
Proceedings Article

Learning Equilibria of Games via Payoff Queries

JOHN FEARNLEY, University of Liverpool

MARTIN GAIRING, University of Liverpool

PAUL GOLDBERG, University of Liverpool

RAHUL SAVANI, University of Liverpool

A recent body of experimental literature has studied empirical game-theoretical analysis, in which we have

partial knowledge of a game, consisting of observations of a subset of the pure-strategy profiles and their

associated payoffs to players. The aim is to find an exact or approximate Nash equilibrium of the game, based
on these observations. It is usually assumed that the strategy profiles may be chosen in an on-line manner

by the algorithm. We study a corresponding computational learning model, and the query complexity of
learning equilibria for various classes of games. We give basic results for bimatrix and graphical games.

Our focus is on symmetric network congestion games. For directed acyclic networks, we can learn the cost

functions (and hence compute an equilibrium) while querying just a small fraction of pure-strategy profiles.
For the special case of parallel links, we have the stronger result that an equilibrium can be identified while

only learning a small fraction of the cost values.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Computations on discrete structures.

Additional Key Words and Phrases: Payoff query complexity, strategic-form game, congestion game, equi-

librium computation, approximate Nash equilibrium.

1. INTRODUCTION

Suppose that we have a game G with a known set of players, and known strategy sets for
each player. We want to design an algorithm to solve G, where the algorithm can only
obtain information about G via payoff queries. In a payoff query, the algorithm proposes
pure strategies for the players, and is told the resulting payoffs. The general research issue
is to identify bounds on the number of payoff queries needed to find an equilibrium, subject
to the assumption that G belongs to some given class of games.

1.1. Motivation

Given a game, especially one with many players, it is unreasonable to assume that anyone
maintains an explicit representation of its payoff function, even if the game in question
has a concise representation. However, in practice a reasonable modelling assumption is
that given, say, a strategy profile for the players, we can determine their payoffs, or some
estimate of the payoffs. We are interested in algorithms that find Nash equilibria using a
sequence of queries, where a query proposes a strategy profile and gets told the payoffs.
We would like to know under what conditions an algorithm can find a solution based on
knowledge of some but not all of the game’s payoffs, which is particularly important when
there are many players, and the number of pure-strategy profiles is large. This kind of
challenge (where you get observations of profile/payoff-vector pairs, and you want to find
an approximate equilibrium, as opposed to the unobserved payoffs) has been the subject of

This work was supported by EPSRC grants EP/G069239/1, EP/J019399/1, and EP/H046623/1.
Permission to make digital or hardcopies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copy-
rights for components of this work owned by others than ACM must be honored. Abstracting with credits
permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any com-
ponent of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
EC’13, June 16–20, 2013, Philadelphia, USA. Copyright c© 2013 ACM 978-1-4503-1962-1/13/06...$15.00

397

Proceedings Article

experimental work [Vorobeychik et al. 2007; Wellman 2006; Jordan et al. 2008; Duong et al.
2009], where [Jordan et al. 2008] focuses on the case (highly relevant to this work) where
the algorithm selects a sequence of pure profiles and gets told the resulting payoffs. In this
paper, we introduce the study of payoff-query algorithms from the algorithmic complexity
viewpoint. We are interested in upper and lower bounds on the query complexity of classes
of games.

From the theoretical perspective, we are studying a constrained class of algorithms for
computing equilibria of games. The study of such constraints —especially when they lead
to lower bounds or impossibility results— informs us about the approaches that a successful
algorithm needs to apply. In the context of equilibrium computation, other kinds of con-
straint include uncoupled algorithms for computing equilibria [Hart and Mas-Colell 2003,
2006], communication-constrained algorithms [Hart and Mansour 2010; Daskalakis et al.
2010; Goldberg and Pastink 2012], and oblivious algorithms [Daskalakis and Papadimitriou
2009]. Of course, the restriction to polynomial-time algorithms is the best-known example
of such a constraint. Based on the algorithms and open problems identified in this paper,
we find this to be quite a compelling motivation for the further study of the payoff-query
model. There are various related kinds of query models that are suggested by the payoff
queries studied here, which may also be of similar theoretical interest; we discuss these in
Section 6.

1.2. Games and query models

In this paper we introduce the study of payoff-queries for strategic-form games. We also
consider two models of concisely represented games: graphical games [Kearns et al. 2001],
where players are nodes in a given graph and the payoff of a player only depends on the
strategies of its neighbors in the graph, and symmetric network congestion games [Fabrikant
et al. 2004], where the strategy space of the players corresponds to the set of paths that
connect two nodes in a network.

For a strategic-form game, we assume that initially the querying algorithm only knows n
the number of players and k the number of pure strategies that each player has. Generally
we seek algorithms that are polynomial in these parameters.

Definition 1.1. A payoff query to a strategic-form game G selects a pure-strategy profile
s for G, and is given as response, the payoffs that G’s players derive from s.

There are kn pure-strategy profiles in a game, and one could learn the game exhaustively
using this many payoff queries. We are interested in algorithms that require only a small
fraction of this trivial upper bound.

