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ABSTRACT
In set-system auctions, there are several overlapping teams of agents,
and a task that can be completed by any of these teams. The auc-
tioneer’s goal is to hire a team and pay as little as possible. Exam-
ples of this setting include shortest-path auctions and vertex-cover
auctions. Recently, Karlin, Kempe and Tamir introduced a new def-
inition of frugality ratio for this problem. Informally, the “frugality
ratio” is the ratio of the total payment of a mechanism to a desired
payment bound. The ratio captures the extent to which the mecha-
nism overpays, relative to perceived fair cost in a truthful auction.
In this paper, we propose a new truthful polynomial-time auction
for the vertex cover problem and bound its frugality ratio. We show
that the solution quality is with a constant factor of optimal and
the frugality ratio is within a constant factor of the best possible
worst-case bound; this is the first auction for this problem to have
these properties. Moreover, we show how to transform any truth-
ful auction into a frugal one while preserving the approximation
ratio. Also, we consider two natural modifications of the definition
of Karlin et al., and we analyse the properties of the resulting pay-
ment bounds, such as monotonicity, computational hardness, and
robustness with respect to the draw-resolution rule. We study the
relationships between the different payment bounds, both for gen-
eral set systems and for specific set-system auctions, such as path
auctions and vertex-cover auctions. We use these new definitions
in the proof of our main result for vertex-cover auctions via a boot-
strapping technique, which may be of independent interest.
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1. INTRODUCTION
In a set system auction there is a single buyer and many vendors

that can provide various services. It is assumed that the buyer’s re-
quirements can be satisfied by various subsets of the vendors; these
subsets are called the feasible sets. A widely-studied class of set-
system auctions is path auctions, where each vendor is able to sell
access to a link in a network, and the feasible sets are those sets
whose links contain a path from a given source to a given destina-
tion; the study of these auctions has been initiated in the seminal
paper by Nisan and Ronen [19] (see also [1, 10, 9, 6, 15, 7, 20]).

We assume that each vendor has a cost of providing his services,
but submits a possibly larger bid to the auctioneer. Based on these
bids, the auctioneer selects a feasible subset of vendors, and makes
payments to the vendors in this subset. Each selected vendor enjoys
a profit of payment minus cost. Vendors want to maximise profit,
while the buyer wants to minimise the amount he pays. A natural
goal in this setting is to design a truthful auction, in which vendors
have an incentive to bid their true cost. This can be achieved by
paying each selected vendor a premium above her bid in such a
way that the vendor has no incentive to overbid. An interesting
question in mechanism design is how much the auctioneer will have
to overpay in order to ensure truthful bids.

In the context of path auctions this topic was first addressed by
Archer and Tardos [1]. They define the frugality ratio of a mech-
anism as the ratio between its total payment and the cost of the
cheapest path disjoint from the path selected by the mechanism.
They show that, for a large class of truthful mechanisms for this
problem, the frugality ratio is as large as the number of edges in the
shortest path. Talwar [21] extends this definition of frugality ratio
to general set systems, and studies the frugality ratio of the classical
VCG mechanism [22, 4, 14] for many specific set systems, such as
minimum spanning trees and set covers.

While the definition of frugality ratio proposed by [1] is well-
motivated and has been instrumental in studying truthful mecha-
nisms for set systems, it is not completely satisfactory. Consider,
for example, the graph of Figure 1 with the costs cAB = cBC =
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Figure 1: The diamond graph
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cCD = 0, cAC = cBD = 1. This graph is 2-connected and the
VCG payment to the winning path ABCD is bounded. However,
the graph contains no A–D path that is disjoint from ABCD, and
hence the frugality ratio of VCG on this graph remains undefined.
At the same time, there is no monopoly, that is, there is no ven-
dor that appears in all feasible sets. In auctions for other types of
set systems, the requirement that there exist a feasible solution dis-
joint from the selected one is even more severe: for example, for
vertex-cover auctions (where vendors correspond to the vertices of
some underlying graph, and the feasible sets are vertex covers) the
requirement means that the graph must be bipartite. To deal with
this problem, Karlin et al. [16] suggest a better benchmark, which
is defined for any monopoly-free set system. This quantity, which
they denote by ν, intuitively corresponds to the value of a cheapest
Nash equilibrium. Based on this new definition, the authors con-
struct new mechanisms for the shortest path problem and show that
the overpayment of these mechanisms is within a constant factor of
optimal.

1.1 Our results

Vertex cover auctions We propose a truthful polynomial-time
auction for vertex cover that outputs a solution whose cost is within
a factor of 2 of optimal, and whose frugality ratio is at most 2Δ,
where Δ is the maximum degree of the graph (Theorem 4). We
complement this result by proving (Theorem 5) that for any Δ and
n, there are graphs of maximum degree Δ and size Θ(n) for which
any truthful mechanism has frugality ratio at least Δ/2. This means
that the solution quality of our auction is with a factor of 2 of op-
timal and the frugality ratio is within a factor of 4 of the best pos-
sible bound for worst-case inputs. To the best of our knowledge,
this is the first auction for this problem that enjoys these proper-
ties. Moreover, we show how to transform any truthful mechanism
for the vertex-cover problem into a frugal one while preserving the
approximation ratio.
Frugality ratios Our vertex cover results naturally suggest two
modifications of the definition of ν in [16]. These modifications
can be made independently of each other, resulting in four differ-
ent payment bounds TUmax, TUmin, NTUmax, and NTUmin,
where NTUmin is equal to the original payment bound ν of in [16].
All four payment bounds arise as Nash equilibria of certain games
(see the full version of this paper [8]); the differences between
them can be seen as “the price of initiative” and “the price of co-
operation” (see Section 3). While our main result about vertex
cover auctions (Theorem 4) is with respect to NTUmin = ν, we
make use of the new definitions by first comparing the payment of
our mechanism to a weaker bound NTUmax, and then bootstrap-
ping from this result to obtain the desired bound.

Inspired by this application, we embark on a further study of
these payment bounds. Our results here are as follows:
1. We observe (Proposition 1) that the four payment bounds al-
ways obey a particular order that is independent of the choice of
the set system and the cost vector, namely, TUmin ≤ NTUmin ≤
NTUmax ≤ TUmax. We provide examples (Proposition 5 and
Corollaries 1 and 2) showing that for the vertex cover problem any
two consecutive bounds can differ by a factor of n − 2, where n is
the number of agents. We then show (Theorem 2) that this separa-
tion is almost best possible for general set systems by proving that
for any set system TUmax/TUmin ≤ n. In contrast, we demon-
strate (Theorem 3) that for path auctions TUmax/TUmin ≤ 2.
We provide examples (Propositions 2, 3 and 4) showing that this
bound is tight. We see this as an argument for the study of vertex-
cover auctions, as they appear to be more representative of the gen-
eral team -selection problem than the widely studied path auctions.

2. We show (Theorem 1) that for any set system, if there is a cost
vector for which TUmin and NTUmin differ by a factor of α,
there is another cost vector that separates NTUmin and NTUmax
by the same factor and vice versa; the same is true for the pairs
(NTUmin, NTUmax) and (NTUmax, TUmax). This symme-
try is quite surprising, since, e.g., TUmin and NTUmax are ob-
tained from NTUmin by two very different transformations. This
observation suggests that the four payment bounds should be stud-
ied in a unified framework; moreover, it leads us to believe that the
bootstrapping technique of Theorem 4 may have other applications.
3. We evaluate the payment bounds introduced here with respect
to a checklist of desirable features. In particular, we note that the
payment bound ν = NTUmin of [16] exhibits some counterintu-
itive properties, such as nonmonotonicity with respect to adding a
new feasible set (Proposition 7), and is NP-hard to compute (Theo-
rem 6), while some of the other payment bounds do not suffer from
these problems. This can be seen as an argument in favour of using
weaker but efficiently computable bounds NTUmax and TUmax.

