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ABSTRACT
This paper addresses the problem of fair equilibrium selection in
graphical games. Our approach is based on the data structure called
the best response policy, which was proposed by Kearns et al. [13]
as a way to represent all Nash equilibria of a graphical game. In [9],
it was shown that the best response policy has polynomial size as
long as the underlying graph is a path. In this paper, we show
that if the underlying graph is a bounded-degree tree and the best
response policy has polynomial size then there is an efficient algo-
rithm which constructs a Nash equilibrium that guarantees certain
payoffs to all participants. Another attractive solution concept is a
Nash equilibrium that maximizes the social welfare. We show that,
while exactly computing the latter is infeasible (we prove that solv-
ing this problem may involve algebraic numbers of an arbitrarily
high degree), there exists an FPTAS for finding such an equilibrium
as long as the best response policy has polynomial size. These two
algorithms can be combined to produce Nash equilibria that satisfy
various fairness criteria.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity; J.4 [Computer Applications]: Social and Behav-
ioral Sciences—economics

General Terms
Algorithms, Economics, Theory

Keywords
Graphical games, Nash equilibrium, approximation scheme

1. INTRODUCTION
In a large community of agents, an agent’s behavior is not likely

to have a direct effect on most other agents: rather, it is just the
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agents who are close enough to him that will be affected. However,
as these agents respond by adapting their behavior, more agents
will feel the consequences and eventually the choices made by a
single agent will propagate throughout the entire community.

This is the intuition behind graphical games, which were intro-
duced by Kearns, Littman and Singh in [13] as a compact represen-
tation scheme for games with many players. In an n-player graph-
ical game, each player is associated with a vertex of an underlying
graph G, and the payoffs of each player depend on his action as
well as on the actions of his neighbors in the graph. If the maxi-
mum degree of G is Δ, and each player has two actions available
to him, then the game can be represented using n2Δ+1 numbers.
In contrast, we need n2n numbers to represent a general n-player
2-action game, which is only practical for small values of n. For
graphical games with constant Δ, the size of the game is linear in n.

One of the most natural problems for a graphical game is that
of finding a Nash equilibrium, the existence of which follows from
Nash’s celebrated theorem (as graphical games are just a special
case of n-player games). The first attempt to tackle this problem
was made in [13], where the authors consider graphical games with
two actions per player in which the underlying graph is a bounded-
degree tree. They propose a generic algorithm for finding Nash
equilibria that can be specialized in two ways: an exponential-time
algorithm for finding an (exact) Nash equilibrium, and a fully poly-
nomial time approximation scheme (FPTAS) for finding an approx-
imation to a Nash equilibrium. For any ε > 0 this algorithm out-
puts an ε-Nash equilibrium, which is a strategy profile in which
no player can improve his payoff by more than ε by unilaterally
changing his strategy.

While ε-Nash equilibria are often easier to compute than exact
Nash equilibria, this solution concept has several drawbacks. First,
the players may be sensitive to a small loss in payoffs, so the strat-
egy profile that is an ε-Nash equilibrium will not be stable. This
will be the case even if there is only a small subset of players who
are extremely price-sensitive, and for a large population of players
it may be difficult to choose a value of ε that will satisfy everyone.
Second, the strategy profiles that are close to being Nash equilibria
may be much better with respect to the properties under consider-
ation than exact Nash equilibria. Therefore, the (approximation to
the) value of the best solution that corresponds to an ε-Nash equi-
librium may not be indicative of what can be achieved under an
exact Nash equilibrium. This is especially important if the purpose
of the approximate solution is to provide a good benchmark for a
system of selfish agents, as the benchmark implied by an ε-Nash
equilibrium may be unrealistic. For these reasons, in this paper we
focus on the problem of computing exact Nash equilibria.

Building on ideas of [14], Elkind et al. [9] showed how to find an
(exact) Nash equilibrium in polynomial time when the underlying
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graph has degree 2 (that is, when the graph is a collection of paths
and cycles). By contrast, finding a Nash equilibrium in a general
degree-bounded graph appears to be computationally intractable: it
has been shown (see [5, 12, 7]) to be complete for the complexity
class PPAD. [9] extends this hardness result to the case in which
the underlying graph has bounded pathwidth.

A graphical game may not have a unique Nash equilibrium, in-
deed it may have exponentially many. Moreover, some Nash equi-
libria are more desirable than others. Rather than having an algo-
rithm which merely finds some Nash equilibrium, we would like to
have algorithms for finding Nash equilibria with various socially-
desirable properties, such as maximizing overall payoff or distribut-
ing profit fairly.

A useful property of the data structure of [13] is that it simulta-
neously represents the set of all Nash equilibria of the underlying
game. If this representation has polynomial size (as is the case for
paths, as shown in [9]), one may hope to extract from it a Nash
equilibrium with the desired properties. In fact, in [13] the authors
mention that this is indeed possible if one is interested in finding
an (approximate) ε-Nash equilibrium. The goal of this paper is to
extend this to exact Nash equilibria.

1.1 Our Results
In this paper, we study n-player 2-action graphical games on

bounded-degree trees for which the data structure of [13] has size
poly(n). We focus on the problem of finding exact Nash equilibria
with certain socially-desirable properties. In particular, we show
how to find a Nash equilibrium that (nearly) maximizes the social
welfare, i.e., the sum of the players’ payoffs, and we show how
to find a Nash equilibrium that (nearly) satisfies prescribed payoff
bounds for all players.

Graphical games on bounded-degree trees have a simple alge-
braic structure. One attractive feature, which follows from [13], is
that every such game has a Nash equilibrium in which the strategy
of every player is a rational number. Section 3 studies the algebraic
structure of those Nash equilibria that maximize social welfare. We
show (Theorems 1 and 2) that, surprisingly, the set of Nash equi-
libria that maximize social welfare is more complex. In fact, for
any algebraic number α ∈ [0, 1] with degree at most n, we exhibit
a graphical game on a path of length O(n) such that, in the unique
social welfare-maximizing Nash equilibrium of this game, one of
the players plays the mixed strategy α.1 This result shows that it
may be difficult to represent an optimal Nash equilibrium. It seems
to be a novel feature of the setting we consider here, that an optimal
Nash equilibrium is hard to represent, in a situation where it is easy
to find and represent a Nash equilibrium.

As the social welfare-maximizing Nash equilibrium may be hard
to represent efficiently, we have to settle for an approximation.
However, the crucial difference between our approach and that of
previous papers [13, 16, 19] is that we require our algorithm to out-
put an exact Nash equilibrium, though not necessarily the optimal
one with respect to our criteria. In Section 4, we describe an algo-
rithm that satisfies this requirement. Namely, we propose an algo-
rithm that for any ε > 0 finds a Nash equilibrium whose total pay-
off is within ε of optimal. It runs in polynomial time (Theorem 3,4)
for any graphical game on a bounded-degree tree for which the data
structure proposed by [13] (the so-called best response policy, de-
fined below) is of size poly(n) (note that, as shown in [9], this is
always the case when the underlying graph is a path). More pre-

1A related result in a different context was obtained by Datta [8],
who shows that n-player 2-action games are universal in the sense
that any real algebraic variety can be represented as the set of totally
mixed Nash equilibria of such games.

cisely, the running time of our algorithm is polynomial in n, Pmax,
and 1/ε, where Pmax is the maximum absolute value of an entry of
a payoff matrix, i.e., it is a pseudopolynomial algorithm, though it
is fully polynomial with respect to ε. We show (Section 4.1) that
under some restrictions on the payoff matrices, the algorithm can
be transformed into a (truly) polynomial-time algorithm that out-
puts a Nash equilibrium whose total payoff is within a 1 − ε factor
from the optimal.

In Section 5, we consider the problem of finding a Nash equi-
librium in which the expected payoff of each player Vi exceeds
a prescribed threshold Ti. Using the idea from Section 4 we give
(Theorem 5) a fully polynomial time approximation scheme for this
problem. The running time of the algorithm is bounded by a poly-
nomial in n, Pmax, and ε. If the instance has a Nash equilibrium
satisfying the prescribed thresholds then the algorithm constructs a
Nash equilibrium in which the expected payoff of each player Vi is
at least Ti − ε.