For a symmetric network congestion game, we assume that initially the algorithm only
knows the number of players n, and the pure strategy space, given by the graph and the
common source/destination pair.

Definition 1.2. A payoff query to a congestion game selects an assignment of at most
n players to every pure strategy of the congestion game and learns the costs of the pure
strategies with the assigned loads.

This query model removes the restriction that a query corresponds to a strategy profile
with exactly n players. In this model, a query corresponds to a strategy profile with at most
n×m players. Here, m denotes the number of resources in the congestion game, which, for
network congestion games, is the number of edges. This query model is more powerful than
the query model for strategic-form games, but it is very natural for congestion games. We
prove both lower and upper bounds on the payoff query complexity of congestion games
under this model.

398

Proceedings Article

Definition 1.3. The payoff query complexity of a class of games G, with respect to some
solution concept such as exact or approximate Nash equilibrium, is defined as follows. It
is the smallest N such that there is some algorithm A that, given N payoff queries to any
game G ∈ G (where initially none of the payoffs of G are known) can find a solution of G.

The definition imposes no computational bound on the algorithm A. It is to some extent
inspired by the work on query-based learning initiated by Angluin [Angluin 1987], in the
context of computational learning theory. Note that A may select the queries in an on-line
manner, so queries can depend on the responses to previous queries.

1.3. Overview of results

We study a variety of different settings. We start by considering bimatrix games, and our
first result is a lower bound for computing an exact Nash equilibrium: computing an exact
Nash equilibrium in a k×k bimatrix game has payoff query complexity k2, even for zero-sum
games. In other words, we have to query every pure strategy profile.

We then turn our attention to approximate Nash equilibria, where we obtain some more
positive results. With the standard assumption that all payoffs lie in the range [0, 1], we
show that when ε lies in the range 1

2 ≤ ε < 1 − 1
k , the payoff query complexity to find

an ε-Nash equilibrium lies in [k, 2k − 1]. When ε ≥ 1 − 1
k , no payoff queries are needed at

all, because an ε-Nash equilibrium is always achieved when both players play the uniform
distribution over their strategies.

The query complexity of computing an approximate Nash equilibrium when ε < 1
2 appears

to be a challenging problem, and we provide an initial lower bound in this direction. We
show that for a k × k bimatrix game, the payoff query complexity of finding an ε-Nash
equilibrium, for ε ≤ 1

8 , is at least k · (1
32/ log(k)+64ε), i.e., for small ε this lower bound is

Ω(k · log k). This gives an interesting contrast with the ε ≥ 1
2 case. Whereas we can always

compute a 1
2 -approximate Nash equilibrium using O(k) payoff queries, there exists an ε < 1

2
for which this is not the case.

Having studied payoff query complexity in bimatrix games, it is then natural to look for
improved payoff query complexity results in the context of “structured” games. In particular,
we are interested in concisely represented games, where the payoff query complexity may be
much smaller than the number of pure strategy profiles. As an initial result in this direction,
we consider graphical games, where we show that for constant d the payoff query complexity
of degree d graphical games is polynomial. This algorithm works by discovering every payoff
in the game, however unlike bimatrix games, this can be done without querying every pure
strategy profile.

Finally, we focus on two different models of congestion games. We first consider parallel
links, where the game has a start and end vertex, and m different links between them. We
show both lower and upper bounds for this model. If n denotes the number of players,

then we obtain a log(n) payoff query lower bound, and a O
(

log(n) · log2(m)
log log(m)

)
payoff query

upper bound. Note that there are n ·m different payoffs in a parallel links game, and so our
upper bound implies that you do not need to discover the entire payoff function in order to
solve a parallel links game.

We also consider the more general case of symmetric network congestion games on directed
acyclic graphs. We show that if the game has m edges and n players, then we can find a
Nash equilibrium using m · n payoff queries. The algorithm discovers every payoff in the
game, but it only queries a small fraction of the pure strategy profiles.

2. RELATED WORK

In the existing literature, there has so far been mainly experimental work on payoff queries.
There is also another body of work, both theoretical and experimental, on best- and better-

399

Proceedings Article

response dynamics, which relevant because these dynamics generally work by exploring the
space of pure profiles, and receiving feedback consisting of payoffs. The difference is that
they purport to model a decentralised process of selfish behaviour by the players, while the
payoff query model envisages a centralised algorithm that is less constrained. In this section,
we give a survey the relevant literature.

2.1. Payoff queries

In Empirical game-theoretic analysis [Wellman 2006; Jordan et al. 2010], a game is pre-
sented to the analyst via a set of observations of strategy profiles (usually, pure) and their
corresponding payoffs. This set of profiles/payoff-vector pairs is called an empirical game. In
some settings the strategy profiles are randomly generated, but it is typically feasible to ob-
tain observations via the payoff queries we study here. The profile selection problem [Jordan
et al. 2008] is the challenge of choosing helpful strategy profiles. The strategy exploration
problem [Jordan et al. 2010] is the special case of finding the best way to limit the search
to a small subset of a large set of strategies.