Related work
Vertex-cover auctions have been studied in the past by Talwar [21]
and Calinescu [5]. Both of these papers are based on the definition
of frugality ratio used in [1]; as mentioned before, this means that
their results only apply to bipartite graphs. Talwar [21] shows that
the frugality ratio of VCG is at most Δ. However, since finding
the cheapest vertex cover is an NP-hard problem, the VCG mech-
anism is computationally infeasible. The first (and, to the best of
our knowledge, only) paper to investigate polynomial-time truthful
mechanisms for vertex cover is [5]. This paper studies an auction
that is based on the greedy allocation algorithm, which has an ap-
proximation ratio of log n. While the main focus of [5] is the more
general set cover problem, the results of [5] imply a frugality ratio
of 2Δ2 for vertex cover. Our results improve on those of [21] as
our mechanism is polynomial-time computable, as well as on those
of [5], as our mechanism has a better approximation ratio, and we
prove a stronger bound on the frugality ratio; moreover, this bound
also applies to the mechanism of [5].

2. PRELIMINARIES
In most of this paper, we discuss auctions for set systems. A

set system is a pair (E ,F), where E is the ground set, |E| = n,
and F is a collection of feasible sets, which are subsets of E . Two
particular types of set systems are of interest to us — shortest path
systems, in which the ground set consists of all edges of a network,
and the feasible sets are paths between two specified vertices s and
t, and vertex cover systems, in which the elements of the ground set
are the vertices of a graph, and the feasible sets are vertex covers of
this graph.

In set system auctions, each element e of the ground set is owned
by an independent agent and has an associated non-negative cost ce.
The goal of the centre is to select (purchase) a feasible set. Each
element e in the selected set incurs a cost of ce. The elements that
are not selected incur no costs.

The auction proceeds as follows: all elements of the ground set
make their bids, the centre selects a feasible set based on the bids
and makes payments to the agents. Formally, an auction is defined
by an allocation rule A : Rn �→ F and a payment rule P : Rn �→
Rn. The allocation rule takes as input a vector of bids and decides
which of the sets in F should be selected. The payment rule also
takes as input a vector of bids and decides how much to pay to each
agent. The standard requirements are individual rationality, i.e.,
the payment to each agent should be at least as high as his incurred
cost (0 for agents not in the selected set and ce for agents in the
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selected set) and incentive compatibility, or truthfulness, i.e., each
agent’s dominant strategy is to bid his true cost.

An allocation rule is monotone if an agent cannot increase his
chance of getting selected by raising his bid. Formally, for any bid
vector b and any e ∈ E , if e �∈ A(b) then e �∈ A(b1, . . . , b

′
e, . . . , bn)

for any b′e > be. Given a monotone allocation rule A and a bid
vector b, the threshold bid te of an agent e ∈ A(b) is the highest
bid of this agent that still wins the auction, given that the bids of
other participants remain the same. Formally, te = sup{b′e ∈ R |
e ∈ A(b1, . . . , b

′
e, . . . , bn)}. It is well known (see, e.g. [19, 13])

that any auction that has a monotone allocation rule and pays each
agent his threshold bid is truthful; conversely, any truthful auction
has a monotone allocation rule.

The VCG mechanism is a truthful mechanism that maximises
the “social welfare” and pays 0 to the losing agents. For set system
auctions, this simply means picking a cheapest feasible set, paying
each agent in the selected set his threshold bid, and paying 0 to
all other agents. Note, however, that the VCG mechanism may be
difficult to implement, since finding a cheapest feasible set may be
intractable.

If U is a set of agents, c(U) denotes
P

w∈U cw. Similarly, b(U)
denotes

P
w∈U bw.

3. FRUGALITY RATIOS
We start by reproducing the definition of the quantity ν from [16,

Definition 4].
Let (E ,F) be a set system and let S be a cheapest feasible set

with respect to the true costs ce. Then ν(c, S) is the solution to the
following optimisation problem.

Minimise B =
P

e∈S be subject to

(1) be ≥ ce for all e ∈ E
(2)

P
e∈S\T be ≤ P

e∈T\S ce for all T ∈ F
(3) for every e ∈ S, there is a Te ∈ F such that e �∈ Te andP

e′∈S\Te
be′ =

P
e′∈Te\S ce′

The bound ν(c, S) can be seen as an outcome of a two-stage
process, where first each agent e ∈ S makes a bid be stating how
much it wants to be paid, and then the centre decides whether to
accept these bids. The behaviour of both parties is affected by the
following considerations. From the centre’s point of view, the set
S must remain the most attractive choice, i.e., it must be among
the cheapest feasible sets under the new costs c′e = ce for e �∈ S,
c′e = be for e ∈ S (condition (2)). The reason for that is that
if (2) is violated for some set T , the centre would prefer T to S.
On the other hand, no agent would agree to a payment that does
not cover his costs (condition (1)), and moreover, each agent tries
to maximise his profit by bidding as high as possible, i.e., none
of the agents can increase his bid without violating condition (2)
(condition (3)). The centre wants to minimise the total payout, so
ν(c, S) corresponds to the best possible outcome from the centre’s
point of view.

This definition captures many important aspects of our intuition
about ‘fair’ payments. However, it can be modified in two ways,
both of which are still quite natural, but result in different payment
bounds.

First, we can consider the worst rather than the best possible out-
come for the centre. That is, we can consider the maximum total
payment that the agents can extract by jointly selecting their bids
subject to (1), (2), and (3). Such a bound corresponds to maximis-
ing B subject to (1), (2), and (3) rather than minimising it. If it
is the agents who make the original bids (rather than the centre),

this kind of bidding behaviour is plausible. On the other hand, in a
game in which the centre proposes payments to the agents in S and
the agents accept them as long as (1), (2) and (3) are satisfied, we
would be likely to observe a total payment of ν(c, S). Hence, the
difference between these two definitions can be seen as “the price
of initiative”.

Second, the agents may be able to make payments to each other.
In this case, if they can extract more money from the centre by
agreeing on a vector of bids that violates individual rationality (i.e.,
condition (1)) for some bidders, they might be willing to do so, as
the agents who are paid below their costs will be compensated by
other members of the group. The bids must still be realistic, i.e.,
they have to satisfy be ≥ 0. The resulting change in payments can
be seen as “the price of co-operation” and corresponds to replacing
condition (1) with the following weaker condition (1∗):

be ≥ 0 for all e ∈ E . (1∗)

By considering all possible combinations of these modifications,
we obtain four different payment bounds, namely

• TUmin(c, S), which is the solution to the optimisation prob-
lem “Minimise B” subject to (1∗), (2), and (3).

• TUmax(c, S), which is the solution to the optimisation prob-
lem “Maximise B” subject to (1∗), (2), and (3).

• NTUmin(c, S), which is the solution to the optimisation
problem “Minimise B” subject to (1), (2), and (3).

• NTUmax(c, S), which is the solution to the optimisation
problem “Maximise B” subject to (1), (2), (3).

The abbreviations TU and NTU correspond, respectively, to trans-
ferable utility and non-transferable utility, i.e., the agents’ abil-
ity/inability to make payments to each other. For concreteness,
we will take TUmin(c) to be TUmin(c, S) where S is the lex-
icographically least amongst the cheapest feasible sets. We de-
fine TUmax(c), NTUmin(c), NTUmax(c) and ν(c) similarly,
though we will see in Section 6.3 that, in fact, NTUmin(c, S) and
NTUmax(c, S) are independent of the choice of S. Note that the
quantity ν(c) from [16] is NTUmin(c).

The second modification (transferable utility) is more intuitively
appealing in the context of the maximisation problem, as both as-
sume some degree of co-operation between the agents. While the
second modification can be made without the first, the resulting
payment bound TUmin(c, S) is too strong to be a realistic bench-
mark, at least for general set systems. In particular, it can be smaller
than the total cost of the cheapest feasible set S (see Section 6).
Nevertheless, we provide the definition as well as some results
about TUmin(c, S) in the paper, both for completeness and be-
cause we believe that it may help to understand which properties
of the payment bounds are important for our proofs. Another pos-
sibility would be to introduce an additional constraint

P
e∈S be ≥P

e∈S ce in the definition of TUmin(c, S) (note that this condi-
tion holds automatically for TUmax(c, S), as TUmax(c, S) ≥
NTUmax(c, S)); however, such a definition would have no direct
game-theoretic interpretation, and some of our results (in particu-
lar, the ones in Section 4) would no longer be true.

REMARK 1. For the payment bounds that are derived from max-
imisation problems, (i.e., TUmax(c, S) and NTUmax(c, S)), con-
straints of type (3) are redundant and can be dropped. Hence,
TUmax(c, S) and NTUmax(c, S) are solutions to linear pro-
grams, and therefore can be computed in polynomial time as long
as we have a separation oracle for constraints in (2). In contrast,
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NTUmin(c, S) can be NP-hard to compute even if the size of F is
polynomial (see Section 6).