In Section 6, we introduce other natural criteria for selecting
a “good” Nash equilibrium and we show that the algorithms de-
scribed in the two previous sections can be used as building blocks
in finding Nash equilibria that satisfy these criteria. In particular, in
Section 6.1 we show how to find a Nash equilibrium that approx-
imates the maximum social welfare, while guaranteeing that each
individual payoff is close to a prescribed threshold. In Section 6.2
we show how to find a Nash equilibrium that (nearly) maximizes
the minimum individual payoff. Finally, in Section 6.3 we show
how to find a Nash equilibrium in which the individual payoffs of
the players are close to each other.

1.2 Related Work
Our approximation scheme (Theorem 3 and Theorem 4) shows

a contrast between the games that we study and two-player n-action
games, for which the corresponding problems are usually intractable.
For two-player n-action games, the problem of finding Nash equi-
libria with special properties is typically NP-hard. In particular, this
is the case for Nash equilibria that maximize the social welfare [11,
6]. Moreover, it is likely to be intractable even to approximate such
equilibria. In particular, Chen, Deng and Teng [4] show that there
exists some ε, inverse polynomial in n, for which computing an
ε-Nash equilibrium in 2-player games with n actions per player is
PPAD-complete.

Lipton and Markakis [15] study the algebraic properties of Nash
equilibria, and point out that standard quantifier elimination algo-
rithms can be used to solve them. Note that these algorithms are
not polynomial-time in general. The games we study in this pa-
per have polynomial-time computable Nash equilibria in which all
mixed strategies are rational numbers, but an optimal Nash equilib-
rium may necessarily include mixed strategies with high algebraic
degree.

A correlated equilibrium (CE) (introduced by Aumann [2]) is a
distribution over vectors of players’ actions with the property that
if any player is told his own action (the value of his own compo-
nent) from a vector generated by that distribution, then he cannot
increase his expected payoff by changing his action. Any Nash
equilibrium is a CE but the converse does not hold in general. In
contrast with Nash equilibria, correlated equilibria can be found for
low-degree graphical games (as well as other classes of concisely-
represented multiplayer games) in polynomial time [17]. But, for
graphical games it is NP-hard to find a correlated equilibrium that
maximizes total payoff [18]. However, the NP-hardness results ap-
ply to more general games than the one we consider here, in par-
ticular the graphs are not trees. From [2] it is also known that there
exist 2-player, 2-action games for which the expected total payoff
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of the best correlated equilibrium is higher than the best Nash equi-
librium, and we discuss this issue further in Section 7.

2. PRELIMINARIES AND NOTATION
We consider graphical games in which the underlying graph G is

an n-vertex tree, in which each vertex has at most Δ children. Each
vertex has two actions, which are denoted by 0 and 1. A mixed
strategy of a player V is represented as a single number v ∈ [0, 1],
which denotes the probability that V selects action 1.

For the purposes of the algorithm, the tree is rooted arbitrarily.
For convenience, we assume without loss of generality that the root
has a single child, and that its payoff is independent of the action
chosen by the child. This can be achieved by first choosing an
arbitrary root of the tree, and then adding a dummy “parent” of this
root, giving the new parent a constant payoff function, e.g., 0.

Given an edge (V, W ) of the tree G, and a mixed strategy w
for W , let G(V,W ),W=w be the instance obtained from G by (1)
deleting all nodes Z which are separated from V by W (i.e., all
nodes Z such that the path from Z to V passes through W ), and
(2) restricting the instance so that W is required to play mixed strat-
egy w.

Definition 1. Suppose that (V, W ) is an edge of the tree, that
v is a mixed strategy for V and that w is a mixed strategy for W .
We say that v is a potential best response to w (denoted by v ∈
pbrV (w)) if there is an equilibrium in the instance G(V,W ),W=w in
which V has mixed strategy v. We define the best response policy
for V , given W , as B(W, V ) = {(w, v) | v ∈ pbrV (w), w ∈
[0, 1]}.

The upstream pass of the generic algorithm of [13] considers ev-
ery node V (other than the root) and computes the best response
policy for V given its parent. With the above assumptions about
the root, the downstream pass is straightforward. The root selects a
mixed strategy w for the root W and a mixed strategy v ∈ B(W, V )
for each child V of W . It instructs each child V to play v. The re-
mainder of the downward pass is recursive. When a node V is
instructed by its parent to adopt mixed strategy v, it does the fol-
lowing for each child U — It finds a pair (v, u) ∈ B(V, U) (with
the same v value that it was given by its parent) and instructs U to
play u.

The best response policy for a vertex U given its parent V can be
represented as a union of rectangles, where a rectangle is defined
by a pair of closed intervals (IV , IU ) and consists of all points in
IV × IU ; it may be the case that one or both of the intervals IV

and IU consists of a single point. In order to perform computations
on B(V, U), and to bound the number of rectangles, [9] used the
notion of an event point, which is defined as follows. For any set
A ⊆ [0, 1]2 that is represented as a union of a finite number of
rectangles, we say that a point u ∈ [0, 1] on the U -axis is a U -
event point of A if u = 0 or u = 1 or the representation of A
contains a rectangle of the form IV × IU and u is an endpoint of
IU ; V -event points are defined similarly.

For many games considered in this paper, the underlying graph is
an n-vertex path, i.e., a graph G = (V, E) with V = {V1, . . . , Vn}
and E = {(V1, V2), . . . , (Vn−1, Vn)}. In [9], it was shown that for
such games, the best response policy has only polynomially-many
rectangles. The proof that the number of rectangles in B(Vj+1, Vj)
is polynomial proceeds by first showing that the number of event
points in B(Vj+1, Vj) cannot exceed the number of event points
in B(Vj , Vj−1) by more than 2, and using this fact to bound the
number of rectangles in B(Vj+1, Vj).

Let P 0(V ) and P 1(V ) be the expected payoffs to V when it
plays 0 and 1, respectively. Both P 0(V ) and P 1(V ) are multilinear

functions of the strategies of V ’s neighbors. In what follows, we
will frequently use the following simple observation.

CLAIM 1. For a vertex V with a single child U and parent W ,
given any A, B, C, D ∈ Q, A′, B′, C′, D′ ∈ Q, one can select the
payoffs to V so that P 0(V ) = Auw + Bu + Cw + D, P 1(V ) =
A′uw + B′u + C′w + D′. Moreover, if all A, B, C, D, A′, B′,
C′, D′ are integer, the payoffs to V are integer as well.

PROOF. We will give the proof for P 0(V ); the proof for P 1(V )
is similar. For i, j = 0, 1, let Pij be the payoff to V when U
plays i, V plays 0 and W plays j. We have P 0(V ) = P00(1 −
u)(1 − w) + P10u(1 − w) + P01(1 − u)w + P11uw. We have
to select the values of Pij so that P00 − P10 − P01 + P11 = A,
−P00 + P10 = B, −P00 + P01 = C, P00 = D. It is easy to
see that the unique solution is given by P00 = D, P01 = C + D,
P10 = B + D, P11 = A + B + C + D.

The input to all algorithms considered in this paper includes the
payoff matrices for each player. We assume that all elements of
these matrices are integer. Let Pmax be the greatest absolute value
of any element of any payoff matrix. Then the input consists of
at most n2Δ+1 numbers, each of which can be represented using
�log Pmax� bits.

3. NASH EQUILIBRIA THAT MAXIMIZE
THE SOCIAL WELFARE: SOLUTIONS
IN R \ Q

From the point of view of social welfare, the best Nash equilib-
rium is the one that maximizes the sum of the players’ expected
payoffs. Unfortunately, it turns out that computing such a strategy
profile exactly is not possible: in this section, we show that even if
all players’ payoffs are integers, the strategy profile that maximizes
the total payoff may have irrational coordinates; moreover, it may
involve algebraic numbers of an arbitrary degree.

3.1 Warm-up: quadratic irrationalities
We start by providing an example of a graphical game on a path

of length 3 with integer payoffs such that in the Nash equilibrium
that maximizes the total payoff, one of the players has a strategy in
R \ Q. In the next subsection, we will extend this example to alge-
braic numbers of arbitrary degree n; to do so, we have to consider
paths of length O(n).