Jordan et al. [Jordan et al. 2008] envisage a setting where a game (called a base game)
has a corresponding game simulator, an implementation in software, which is amenable to
payoff queries; a more general scenario allows the observed payoffs to be sampled from a
distribution associated with the strategy profile. The distribution is sometimes considered
to be due to a noise process, and called the noisy payoff model in [Jordan et al. 2008]. (In this
paper we just consider deterministic payoffs, the “revealed payoff model” in [Jordan et al.
2008].) As noted in Vorobeychik et al. [Vorobeychik et al. 2007], a profile can be repeatedly
queried to sample from the distribution of payoffs, and thus get an estimate of the expected
values. The two interacting challenges are to identify helpful queries, and to use them to
find pure-strategy profiles that have low regret (where regret refers to the largest incentive
to deviate, amongst the players.)

Vorobeychik et al. [Vorobeychik et al. 2007] study the payoff function approximation task,
in which a game belongs to a known class, and there is a “regression” challenge to determine
certain parameters; the information about the game consists of a random sample of pure
profiles and resulting payoff vectors. However, success is measured by the extent that the
players’ predicted behaviour is close to the behaviour associated with the true payoffs, rather
than how well the true payoff functions are estimated.

Work on specific classes of multi-player games includes the following. Duong et al. [Duong
et al. 2009] studies algorithms for learning graphical games; we consider a graphical game
learning algorithm in Section 4. Jordan et al. [Jordan et al. 2008] apply payoff-query learning
to various kinds of games generated by GAMUT [Nudelman et al. 2004], including a class
of congestion games (Section 5.2). Vorobeychik et al. [Vorobeychik et al. 2007] investigate
a first-price auction and also a scheduling game, where payoffs are described via a finite
random sample of profile/payoff vector pairs. Earlier, Sureka and Wurman [Sureka and
Wurman 2005] study search for pure Nash equilibria of strategic-form games (mostly with
5 players and 10 pure strategies).

Most of the experimental work (e.g. [Sureka and Wurman 2005; Jordan et al. 2008; Duong
et al. 2009]) uses local search, in which profiles that get queried are typically very similar
(differing in just one player’s strategy) from previously queried profiles. Jordan et al. [Jor-
dan et al. 2008] experiment with local-search type algorithms in which when a player has
the incentive to deviate, the tested profile is updated with that deviation. Sureka and Wur-
man [Sureka and Wurman 2005] study search for pure equilibria via best-response dynamics
while maintaining a tabu list, introduced to reduce the risk of cycles. In contrast, the al-
gorithms we present here for congestion games exploit a non-local search approach, which
results in improved performance.

400

Proceedings Article

2.2. Best-response dynamics and local search

There is a large body of literature that studies best- and better-response dynamics for classes
of potential games, and gives bounds on the number of steps required for convergence to
pure-strategy equilibria. In this literature, the dynamics are intended to model the behavior
of players who make rational responses to other players, in a decentralized setting. The
dynamics of [Even-Dar et al. 2003; Feldmann et al. 2003; Goldberg 2004; Chien and Sinclair
2011] are local search processes in that each pure profile is obtained from the previous one
by letting a single player move. Bound on the convergence of deterministic best-response
dynamics were considered in [Even-Dar et al. 2003; Feldmann et al. 2003]. The better-
response dynamics considered by Goldberg [Goldberg 2004] is the basic randomized local
search algorithm, and bounds are obtained for its convergence to exact equilibrium. Chien
and Sinclair [Chien and Sinclair 2011] study another local search, the ε-Nash dynamics, and
its convergence to approximate equilibria. Other papers, e.g. [Fischer et al. 2006; Berenbrink
et al. 2007] analyse a strongly-distributed dynamics in which multiple players can move
in the same time step; consequently the dynamics is not a local search. However, these
dynamical systems could all be simulated by payoff query algorithms in which at each step,
at most nk queries are made to determine the change in payoffs available to players as a
result of unilateral deviations. This paper begins to answer the question: how much better
could a payoff query algorithm do, if it were not subject to that constraint?

Finally, Alon et al. [Alon et al. 2011] consider payoff-query algorithms for finding the costs
of paths in graphs. The consider weight discovery protocols where the aim is to determine
the costs of edges, and shortest path discovery protocols where the aim is to find a shortest
path. The latter objective is more similar to what we consider, since it can avoid the need
to learn the entire payoff function; also a shortest path is an equilibrium strategy for the
one-player case.

3. BIMATRIX GAMES

In this section, we give simple bounds on the payoff-query complexity of computing approx-
imate Nash equilibria for bimatrix games. We assume that all payoffs lie in the range [0, 1],
which is a standard when finding approximate Nash equilibria.

Observation 1. The payoff query complexity of finding an exact Nash equilibrium of a
k × k bimatrix game is k2. This holds even for zero-sum games.

