other player does.

In the problem LINEAR TRACING the solution con-
sists of the Nash equilibrium of G that is connected
to the unique equilibrium (sr0, s

c
0) of G0 via equilibria

of convex combinations (1 − t)G0 + tG. We can also
define an approximate version of this problem, where
instances include an additional parameter ε, and we seek
an ε-Nash equilibrium that is connected to the solution
of G0 via a sequence of ε-approximate solutions of Gt.
For the two-player case we assume ε = 0. For more than
2 players, we need a positive ε to ensure that solutions
can be written down as rational numbers.

Theorem 4: LINEAR TRACING is PSPACE-complete
for 2-person games.

The same result then holds for strategic-form games
with more than 2 players. It holds for a value of ε that is
exponentially small; we could again use the ideas of [4]
to obtain a version where ε is inverse polynomial.



4.1. Brief overview of the proof ideas

The following is a brief overview of the rest of this
Section 4. Membership of PSPACE can be deduced
from [13]. The reduction from the PSPACE-complete
discrete Brouwer fixpoint problem of the previous sec-
tion, applies the idea from [6] of going via graphical
games to normal-form games. We derive a type of
graphical game in which a specific player (denoted
vswitch ) acts as a switch, allowing the remaining players
to simulate either the basic Brouwer-mapping function,
or one associated with an instance of the search for a
discrete Brouwer fixpoint. vswitch governs this behavior
via his choice of either one of two alternative strategies,
and we show that a continuous path of equilibria from
one choice to the other, results in an equilibrium that ul-
timately represents a solution to OEOTL. The graphical
game is then encoded as a 2-player game such that the
linear-tracing procedure corresponds to this continuous
path of equilibria in the graphical game.

4.2. Graphical Games

In a graphical game [17], each player is a vertex of a
graph, and his payoffs depend on his own and his neigh-
bors’ actions. For a low-degree graph, this is one way
that games having many players may be represented
concisely. A homotopy between two graphical games
GG0 and GG1 would require that these games have the
same underlying graph, so that they differ only in their
numerical payoffs. In the graphical games considered
here, each player has just 2 actions and 3 neighbors.
The main result of this section is

Proposition 3: Consider graphical games that con-
tain a special player vswitch whose payoffs are constant
(unaffected by his own actions or the other players’).
The following problem is PSPACE-complete: find a
Nash equilibrium of the game where vswitch plays 1,
that is topologically connected to a Nash equilibrium in
which vswitch plays 0, via a path of Nash equilibria in
which vswitch plays mixed strategies.

Let F0 and F1 be functions computed by linear
arithmetic circuits that implement Brouwer-mapping
functions f0 and f1, where f0 is the “basic bmf” of
Definition 2, and f1 is a DGP-style bmf that encodes
some instance of END OF THE LINE.

Notation 3: In a graphical game in which all players
have 2 pure strategies denoted 0 and 1, given a mixed-
strategy profile for the players we let p[v] denote the
probability that player v plays 1.

Definition 5: Given a bmf f , we construct an
associated graphical game GGf as follows. GGf
has 3 special players (vx, vy, vz) whose strategies
(p[vx],p[vy],p[vz]) represent a point in K. If f is
implemented by F : K −→ K we use gadgets
of [6] to simulate the nodes in the arithmetic cir-
cuit that computes F (each node of the circuit has
an additional associated player in GGf ). The game
can pay them to adjust (p[vx],p[vy],p[vz]) in the
direction F(p[vx],p[vy],p[vz]) −(p[vx],p[vy],p[vz]).
Then the players (vx, vy, vz) are incentivized to play

F(p[vx],p[vy],p[vz]). Consequently a Nash equilib-
rium of GGf corresponds to a fixpoint of F . More-
over, an ε-Nash equilibrium corresponds to a poly(ε)-
approximate fixpoint of F . We call GGf a linear graph-
ical game since we only allow players whose payoffs
cause them to simulate the gates of linear arithmetic
circuits.

A game of the above kind is said to simulate f .
We say further that a game GG simulates a partial
bmf on a subset S of cubelets, if for any K ∈
S, when (p[vx],p[vy],p[vz]) lie at the center of
K the players (vx, vy, vz) are incentivized to play
(p[vx],p[vy],p[vz]) + δc, where c = f(K).