The first and third inequalities in the following observation fol-
low from the fact that condition (1∗) is strictly weaker than condi-
tion (1).

PROPOSITION 1.

TUmin(c, S) ≤ NTUmin(c, S) ≤
NTUmax(c, S) ≤ TUmax(c, S).

Let M be a truthful mechanism for (E ,F). Let pM(c) denote
the total payments of M when the actual costs are c. A frugality
ratio of M with respect to a payment bound is the ratio between
the payment of M and this payment bound. In particular,

φTUmin(M) = sup
c

pM(c)/TUmin(c),

φTUmax(M) = sup
c

pM(c)/TUmax(c),

φNTUmin(M) = sup
c

pM(c)/NTUmin(c),

φNTUmax(M) = sup
c

pM(c)/NTUmax(c).

We conclude this section by showing that there exist set systems
and respective cost vectors for which all four payment bounds are
different. In the next section, we quantify this difference, both for
general set systems, and for specific types of set systems, such as
path auctions or vertex cover auctions.

EXAMPLE 1. Consider the shortest-path auction on the graph
of Figure 1. The cheapest feasible sets are all paths from A to D. It
can be verified, using the reasoning of Propositions 2 and 3 below,
that for the cost vector cAB = cCD = 2, cBC = 1, cAC = cBD =
5, we have

• TUmax(c) = 10 (with bAB = bCD = 5, bBC = 0),

• NTUmax(c) = 9 (with bAB = bCD = 4, bBC = 1),

• NTUmin(c) = 7 (with bAB = bCD = 2, bBC = 3),

• TUmin(c) = 5 (with bAB = bCD = 0, bBC = 5).

4. COMPARING PAYMENT BOUNDS
4.1 Path auctions

We start by showing that for path auctions any two consecutive
payment bounds can differ by at least a factor of 2.

PROPOSITION 2. There is an instance of the shortest-path prob-
lem for which we have NTUmax(c)/NTUmin(c) ≥ 2.

PROOF. This construction is due to David Kempe [17]. Con-
sider the graph of Figure 1 with the edge costs cAB = cBC =
cCD = 0, cAC = cBD = 1. Under these costs, ABCD is the
cheapest path. The inequalities in (2) are bAB + bBC ≤ cAC = 1,
bBC + bCD ≤ cBD = 1. By condition (3), both of these inequal-
ities must be tight (the former one is the only inequality involv-
ing bAB , and the latter one is the only inequality involving bCD).
The inequalities in (1) are bAB ≥ 0, bBC ≥ 0, bCD ≥ 0. Now,
if the goal is to maximise bAB + bBC + bCD , the best choice is
bAB = bCD = 1, bBC = 0, so NTUmax(c) = 2. On the other
hand, if the goal is to minimise bAB + bBC + bCD , one should set
bAB = bCD = 0, bBC = 1, so NTUmin(c) = 1.

PROPOSITION 3. There is an instance of the shortest-path prob-
lem for which we have TUmax(c)/NTUmax(c) ≥ 2.

PROOF. Again, consider the graph of Figure 1. Let the edge
costs be cAB = cCD = 0, cBC = 1, cAC = cBD = 1. ABCD
is the lexicographically-least cheapest path, so we can assume that
S = {AB, BC,CD}. The inequalities in (2) are the same as in
the previous example, and by the same argument both of them are,
in fact, equalities. The inequalities in (1) are bAB ≥ 0, bBC ≥ 1,
bCD ≥ 0. Our goal is to maximise bAB + bBC + bCD . If we have
to respect the inequalities in (1), we have to set bAB = bCD = 0,
bBC = 1, so NTUmax(c) = 1. Otherwise, we can set bAB =
bCD = 1, bBC = 0, so TUmax(c) ≥ 2.

PROPOSITION 4. There is an instance of the shortest-path prob-
lem for which we have NTUmin(c)/TUmin(c) ≥ 2.

PROOF. This construction is also based on the graph of Figure 1.
The edge costs are cAB = cCD = 1, cBC = 0, cAC = cBD =
1. ABCD is the lexicographically least cheapest path, so we can
assume that S = {AB, BC, CD}. Again, the inequalities in (2)
are the same, and both are, in fact, equalities. The inequalities in (1)
are bAB ≥ 1, bBC ≥ 0, bCD ≥ 1. Our goal is to minimise bAB +
bBC +bCD. If we have to respect the inequalities in (1), we have to
set bAB = bCD = 1, bBC = 0, so NTUmin(c) = 2. Otherwise,
we can set bAB = bCD = 0, bBC = 1, so TUmin(c) ≤ 1.

In Section 4.4 (Theorem 3), we show that the separation results
in Propositions 2, 3, and 4 are optimal.

4.2 Connections between separation results
The separation results for path auctions are obtained on the same

graph using very similar cost vectors. It turns out that this is not
coincidental. Namely, we can prove the following theorem.

THEOREM 1. For any set system (E ,F), and any feasible set S,

max
c

TUmax(c, S)

NTUmax(c, S)
= max

c

NTUmax(c, S)

NTUmin(c, S)
,

max
c

NTUmax(c, S)

NTUmin(c, S)
= max

c

NTUmin(c, S)

TUmin(c, S)
,

where the maximum is over all cost vectors c for which S is a
cheapest feasible set.

The proof of the theorem follows directly from the four lemmas
proved below; more precisely, the first equality in Theorem 1 is
obtained by combining Lemmas 1 and 2, and the second equality is
obtained by combining Lemmas 3 and 4. We prove Lemma 1 here;
the proofs of Lemmas 2– 4 are similar and can be found in the full
version of this paper [8].

LEMMA 1. Suppose that c is a cost vector for (E ,F) such that
S is a cheapest feasible set and TUmax(c, S)/NTUmax(c, S) =
α. Then there is a cost vector c′ such that S is a cheapest feasible
set and NTUmax(c′, S)/NTUmin(c′, S) ≥ α.

PROOF. Suppose that TUmax(c, S) = X and NTUmax(c, S) =
Y where X/Y = α. Assume without loss of generality that S
consists of elements 1, . . . , k, and let b1 = (b1

1, . . . , b
1
k) and b2 =

(b2
1, . . . , b

2
k) be the bid vectors that correspond to TUmax(c, S)

and NTUmax(c, S), respectively.
Construct the cost vector c′ by setting c′i = ci for i �∈ S,

c′i = min{ci, b
1
i } for i ∈ S. Clearly, S is a cheapest set under c′.

Moreover, as the costs of elements outside of S remained the same,
the right-hand sides of all constraints in (2) did not change, so any
bid vector that satisfies (2) and (3) with respect to c, also satisfies
them with respect to c′. We will construct two bid vectors b3 and
b4 that satisfy conditions (1), (2), and (3) for the cost vector c′, and
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Figure 2: Graph that separates payment bounds for vertex
cover, n = 7

have
P

i∈S b3
i = X,

P
i∈S b4

i = Y . As NTUmax(c′, S) ≥ X
and NTUmin(c′, S) ≤ Y , this implies the lemma.

We can set b3
i = b1

i : this bid vector satisfies conditions (2)
and (3) since b1 does, and we have b1

i ≥ min{ci, b
1
i } = c′i,

which means that b3 satisfies condition (1). Furthermore, we can
set b4

i = b2
i . Again, b4 satisfies conditions (2) and (3) since b2

does, and since b2 satisfies condition (1), we have b2
i ≥ ci ≥ c′i,

which means that b4 satisfies condition (1).

LEMMA 2. Suppose c is a cost vector for (E ,F) such that S is
a cheapest feasible set and NTUmax(c, S)/NTUmin(c, S) = α.
Then there is a cost vector c′ such that S is a cheapest feasible set
and TUmax(c′, S)/NTUmax(c′, S) ≥ α.

LEMMA 3. Suppose that c is a cost vector for (E ,F) such that
S is a cheapest feasible set and NTUmax(c, S)/NTUmin(c, S) =
α. Then there is a cost vector c′ such that S is a cheapest feasible
set and NTUmin(c′, S)/TUmin(c′, S) ≥ α.