To see this, consider generalised matching pennies, where the column player pays 1 to
the row player whenever both players choose the same strategy, otherwise the row player
pays 1 to the column player.1 This game has a unique Nash equilibrium, namely when both
players randomize uniformly over their strategies. Now suppose each payoff in the game is
perturbed by a small quantity; for a zero-sum game the perturbations should preserve the
zero-sum property. For small perturbations, there will still be a unique fully-mixed solution,
but it can only be known exactly if all the payoffs are known exactly. Observation 1 raises
the question of whether better bounds exist for approximate Nash equilibria. We have the
following result:

Theorem 3.1. For any 1
2 ≤ ε < 1 − 1

k , the payoff query complexity to find an ε-
approximate Nash equilibrium of a 2-player strategic-form k × k game, is in [k, 2k − 1].

Proof. For the upper bound, we can simulate the algorithm of [Daskalakis et al. 2009b]
as follows to obtain a 1

2 -approximate Nash equilibrium (which is then an ε-Nash equilib-
rium). Let s1 be an arbitrary pure strategy of the row player. Query all k pure profiles
where the row player plays s1, which allows us to find the column player’s best response

1By rescaling, we can make this game comply with our assumption that payoffs should lie in the range [0, 1].

401

Proceedings Article

to s1, call it s2. Query the additional k − 1 pure profiles where the column player plays s2,
from which we find the row player’s best response to s2; call it s3. A 1

2 -approximate Nash
equilibrium is obtained by letting the column player play pure strategy s2 while the row
player randomizes equally between s1 and s3.

For the lower bound, suppose that the row player has matrix R` for ` ∈ [n], where R`

pays the row player 1 for playing row ` and 0 for any other row. Then in a ε-approximate
Nash equilibrium, the row player must play row ` with probability > 1

k . In order to identify
`, we need k queries.

For ε ≥ 1− 1
k , an ε-Nash equilibrium is obtained by letting both players play the uniform

distribution over their strategies, and no payoff queries are needed. The interesting challenge,
is to determine the payoff query complexity for constant values of ε < 1

2 . For ε < 1
2 we have

no non-trivial upper bound on the payoff query complexity of finding an ε-Nash equilibrium.
We next show a lower bound (Theorem 3.5), which is increasing in k and ε−1, and for large
enough k, ε−1, it can be seen to be higher than the upper bound for ε ≥ 1

2 . Thus, in an
algorithm-independent sense, there are some positive values of ε, for which computing an
ε-Nash equilibrium is harder than it is for other values of ε strictly less than one.

Let G` be the class of strategic-form games where the column player has ` pure strategies
and the row player has

(
`
`/2

)
pure strategies (where we assume ` is even). Let G` ∈ G` be

the win-lose constant-sum game in which each row of the row player’s payoff matrix has `
2

1’s and `
2 0’s, all rows being distinct. The column player’s payoffs are one minus the row

player’s payoffs. (G` is similar to the class of games used in Theorem 1 of [Feder et al.
2007].) Note that the value of G` is 1

2 since either player can obtain payoff 1
2 by using the

uniform distribution over their pure strategies.

Lemma 3.2. Suppose that in game G`, the column player uses a mixed strategy in which
some single pure strategy has probability α > 1/`. Then the row player can obtain payoff
> 1

2 + α
2 −

1
2` .

Proof. Let j be a column that the column player plays with probability α. Let Rj
be the set of rows where the row player obtains payoff 1 for column j. Suppose the row
player plays the uniform distribution over rows in Rj . When the column player plays j, the
row player receives payoff 1. Let j′ 6= j be a column, and consider the payoffs to the row

player where j′ intersects Rj . A fraction `/2−1
`−1 of these entries pay the row player 1, while a

fraction `/2
`−1 pay the row player 0. Consequently whenever the column player plays j′ 6= j,

the row player’s expected payoff is `/2−1
`−1 . Thus with probability α the row player receives

payoff 1, and with probability 1−α he receives payoff `/2−1
`−1 , from which the result follows,

by straightforward manipulations. (In particular, the row player’s payoff is α+(1−α) `/2−1`−1
= 1

2 + 1
2α−

1−α
2(`−1) >

1
2 + 1

2α−
1−1/`
2(`−1) = 1

2 + 1
2α−

1
2` .)

Corollary 3.3. Assume α > 1
k , and let ε = 1

4 (α − 1
`). In any ε-Nash equilibrium of

G`, the column player plays any individual column with probability at most α.

Proof. If, alternatively, the column player plays any column j with probability > α,
then by Lemma 3.2, the row player can obtain payoff > 1

2 + α
2 −

1
2` . Hence in any ε-Nash

equilibrium, the row player obtains payoff > 1
2 + α

2 −
1
2` − ε = 1

2 + ε. Hence the column

player obtains payoff < 1
2 − ε. Since the value of G` is 1

2 , the column player’s regret is > ε,
thus we do not have an ε-Nash equilibrium.

Lemma 3.4. For any ε < 1
8 , ` ≥ 8, the payoff query complexity of finding an ε-Nash

equilibrium for games in G` is ≥
(
`
`/2

)
· (1

16ε+4/`).

402

Proceedings Article

Proof. Let A be any payoff query learning algorithm; consider what happens when A is
run on G`. Let S be the mixed strategy profile found by A. For α = 4ε+ 1

` , by Corollary 3.3
no column is played with probability > α, in S. We also know that in S, the row player’s
payoff is ≤ 1

2 + ε, since S is an ε-Nash equilibrium of a game with value 1
2 . Suppose for

a contradiction that A made fewer than
(
`
`/2

)
· (1

16ε+4/`) payoff queries. Then some row r

received fewer than (1
16ε+4/`) queries.