Lemma 1: Given any linear graphical game GG1
that simulates a Brouwer-mapping function f1, we can
efficiently construct a new game GG+ having a player
vswitch whose behavior can either cause GG to simulate
f1 (if vswitch plays 1) or cause GG to simulate f0 if
instead vswitch plays 0.
vswitch shall serve as a “switch”, in allowing the

game to switch between simulating f0 and f1 (using
an additional 3 players (v+x , v

+
y , v

+
z ) whose strategies

represent a point in K) according to whether vswitch

plays 0 or 1. Of course, vswitch has a key role in the
associated two-player game.

Proof: For i ∈ {0, 1}, let GGi be a graphical game
constructed from fi according to Definitions 2, 4, 5. GGi
has 3 players/vertices whose mixed strategies, as repre-
sented by the probabilities that they play 1, represent a
point in K. Denote these players (vix, v

i
y, v

i
z).

Construct a “combined” game GG+ as follows. GG+
contains all the players in GG0 and GG1 together with a
new player vswitch , where vswitch has the same fixed
payoff for playing either 0 or 1. We add 3 players
(v+x , v

+
y , v

+
z ) whose mixed strategies represent a point

in K, and players (v̄+x , v̄
+
y , v̄

+
z ), whose behavior is

governed by

p[v̄+x ]=(p[v0x]− p[vswitch ]) + (p[v1x]− (1− p[vswitch ]))
p[v+x ]=max(p[v̄+x ],min(p[v0x],p[v1x]))

(2)
(and similar expressions for v+y and v+z ) where the
parentheses in the above expression are important since
the outputs of the operators + and − are truncated to
lie in [0, 1].

Players from GG0 and GG1 that take input from nodes
v0i or v1i respectively, are then modified to take that input
from v+i instead. This completes the construction.

Proof: of Proposition 3: We reduce from the circuit
homotopy of Theorem 3. Let {Ft : t ∈ [0, 1]} be an
instance of this circuit homotopy. Construct G1 from F1

as per Definition 5. Construct GG+ as in Lemma 1, and
we make the following observation.

Observation 3: Suppose that in GG+ we have
p[vswitch ] = t ∈ (0, 1). The resulting game GG+t
simulates a partial Brouwer-mapping function ft which
is implemented by a Brouwer function Ft that is
(pointwise) a convex combination of F0 and F1 and
is defined on the subset of cubelets where f0 = f1.
Given a homotopy path of Nash equilibria of GG+ that



start at the unique equilibrium of GG+ that satisfies
p[vswitch ] = 0 and ends at an equilibrium of GG+
in which p[vswitch ] = 1, there is a corresponding
homotopy path from the fixpoint of F0 and a fixpoint
of F1 (noting that (2) is essentially the same as (1)).
That concludes the proof of Proposition 3.

The following version of Lemma 1 is useful in the
construction for Lemke-Howson solutions, later on.

Corollary 1: Given any linear graphical game GG1
that simulates a Brouwer-mapping function f1, we can
efficiently construct a new game GG+ having 2 players
vswitch and v′switch whose behavior can either cause
GG+ to simulate f1 (if both vswitch , v′switch play 1)
or cause GG+ to simulate f0 if instead either or both
play 0.

4.3. From graphical to two-player strategic-form games
In this subsection we prove the following theorem,

from which Theorem 4 follows.
Theorem 5: It is PSPACE-hard to compute the Nash

equilibrium of a given 2-player normal-form game G1,
that is obtained via the linear homotopy that starts from
G0, a version of G1 where the payoffs have been changed
to give each player payoff 1 for his first strategy and 0
for the others.

We reduce from the graphical game problem of
Proposition 3. Let GG+ be a linear graphical game that
includes a player vswitch as per Proposition 3. First,
modify GG+ to give vswitch a small payment (say, 0.01)
to play 1, and zero to play 0.

We define a homotopy between two-player strategic-
form games G0 and G1 such that equilibria of G1
efficiently encode equilibria of GG+, and equilibria of
Gt encode equilibria of versions of GG+ where vswitch
has a bias towards playing 0. We use the reduction of [6]
(Section 6.1) from graphical games to 2-player games.

Given a mixed-strategy profile, let Pr[s] denote the
probability allocated to pure strategy s by its player.