LEMMA 4. Suppose that c is a cost vector for (E ,F) such that
S is a cheapest feasible set and NTUmin(c, S)/TUmin(c, S) =
α. Then there is a cost vector c′ such that S is a cheapest feasible
set and NTUmax(c′, S)/NTUmin(c′, S) ≥ α.

4.3 Vertex-cover auctions
In contrast to the case of path auctions, for vertex-cover auc-

tions the gap between NTUmin(c) and NTUmax(c) (and hence
between NTUmax(c) and TUmax(c), and between TUmin(c)
and NTUmin(c)) can be proportional to the size of the graph.

PROPOSITION 5. For any n ≥ 3, there is a an n-vertex graph
and a cost vector c for which TUmax(c)/NTUmax(c) ≥ n − 2.

PROOF. The underlying graph consists of an (n − 1)-clique on
the vertices X1, . . . , Xn−1, and an extra vertex X0 adjacent to
Xn−1. The costs are cX1 = cX2 = · · · = cXn−2 = 0, cX0 =
cXn−1 = 1. We can assume that S = {X0, X1, . . . , Xn−2} (this
is the lexicographically first vertex cover of cost 1). For this set
system, the constraints in (2) are bXi + bX0 ≤ cXn−1 = 1 for
i = 1, . . . , n − 2. Clearly, we can satisfy conditions (2) and (3)
by setting bXi = 1 for i = 1, . . . , n − 2, bX0 = 0. Hence,
TUmax(c) ≥ n − 2. For NTUmax(c), there is an additional
constraint bX0 ≥ 1, so the best we can do is to set bXi = 0 for
i = 1, . . . , n − 2, bX0 = 1, which implies NTUmax(c) = 1.

Combining Proposition 5 with Lemmas 1 and 3, we derive the
following corollaries.

COROLLARY 1. For any n ≥ 3, we can construct an instance
of the vertex cover problem on a graph of size n that satisfies
NTUmax(c)/NTUmin(c) ≥ n − 2.

COROLLARY 2. For any n ≥ 3, we can construct an instance
of the vertex cover problem on a graph of size n that satisfies
NTUmin(c)/TUmin(c) ≥ n − 2.
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Figure 3: Proof of Theorem 3: constraints for P̂ij and P̂ij+2 do
not overlap

4.4 Upper bounds
It turns out that the lower bound proved in the previous subsec-

tion is almost tight. More precisely, the following theorem shows
that no two payment bounds can differ by more than a factor of n;
moreover, this is the case not just for the vertex cover problem, but
for general set systems. We bound the gap between TUmax(c) and
TUmin(c). Since TUmin(c) ≤ NTUmin(c) ≤ NTUmax(c) ≤
TUmax(c), this bound applies to any pair of payment bounds.

THEOREM 2. For any set system (E ,F) and any cost vector c,
we have TUmax(c)/TUmin(c) ≤ n.

PROOF. Assume wlog that the winning set S consists of ele-
ments 1, . . . , k. Let c1, . . . , ck be the true costs of elements in S,
let b′1, . . . , b

′
k be their bids that correspond to TUmin(c), and let

b′′1 , . . . , b′′k be their bids that correspond to TUmax(c).
Consider the conditions (2) and (3) for S. One can pick a subset

L of at most k inequalities in (2) so that for each i = 1, . . . , k there
is at least one inequality in L that is tight for b′i. Suppose that the
jth inequality in L is of the form bi1 + · · · + bit ≤ c(Tj \ S). For
b′i, all inequalities in L are, in fact, equalities. Hence, by adding
up all of them we obtain k

P
i=1,...,k b′i ≥ P

j=1,...,k c(Tj \ S).
On the other hand, all these inequalities appear in condition (2), so
they must hold for b′′i , i.e.,

P
i=1,...,k b′′i ≤ P

j=1,...,k c(Tj \ S).
Combining these two inequalities, we obtain

nTUmin(c) ≥ kTUmin(c) ≥ TUmax(c).

REMARK 2. The final line of the proof of Theorem 2 shows
that, in fact, the upper bound on TUmax(c)/TUmin(c) can be
strengthened to the size of the winning set, k. Note that in Proposi-
tion 5, as well as in Corollaries 1 and 2, k = n−1, so these results
do not contradict each other.

For path auctions, this upper bound can be improved to 2, match-
ing the lower bounds of Section 4.1.

THEOREM 3. For any instance of the shortest path problem,
TUmax(c) ≤ 2 TUmin(c).

PROOF. Given a network (G, s, t), assume without loss of gen-
erality that the lexicographically-least cheapest s–t path, P , in G
is {e1, . . . , ek}, where e1 = (s, v1), e2 = (v1, v2), . . . , ek =
(vk−1, t). Let c1, . . . , ck be the true costs of e1, . . . , ek, and let
b′ = (b′1, . . . , b

′
k) and b′′ = (b′′1 , . . . , b′′k) be bid vectors that cor-

respond to TUmin(c) and TUmax(c), respectively.
For any i = 1, . . . , k, there is a constraint in (2) that is tight for

b′i with respect to the bid vector b′, i.e., an s–t path Pi that avoids
ei and satisfies b′(P \Pi) = c(Pi\P ). We can assume without loss
of generality that Pi coincides with P up to some vertex xi, then
deviates from P to avoid ei, and finally returns to P at a vertex
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yi and coincides with P from then on (clearly, it might happen
that s = xi or t = yi). Indeed, if Pi deviates from P more than
once, one of these deviations is not necessary to avoid ei and can
be replaced with the respective segment of P without increasing the
cost of Pi. Among all paths of this form, let P̂i be the one with the
largest value of yi, i.e., the “rightmost” one. This path corresponds
to an inequality Ii of the form b′xi+1 + · · · + b′yi

≤ c(P̂i \ P ).
As in the proof of Theorem 2, we construct a set of tight con-

straints L such that every variable b′i appears in at least one of these
constraints; however, now we have to be more careful about the
choice of constraints in L. We construct L inductively as follows.
Start by setting L = {I1}. At the jth step, suppose that all vari-
ables up to (but not including) b′ij

appear in at least one inequality
in L. Add Iij to L.

Note that for any j we have yij+1 > yij . This is because the
inequalities added to L during the first j steps did not cover b′ij+1 .
See Figure 3. Since yij+2 > yij+1 , we must also have xij+2 >

yij : otherwise, P̂ij+1 would not be the “rightmost” constraint for
b′ij+1 . Therefore, the variables in Iij+2 and Iij do not overlap, and
hence no b′i can appear in more than two inequalities in L.

Now we follow the argument of the proof of Theorem 2 to finish.
By adding up all of the (tight) inequalities in L for b′i we obtain
2

P
i=1,...,k b′i ≥ P

j=1,...,k c(P̂j \ P ). On the other hand, all
these inequalities appear in condition (2), so they must hold for
b′′i , i.e.,

P
i=1,...,k b′′i ≤ P

j=1,...,k c(P̂j \ P ), so TUmax(c) ≤
2TUmin(c).

5. TRUTHFUL MECHANISMS FOR VER-
TEX COVER

Recall that for a vertex-cover auction on a graph G = (V, E), an
allocation rule is an algorithm that takes as input a bid bv for each
vertex and returns a vertex cover Ŝ of G. As explained in Sec-
tion 2, we can combine a monotone allocation rule with threshold
payments to obtain a truthful auction.

Two natural examples of monotone allocation rules are Aopt, i.e.,
the algorithm that finds an optimal vertex cover, and the greedy
algorithm AGR. However, Aopt cannot be guaranteed to run in
polynomial time unless P = NP and AGR has approximation
ratio of log n.

Another approximation algorithm for vertex cover, which has ap-
proximation ratio 2, is the local ratio algorithm ALR [2, 3]. This
algorithm considers the edges of G one by one. Given an edge
e = (u, v), it computes ε = min{bu, bv} and sets bu = bu − ε,
bv = bv − ε. After all edges have been processed, ALR returns
the set of vertices {v | bv = 0}. It is not hard to check that if
the order in which the edges are considered is independent of the
bids, then this algorithm is monotone as well. Hence, we can use it
to construct a truthful auction that is guaranteed to select a vertex
cover whose cost is within a factor of 2 from the optimal.