If columns are selected at random from the column player’s distribution in S, there is
probability at most α(1

16ε+4/`) = 1
4 that row r contains payoffs that have already been

queried by A. Now suppose that we modify G` by replacing all un-queried entries of r with
payoffs of 1 for the row player. A would output the same strategy profile S, but the payoff
to the row player for playing r is ≥ 3

4 . So the row player’s regret is ≥ 3
4 − (1

2 + ε), that is,

at least 1
4 − ε. This gives us a contradiction, for ε < 1

8 .

Theorem 3.5. For k × k strategic-form games, the payoff query complexity of finding
an ε-Nash equilibrium, for ε ≤ 1

8 , is at least k · (1
32/ log(k)+64ε).

Proof. Let k′ be the largest number of the form
(
`
`/2

)
that is at most k. We have k′ ≥ k/4

and ` ≥ log(k)/2. By Lemma 3.4, G` has query complexity ≥
(
`
`/2

)
· (1

16ε+4/`) to find an

ε-Nash equilibrium. That is, k′(1
4/`+16ε) ≥

k
4 (1

4/`+16ε) ≥
k
4 (1

8/ log(k)+16ε) = k(1
32/ log(k)+64ε).

A game G in G` can be written down as a k × k game, by duplicating rows and columns,
and approximate equilibria are preserved.

Note that for small ε the lower bound given by Theorem 3.5 is Ω(k · log k).

4. GRAPHICAL GAMES

In this section, we give a simple payoff query-based algorithm for graphical games. In a
graphical game [Kearns et al. 2001] we assume the players lie at the vertices of a degree-d
graph, and a player’s payoff is a function of the strategies of just himself and his neighbors.
The number of payoff values needed to specify such a game is n · kd+1 which, in contrast
with strategic-form games, is polynomial (assuming d is a constant).

Previously, Duong et al. [Duong et al. 2009] have carried out experimental work on payoff
queries for graphical games. They compare a number of techniques; the algorithm we give
here is polynomial-time but would likely be less efficient in practice. Similar to [Duong et al.
2009], we assume the underlying graph G is unknown, and we want to induce the structure
of G, and corresponding payoffs.

Theorem 4.1. For constant d, payoff query complexity of degree d graphical games is
polynomial.

Algorithm 1 learns the entire payoff function with polynomially many queries.
There are a couple of important caveats regarding Theorem 4.1. First, although the payoff

query complexity is polynomial, the computational complexity is (probably) not polyno-
mial, since it is PPAD-complete to actually compute an approximate Nash equilibrium for
graphical games [Daskalakis et al. 2009a]. Second, while Algorithm 1 avoids querying all
(exponentially-many) pure-strategy profiles, it works in a brute-force manner that learns
the entire payoff function. We prefer payoff query-based algorithms that allow a solution
to be found without actually learning all the payoffs, as we achieve in Theorem 3.1, or the
main result of Section 5.1.

5. CONGESTION GAMES

In this section, we give bounds on the payoff-query complexity of finding a pure Nash
equilibrium in symmetric network congestion games. A congestion game is defined by a

403

Proceedings Article

Algorithm 1 GraphicalGames

1: Initialize graph G’s vertices to be the player set, with no edges
2: Let S be the set of pure profiles in which at least n− (d+ 1) players play 1.
3: Query each element of S.
4: for all players p, p′ do
5: if ∃s, s′ ∈ S that differ only in p’s payoff and p′’s strategy then
6: add directed edge (p, p′) to graph
7: end if
8: end for
9: for all players p do

10: Let Np be p’s neighborhood in G
11: Use elements of S to find p’s payoffs as a function of strategies of Np
12: end for

tuple Γ = (N,E, (Si)i∈N , (fe)e∈E). Here, N = {1, 2, . . . , n} is a set of n players and E is a
set of resources. Each player chooses as her strategy a set si ⊆ E from a given set of available
strategies Si ⊆ 2E . Associated with each resource e ∈ E is a non-negative, non-decreasing
function fe : N 7→ R+. These functions describe costs to be charged to the players for using
resource e. An outcome (or strategy profile) is a choice of strategies s = (s1, s2, ..., sn) by
players with si ∈ Si. For an outcome s define ne(s) = |i ∈ N : e ∈ si| as the number of
players that use resource e. The cost for player i is defined by ci(s) =

∑
e∈si fe(ne(s)). A

pure Nash equilibrium is an outcome s where no player has an incentive to deviate from
her current strategy. Formally, s is a pure Nash equilibrium if for each player i ∈ N and
s′i ∈ Si, which is an alternative strategy for player i, we have ci(s) ≤ ci(s−i, s′i). Here (s−i, s

′
i)

denotes the outcome that results when player i changes her strategy in s from si to s′i.
In a network congestion game, resources correspond to the edges in a directed multigraph