Definition 6: A circuit-encoding 2-player game G
has a corresponding graphical game GG where the graph
of GG is bipartite; denote it G = (V1 ∪ V2, E); each
player (vertex) in GG has 2 actions (denote them 0
and 1) and payoffs that depend on the behavior of 2
other players in the opposite side of G’s bipartition.
Each vertex/action pair (v, a) of GG has a corresponding
strategy in G; for v ∈ V1, (v, a) belongs to the row
player and for v ∈ V2, (v, a) belongs to the column
player. The payoffs in G are designed to ensure that in
a Nash equilibrium of G
• Pr[(v, 0)] + Pr[(v, 1)] ≥ 1/2n where n is the

number of players in GG
• if in GG, v plays 1 with probability

Pr[(v, 1)]/(Pr[(v, 0)] + Pr[(v, 1)]) then we
have a Nash equilibrium of GG.

Let G be a circuit-encoding game derived from GG+
according to Definition 6. Associate vswitch with 2
strategies of of the column player of G, and let sck and
sck+1 be these strategies. Hence a Nash equilibrium of G
corresponds to one of GG+ where the value p[vswitch ]
is given by the value Pr[sck+1]/(Pr[sck] + Pr[sck+1]).

Observation 4: If we take a circuit-encoding 2-
player game, and award one of the players a small bonus
to play (v, a), then this corresponds to incentivizing the
player v in GG to select strategy a. The corresponding
incentive for v will be larger, but only polynomially
larger.

Let G0 be a (n + 1) × (n + 1) game with strategies
{sr0, . . . srn} for the row player, and {sc0, . . . scn} for
the column player. Payoffs are as follows: each player
receives 1 for playing sr0 or sc0, and 0 for srj or scj for
j > 0.

Rescale the payoffs of G to all lie in the range
[0· 9, 1· 1]. Let G1 be a (n+1)×(n+1) game with strate-
gies {sr0, . . . , srn} for the row player, and {sc0, . . . , scn}
for the column player. Payoffs are as follows:
• (sr0, s

c
0) results in payoffs (0,−1) for the players.2

• (sr0, s
c
j) for j > 0 results in payoffs (0, 34 ).

• (srj , s
c
0) for j > 0 results in payoffs (−1, 34 ) for

j 6= k, and (−1, 34 + δ) (for δ inverse polynomial
in n) for j = k

• The rest of G1 is a copy of G above.
Let Gt = (1−t)G0+tG1. The above payoffs have been

chosen so that Nash equilibria satisfy: in G1, players do
not use sr0 or sc0; in G0·6, players both have a proper
mixture of sr0 and sc0 with their other strategies. Since
G’s payoffs were rescaled to lie in [0· 9, 1· 1], Pr[sr0] and
Pr[sc0] can be shown to lie in [0· 1, 0· 9], which can be
checked from the following payoff ranges for G0·6:

sc0 sc1 . . . s
c
n

sr0 (0· 4,−0· 2) (0· 4, 0· 45 + δ)
sr1 . . . s

r
n (−0· 6, 0· 85) ([0· 54, 0· 66], [0· 54, 0· 66])

Thus a continuous path of equilibria should at some
stage allocate gradually less and less probability to sr0
and sc0 as t increases.

Observation 5: In any Nash equilibrium N of G1,
the players assign probability 0 to sr0 and sc0, and
consequently N consists of a Nash equilibrium of G,
restricting to strategies srj , s

c
j′ for j, j′ > 0.

Since Gt = (1− t)G0 + tG1, we can write Gt as

sc0 sc1 · · · sck−1 sck sck+1 · · · scn
sr0 (1− t, 1− 2t) (1− t, 3

4
t) (1− t, ( 3

4
+ δ)t) (1− t, 3

4
t)

sr1 (−t, 1− 1
4
t)

...
... tG

srn (−t, 1− 1
4
t)

The general idea is as follows. Consider the Browder
path of equilibria that begins from the unique equilib-
rium of G0 (where initially both players play sr0, sc0).
As t increases, the players will start to use the other
strategies. At that stage, consider the distribution of their
mixed strategies restricted to sr1, . . . , s

r
n and sc1, . . . , s

c
n.

These distributions will constitute a Nash equilibrium
of a version of G in which the column player receives
a small bonus for playing sck. As t increases to 1,
the bonus decreases continuously to 0, and we recover

2The two-component payoff vectors assign the first component to
the row player and the second component to the column player.



Observation 5. Now, recall from Definition 6 that the
way [6, 4] reduce graphical games to two-player games,
is to associate each player v in the graphical game with
two strategies in the two-player game, both belonging
to the same player. The division of probability between
those two strategies represents the probability that v
plays 1. Consider vswitch now, corresponding to sck
and sck+1. vswitch is, in the graphical game, mildly
incentivized to play 1, but for t < 1 the δ in the two-
player game Gt pushes it the other way, towards 0. As
a result, a Nash equilibrium of Gt may simulate a Nash
equilibrium of GG+t where p[vswitch] ∈ (0, 1). As t
increases and the contribution from δ decreases, this
process corresponds to raising p[vswitch ] continuously
(but not monotonically) from 0 to 1.