However, while the quality of the solution produced by ALR is
much better than that of AGR, we still need to show that its total
payment is not too high. In the next subsection, we bound the fru-
gality ratio of ALR (and, more generally, all algorithms that satisfy
the condition of local optimality, defined later) by 2Δ, where Δ is
the maximum degree of G. We then prove a matching lower bound
showing that for some graphs the frugality ratio of any truthful auc-
tion is at least Δ/2.

5.1 Upper bound
We say that an allocation rule is locally optimal if whenever bv >P
w∼v bw, the vertex v is not chosen. Note that for any such rule

the threshold bid of v satisfies tv ≤ P
w∼v bw.

CLAIM 1. The algorithms Aopt, AGR, and ALR are locally
optimal.

THEOREM 4. Any vertex cover auction M that has a locally
optimal and monotone allocation rule and pays each agent his
threshold bid has frugality ratio φNTUmin(M) ≤ 2Δ.

To prove Theorem 4, we first show that the total payment of
any locally optimal mechanism does not exceed Δc(V ). We then
demonstrate that NTUmin(c) ≥ c(V )/2. By combining these
two results, the theorem follows.

LEMMA 5. Consider a graph G = (V, E) with maximum de-
gree Δ. Let M be a vertex-cover auction on G that satisfies the
conditions of Theorem 4. Then for any cost vector c, the total pay-
ment of M satisfies pM(c) ≤ Δc(V ).

PROOF. First note that any such auction is truthful, so we can
assume that each agent’s bid is equal to his cost. Let Ŝ be the
vertex cover selected by M. Then by local optimality

pM(c) =
X

v∈Ŝ

tv ≤
X

v∈Ŝ

X

w∼v

cw ≤
X

w∈V

Δcw = Δc(V ).

We now derive a lower bound on TUmax(c); while not essential
for the proof of Theorem 4, it helps us build the intuition necessary
for that proof.

LEMMA 6. For a vertex cover instance G = (V, E) in which S
is a minimum vertex cover, TUmax(c, S) ≥ c(V \ S)

PROOF. For a vertex w with at least one neighbour in S, let
d(w) denote the number of neighbours that w has in S. Consider
the bid vector b in which, for each v ∈ S, bv =

P
w∼v,w �∈S

cw
d(w)

.
Then

P
v∈S bv =

P
v∈S

P
w∼v,w �∈S cw/d(w) =

P
w/∈S cw =

c(V \ S). To finish we want to show that b is feasible in the sense
that it satisfies (2). Consider a vertex cover T , and extend the bid
vector b by assigning bv = cv for v /∈ S. Then

b(T ) = c(T \S)+b(S∩T ) ≥ c(T \S)+
X

v∈S∩T

X

w∈S∩T :w∼v

cw

d(w)
,

and since all edges between S ∩ T and S go to S ∩ T , the right-
hand-side is equal to

c(T \S)+
X

w∈S∩T

cw = c(T \S)+ c(S∩T ) = c(V \S) = b(S).

Next, we prove a lower bound on NTUmax(c, S); we will then
use it to obtain a lower bound on NTUmin(c).

LEMMA 7. For a vertex cover instance G = (V, E) in which S
is a minimum vertex cover, NTUmax(c, S) ≥ c(V \ S)

PROOF. If c(S) ≥ c(V \ S), by condition (1) we are done.
Therefore, for the rest of the proof we assume that c(S) < c(V \
S). We show how to construct a bid vector (be)e∈S that satisfies
conditions (1) and (2) such that b(S) ≥ c(V \ S); clearly, this
implies NTUmax(c, S) ≥ c(V \ S).

Recall that a network flow problem is described by a directed
graph Γ = (VΓ, EΓ), a source node s ∈ VΓ, a sink node t ∈
VΓ, and a vector of capacity constraints ae, e ∈ EΓ. Consider a
network (VΓ, EΓ) such that VΓ = V ∪{s, t}, EΓ = E1∪E2∪E3,
where E1 = {(s, v) | v ∈ S}, E2 = {(v, w) | v ∈ S, w ∈
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V \ S, (v, w) ∈ E}, E3 = {(w, t) | w ∈ V \ S}. Since S is
a vertex cover for G, no edge of E can have both of its endpoints
in V \ S, and by construction, E2 contains no edges with both
endpoints in S. Therefore, the graph (V, E2) is bipartite with parts
(S, V \ S).

Set the capacity constraints for e ∈ EΓ as follows: a(s,v) =
cv , a(w,t) = cw, a(v,w) = +∞ for all v ∈ S, w ∈ V \ S.
Recall that a cut is a partition of the vertices in VΓ into two sets
C1 and C2 so that s ∈ C1, t ∈ C2; we denote such a cut by
C = (C1, C2). Abusing notation, we write e = (u, v) ∈ C if
u ∈ C1, v ∈ C2 or u ∈ C2, v ∈ C1, and say that such an edge
e = (u, v) crosses the cut C. The capacity of a cut C is computed
as cap(C) =

P
(v,w)∈C a(v,w). We have cap(s, V ∪{t}) = c(S),

cap({s} ∪ V, t) = c(V \ S).
Let Cmin = ({s} ∪ S′ ∪ W ′, {t} ∪ S′′ ∪ W ′′) be a minimum

cut in Γ, where S′, S′′ ⊆ S, W ′, W ′′ ⊆ V \ S. See Figure 4. As
cap(Cmin) ≤ cap(s, V ∪ {t}) = c(S) < +∞, and any edge in
E2 has infinite capacity, no edge (u, v) ∈ E2 crosses Cmin.

Consider the network Γ′ = (VΓ′ , EΓ′), where VΓ′ = {s} ∪
S′ ∪ W ′ ∪ {t}, EΓ′ = {(u, v) ∈ EΓ | u, v ∈ VΓ′}. Clearly,
C′ = ({s} ∪ S′ ∪ W ′, {t}) is a minimum cut in Γ′ (otherwise,
there would exist a smaller cut for Γ). As cap(C′) = c(W ′), we
have c(S′) ≥ c(W ′).

Now, consider the network Γ′′ = (VΓ′′ , EΓ′′), where VΓ′′ =
{s} ∪ S′′ ∪ W ′′ ∪ {t}, EΓ′′ = {(u, v) ∈ EΓ | u, v ∈ VΓ′′}.
Similarly, C′′ = ({s}, S′′ ∪ W ′′ ∪ {t}) is a minimum cut in Γ′′,
cap(C′′) = c(S′′). As the size of a maximum flow from s to
t is equal to the capacity of a minimum cut separating s and t,
there exists a flow F = (fe)e∈EΓ′′ of size c(S′′). This flow has
to saturate all edges between s and S′′, i.e., f(s,v) = cv for all
v ∈ S′′. Now, increase the capacities of all edges between s and
S′′ to +∞. In the modified network, the capacity of a minimum cut
(and hence the size of a maximum flow) is c(W ′′), and a maximum
flow F ′ = (f ′

e)e∈EΓ′′ can be constructed by greedily augmenting
F .

Set bv = cv for all v ∈ S′, bv = f ′
(s,v) for all v ∈ S′′. As F ′ is

constructed by augmenting F , we have bv ≥ cv for all v ∈ S, i.e.,
condition (1) is satisfied.

Now, let us check that no vertex cover T ⊆ V can violate con-
dition (2). Set T1 = T ∩ S′, T2 = T ∩ S′′, T3 = T ∩ W ′,
T4 = T ∩W ′′; our goal is to show that b(S′ \T1) + b(S′′ \ T2) ≤
c(T3)+c(T4). Consider all edges (u, v) ∈ E such that u ∈ S′\T1.
If (u, v) ∈ E2 then v ∈ T3 (no edge in E2 can cross the cut), and if
u, v ∈ S then v ∈ T1∪T2. Hence, T1∪T3∪S′′ is a vertex cover for
G, and therefore c(T1)+ c(T3)+ c(S′′) ≥ c(S) = c(T1)+ c(S′ \
T1) + c(S′′). Consequently, c(T3) ≥ c(S′ \ T1) = b(S′ \ T1).
Now, consider the vertices in S′′ \T2. Any edge in E2 that starts in
one of these vertices has to end in T4 (this edge has to be covered by
T , and it cannot go across the cut). Therefore, the total flow out of
S′′ \T2 is at most the total flow out of T4, i.e., b(S′′ \T2) ≤ c(T4).
Hence, b(S′ \ T1) + b(S′′ \ T2) ≤ c(T3) + c(T4).