THEOREM 1. There exists an integer-payoff graphical game G
on a 3-vertex path UV W such that, in any Nash equilibrium of G
that maximizes social welfare, the strategy, u, of the player U and
the total payoff, p, satisfy u, p ∈ R \ Q.

PROOF. The payoffs to the players in G are specified as follows.
The payoff to U is identically 0, i.e., P 0(U) = P 1(U) = 0. Using
Claim 1, we select the payoffs to V so that P 0(V ) = −uw + 3w
and P 1(V ) = P 0(V ) + w(u + 2) − (u + 1), where u and w are
the (mixed) strategies of U and W , respectively. It follows that V
is indifferent between playing 0 and 1 if and only if w = f(u) =
u+1
u+2

. Observe that for any u ∈ [0, 1] we have f(u) ∈ [0, 1]. The
payoff to W is 0 if it selects the same action as V and 1 otherwise.

CLAIM 2. All Nash equilibria of the game G are of the form
(u, 1/2, f(u)). That is, in any Nash equilibrium, V plays v = 1/2
and W plays w = f(u). Moreover, for any value of u, the vector
of strategies (u, 1/2, f(u)) constitutes a Nash equilibrium.

PROOF. It is easy to check that for any u ∈ [0, 1], the vector
(u, 1/2, f(u)) is a Nash equilibrium. Indeed, U is content to play
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any mixed strategy u no matter what V and W do. Furthermore,
V is indifferent between 0 and 1 as long as w = f(u), so it can
play 1/2. Finally, if V plays 0 and 1 with equal probability, W is
indifferent between 0 and 1, so it can play f(u).

Conversely, suppose that v > 1/2. Then W strictly prefers to
play 0, i.e., w = 0. Then for V we have P 1(V ) = P 0(V ) − (u +
1), i.e., P 1(V ) < P 0(V ), which implies v = 0, a contradiction.
Similarly, if v < 1/2, player W prefers to play 1, so we have
w = 1. Hence, P 1(V ) = P 0(V ) + (u + 2) − (u + 1), i.e.,
P 1(V ) > P 0(V ), which implies v = 1, a contradiction. Finally,
if v = 1/2, but w �= f(u), player V is not indifferent between 0
and 1, so he would deviate from playing 1/2. This completes the
proof of Claim 2.

By Claim 2, the total payoff in any Nash equilibrium of this game
is a function of u. More specifically, the payoff to U is 0, the payoff
to V is −uf(u) + 3f(u), and the payoff to W is 1/2. Therefore,
the Nash equilibrium with the maximum total payoff corresponds
to the value of u that maximizes

g(u) = −u
(u + 1)

u + 2
+ 3

u + 1

u + 2
= − (u − 3)(u + 1)

u + 2
.

To find extrema of g(u), we compute h(u) = − d
du

g(u). We have

h(u) =
(2u − 2)(u + 2) − (u − 3)(u + 1)

(u + 2)2
=

u2 + 4u − 1

(u + 2)2
.

Hence, h(u) = 0 if and only if u ∈ {−2 +
√

5,−2 −√
5}. Note

that −2 +
√

5 ∈ [0, 1].
The function g(u) changes sign at −2, −1, and 3. We have

g(u) < 0 for g > 3, g(u) > 0 for u < −2, so the extremum
of g(u) that lies between 1 and 3, i.e., u = −2 +

√
5, is a local

maximum. We conclude that the social welfare-maximizing Nash
equilibrium for this game is given by the vector of strategies (−2+√

5, 1/2, (5 −√
5)/5). The respective total payoff is

0 − (
√

5 − 5)(
√

5 − 1)√
5

+
1

2
= 13/2 − 2

√
5.

This concludes the proof of Theorem 1.

3.2 Strategies of arbitrary degree
We have shown that in the social welfare-maximizing Nash equi-

librium, some players’ strategies can be quadratic irrationalities,
and so can the total payoff. In this subsection, we will extend this
result to show that we can construct an integer-payoff graphical
game on a path whose social welfare-maximizing Nash equilibrium
involves arbitrary algebraic numbers in [0, 1].

THEOREM 2. For any degree-n algebraic number α ∈ [0, 1],
there exists an integer payoff graphical game on a path of length
O(n) such that, in all social welfare-maximizing Nash equilibria
of this game, one of the players plays α.

PROOF. Our proof consists of two steps. First, we construct a
rational expression R(x) and a segment [x′, x′′] such that x′, x′′ ∈
Q and α is the only maximum of R(x) on [x′, x′′]. Second, we
construct a graphical game whose Nash equilibria can be parame-
terized by u ∈ [x′, x′′], so that at the equilibrium that corresponds
to u the total payoff is R(u) and, moreover, some player’s strat-
egy is u. It follows that to achieve the payoff-maximizing Nash
equilibrium, this player has to play α. The details follow.

LEMMA 1. Given an algebraic number α ∈ [0, 1], deg(α) =
n, there exist K2, . . . , K2n+2 ∈ Q and x′, x′′ ∈ (0, 1) ∩ Q such

that α is the only maximum of

R(x) =
K2

x + 2
+ · · · + K2n+2

x + 2n + 2

on [x′, x′′].

PROOF. Let P (x) be the minimal polynomial of α, i.e., a poly-
nomial of degree n with rational coefficients whose leading coeffi-
cient is 1 such that P (α) = 0. Let A = {α1, . . . , αn} be the set of
all roots of P (x). Consider the polynomial Q1(x) = −P 2(x). It
has the same roots as P (x), and moreover, for any x �∈ A we have
Q1(x) < 0. Hence, A is the set of all maxima of Q1(x). Now, set
R(x) = Q1(x)

(x+2)...(x+2n+1)(x+2n+2)
. Observe that R(x) ≤ 0 for all

x ∈ [0, 1] and R(x) = 0 if and only if Q1(x) = 0. Hence, the set
A is also the set of all maxima of R(x) on [0, 1].

Let d = min{|αi − α| | αi ∈ A,αi �= α}, and set α′ =
max{α − d/2, 0}, α′′ = min{α + d/2, 1}. Clearly, α is the
only zero (and hence, the only maximum) of R(x) on [α′, α′′].
Let x′ and x′′ be some rational numbers in (α′, α) and (α, α′′),
respectively; note that by excluding the endpoints of the intervals
we ensure that x′, x′′ �= 0, 1. As [x′, x′′] ⊂ [α′, α′′], we have that
α is the only maximum of R(x) on [x′, x′′].

As R(x) is a proper rational expression and all roots of its de-
nominator are simple, by partial fraction decomposition theorem,
R(x) can be represented as

R(x) =
K2

x + 2
+ · · · + K2n+2

x + 2n + 2
,

where K2, . . . , K2n+2 are rational numbers.

Consider a graphical game on the path

U−1V−1U0V0U1V1 . . . Uk−1Vk−1Uk,

where k = 2n + 2. Intuitively, we want each triple (Ui−1, Vi−1,
Ui) to behave similarly to the players U , V , and W from the game
described in the previous subsection. More precisely, we define the
payoffs to the players in the following way.

• The payoff to U−1 is 0 no matter what everyone else does.

• The expected payoff to V−1 is 0 if it plays 0 and u0 − (x′′ −
x′)u−1−x′ if it plays 1, where u0 and u−1 are the strategies
of U0 and U−1, respectively.

• The expected payoff to V0 is 0 if it plays 0 and u1(u0 +1)−
u0 if it plays 1, where u0 and u1 are the strategies of U0 and
U1, respectively.

• For each i = 1, . . . , k − 1, the expected payoff to Vi when
it plays 0 is P 0(Vi) = Aiuiui+1 − Aiui+1, and the ex-
pected payoff to Vi when it plays 1 is P 1(Vi) = P 0(Vi) +
ui+1(2− ui) − 1, where Ai = −Ki+1 and ui+1 and ui are
the strategies of Ui+1 and Ui, respectively.

• For each i = 0, . . . , k, the payoff to Ui does not depend
on Vi and is 1 if Ui and Vi−1 select different actions and 0
otherwise.

We will now characterize the Nash equilibria of this game using a
sequence of claims.