G = (V,E). Each player i is assigned an origin node oi, and a destination node di. A
strategy for player i consists of a sequence of edges that form a directed path from oi to
di, and the strategy set Si consists of all such paths. In a symmetric network congestion
game all players have the same origin and destination nodes. We write a symmetric network
congestion game as Γ = (N,V,E, (fe)e∈E , o, d). Note that V , E, o, and d collectively define
the strategy space (Si)i∈N . We consider two types of network, directed acyclic graphs, and
the special case of parallel links. We assume that initially we only know the number of
players n and the strategy space. The latency functions are completely unknown initially. A
payoff query presents an assignment of at most n players to every strategy of the congestion
game and learns the costs of strategies with the assigned loads. As a shorthand for defining
strategy profiles, we use notation of the form s ← (1 7→ p, 3 7→ q). This example defines s
to be a four-player strategy profile that assigns 1 player to p and 3 players to q, where p
and q will be paths from source to sink in a symmetric network congestion game. We use
Query(s) to denote a query with an assignment s of at most n players to the pure strategies.
It returns a function cs, which gives the cost of each strategy when s is played.

5.1. Parallel links

In this section, we consider congestion games on m parallel links. A simple construction
with two parallel links shows a lower bound of logn. The essence of the construction is as
follows. Link 1 has a constant cost of 1 for any number of players. Link 2 has a cost of
0 which switches at some point to 2. To find a pure equilibrium a querier must find this
switch, and an adversary has a simple strategy to ensure that the querier can do no better
than binary search. In the rest of the section, we provide a payoff query algorithm that finds

a pure Nash equilibrium using O
(

log(n) · log2(m)
log log(m)

)
queries.

404

Proceedings Article

Our algorithm works in phases. In each phase we move players only in some multiple
of δ = kt, for some integer parameter k, and we determine an equilibrium with respect
to this group size δ. To find out how many groups to move between the links we perform
a double binary search: In the first binary search, we guess the number of moved groups,
which will give us a target cost value. We use this target value in a second binary search to
check whether our guess on the number of groups to move was correct. In each subsequent
iteration δ becomes smaller by a factor k until in the last iteration δ = 1 and a Nash
equilibrium is found.

The algorithm (ParallelLinks) is depicted in Algorithm 2. We will show how this
algorithm can be implemented with the stated number of queries. The algorithm is inspired
by an algorithm from [Gairing et al. 2008].

Throughout the algorithm there will be special link a. For a congestion game Γ, an integer
δ, and a special link a we define a δ-equilibrium as follows:

Definition 5.1 (δ-equilibrium). A strategy profile s is δ-equilibrium if δ|ni(s) for all i ∈
[m] \ {a}, and for all links i, j ∈ [m] with ni(s) ≥ δ we have fi(ni(s)) ≤ fj(nj(s) + δ).

Intuitively, we can think of a δ-equilibrium s as a Nash equilibrium in a transformed game
where the players (of the original game) are partitioned into groups of size δ and each group
represents a player in the transformed game, and the remaining (n mod δ) players are fixed
to link a.

We start with an informal description of algorithm ParallelLinks. The algorithm is
parameterised by an integer k ≥ 2. It starts by finding a n-equilibrium s by putting all
players together on the link a that minimises the induced cost. Observe that by Definition
5.1, s is also a δ-equilibrium for any δ ≥ n. We can find a with a single payoff query,
by querying for n players on each link. Note, that throughout the algorithm, link a will
take a special role since the number of players assigned to any other link will always be a

multiple of δ. The algorithm then works in T + 1 phases, where T = b log(n)log(k) c. Each phase is

one iteration of the for-loop. The for-loop is governed by a variable t, which is initially T
and decreases by 1 in each iteration. Within any iteration, the algorithm uses the function
RefineProfile to transform a kt+1-equilibrium into a kt-equilibrium. We can bound the
number of reassignments of groups of players to different links needed to achieve this by the
following lemma:

Lemma 5.2. We can convert a kt+1-equilibrium s into a kt-equilibrium s′ by moving at
most 2k groups of δ = kt players to any individual link and at most km groups of δ players
in total.

Proof. Since s is kt+1-equilibrium, we have fi(ni(s)) ≤ fj(nj(s) + kt+1) for all i ∈
[m] \ {a}, j ∈ [m]. Moreover, either (a) fa(na(s)) ≤ fj(nj(s) + kt+1) for all j ∈ [m] or (b)
na(s) < kt+1. In case (a), this implies that each link j ∈ [m] can in total receive at most k
groups of size δ = kt from links i ∈ [m]. In case (b), this implies that each link j ∈ [m] can
in total receive at most k groups of size δ = kt from links i ∈ [m] \ {a}. Moreover, since
na(s′) < kt+1, we can move at most k groups of size δ = kt from link a. In any case, in total
we move at most km groups. All links receive and loose players only in multiples of δ = kt

which ensures that kt|ni(s′) for all i ∈ [m] \ {a} is maintained.