Finally, we derive a lower bound on the payment bound that is
of interest to us, namely, NTUmin(c).

LEMMA 8. For a vertex cover instance G = (V, E) in which S
is a minimum vertex cover, NTUmin(c, S) ≥ c(V \ S)

PROOF. Suppose for contradiction that c is a cost vector with
minimum-cost vertex cover S and NTUmin(c, S) < c(V \S). Let
b be the corresponding bid vector and let c′ be a new cost vector
with c′v = bv for v ∈ S and c′v = cv for v �∈ S. Condition (2)
guarantees that S is an optimal solution to the cost vector c′. Now
compute a bid vector b′ corresponding to NTUmax(c′, S). We
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Figure 4: Proof of Lemma 7. Dashed lines correspond to edges
in E \ E2

claim that b′v = c′v for any v ∈ S. Indeed, suppose that b′v > c′v
for some v ∈ S (b′v = c′v for v �∈ S by construction). As b satisfies
conditions (1)–(3), among the inequalities in (2) there is one that is
tight for v and the bid vector b. That is, b(S \ T ) = c(T \ S). By
the construction of c′, c′(S \ T ) = c′(T \S). Now since b′w ≥ c′w
for all w ∈ S, b′v > c′v implies b′(S \T ) > c′(S \T ) = c′(T \S).
But this violates (2). So we now know b′ = c′. Hence, we have
NTUmax(c′, S) =

P
v∈S bv = NTUmin(c, S) < c(V \ S),

giving a contradiction to the fact that NTUmax(c′, S) ≥ c′(V \S)
which we proved in Lemma 7.

As NTUmin(c, S) satisfies condition (1), it follows that we
have NTUmin(c, S) ≥ c(S). Together will Lemma 8, this implies
NTUmin(c, S) ≥ max{c(V \ S), c(S)} ≥ c(V )/2. Combined
with Lemma 5, this completes the proof of Theorem 4.

REMARK 3. As NTUmin(c) ≤ NTUmax(c) ≤ TUmax(c),
our bound of 2Δ extends to the smaller frugality ratios that we con-
sider, i.e., φNTUmax(M) and φTUmax(M). It is not clear whether
it extends to the larger frugality ratio φTUmin(M). However, the
frugality ratio φTUmin(M) is not realistic because the payment
bound TUmin(c) is inappropriately low – we show in Section 6
that TUmin(c) can be significantly smaller than the total cost of a
cheapest vertex cover.

Extensions
We can also apply our results to monotone vertex-cover algorithms
that do not necessarily output locally-optimal solutions. To do so,
we simply take the vertex cover produced by any such algorithm
and transform it into a locally-optimal one, considering the vertices
in lexicographic order and replacing a vertex v with its neighbours
whenever bv >

P
u∼v bu. Note that if a vertex u has been added to

the vertex cover during this process, it means that it has a neighbour
whose bid is higher than bu, so after one pass all vertices in the ver-
tex cover satisfy bv ≤ P

u∼v bu. This procedure is monotone in
bids, and it can only decrease the cost of the vertex cover. There-
fore, using it on top of a monotone allocation rule with approx-
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imation ratio α, we obtain a monotone locally-optimal allocation
rule with approximation ratio α. Combining it with threshold pay-
ments, we get an auction with φNTUmin ≤ 2Δ. Since any truthful
auction has a monotone allocation rule, this procedure transforms
any truthful mechanism for the vertex-cover problem into a frugal
one while preserving the approximation ratio.

5.2 Lower bound
In this subsection, we prove that the upper bound of Theorem 4

is essentially optimal. Our proof uses the techniques of [9], where
the authors prove a similar result for shortest-path auctions.

THEOREM 5. For any Δ > 0 and any n, there exist a graph G
of maximum degree Δ and size N > n such that for any truthful
mechanism M on G we have φNTUmin(M) ≥ Δ/2.

PROOF. Given n and Δ, set k = n/2Δ�. Let G be the graph
that consists of k blocks B1, . . . , Bk of size 2Δ each, where each
Bi is a complete bipartite graph with parts Li and Ri, |Li| =
|Ri| = Δ.

We will consider two families of cost vectors for G. Under a
cost vector x ∈ X, each block Bi has one vertex of cost 1; all
other vertices cost 0. Under a cost vector y ∈ Y , there is one block
that has two vertices of cost 1, one in each part, all other blocks
have one vertex of cost 1, and all other vertices cost 0. Clearly,
|X| = (2Δ)k, |Y | = k(2Δ)k−1Δ2. We will now construct a
bipartite graph W with the vertex set X ∪ Y as follows.

Consider a cost vector y ∈ Y that has two vertices of cost 1 in
Bi; let these vertices be vl ∈ Li and vr ∈ Ri. By changing the
cost of either of these vertices to 0, we obtain a cost vector in X.
Let xl and xr be the cost vectors obtained by changing the cost of
vl and vr , respectively. The vertex cover chosen by M(y) must
either contain all vertices in Li or it must contain all vertices in Ri.
In the former case, we put in W an edge from y to xl and in the
latter case we put in W an edge from y to xr (if the vertex cover
includes all of Bi, W contains both of these edges).

The graph W has at least k(2Δ)k−1Δ2 edges, so there must
exist an x ∈ X of degree at least kΔ/2. Let y1, . . . , ykΔ/2 be
the other endpoints of the edges incident to x, and for each i =
1, . . . , kΔ/2, let vi be the vertex whose cost is different under x
and yi; note that all vi are distinct.

It is not hard to see that NTUmin(x) ≤ k: the cheapest vertex
cover contains the all-0 part of each block, and we can satisfy con-
ditions (1)–(3) by letting one of the vertices in the all-0 part of each
block to bid 1, while all other the vertices in the cheapest set bid 0.

On the other hand, by monotonicity of M we have vi ∈ M(x)
for i = 1, . . . , kΔ/2 (vi is in the winning set under yi, and x is
obtained from yi by decreasing the cost of vi), and moreover, the
threshold bid of each vi is at least 1, so the total payment of M on x
is at least kΔ/2. Hence, φNTUmin(M) ≥ M(x)/NTUmin(x) ≥
Δ/2.

REMARK 4. The lower bound of Theorem 5 can be generalised
to randomised mechanisms, where a randomised mechanism is con-
sidered to be truthful if it can be represented as a probability distri-
bution over truthful mechanisms. In this case, instead of choosing
the vertex x ∈ X with the highest degree, we put both (y,xl)
and (y,xr) into W , label each edge with the probability that the
respective part of the block is chosen, and pick x ∈ X with the
highest weighted degree. The argument can be further extended to
a more permissive definition of truthfulness for randomised mech-
anisms, but this discussion is beyond the scope of this paper.

6. PROPERTIES OF PAYMENT BOUNDS
In this section we consider several desirable properties of pay-

ment bounds and evaluate the four payment bounds proposed in
this paper with respect to them. The particular properties that we
are interested in are independence of the choice of S (Section 6.3),
monotonicity (Section 6.4.1), computational hardness (Section 6.4.2),
and the relationship with other reasonable bounds, such as the total
cost of the cheapest set (Section 6.1), or the total VCG payment
(Section 6.2).

6.1 Comparison with total cost
Our first requirement is that a payment bound should not be less

than the total cost of the selected set. Payment bounds are used to
evaluate the performance of set-system auctions. The latter have to
satisfy individual rationality, i.e., the payment to each agent must
be at least as large as his incurred costs; it is only reasonable to
require the payment bound to satisfy the same requirement.

Clearly, NTUmax(c) and NTUmin(c) satisfy this requirement
due to condition (1), and so does TUmax(c), since TUmax(c) ≥
NTUmax(c). However, TUmin(c) fails this test. The example
of Proposition 4 shows that for path auctions, TUmin(c) can be
smaller than the total cost by a factor of 2. Moreover, there are set
systems and cost vectors for which TUmin(c) is smaller than the
cost of the cheapest set S by a factor of Ω(n). Consider, for ex-
ample, the vertex-cover auction for the graph of Proposition 5 with
the costs cX1 = · · · = cXn−2 = cXn−1 = 1, cX0 = 0. The cost
of a cheapest vertex cover is n − 2, and the lexicographically first
vertex cover of cost n−2 is {X0, X1, . . . , Xn−2}. The constraints
in (2) are bXi + bX0 ≤ cXn−1 = 1. Clearly, we can satisfy con-
ditions (2) and (3) by setting bX1 = · · · = bXn−2 = 0, bX0 = 1,
which means that TUmin(c) ≤ 1. This observation suggests that
the payment bound TUmin(c) is too strong to be realistic, since it
can be substantially lower than the cost of the cheapest feasible set.