CLAIM 3. In all Nash equilibria of this game V−1 plays 1/2,
and the strategies of u−1 and u0 satisfy u0 = (x′′ − x′)u−1 + x′.
Consequently, in all Nash equilibria we have u0 ∈ [x′, x′′].
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PROOF. The proof is similar to that of Claim 2. Let f(u−1) =
(x′′ − x′)u−1 + x′. Clearly, the player V−1 is indifferent between
playing 0 and 1 if and only if u0 = f(u−1). Suppose that v−1 <
1/2. Then U0 strictly prefers to play 1, i.e., u0 = 1, so we have

P 1(V−1) = P 0(V−1) + 1 − (x′′ − x′)u−1 − x′.

As

1 − x′′ ≤ 1 − (x′′ − x′)u−1 − x′ ≤ 1 − x′

for u−1 ∈ [0, 1] and x′′ < 1, we have P 1(V−1) > P 0(V−1), so
V−1 prefers to play 1, a contradiction. Similarly, if v−1 > 1/2, the
player U0 strictly prefers to play 0, i.e., u0 = 0, so we have

P 1(V−1) = P 0(V−1) − (x′′ − x′)u−1 − x′.

As x′ < x′′, x′ > 0, we have P 1(V−1) < P 0(V−1), so V−1

prefers to play 0, a contradiction. Finally, if V−1 plays 1/2, but
u0 �= f(u−1), player V−1 is not indifferent between 0 and 1, so he
would deviate from playing 1/2.

Also, note that f(0) = x′, f(1) = x′′, and, moreover, f(u−1) ∈
[x′, x′′] if and only if u−1 ∈ [0, 1]. Hence, in all Nash equilibria of
this game we have u0 ∈ [x′, x′′].

CLAIM 4. In all Nash equilibria of this game for each i =
0, . . . , k − 1, we have vi = 1/2, and the strategies of the play-
ers Ui and Ui+1 satisfy ui+1 = fi(ui), where f0(u) = u/(u + 1)
and fi(u) = 1/(2 − u) for i > 0.

PROOF. The proof of this claim is also similar to that of Claim 2.
We use induction on i to prove that the statement of the claim is true
and, additionally, ui �= 1 for i > 0.

For the base case i = 0, note that u0 �= 0 by the previous claim
(recall that x′, x′′ are selected so that x′, x′′ �= 0, 1) and consider
the triple (U0, V0, U1). Let v0 be the strategy of V0. First, suppose
that v0 > 1/2. Then U1 strictly prefers to play 0, i.e., u1 = 0.
Then for V0 we have P 1(V0) = P 0(V0) − u0. As u0 �= 0, we
have P 1(V0) < P 0(V0), which implies v1 = 0, a contradiction.
Similarly, if v0 < 1/2, player U1 prefers to play 1, so we have
u1 = 1. Hence, P 1(V0) = P 0(V0) + 1. It follows that P 1(V0) >
P 0(V0), which implies v0 = 1, a contradiction. Finally, if v0 =
1/2, but u1 �= u0/(u0 + 1), player V0 is not indifferent between 0
and 1, so he would deviate from playing 1/2. Moreover, as u1 =
u0/(u0 + 1) and u0 ∈ [0, 1], we have u1 �= 1.

The argument for the inductive step is similar. Namely, suppose
that the statement is proved for all i′ < i and consider the triple
(Ui, Vi, Ui+1).

Let vi be the strategy of Vi. First, suppose that vi > 1/2. Then
Ui+1 strictly prefers to play 0, i.e., ui+1 = 0. Then for Vi we
have P 1(Vi) = P 0(Vi)−1, i.e., P 1(Vi) < P 0(Vi), which implies
vi = 0, a contradiction. Similarly, if vi < 1/2, player Ui+1 prefers
to play 1, so we have ui+1 = 1. Hence, P 1(Vi) = P 0(Vi) +
1 − ui. By inductive hypothesis, we have ui < 1. Consequently,
P 1(Vi) > P 0(Vi), which implies vi = 1, a contradiction. Finally,
if vi = 1/2, but ui+1 �= 1/(2 − ui), player Vi is not indifferent
between 0 and 1, so he would deviate from playing 1/2. Moreover,
as ui+1 = 1/(2 − ui) and ui < 1, we have ui+1 < 1.

CLAIM 5. Any strategy profile of the form

(u−1, 1/2, u0, 1/2, u1, 1/2, . . . , uk−1, 1/2, uk),

where u−1 ∈ [0, 1], u0 = (x′′ − x′)u−1 + x′, u1 = u0/(u0 + 1),
and ui+1 = 1/(2 − ui) for i ≥ 1 constitutes a Nash equilibrium.

PROOF. First, the player U−1’s payoffs do not depend on other
players’ actions, so he is free to play any strategy in [0, 1]. As long

as u0 = (x′′−x′)u−1+x′, player V−1 is indifferent between 0 and
1, so he is content to play 1/2; a similar argument applies to players
V0, . . . , Vk−1. Finally, for each i = 0, . . . , k, the payoffs of player
Ui only depend on the strategy of player Vi−1. In particular, as
long as vi−1 = 1/2, player Ui is indifferent between playing 0 and
1, so he can play any mixed strategy ui ∈ [0, 1]. To complete the
proof, note that (x′′ − x′)u−1 + x′ ∈ [0, 1] for all u−1 ∈ [0, 1],
u0/(u0 + 1) ∈ [0, 1] for all u0 ∈ [0, 1], and 1/(2 − ui) ∈ [0, 1]
for all ui ∈ [0, 1], so we have ui ∈ [0, 1] for all i = 0, . . . , k.

Now, let us compute the total payoff under a strategy profile of
the form given in Claim 5. The payoff to U−1 is 0, and the ex-
pected payoff to each of the Ui, i = 0, . . . , k, is 1/2. The expected
payoffs to V−1 and V0 are 0. Finally, for any i = 1, . . . , k − 1,
the expected payoff to Vi is Ti = Aiuiui+1 − Aiui+1. It fol-
lows that to find a Nash equilibrium with the highest total payoff,
we have to maximize

Pk−1
i=1 Ti subject to conditions u−1 ∈ [0, 1],

u0 = (x′′−x′)u−1+x′, u1 = u0/(u0+1), and ui+1 = 1/(2−ui)
for i = 1, . . . , k − 1.

We would like to express
Pk−1

i=1 Ti as a function of u0. To sim-
plify notation, set u = u0.

LEMMA 2. For i = 1, . . . , k, we have ui = u+i−1
u+i

.

PROOF. The proof is by induction on i. For i = 1, we have
u1 = u/(u + 1). Now, for i ≥ 2 suppose that ui−1 = (u + i −
2)/(u+ i− 1). We have ui = 1/(2−ui−1) = (u+ i− 1)/(2u+
2i − 2 − u − i + 2) = (u + i − 1)/(u + i).

It follows that for i = 1, . . . , k − 1 we have

Ti = Ai
u + i − 1

u + i

u + i

u + i + 1
− Ai

u + i

u + i + 1
=

−Ai
1

u + i + 1
=

Ki+1

u + i + 1
.

Observe that as u−1 varies from 0 to 1, u varies from x′ to x′′.
Therefore, to maximize the total payoff, we have to choose u ∈
[x′, x′′] so as to maximize

K2

u + 2
+ · · · + Kk

u + k
= R(u).

By construction, the only maximum of R(u) on [x′, x′′] is α. It fol-
lows that in the payoff-maximizing Nash equilibrium of our game
U0 plays α.

Finally, note that the payoffs in our game are rational rather than
integer. However, it is easy to see that we can multiply all payoffs
to a player by their greatest common denominator without affecting
his strategy. In the resulting game, all payoffs are integer. This
concludes the proof of Theorem 2.

4. APPROXIMATING THE SOCIALLY OP-
TIMAL NASH EQUILIBRIUM

We have seen that the Nash equilibrium that maximizes the so-
cial welfare may involve strategies that are not in Q. Hence, in this
section we focus on finding a Nash equilibrium that is almost opti-
mal from the social welfare perspective. We propose an algorithm
that for any ε > 0 finds a Nash equilibrium whose total payoff
is within ε from optimal. The running time of this algorithm is
polynomial in 1/ε, n and |Pmax| (recall that Pmax is the maximum
absolute value of an entry of a payoff matrix).