Refining the profile. Our algorithm uses the function RefineProfile to implement the
refinement as described in Lemma 5.2. RefineProfile determines the number of groups
q which have to be moved by binary search on q in [0, km]. Since by Lemma 5.2 each link
receives at most 2k groups of players, we spend 2k payoff queries to determine for all links
i ∈ [m], the cost function values fi(ni(s) + r · δ) for all integers r ≤ 2k. We define Q as
the multi-set of these cost function values and Cmin(q) as the (q + 1) smallest value in Q.
Intuitively, Cmin(q) is the cost of the (q + 1)-th group of players that we would move. We

405

Proceedings Article

Algorithm 2 ParallelLinks

1: a← arg mini∈[m] fi(n) . 1 query
2: initialize strategy profile s by putting all players on link a

3: T ← b log(n)log(k) c
4: for t = T, T − 1, . . . , 1, 0 do
5: δ ← kt

6: s← RefineProfile(s, δ, 0, km)
7: end for
8: return s

9: function RefineProfile(s, δ, qmin, qmax)
10: q ← b qmin+qmax

2 c
11: Parallel for all links i ∈ [m]
12: Query for costs fi(ni(s) + rδ) for all integer 1 ≤ r ≤ 2k . 2k queries
13: EndParallel
14: Q← the ordered multiset of 2km non-decreasing costs from the above queries
15: Cmin(q)← (q + 1)-th smallest element of Q
16: pi ← number of times i ∈ [m] contributes a cost to the q smallest elements of Q

17: Parallel for all links i ∈ [m]

18: if fi(ni(s)− bni(s)
δ c · δ) > Cmin(q) then . 1 query; only relevant for link a

19: qi ← bni(s)
δ c

20: else (using binary search on qi ∈ [0,min{km, bni(s)
δ c}])

21: qi ← min {qi : fi(ni(s)− qiδ) ≤ Cmin(q)} . log(km) queries
22: end if
23: EndParallel

24: if
∑
i∈[n] qi = q then

25: modify s by removing qi and adding pi groups of δ players to every link i ∈ [m]
26: return s
27: else if

∑
i∈[n] qi < q then

28: return RefineProfile(s, δ, qmin, q − 1)
29: else (

∑
i∈[n] qi > q)

30: return RefineProfile(s, δ, q + 1, qmax)
31: end if
32: end function

use Cmin(q) to find out how many groups of players qi we need to remove from each link
i ∈ [m] so that on each link i ∈ [m] the cost is at most Cmin(q) or we can’t remove any
further groups as there are less than δ players assigned to it (which can only happen on link
a). By Lemma 5.2, we need to remove at most km groups of players in total. Therefore,

we can determine qi ∈ [0,min{km, bni(s)
δ c}] by binary search in parallel on all links, with

O(log(km)) payoff queries. Now, if
∑n
i=1 qi = q, we can construct a kt-equilibrium by

removing qi and adding pi groups of δ players to link i ∈ [m]; note that for every i ∈ [m],
either qi = 0 or pi = 0. If

∑n
i=1 qi 6= q, our guess for q was not correct and we have to

continue the binary search on q.
The algorithm maintains the following invariant:

Lemma 5.3. RefineProfile(s, δ, 0, km) returns a δ-equilibrium.

406

Proceedings Article

Proof. Observe that δ = kt. In the first iteration of the for-loop t = T and RefinePro-
file(s, δ, 0, km) gets a n-equilibrium as input, which is also a kT+1-equilibrium as all players
are assigned to link a and kT+1 > n. So to proof the claim, it suffices to show that Refine-
Profile(s, kt, 0, km) returns a kt-equilibrium if s is a kt+1-equilibrium. For the s returned by
RefineProfile and the q in its returning call, we have fi(ni(s)) ≤ Cmin(q) ≤ fi(ni(s) + δ)
for all i ∈ [m] \ {a}. The left inequality follows from line 21 of the algorithm. The right
inequality follows from the definition of Cmin(q) as the (q + 1)-th smallest element in Q in
line 15 of the algorithm. For link a, we have fa(na(s)) ≤ Cmin(q) ≤ fa(na(s) + δ) or we
have fa(na(s)) > Cmin(q) and na(s) < δ, where the first case follows from lines 21 and 15 as
before, and the second case corresponds to line 18. Noting that RefineProfile maintains
that for the returned s we have δ|ni(s) for all i ∈ [m] \ {a}, as it only moves groups of size
δ, the claim follows.

Lemma 5.4. RefineProfile(s, δ, 0, km) makes O(log(km)(k + log(km))) queries.

Proof. For each value of q in the binary search, we make O(k) payoff queries to deter-
mine Cmin(q) and O(log(km)) payoff queries to determine the qi’s in parallel for all links
i ∈ [m]. The binary search on q adds a factor log(km).

Theorem 5.5. Algorithm ParallelLinks returns a pure Nash equilibrium and can be

implemented with O
(

log(n) · log2(m)
log log(m)

)
payoff queries.

Proof. In the last iteration of the for-loop, we have δ = 1, so Lemma 5.3 implies that
s is a pure Nash equilibrium. To find the best link in line 1 of the algorithm, we need one

payoff query. For any k ≥ 2, the algorithm does T+1 = O
(

log(n)
log(k)

)
iterations of the for-loop.