Nevertheless, some of the positive results that were proved in [16]
for NTUmin(c) go through for TUmin(c) as well. In particular,
one can show that if the feasible sets are the bases of a monopoly-
free matroid, then φTUmin(VCG) = 1. To show that φTUmin(VCG)
is at most 1, one must prove that the VCG payment is at most
TUmin(c). This is shown for NTUmin(c) in the first paragraph
of the proof of Theorem 5 in [16]. Their argument does not use con-
dition (1) at all, so it also applies to TUmin(c). On the other hand,
φTUmin(VCG) ≥ 1 since φTUmin(VCG) ≥ φNTUmin(VCG)
and φNTUmin(VCG) ≥ 1 by Proposition 7 of [16] (and also by
Proposition 6 below).

6.2 Comparison with VCG payments
Another measure of suitability for payment bounds is that they

should not result in frugality ratios that are less then 1 for well-
known truthful mechanisms. If this is indeed the case, the payment
bound may be too weak, as it becomes too easy to design mecha-
nisms that perform well with respect to it. It particular, a reasonable
requirement is that a payment bound should not exceed the total
payment of the classical VCG mechanism.

The following proposition shows that NTUmax(c), and there-
fore also NTUmin(c) and TUmin(c), do not exceed the VCG
payment pVCG(c). The proof essentially follows the argument of
Proposition 7 of [16] and can be found in the full version of this
paper [8].

PROPOSITION 6. φNTUmax(VCG) ≥ 1.

Proposition 6 shows that none of the payment bounds TUmin(c),
NTUmin(c) and NTUmax(c) exceeds the payment of VCG. How-
ever, the payment bound TUmax(c) can be larger that the total
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VCG payment. In particular, for the instance in Proposition 5, the
VCG payment is smaller than TUmax(c) by a factor of n− 2. We
have already seen that TUmax(c) ≥ n − 2. On the other hand,
under VCG, the threshold bid of any Xi, i = 1, . . . , n − 2, is 0:
if any such vertex bids above 0, it is deleted from the winning set
together with X0 and replaced with Xn−1. Similarly, the threshold
bid of X0 is 1, because if X0 bids above 1, it can be replaced with
Xn−1. So the VCG payment is 1.

This result is not surprising: the definition of TUmax(c) im-
plicitly assumes there is co-operation between the agents, while
the computation of VCG payments does not take into account any
interaction between them. Indeed, co-operation enables the agents
to extract higher payments under VCG. That is, VCG is not group-
strategyproof. This suggests that as a payment bound, TUmax(c)
may be too liberal, at least in a context where there is little or
no co-operation between agents. Perhaps TUmax(c) can be a
good benchmark for measuring the performance of mechanisms de-
signed for agents that can form coalitions or make side payments
to each other, in particular, group-strategyproof mechanisms.

Another setting in which bounding φTUmax is still of some in-
terest is when, for the underlying problem, the optimal allocation
and VCG payments are NP-hard to compute. In this case, finding
a polynomial-time computable mechanism with good frugality ra-
tio with respect to TUmax(c) is a non-trivial task, while bounding
the frugality ratio with respect to more challenging payment bounds
could be too difficult. To illustrate this point, compare the proofs
of Lemma 6 and Lemma 7: both require some effort, but the latter
is much more difficult than the former.

6.3 The choice of S

All payment bounds defined in this paper correspond to the total
bid of all elements in the cheapest feasible set, where ties are bro-
ken lexicographically. While this definition ensures that our pay-
ment bounds are well-defined, the particular choice of the draw-
resolution rule appears arbitrary, and one might wonder if our pay-
ment bounds are sufficiently robust to be independent of this choice.
It turns out that is indeed the case for NTUmin(c) and NTUmax(c),
i.e., these bounds do not depend on the draw-resolution rule. To
see this, suppose that two feasible sets S1 and S2 have the same
cost. In the computation of NTUmin(c, S1), all vertices in S1 \S2

would have to bid their true cost, since otherwise S2 would be-
come cheaper than S1. Hence, any bid vector for S1 can only have
be �= ce for e ∈ S1 ∩ S2, and hence constitutes a valid bid vector
for S2 and vice versa. A similar argument applies to NTUmax(c).

However, for TUmin(c) and TUmax(c) this is not the case.
For example, consider the set system

E = {e1, e2, e3, e4, e5},
F = {S1 = {e1, e2}, S2 = {e2, e3, e4}, S3 = {e4, e5}}

with the costs c1 = 2, c2 = c3 = c4 = 1, c5 = 3. The cheapest
sets are S1 and S2. Now TUmax(c, S1) ≤ 4, as the total bid of
the elements in S1 cannot exceed the total cost of S3. On the other
hand, TUmax(c, S2) ≥ 5, as we can set b2 = 3, b3 = 0, b4 = 2.
Similarly, TUmin(c, S1) = 4, because the inequalities in (2) are
b1 ≤ 2 and b1 + b2 ≤ 4. But TUmin(c, S2) ≤ 3 as we can set
b2 = 1, b3 = 2, b4 = 0.

6.4 Negative results for NTUmin(c) and TUmin(c)

The results in [16] and our vertex cover results are proved for the
frugality ratio φNTUmin. Indeed, it can be argued that φNTUmin is
the “best” definition of frugality ratio, because among all reason-
able payment bounds (i.e., ones that are at least as large as the cost
of the cheapest feasible set), it is most demanding of the algorithm.

However, NTUmin(c) is not always the easiest or the most natural
payment bound to work with. In this subsection, we discuss several
disadvantages of NTUmin(c) (and also TUmin(c)) as compared
to NTUmax(c) and TUmax(c).

6.4.1 Nonmonotonicity
The first problem with NTUmin(c) is that it is not monotone

with respect to F , i.e., it may increase when one adds a feasible
set to F . (It is, however, monotone in the sense that a losing agent
cannot become a winner by raising his cost.) Intuitively, a good
payment bound should satisfy this monotonicity requirement, as
adding a feasible set increases the competition, so it should drive
the prices down. Note that this indeed the case for NTUmax(c)
and TUmax(c) since a new feasible set adds a constraint in (2),
thus limiting the solution space for the respective linear program.

PROPOSITION 7. Adding a feasible set to F can increase the
value of NTUmin(c) by a factor of Ω(n).

PROOF. Let E = {x, xx, y1, . . . , yn, z1, . . . , zn}. Set Y =
{y1, . . . , yn}, S = Y ∪ {x}, Ti = Y \ {yi} ∪ {zi}, i = 1, . . . , n,
and suppose that F = {S, T1, . . . , Tn}. The costs are cx = 0,
cxx = 0, cyi = 0, czi = 1 for i = 1, . . . , n. Note that S is
the cheapest feasible set. Let F ′ = F ∪ {T0}, where T0 = Y ∪
{xx}. For F , the bid vector by1 = · · · = byn = 0, bx = 1
satisfies (1), (2), and (3), so NTUmin(c) ≤ 1. For F ′, S is still
the lexicographically-least cheapest set. Any optimal solution has
bx = 0 (by constraint in (2) with T0). Condition (3) for yi implies
bx + byi = czi = 1, so byi = 1 and NTUmin(c) = n.

For path auctions, it has been shown [18] that NTUmin(c) is
non-monotone in a slightly different sense, i.e., with respect to
adding a new edge (agent) rather than a new feasible set (a team
of existing agents).

REMARK 5. We can also show that NTUmin(c) is non-monotone
for vertex cover. In this case, adding a new feasible set corresponds
to deleting edges from the graph. It turns out that deleting a single
edge can increase NTUmin(c) by a factor of n− 2; the construc-
tion is similar to that of Proposition 5.

6.4.2 NP-Hardness
Another problem with NTUmin(c, S) is that it is NP-hard to

compute even if the number of feasible sets is polynomial in n.
Again, this puts it at a disadvantage compared to NTUmax(c, S)
and TUmax(c, S) (see Remark 1).