Lemma 2: Let N be a Nash equilibrium of Gt in
which Pr[sr0] < 1 and Pr[sc0] < 1. Let P be the proba-
bility distributions over {sr1, . . . , srn} and {sc1, . . . , scn}
obtained by taking each value Pr[sij ] (for i ∈ {r, c},
1 ≤ j ≤ n) and dividing it by 1− Pr[si0].

Then P is a Nash equilibrium of a version of G where
the column player receives a bonus of δ Pr[sr0]/(1 −
Pr[sr0]) for sck.

Proof: In Nash equilibrium N , c’s strategy sc0 con-
tributes the same quantity to each one of r’s strategies
sr1, . . . , s

r
n. So the values Pr[sr1], . . . ,Pr[srn] must form

a best response to c’s mixed strategy from P .
The column player receives a bonus δtPr[sr0] specific

to sck, arising from the possibility that row player plays
0. He also receives an additional 3

4 t for all strategies scj
for j > 0, but that uniform bonus has no further effect
on his preference amongst sc1, . . . , s

c
n.

So in N , Pr[sc1], . . . ,Pr[scn] is a best response to a
mixture of G weighted by 1−Pr[sr0] and the probability
Pr[sr0] of a bonus δ Pr[sr0] for playing sck. This is
equivalent to a best response to a version of G with
a bonus of δ Pr[sr0]/(1− Pr[sr0]) for playing sck.

Consider the path of equilibria connecting equilib-
rium N0 of G0 to equilibrium N1 of G1. By Lemma 2
we can choose δ such that in any equilibrium of G0.5 we
have Pr[sck+1] = 0. We also have that in any equilibrium
of G1, Pr[sck] = 0. Consider the longest suffix of the
path for which t ≥ 0.5 for all games Gt that appear in
that suffix. The corresponding equilibria assign weight
strictly less than 1 to sr0 and sc0, so Lemma 2 may be
used to recover corresponding equilibria of versions of
G which in turn correspond to versions of GG+ in which
initially, vswitch is incentivized to play 0, and finally,
vswitch is incentivized to play 1.

5. FROM LINEAR TRACING TO THE HOMOTOPIES OF
VAN DEN ELZEN-TALMAN, HERINGS-VAN DEN

ELZEN, AND HERINGS-PEETERS

In the previous section, we showed the PSPACE-
completeness of finding the Nash equilibrium of a two-
player game that is associated with a homotopy that
uses a specific simple starting-game that is not derived
from the game of interest. In the literature on homotopy
methods, starting with Harsanyi [10], the starting-game
is usually derived from the game of interest by positing

a prior distribution over the players’ pure strategies, and
using a starting-game whose payoffs are the result of
playing against this prior distribution. In this section, we
extend the result of Section 4 to handle these starting-
games and thus obtain results for the Herings-van den
Elzen [13] and Herings-Peeters [14] algorithms, which
use the same underlying homotopy, and the van den
Elzen-Talman [15] algorithm, which uses a different
homotopy. All three algorithms have been shown under
certain conditions to mimic the Harsayni-Selten linear
tracing procedure. For each algorithm, we use the uni-
form distribution as the prior distribution, which is a
natural choice.

The van den Elzen-Talman algorithm uses a homo-
topy based on a starting mixed-strategy profile v. Letting
Σ be the set of mixed-strategy profiles, let Σ(t) be the
set of convex combinations (1 − t){v} + tΣ. In the
notation of [15], the van den Elzen-Talman algorithm
—restricted to the two-player case— uses the homotopy

H(t, σ) = β1
σ1(t)(σ)× β2

σ2(t)(σ)

where for i = 1, 2, βiσi(t)(σ) denotes the best responses
of player i to mixed strategy σ, restricted to Σ(t).

Theorem 6: It is PSPACE-complete to compute equi-
libria that result from the above van den Elzen-Talman
homotopy.

The proof works by giving each player a dummy
strategy which does not get used in any equilibrium, but
whose payoffs ensure that the uniform distribution (at
t = 0) over all players’ strategies results in payoffs that
looks like G0. A similar trick works for the homotopy
of [13, 14].