While the negative result of the previous section is for graphical
games on paths, our algorithm applies to a wider range of scenar-
ios. Namely, it runs in polynomial time on bounded-degree trees
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as long as the best response policy of each vertex, given its parent,
can be represented as a union of a polynomial number of rectan-
gles. Note that path graphs always satisfy this condition: in [9] we
showed how to compute such a representation, given a graph with
maximum degree 2. Consequently, for path graphs the running time
of our algorithm is guaranteed to be polynomial. (Note that [9]
exhibits a family of graphical games on bounded-degree trees for
which the best response policies of some of the vertices, given their
parents, have exponential size, when represented as unions of rect-
angles.)

Due to space restrictions, in this version of the paper we present
the algorithm for the case where the graph underlying the graphical
game is a path. We then state our result for the general case; the
proof can be found in the full version of this paper [10].

Suppose that s is a strategy profile for a graphical game G. That
is, s assigns a mixed strategy to each vertex of G. let EPV (s)
be the expected payoff of player V under s and let EP (s) =P

V EPV (s). Let

M(G) = max{EP (s) | s is a Nash equilibrium for G}.

THEOREM 3. Suppose that G is a graphical game on an n-
vertex path. Then for any ε > 0 there is an algorithm that con-
structs a Nash equilibrium s′ for G that satisfies EP (s′) ≥ M(G)−
ε. The running time of the algorithm is O(n4P 3

max/ε3)

PROOF. Let {V1, . . . , Vn} be the set of all players. We start by
constructing the best response policies for all Vi, i = 1, . . . , n− 1.
As shown in [9], this can be done in time O(n3).

Let N > 5n be a parameter to be selected later, set δ = 1/N ,
and define X = {jδ | j = 0, . . . , N}. We say that vj is an event
point for a player Vi if it is a Vi-event point for B(Vi, Vi−1) or
B(Vi+1, Vi). For each player Vi, consider a finite set of strategies
Xi given by

Xi = X ∪ {vj |vj is an event point for Vi}.
It has been shown in [9] that for any i = 2, . . . , n, the best response
policy B(Vi, Vi−1) has at most 2n + 4 Vi-event points. As we
require N > 5n, we have |Xi| ≤ 2N ; assume without loss of
generality that |Xi| = 2N . Order the elements of Xi in increasing
order as x1

i = 0 < x2
i < · · · < x2N

i . We will refer to the strategies
in Xi as discrete strategies of player Vi; a strategy profile in which
each player has a discrete strategy will be referred to as a discrete
strategy profile.

We will now show that even we restrict each player Vi to strate-
gies from Xi, the players can still achieve a Nash equilibrium, and
moreover, the best such Nash equilibrium (with respect to the so-
cial welfare) has total payoff at least M(G) − ε as long as N is
large enough.

Let s be a strategy profile that maximizes social welfare. That is,
let s = (s1, . . . , sn) where si is the mixed strategy of player Vi and
EP (s) = M(G). For i = 1, . . . , n, let ti = max{xj

i | xj
i ≤ si}.

First, we will show that the strategy profile t = (t1, . . . , tn) is a
Nash equilibrium for G.

Fix any i, 1 < i ≤ n, and let R = [v1, v2]×[u1, u2] be the rect-
angle in B(Vi, Vi−1) that contains (si, si−1). As v1 is a Vi-event
point of B(Vi, Vi−1), we have v1 ≤ ti, so the point (ti, si−1) is in-
side R. Similarly, the point u1 is a Vi−1-event point of B(Vi, Vi−1),
so we have u1 ≤ ti−1, and therefore the point (ti, ti−1) is inside R.
This means that for any i, 1 < i ≤ n, we have ti−1 ∈ pbrVi−1

(ti),
which implies that t = (t1, . . . , tn) is a Nash equilibrium for G.

Now, let us estimate the expected loss in social welfare caused
by playing t instead of s.

LEMMA 3. For any pair of strategy profiles t, s such that |ti −
si| ≤ δ we have |EPVi(s) − EPVi(t)| ≤ 24Pmaxδ for any i =
1, . . . , n.

PROOF. Let P i
klm be the payoff of the player Vi, when he plays

k, Vi−1 plays l, and Vi+1 plays m. Fix i = 1, . . . , n and for
k, l, m ∈ {0, 1}, set

tklm = tk
i−1(1 − ti−1)

1−ktl
i(1 − ti)

1−ltm
i+1(1 − ti+1)

1−m

sklm = sk
i−1(1 − si−1)

1−ksl
i(1 − si)

1−lsm
i+1(1 − si+1)

1−m.

We have

|EPVi(s) − EPVi(t)| ≤
X

k,l,m=0,1

|P i
klm(tklm − sklm)| ≤

8Pmax max
klm

|tklm − sklm|

We will now show that for any k, l, m ∈ {0, 1} we have |tklm −
sklm| ≤ 3δ; clearly, this implies the lemma.

Indeed, fix k, l, m ∈ {0, 1}. Set

x = tk
i−1(1 − ti−1)

1−k, x′ = sk
i−1(1 − si−1)

1−k,

y = tl
i(1 − ti)

1−l, y′ = sl
i(1 − si)

1−l,

z = tm
i+1(1 − ti+1)

1−m, z′ = sm
i+1(1 − si+1)

1−m.

Observe that if k = 0 then x − x′ = (1 − ti−1) − (1 − si−1),
and if k = 1 then x − x′ = ti−1 − si−1, so |x − x′| ≤ δ. A
similar argument shows |y − y′| ≤ δ, |z − z′| ≤ δ. Also, we have
x, x′, y, y′, z, z′ ∈ [0, 1]. Hence, |tklm−sklm| = |xyz−x′y′z′| =
|xyz − x′yz + x′yz − x′y′z + x′y′z − x′y′z′| ≤ |x − x′|yz +
|y − y′|x′z + |z − z′|x′y′ ≤ 3δ.

Lemma 3 implies
Pn

i=1 |EPVi(s) − EPVi(t)| ≤ 24nPmaxδ,
so by choosing δ < ε/(24nPmax), or, equivalently, setting N >
24nPmax/ε, we can ensure that the total expected payoff for the
strategy profile t is within ε from optimal.

We will now show that we can find the best discrete Nash equi-
librium (with respect to the social welfare) using dynamic program-
ming. As t is a discrete strategy profile, this means that the strategy
profile found by our algorithm will be at least as good as t.

Define ml,k
i to be the maximum total payoff that V1, . . . , Vi−1

can achieve if each Vj , j ≤ i, chooses a strategy from Xj , for each
j < i the strategy of Vj is a potential best response to the strategy
of Vj+1, and, moreover, Vi−1 plays xl

i−1, Vi plays xk
i . If there is

no way to choose the strategies for V1, . . . , Vi−1 to satisfy these
conditions, we set ml,k

i = −∞. The values ml,k
i , i = 1, . . . , n;

k, l = 1, . . . , N , can be computed inductively, as follows.
We have ml,k

1 = 0 for k, l = 1, . . . , N . Now, suppose that we
have already computed ml,k

j for all j < i; k, l = 1, . . . , N . To

compute mk,l
i , we first check if (xk

i , xl
i−1) ∈ B(Vi, Vi−1). If this

is not the case, we have ml,k
i = −∞. Otherwise, consider the set

Y = Xi−2 ∩ pbrVi−2
(xl

i−1), i.e., the set of all discrete strategies

of Vi−2 that are potential best responses to xl
i−1. The proof of

Theorem 1 in [9] implies that the set pbrVi−2
(xl

i−1) is non-empty:
the player Vi−2 has a potential best response to any strategy of
Vi−1, in particular, xl

i−1. By construction of the set Xi−2, this
implies that Y is not empty. For each xj

i−2 ∈ Y , let pjlk be the
payoff that Vi−1 receives when Vi−2 plays xj

i−2, Vi−1 plays xl
i−1,

and Vi plays xk
i . Clearly, pjlk can be computed in constant time.

Then we have ml,k
i = max{mj,l

i−1 + pjlk | xj
i−2 ∈ Y }.

Finally, suppose that we have computed ml,k
n for l, k = 1, . . . , N .