THEOREM 6. Computing NTUmin(c) is NP-hard, even when
the lexicographically-least feasible set S is given in the input.

PROOF. We reduce EXACT COVER BY 3-SETS(X3C) to our prob-
lem. An instance of X3C is given by a universe G = {g1, . . . , gn}
and a collection of subsets C1, . . . , Cm, Ci ⊂ G, |Ci| = 3, where
the goal is to decide whether one can cover G by n/3 of these sets.
Observe that if this is indeed the case, each element of G is con-
tained in exactly one set of the cover.

LEMMA 9. Consider a minimisation problem P of the following
form: Minimise

P
i=1,...,n bi under conditions (1) bi ≥ 0 for all

i = 1, . . . , n; (2) for any j = 1, . . . , k we have
P

bi∈Sj
bi ≤ aj ,

where Sj ⊆ {b1, . . . , bn}; (3) for each bj , one of the constraints
in (2) involving it is tight. For any such P, one can construct a
set system S and a vector of costs c such that NTUmin(c) is the
optimal solution to P.

PROOF. The construction is straightforward: there is an element
of cost 0 for each bi, an element of cost aj for each aj , the feasible
solutions are {b1, . . . , bn}, or any set obtained from {b1, . . . , bn}
by replacing the elements in Sj by aj .
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By this lemma, all we have to do to prove Theorem 6 is to show
how to solve X3C by using the solution to a minimisation problem
of the form given in Lemma 9. We do this as follows. For each
Ci, we introduce 4 variables xi, x̄i, ai, and bi. Also, for each
element gj of G there is a variable dj . We use the following set of
constraints:

• In (1), we have constraints xi ≥ 0, x̄i ≥ 0, ai ≥ 0, bi ≥ 0,
dj ≥ 0 for all i = 1, . . . , m, j = 1, . . . , n.

• In (2), for all i = 1, . . . , m, we have the following 5 con-
straints: xi + x̄i ≤ 1, xi +ai ≤ 1, x̄i +ai ≤ 1, xi + bi ≤ 1,
x̄i + bi ≤ 1. Also, for all j = 1, . . . , n we have a constraint
of the form xi1 + · · · + xik + dj ≤ 1, where Ci1 , . . . , Cik

are the sets that contain gj .

The goal is to minimize z =
P

i(xi + x̄i + ai + bi) +
P

j dj .
Observe that for each j, there is only one constraint involving

dj , so by condition (3) it must be tight.
Consider the two constraints involving ai. One of them must be

tight, and therefore xi+x̄i+ai+bi ≥ xi+x̄i+ai ≥ 1. Hence, for
any feasible solution to (1)–(3) we have z ≥ m. Now, suppose that
there is an exact set cover. Set dj = 0 for j = 1, . . . , n. Also, if Ci

is included in this cover, set xi = 1, x̄i = ai = bi = 0, otherwise
set x̄i = 1, xi = ai = bi = 0. Clearly, all inequalities in (2)
are satisfied (we use the fact that each element is covered exactly
once), and for each variable, one of the constraints involving it is
tight. This assignment results in z = m.

Conversely, suppose there is a feasible solution with z = m.
As each addend of the form xi + x̄i + ai + bi contributes at least
1, we have xi + x̄i + ai + bi = 1 for all i, dj = 0 for all j.
We will now show that for each i, either xi = 1 and x̄i = 0, or
xi = 0 and x̄i = 1. For the sake of contradiction, suppose that
xi = δ < 1, x̄i = δ′ < 1. As one of the constraints involving
ai must be tight, we have ai ≥ min{1 − δ, 1 − δ′}. Similarly,
bi ≥ min{1 − δ, 1 − δ′}. Hence, xi + x̄i + ai + bi = 1 =
δ+δ′ +2min{1−δ, 1−δ′} > 1. To finish the proof, note that for
each j = 1, . . . , m we have xi1 + · · ·+ xik + dj = 1 and dj = 0,
so the subsets that correspond to xi = 1 constitute a set cover.

REMARK 6. In the proofs of Proposition 7 and Theorem 6 all
constraints in (1) are of the form be ≥ 0. Hence, the same results
are true for TUmin(c).

REMARK 7. For shortest-path auctions, the size of F can be
superpolynomial. However, there is a polynomial-time separation
oracle for constraints in (2) (to construct one, use any algorithm
for finding shortest paths), so one can compute NTUmax(c) and
TUmax(c) in polynomial time. On the other hand, recently and
independently it was shown [18] that computing NTUmin(c) for
shortest-path auctions is NP-hard.

7. REFERENCES
[1] A. Archer and E. Tardos, Frugal path mechanisms. In

Proceedings of the 13th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 991–999, 2002

[2] R. Bar-Yehuda, K. Bendel, A. Freund, and D. Rawitz, Local
ratio: A unified framework for approximation algorithms. In
Memoriam: Shimon Even 1935-2004. ACM Comput. Surv.,
36(4):422–463, 2004

[3] R. Bar-Yehuda and S. Even, A local-ratio theorem for
approximating the weighted vertex cover problem. Annals of
Discrete Mathematics, 25:27–46, 1985

[4] E. Clarke, Multipart pricing of public goods. Public Choice,
8:17–33, 1971

[5] G. Calinescu, Bounding the payment of approximate truthful
mechanisms. In Proceedings of the 15th International
Symposium on Algorithms and Computation, pages 221–233,
2004

[6] A. Czumaj and A. Ronen, On the expected payment of
mechanisms for task allocation. In Proceedings of the 5th
ACM Conference on Electronic Commerce (EC’04), 2004

[7] E. Elkind, True costs of cheap labor are hard to measure: edge
deletion and VCG payments in graphs. In Proceedings of the
6th ACM Conference on Electronic Commerce (EC’05), 2005

[8] E. Elkind, L. A. Goldberg, and P. W. Goldberg, Frugality
ratios and improved truthful mechanisms for vertex cover.
Available from
http://arxiv.org/abs/cs/0606044, 2006

[9] E. Elkind, A. Sahai, and K. Steiglitz, Frugality in path
auctions. In Proceedings of the 15th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 694–702, 2004

[10] J. Feigenbaum, C. H. Papadimitriou, R. Sami, and
S. Shenker, A BGP-based mechanism for lowest-cost routing.
In Proceedings of the 21st Symposium on Principles of
Distributed Computing, pages 173–182, 2002

[11] A. Fiat, A. Goldberg, J. Hartline, and A. Karlin, Competitive
generalized auctions. In Proceedings of the 34th Annual ACM
Symposium on Theory of Computation, pages 72–81, 2002

[12] R. Garg, V. Kumar, A. Rudra and A. Verma, Coalitional
games on graphs: core structures, substitutes and frugality. In
Proceedings of the 4th ACM Conference on Electronic
Commerce (EC’03), 2005

[13] A. Goldberg, J. Hartline, and A. Wright, Competitive
auctions and digital goods. In Proceedings of the 12th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages
735–744, 2001

[14] T. Groves, Incentives in teams. Econometrica,
41(4):617–631, 1973

[15] N. Immorlica, D. Karger, E. Nikolova, and R. Sami,
First-price path auctions. In Proceedings of the 6th ACM
Conference on Electronic Commerce (EC’05), 2005

[16] A. R. Karlin, D. Kempe, and T. Tamir, Beyond VCG:
frugality of truthful mechanisms. In Proceedings of the 46th
Annual IEEE Symposium on Foundations of Computer
Science, pages 615–626, 2005

[17] D. Kempe, Personal communication, 2006
[18] N. Chen, A. R. Karlin, Cheap labor can be expensive, In

Proceedings of the 18th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 735–744, 2007

[19] N. Nisan and A. Ronen, Algorithmic mechanism design. In
Proceedings of the 31st Annual ACM Symposium on Theory of
Computation, pages 129–140, 1999

[20] A. Ronen and R. Talisman, Towards generic low payment
mechanisms for decentralized task allocation. In Proceedings
of the 7th International IEEE Conference on E-Commerce
Technology, 2005

[21] K. Talwar, The price of truth: frugality in truthful
mechanisms. In Proceedings of 20th International Symposium
on Theoretical Aspects of Computer Science, 2003

[22] W. Vickrey, Counterspeculation, auctions, and competitive
sealed tenders. Journal of Finance, 16:8–37, 1961

345