6. FROM LINEAR TRACING TO LEMKE-HOWSON

The Lemke-Howson (L-H) algorithm is an important
and rich research subject in and by itself within Game
Theory; for the purposes of this reduction, it is helpful
to take a point of view that considers the L-H algorithm
as a homotopy [15], where an arbitrary strategy (the one
whose label is dropped initially) is given a large “bonus”
to be played, so that the unique equilibrium consists of
that strategy together with its best response from the
other player; the homotopy arises from reducing that
bonus continuously to zero.

Theorem 7: It is PSPACE-complete to find any of the
solutions of a 2-player game that are constructed by the
Lemke-Howson algorithm.

The remainder of this section proves Theorem 7,
the hardness being established by a reduction from the
graphical game problem of Proposition 3, extending the
ideas of the reduction for LINEAR TRACING (Theo-
rems 4, 5). A new technical challenge here is that the
choice of initially dropped label results in 2n alternative
homotopy paths, and we must ensure that any of the (up
to) 2n solution can encode the single solution to some
instance of LINEAR TRACING.

Suppose that some strategy has been given this “L-
H bonus”, and a Browder path of Nash equilibria is
obtained from reducing that bonus to zero. As before



let t ∈ [0, 1] be a parameter that denotes the distance
from the starting game of the homotopy to the game
of interest, so that 1 − t is a multiplicative weight for
the bonus in intermediate games. Consider the Browder
path. It is piecewise linear, a topologically well-behaved
line. Let T ∈ [0, 1] parameterize points along the
Browder path — an equilibrium NT is the one that is a
fraction T of the distance along the path (starting at the
version of the game with the L-H bonus). So, multiple
values of T can correspond to the same value of t. Here
we mostly focus on T rather than t.

The following construction addresses the issue that an
arbitrary strategy may receive the L-H bonus. We embed
two copies of a circuit-encoding game G (Definition 6)
into a game instance for the Lemke-Howson algorithm.
At least one of those copies of G will not contain
the strategy that receives the L-H bonus. The L-H
homotopy, restricted to that copy of G, will simulate
the homotopy of Section 4.

In Figure 1, G denotes a circuit-encoding n×n game
(note the two copies) whose payoffs have been rescaled
to lie in the interval [0· 4, 0· 6]. G is assumed to have
an associated graphical game with two “switch” players
vrswitch , vcswitch that affect the equilibria of G according
to Corollary 1. They will correspond to the first pair of
each of G’s players’ strategies (sr0, s

r
1) and (sc0, s

c
1) such

that,
• if both p[vrswitch ] = 1 and p[vcswitch ] = 1, G’s

equilibrium encodes a solution to an END OF THE
LINE instance that is efficiently encoded by G;

• if either p[vrswitch ] = 0 or p[vcswitch ] = 0, G
encodes the “basic” Brouwer-mapping function;

• if we add a bonus to the row player for his first
strategy sr0 that is less than some threshold τ , it
will result in Pr[sr0] = 0 and hence p[vrswitch ] = 1,
and similarly for the column player with respect
to sc0 and vcswitch . (We will see that such bonuses
occur, and they decrease at T −→ 1.)

Notation. A,B,C,D and A′, B′, C ′, D′ denote sets
of the players’ strategies as shown in Figure 1. In
the context of a mixed-strategy profile, Pr[C] denotes
the probability that the column player uses C; Pr[A]
that he chooses an element of A, and so on. Let
X(T ) = Pr[C]+Pr[D]+Pr[C ′]+Pr[D′], a function of
distance along the Browder path. We note the following
facts
• X(0) ≥ 1 (if, say, a column player strategy

receives the L-H bonus, then the row player will
play some pure best response, either C ′ or D′; so
Pr[C ′] = 1 or Pr[D′] = 1.)

• X(1) ≤ 1
25 (shown in Lemma 4)

together with the key observation that X(T ) is a con-
tinuous function of T , implying:

Observation 6: For some T ′ ∈ [0, 1], X(T ′) = 1
4 ,

and for T > T ′, X(T ) < 1
4 .

Let Ḡ be the copy of G that does not contain the
strategy that receives the L-H bonus. (If one of C, D,
C ′ or D′ receive the L-H bonus, then Ḡ may be either
copy of G.)

For any X , at least one player p has an additional
bonus at least X/4 to play sp0 in Ḡ (suppose for example
Pr[C]+Pr[D] ≥ X/2 and p is the row player; Figure 1
awards additional e = 1 to p when C or D is played).
But neither player’s bonus exceeds X/2. As T increases
from T ′ to 1, X(T ) goes down from 1

4 to at most 4
M .