We still need to take into account the payoff of player Vn. Hence,
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we consider all pairs (xk
n, xl

n−1) that satisfy xl
n−1 ∈ pbrVn−1

(xk
n),

and pick the one that maximizes the sum of mk,l
n and the payoff of

Vn when he plays xk
n and Vn−1 plays xl

n−1. This results in the
maximum total payoff the players can achieve in a Nash equilib-
rium using discrete strategies; the actual strategy profile that pro-
duces this payoff can be reconstructed using standard dynamic pro-
gramming techniques.

It is easy to see that each ml,k
i can be computed in time O(N),

i.e., all of them can be computed in time O(nN3). Recall that
we have to select N ≥ (24nPmax)/ε to ensure that the strategy
profile we output has total payoff that is within ε from optimal. We
conclude that we can compute an ε-approximation to the best Nash
equilibrium in time O(n4P 3

max/ε3). This completes the proof of
Theorem 3.

To state our result for the general case (i.e., when the underlying
graph is a bounded-degree tree rather than a path), we need addi-
tional notation. If G has n players, let q(n) be an upper bound
on the number of event points in the representation of any best
response policy. That is, we assume that for any vertex U with
parent V , B(V, U) has at most q(n) event points. We will be inter-
ested in the situation in which q(n) is polynomial in n.

THEOREM 4. Let G be an n-player graphical game on a tree
in which each node has at most Δ children. Suppose we are given a
set of best-response policies for G in which each best-response pol-
icy B(V, U) is represented by a set of rectangles with at most q(n)
event points. For any ε > 0, there is an algorithm that constructs a
Nash equilibrium s′ for G that satisfies EP (s′) ≥ M(G)− ε. The
running time of the algorithm is polynomial in n, Pmax and ε−1

provided that the tree has bounded degree (that is, Δ = O(1)) and
q(n) is a polynomial in n. In particular, if

N = max((Δ + 1)q(n) + 1, n2Δ+2(Δ + 2)Pmaxε
−1)

and Δ > 1 then the running time is O(nΔ(2N)Δ.

For the proof of this theorem, see [10].

4.1 A polynomial-time algorithm for multi-
plicative approximation

The running time of our algorithm is pseudopolynomial rather
than polynomial, because it includes a factor which is polynomial
in Pmax, the maximum (in absolute value) entry in any payoff ma-
trix. If we are interested in multiplicative approximation rather than
additive one, this can be improved to polynomial.

First, note that we cannot expect a multiplicative approxima-
tion for all inputs. That is, we cannot hope to have an algorithm
that computes a Nash equilibrium with total payoff at least (1 −
ε)M(G). If we had such an algorithm, then for graphical games
G with M(G) = 0, the algorithm would be required to output
the optimal solution. To show that this is infeasible, observe that
we can use the techniques of Section 3.2 to construct two integer-
coefficient graphical games on paths of length O(n) such that for
some X ∈ R the maximal total payoff in the first game is X,
the maximal total payoff in the second game is −X, and for both
games, the strategy profiles that achieve the maximal total payoffs
involve algebraic numbers of degree n. By combining the two
games so that the first vertex of the second game becomes con-
nected to the last vertex of the first game, but the payoffs of all
players do not change, we obtain a graphical game in which the
best Nash equilibrium has total payoff 0, yet the strategies that lead
to this payoff have high algebraic complexity.

However, we can achieve a multiplicative approximation when
all entries of the payoff matrices are positive and the ratio between

any two entries is polynomially bounded. Recall that we assume
that all payoffs are integer, and let Pmin > 0 be the smallest entry
of any payoff matrix. In this case, for any strategy profile the payoff
to player i is at least Pmin, so the total payoff in the social-welfare
maximizing Nash equilibrium s satisfies M(G) ≥ nPmin. More-
over, Lemma 3 implies that by choosing δ < ε/(24Pmax/Pmin),
we can ensure that the Nash equilibrium t produced by our algo-
rithm satisfies

nX

i=1

EPVi(s)−
nX

i=1

EPVi(t) ≤ 24Pmaxδn ≤ εnPmin ≤ εM(G),

i.e., for this value of δ we have
Pn

i=1 EPVi(t) ≥ (1 − ε)M(G).
Recall that the running time of our algorithm is O(nN3), where N
has to be selected to satisfy N > 5n, N = 1/δ. It follows that if
Pmin > 0, Pmax/Pmin = poly(n), we can choose N so that our
algorithm provides a multiplicative approximation guarantee and
runs in time polynomial in n and 1/ε.

5. BOUNDED PAYOFF NASH EQUILIBRIA
Another natural way to define what is a “good” Nash equilibrium

is to require that each player’s expected payoff exceeds a certain
threshold. These thresholds do not have to be the same for all play-
ers. In this case, in addition to the payoff matrices of the n players,
we are given n numbers T1, . . . , Tn, and our goal is to find a Nash
equilibrium in which the payoff of player i is at least Ti, or report
that no such Nash equilibrium exists. It turns out that we can de-
sign an FPTAS for this problem using the same techniques as in the
previous section.

THEOREM 5. Given a graphical game G on an n-vertex path
and n rational numbers T1, . . . , Tn, suppose that there exists a
strategy profile s such that s is a Nash equilibrium for G and
EPVi(s) ≥ Ti for i = 1, . . . , n. Then for any ε > 0 we can
find in time O(max{nP 3

max/ε3, n4/ε3}) a strategy profile s′ such
that s′ is a Nash equilibrium for G and EPVi(s

′) ≥ Ti − ε for
i = 1, . . . , n.

PROOF. The proof is similar to that of Theorem 3. First, we
construct the best response policies for all players, choose N > 5n,
and construct the sets Xi, i = 1, . . . , n, as described in the proof
of Theorem 3.

Consider a strategy profile s such that s is a Nash equilibrium
for G and EPVi(s) ≥ Ti for i = 1, . . . , n. We construct a strat-
egy profile ti = max{xj

i | xj
i ≤ si} and use the same argu-

ment as in the proof of Theorem 3 to show that t is a Nash equi-
librium for G. By Lemma 3, we have |EPVi(s) − EPVi(t)| ≤
24Pmaxδ, so choosing δ < ε/(24Pmax), or, equivalently, N >
max{5n, 24Pmax/ε}, we can ensure EPVi(t) ≥ Ti − ε for i =
1, . . . , n.

Now, we will use dynamic programming to find a discrete Nash
equilibrium that satisfies EPVi(t) ≥ Ti − ε for i = 1, . . . , n. As t
is a discrete strategy profile, our algorithm will succeed whenever
there is a strategy profile s with EPVi(s) ≥ Ti−ε for i = 1, . . . , n.

Let zl,k
i = 1 if there is a discrete strategy profile such that for any

j < i the strategy of the player Vj is a potential best response to the
strategy of Vj+1, the expected payoff of Vj is at least Tj − ε, and,
moreover, Vi−1 plays xl

i−1, Vi plays xk
i . Otherwise, let zl,k

i = 0.
We can compute zl,k

i , i = 1, . . . , n; k, l = 1, . . . , N inductively,
as follows.

We have zl,k
1 = 1 for k, l = 1, . . . , N . Now, suppose that we

have already computed zl,k
j for all j < i; k, l = 1, . . . , N . To

compute zk,l
i , we first check if (xk

i , xl
i−1) ∈ B(Vi, Vi−1). If this
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is not the case, clearly, zk,l
i = 0. Otherwise, consider the set Y =

Xi−2∩pbrVi−2
(xl

i−1), i.e., the set of all discrete strategies of Vi−2

that are potential best responses to xl
i−1. It has been shown in the

proof of Theorem 3 that Y �= ∅. For each xj
i−2 ∈ Y , let pjlk be the

payoff that Vi−1 receives when Vi−2 plays xj
i−2, Vi−1 plays xl

i−1,
and Vi plays xk

i . Clearly, pjlk can be computed in constant time. If
there exists an xj

i−2 ∈ Y such that zj,l
i−1 = 1 and pjlk ≥ Ti−2 − ε,

set zl,k
i = 1. Otherwise, set zl,k

i = 0.
Having computed zl,k

n , l, k = 1, . . . , N , we check if zl,k
n =

1 for some pair (l, k). if such a pair of indices exists, we in-
struct Vn to play xk

n and use dynamic programming techniques
(or, equivalently, the downstream pass of the algorithm of [13])
to find a Nash equilibrium s′ that satisfies EPVi(s

′) ≥ Ti − ε for
i = 1, . . . , n (recall that Vn is a dummy player, i.e., we assume
Tn = 0, EPn(s′) = 0 for any choice of s′). If zl,k

n = 0 for all
l, k = 1, . . . , N , there is no discrete Nash equilibrium s′ that sat-
isfies EPVi(s

′) ≥ Ti − ε for i = 1, . . . , n and hence no Nash
equilibrium s (not necessarily discrete) such that EPVi(s) ≥ Ti

for i = 1, . . . , n.
The running time analysis is similar to that for Theorem 3; we

conclude that the running time of our algorithm is O(nN3) =
O(max{nP 3

max/ε3, n4/ε3}).

REMARK 1. Theorem 5 can be extended to trees of bounded
degree in the same way as Theorem 4.

5.1 Exact Computation
Another approach to finding Nash equilibria with bounded pay-

offs is based on inductively computing the subsets of the best re-
sponse policies of all players so as to exclude the points that do
not provide sufficient payoffs to some of the players. Formally, we
say that a strategy v of the player V is a potential best response
to a strategy w of its parent W with respect to a threshold vector
T = (T1, . . . , Tn), (denoted by v ∈ pbrV (w,T)) if there is an
equilibrium in the instance G(V,W ),W=w in which V plays mixed
strategy v and the payoff to any player Vi downstream of V (includ-
ing V ) is at least Ti. The best response policy for V with respect
to a threshold vector T is defined as B(W, V,T) = {(w, v) | v ∈
pbrV (w,T), w ∈ [0, 1]}.

It is easy to see that if any of the sets B(Vj , Vj−1,T), j =
1, . . . , n, is empty, it means that it is impossible to provide all
players with expected payoffs prescribed by T. Otherwise, one
can apply the downstream pass of the original algorithm of [13] to
find a Nash equilibrium. As we assume that Vn is a dummy ver-
tex whose payoff is identically 0, the Nash equilibrium with these
payoffs exists as long as Tn ≤ 0 and B(Vn, Vn−1,T) is not empty.

Using the techniques developed in [9], it is not hard to show that
for any j = 1, . . . , n, the set B(Vj , Vj−1, T) consists of a finite
number of rectangles, and one can compute B(Vj+1, Vj ,T) given
B(Vj , Vj−1,T). The advantage of this approach is that it allows
us to represent all Nash equilibria that provide required payoffs
to the players. However, it is not likely to be practical, since it
turns out that the rectangles that appear in the representation of
B(Vj , Vj−1,T) may have irrational coordinates.

CLAIM 6. There exists a graphical game G on a 3-vertex path
UV W and a vector T = (T1, T2, T3) such that B(V, W,T) can-
not be represented as a union of a finite number of rectangles with
rational coordinates.

PROOF. We define the payoffs to the players in G as follows.
The payoff to U is identically 0, i.e., P 0(U) = P 1(U) = 0. Us-
ing Claim 1, we select the payoffs to V so that P 0(V ) = uw,

P 1(V ) = P 0(V ) + w − .8u − .1, where u and w are the (mixed)
strategies of U and W , respectively. It follows that V is indifferent
between playing 0 and 1 if and only if w = f(u) = .8u + .1;
observe that for any u ∈ [0, 1] we have f(u) ∈ [0, 1]. It is not hard
to see that we have

B(W, V ) = [0, .1]×{0} ∪ [.1, .9]×[0, 1] ∪ [.9, 1]×{1}.
The payoffs to W are not important for our construction; for exam-
ple, set P0(W ) = P0(W ) = 0.

Now, set T = (0, 1/8, 0), i.e., we are interested in Nash equi-
libria in which V ’s expected payoff is at least 1/8. Suppose w ∈
[0, 1]. The player V can play a mixed strategy v when W is play-
ing w as long as U plays u = f−1(w) = 5w/4 − 1/8 (to ensure
that V is indifferent between 0 and 1) and P 0(V ) = P 1(V ) =
uw = w(5w/4 − 1/8) ≥ 1/8. The latter condition is satisfied if
w ≤ (1 − √

41)/20 < 0 or w ≥ (1 +
√

41)/20. Note that we
have .1 < (1 +

√
41)/20 < .9. For any other value of w, any

strategy of U either makes V prefer one of the pure strategies or
does not provide it with a sufficient expected payoff. There are also
some values of w for which V can play a pure strategy (0 or 1)
as a potential best response to W and guarantee itself an expected
payoff of at least 1/8; it can be shown that these values of w form
a finite number of segments in [0, 1]. We conclude that any repre-
sentation of B(W, V,T) as a union of a finite number of rectangles
must contain a rectangle of the form [(1 +

√
41)/20, w′′]×[v′, v′′]

for some w′′, v′, v′′ ∈ [0, 1].

On the other hand, it can be shown that for any integer payoff
matrices and threshold vectors and any j = 1, . . . , n − 1, the sets
B(Vj+1, Vj ,T) contain no rectangles of the form [u′, u′′]×{v} or
{v}×[w′, w′′], where v ∈ R\Q. This means that if B(Vn, Vn−1,T)
is non-empty, i.e., there is a Nash equilibrium with payoffs pre-
scribed by T, then the downstream pass of the algorithm of [13]
can always pick a strategy profile that forms a Nash equilibrium,
provides a payoff of at least Ti to the player Vi, and has no ir-
rational coordinates. Hence, unlike in the case of the Nash equi-
librium that maximizes the social welfare, working with irrational
numbers is not necessary, and the fact that the algorithm discussed
in this section has to do so can be seen as an argument against using
this approach.

6. OTHER CRITERIA FOR SELECTING A
NASH EQUILIBRIUM

In this section, we consider several other criteria that can be use-
ful in selecting a Nash equilibrium.

6.1 Combining welfare maximization with
bounds on payoffs

In many real life scenarios, we want to maximize the social wel-
fare subject to certain restrictions on the payoffs to individual play-
ers. For example, we may want to ensure that no player gets a
negative expected payoff, or that the expected payoff to player i is
at least P i

max − ξ, where P i
max is the maximum entry of i’s pay-

off matrix and ξ is a fixed parameter. Formally, given a graphical
game G and a vector T1, . . . , Tn, let S be the set of all Nash equi-
libria s of G that satisfy Ti ≤ EPVi(s) for i = 1, . . . , n, and let
ŝ = argmaxs∈S EP (s).

If the set S is non-empty, we can find a Nash equilibrium ŝ′ that
is ε-close to satisfying the payoff bounds and is within ε from ŝ with
respect to the total payoff by combining the algorithms of Section 4
and Section 5.

Namely, for a given ε > 0, choose δ as in the proof of Theorem 3,
and let Xi be the set of all discrete strategies of player Vi (for a
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formal definition, see the proof of Theorem 3). Combining the
proofs of Theorem 3 and Theorem 5, we can see that the strategy
profile t̂ given by t̂i = max{xj

i | xj
i ≤ ŝi} satisfies EPVi(t̂) ≥

Ti − ε, |EP (ŝ) − EP (t̂)| ≤ ε.
Define m̂l,k

i to be the maximum total payoff that V1, . . . , Vi−1

can achieve if each Vj , j ≤ i, chooses a strategy from Xj , for each
j < i the strategy of Vj is a potential best response to the strategy
of Vj+1 and the payoff to player Vj is at least Tj − ε, and, more-
over, Vi−1 plays xl

i−1, Vi plays xk
i . If there is no way to choose

the strategies for V1, . . . , Vi−1 to satisfy these conditions, we set
ml,k

i = −∞. The m̂l,k
i can be computed by dynamic program-

ming similarly to the ml,k
i and zl,k

i in the proofs of Theorems 3
and 5. Finally, as in the proof of Theorem 3, we use ml,k

n to select
the best discrete Nash equilibrium subject to the payoff constraints.