We will establish that when X(T ) = 1
4 , NT contains

a solution to a “biased” version of Ḡ where one of the
players’ first strategies (i.e. sr0 or sc0) has an additional
bonus (enough to ensure Pr[sr1] = 0 and p[vrswitch ] = 0,
in the case of the row player). Furthermore, when
T = 1, we have that NT contains a solution to Ḡ, only
with smaller biases. These biases are associated with
“switch” strategies in the graphical game associated
with G.

Let T ′ be the largest value of T where X(T ) is large
enough that one of the bonuses sets Pr[sp0] = 1 in Ḡ (for
p ∈ {r, c}). Between T ′ and T = 1 we pass through a
continuum of equilibria where Pr[sp0] changes from 1 to
0; equivalently p[vpswitch ] changes from 0 to 1, and the
resulting equilibrium at T = 1 corresponds to a solution
to OEOTL.

Lemma 3: Let NT be a solution of GT . If Ḡ is the
bottom right-hand copy of G in Figure 1, then if the
distributions over B and B′ are normalised to 1, we have
a Nash equilibrium of a game Ĝ where the row player
has an additional bonus of e(Pr[C]+Pr[D])/Pr[B′] to
play his first strategy sr0, and the column player has an
additional bonus of e(Pr[C ′] + Pr[D′])/Pr[B] to play
his first strategy sc0.

By symmetry, a similar result also holds in the case
that Ḡ is the top right-hand copy of the G.

Proof: Payoffs to the row player are unaffected by
the column player’s distribution over A. Meanwhile, C
and D lead to an additional bonus of e (weighted by
the probability that C and D are used by the column
player) for the row player to use the top row of B′.

Lemma 4: At t = 1 (equivalently, T = 1) we have in
any Nash equilibrium, that Pr[C] ≤ 1

M , Pr[D] ≤ 1
M ,

Pr[C ′] ≤ 1
M and Pr[D′] ≤ 1

M . Since M ≥ 100 we
have X(1) ≤ 1

25 .
A proof of Lemma 4 may be found in the full version.
Lemma 5: Assume that e ≤ 1 in Figure 1 and that

M ≥ 100. Suppose that X(T ) ≤ 1
4 . Then Pr[A] ≥ 1

10 ,
Pr[B] ≥ 1

10 , Pr[A′] ≥ 1
10 , Pr[B′] ≥ 1

10 .
A proof of Lemma 5 may be found in the full version.
At X(T ) = 1

4 we have that at least one of Pr[C],
Pr[D], Pr[C ′], Pr[D′] is at least 1

16 , while at the end
of the Browder path, we know that all these quantities
are at most 1

100 . We set the switch threshold probability
to be somewhere between these, but we have to use
lower bounds on Pr[A], Pr[B], Pr[A′], Pr[B′] at t =
1 and upper bounds on these at X = 1

4 (as well as
lower bounds on these at X = 1

4 to ensure that a Nash
equilibrium of the “biased game” is being encoded).

Finally, we need to show that there exists τ such that
the bonus from at least one switch strategy in Ḡ changes
continuously above τ to below it, while the bonus for
the other switch strategy ends up below τ , thus initially,
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Figure 1. The game has 2 copies of n×n game G embedded in the
top-left and bottom-right regions, with payoff rescaled to [0· 4, 0· 6].
In the top-right and bottom-left regions are copies of a n× n game
that give the column player a payoff of 0 and the row player a payoff
of 1.
Each of A, B, A′, B′ denotes a set of n strategies. C, D, C′ and
D′ are individual strategies.
In the proofs we put M = 1000, e = 1.

at least one value of p[vrswitch ] and p[vcswitch ] is zero,
but at the end both evaluate to 1. This needs to take into
account the variable amount of probability allocated to
the strategies in Ḡ, since that affects the impact of the
bonuses on sp0.

For any T ∈ [T ′, 1] the weight assigned by each
player to Ḡ’s strategies is at least 1

10 by Lemma 5, so
that the bonus for player p to play sp0, falls by a larger
factor than the probability that Ḡ is played. That means
that τ can indeed be chosen as required.

7. DISCUSSION AND OPEN PROBLEMS

Should a more general result be obtainable? For
example, perhaps it should be possible to identify gen-
eral classes of “path-following algorithms” that include
the ones we analyzed here, for which it is PSPACE-
complete to compute their output.
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