Even more generally, we may want to maximize the total payoff
to a subset of players (who are assumed to be able to redistribute
the profits fairly among themselves) while guaranteeing certain ex-
pected payoffs to (a subset of) the other players. This problem can
be handled similarly.

6.2 A minimax approach
A more egalitarian measure of the quality of a Nash equilibrium

is the minimal expected payoff to a player. The optimal solution
with respect to this measure is a Nash equilibrium in which the
minimal expected payoff to a player is maximal. To find an ap-
proximation to such a Nash equilibrium, we can combine the al-
gorithm of Section 5 with binary search on the space of potential
lower bounds. Note that the expected payoff to any player Vi given
a strategy s always satisfies −Pmax ≤ EPVi(s) ≤ Pmax.

For a fixed ε > 0, we start by setting T ′ = −Pmax, T ′′ = Pmax,
T ∗ = (T ′ + T ′′)/2. We then run the algorithm of Section 5 with
T1 = · · · = Tn = T ∗. If the algorithm succeeds in finding a
Nash equilibrium s′ that satisfies EPVi(s

′) ≥ T ∗ − ε for all i =
1, . . . , n, we set T ′ = T ∗, T ∗ = (T ′ + T ′′)/2; otherwise, we set
T ′′ = T ∗, T ∗ = (T ′ + T ′′)/2 and loop. We repeat this process
until |T ′ − T ′′| ≤ ε. It is not hard to check that for any p ∈ R,
if there is a Nash equilibrium s such that mini=1,...,n EPVi(s) ≥
p, then our algorithm outputs a Nash equilibrium s′ that satisfies
mini=1,...,n EPVi(s) ≥ p−2ε. The running time of our algorithm
is O(max{nP 3

max log ε−1/ε3, n4 log ε−1/ε3}).

6.3 Equalizing the payoffs
When the players’ payoff matrices are not very different, it is

reasonable to demand that the expected payoffs to the players do
not differ by much either. We will now show that Nash equilibria
in this category can be approximated in polynomial time as well.

Indeed, observe that the algorithm of Section 5 can be easily
modified to deal with upper bounds on individual payoffs rather
than lower bounds. Moreover, we can efficiently compute an ap-
proximation to a Nash equilibrium that satisfies both the upper
bound and the lower bound for each player. More precisely, sup-
pose that we are given a graphical game G, 2n rational numbers
T1, . . . , Tn, T ′

1, . . . , T
′
n and ε > 0. Then if there exists a strat-

egy profile s such that s is a Nash equilibrium for G and Ti ≤
EPVi(s) ≤ T ′

i for i = 1, . . . , n, we can find a strategy profile s′

such that s′ is a Nash equilibrium for G and Ti − ε ≤ EPVi(s
′) ≤

T ′
i + ε for i = 1, . . . , n. The modified algorithm also runs in time

O(max{nP 3
max/ε3, [4]n4/ε3}).

This observation allows us to approximate Nash equilibria in
which all players’ expected payoffs differ by at most ξ for any fixed
ξ > 0. Given an ε > 0, we set T1 = · · · = Tn = −Pmax,
T ′

1 = · · · = T ′
n = −Pmax + ξ + ε, and run the modified version

of the algorithm of Section 5. If it fails to find a solution, we in-

crement all Ti, T
′
i by ε and loop. We continue until the algorithm

finds a solution, or Ti ≥ Pmax.
Suppose that there exists a Nash equilibrium s that satisfies

|EPVi(s) − EPVj (s)| ≤ ξ for all i, j = 1, . . . , n. Set r =
mini=1,...,n EPVi(s); we have r ≤ EPVi(s) ≤ r + ξ for all
i = 1, . . . , n. There exists a k ≥ 0 such that −Pmax + (k − 1)ε ≤
r ≤ −Pmax + kε. During the kth step of the algorithm, we set
T1 = · · · = Tn = −Pmax+(k−1)ε, i.e., we have r−ε ≤ Ti ≤ r,
r + ξ ≤ T ′

i ≤ r + ξ + ε. That is, the Nash equilibrium s satisfies
Ti ≤ r ≤ EPVi(s) ≤ r + ξ ≤ T ′

i , which means that when Ti is
set to −Pmax + (k − 1)ε, our algorithm is guaranteed to output a
Nash equilibrium t that satisfies r − 2ε ≤ Ti − ε ≤ EPVi(t) ≤
T ′

i +ε ≤ r+ξ+2ε. We conclude that whenever such a Nash equi-
librium s exists, our algorithm outputs a Nash equilibrium t that
satisfies |EPVi(t) − EPVj (t)| ≤ ξ + 4ε for all i, j = 1, . . . , n.
The running time of this algorithm is O(max{nP 3

max/ε4, n4/ε4}).
Note also that we can find the smallest ξ for which such a Nash

equilibrium exists by combining this algorithm with binary search
over the space ξ = [0, 2Pmax]. This identifies an approximation
to the “fairest” Nash equilibrium, i.e., one in which the players’
expected payoffs differ by the smallest possible amount.

Finally, note that all results in this section can be extended to
bounded-degree trees.

7. CONCLUSIONS
We have studied the problem of equilibrium selection in graphi-

cal games on bounded-degree trees. We considered several criteria
for selecting a Nash equilibrium, such as maximizing the social
welfare, ensuring a lower bound on the expected payoff of each
player, etc. First, we focused on the algebraic complexity of a so-
cial welfare-maximizing Nash equilibrium, and proved strong neg-
ative results for that problem. Namely, we showed that even for
graphical games on paths, any algebraic number α ∈ [0, 1] may
be the only strategy available to some player in all social welfare-
maximizing Nash equilibria. This is in sharp contrast with the fact
that graphical games on trees always possess a Nash equilibrium in
which all players’ strategies are rational numbers.

We then provided approximation algorithms for selecting Nash
equilibria with special properties. While the problem of finding
approximate Nash equilibria for various classes of games has re-
ceived a lot of attention in recent years, most of the existing work
aims to find ε-Nash equilibria that satisfy (or are ε-close to satisfy-
ing) certain properties. Our approach is different in that we insist
on outputting an exact Nash equilibrium, which is ε-close to satis-
fying a given requirement. As argued in the introduction, there are
several reasons to prefer a solution that constitutes an exact Nash
equilibrium.

Our algorithms are fully polynomial time approximation schemes,
i.e., their running time is polynomial in the inverse of the approx-
imation parameter ε, though they may be pseudopolynomial with
respect to the input size. Under mild restrictions on the inputs, they
can be modified to be truly polynomial. This is the strongest posi-
tive result one can derive for a problem whose exact solutions may
be hard to represent, as is the case for many of the problems consid-
ered here. While we prove our results for games on a path, they can
be generalized to any tree for which the best response policies have
compact representations as unions of rectangles. In the full version
of the paper we describe our algorithms for the general case.

Further work in this vein could include extensions to the kinds
of guarantees sought for Nash equilibria, such as guaranteeing total
payoffs for subsets of players, selecting equilibria in which some
players are receiving significantly higher payoffs than their peers,
etc. At the moment however, it is perhaps more important to inves-
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tigate whether Nash equilibria of graphical games can be computed
in a decentralized manner, in contrast to the algorithms we have in-
troduced here.

It is natural to ask if our results or those of [9] can be generalized
to games with three or more actions. However, it seems that this
will make the analysis significantly more difficult. In particular,
note that one can view the bounded payoff games as a very limited
special case of games with three actions per player. Namely, given
a two-action game with payoff bounds, consider a game in which
each player Vi has a third action that guarantees him a payoff of
Ti no matter what everyone else does. Then checking if there is
a Nash equilibrium in which none of the players assigns a non-
zero probability to his third action is equivalent to checking if there
exists a Nash equilibrium that satisfies the payoff bounds in the
original game, and Section 5.1 shows that finding an exact solution
to this problem requires new ideas.

Alternatively it may be interesting to look for similar results in
the context of correlated equilibria (CE), especially since the best
CE may have higher value (total expected payoff) than the best NE.
The ratio between these values is called the mediation value in [1].
It is known from [1] that the mediation value of 2-player, 2-action
games with non-negative payoffs is at most 4

3
, and they exhibit a

3-player game for which it is infinite. Furthermore, a 2-player, 3-
action example from [1] also has infinite mediation value.
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