In each iteration we do O(log(km)(k + log(km))) payoff queries. Choosing k = Θ(log(m))
yields the stated upper bound.

5.2. Symmetric Network Congestion Games on DAGs

In this section, we consider symmetric network congestion games on directed acyclic graphs.
Throughout this section, we will consider the game Γ = (N,V,E, (fe)e∈E , o, d), where (V,E)
is a DAG. We use the ≺ relation to denote a topological ordering over the vertices in V .
We assume that, for every vertex v ∈ V , there exists a path from o to v, and there exists
a path from v to d. If either of these conditions does not hold for some vertex v, then v
cannot appear on an o-d path, and so it is safe to delete v.

Preprocessing. Before we present the algorithm, we describe a required preprocessing step.
We say that edges e and e′ are dependent if visiting one implies that we must visit the other.
More formally, e and e′ are dependent if, for every o-d path p, we either have e, e′ ∈ p, or we
have e, e′ /∈ p. We preprocess the game to ensure that there are no pairs of dependent edges.
To do this, we check every pair of edges e and e′, and test whether they are dependent.
If they are, then we contract e′, i.e., if e′ = (v, u), then we delete e′, and set v = u. The
following lemma shows that this preprocessing is valid.

Lemma 5.6. There is an algorithm that, given a congestion game Γ, where (V,E) is a
DAG, produces a game Γ′ with no pair of dependent edges, such that every Nash equilibrium
of Γ′ can be converted to a Nash equilibrium of Γ. The algorithm and conversion of equilibria
take polynomial time and make zero payoff queries. Moreover, payoff queries to Γ′ can be
trivially simulated with payoff queries Γ.

Thus, we assume that our congestion game contains no pair of dependent edges.

Equivalent cost functions. Our approach is to devise a querying strategy to determine
the cost function of each edge. That is, for each e ∈ E, we give an algorithm to discover

407

Proceedings Article

fe(i) for all i. One immediate observation is that we can never hope to find the actual cost
functions. Consider the following one-player congestion game.

o m d

b

a

d

c

If we set fa(1) = fb(1) = 1 and fc(1) = fd(1) = 0, then all o-d paths have cost 1. However,
we could also achieve the same property by setting fa(1) = fb(1) = 0 and setting fc(1) =
fd(1) = 1. Thus, it is impossible to learn the actual cost functions using payoff queries.
Fortunately, we do not need to learn the actual cost function in order to solve the congestion
game. We define two cost functions to be equivalent if they assign the same cost to every
strategy profile.

Definition 5.7 (Equivalence). Two cost functions f and f ′ are equivalent if for every
strategy profile s = (s1, s2, . . . , sn), we have

∑
e∈si fe(ne(s)) =

∑
e∈si f

′
e(ni(s)), for all i.

Clearly, the Nash equilibria of a game cannot change if we replace its cost function f with
an equivalent cost function f ′. We give an algorithm that constructs a cost function f ′ that
is equivalent to f . We say that (f ′e)e∈E is a partial cost function if for some e ∈ E and
some i ≤ n, f ′e(i) is undefined. We say that f ′′ is an extension of f ′ if f ′′ is a partial cost
function, and if f ′′e (i) = f ′e(i) for every e ∈ E and i ≤ n for which f ′e(i) is defined. We say
that f ′′ is a total extension of f ′ if f ′′ is an extension of f ′, and if f ′′e (i) is defined for all
e ∈ E and all i ≤ n.

Definition 5.8 (Partial equivalent cost function). Let f be a cost function. We say that f ′

is a partial equivalent of f if f ′ is a partial cost function, and if there exists a total exten-
sion f ′′ of f ′ such that f ′′ is equivalent to f .

Our algorithm will begin with a partial cost function f0 such that f0e (i) is undefined for all
e ∈ E and all i ≤ n. Clearly f0 is a partial equivalent of f . It then constructs a sequence
of partial cost functions f1, f2, . . . , where each fa is an extension of fa−1, and each fa

is a partial equivalent of f . Therefore, the algorithm will eventually arrive at a total cost
function fa that is equivalent to the original cost function f .

The algorithm proceeds inductively. It begins by constructing a partial equivalent cost
function fa such that fae (1) is defined for every edge e ∈ E. Then, in each subsequent step,
it takes a partial equivalent cost function fa such that fae (j) is defined whenever j ≤ i,

and it constructs a partial equivalent cost function fa
′
, where fa

′

e (j) is defined whenever
j ≤ i+ 1.

5.3. Symmetric Network Congestion Games on DAGs: The one-player case

We begin by describing a method that computes a partial equivalent cost function fa

such that fae (1) is defined for every edge e ∈ E. The algorithm begins with the partial cost
function f0. The algorithm processes vertices according to the topological ordering �. When
the algorithm processes a vertex k ∈ V , it begins with a partial equivalent cost function fa

such that fae (1) is defined for every edge e = (v, u) with u ≺ k, for some vertex k. It then
produces a partial equivalent cost function fa+1 such that fae (1) is defined for every edge
e = (v, u) with u � k. There are two cases to consider, depending on whether k = d or not.

The k 6= d case. We use the procedure shown in Algorithm 3 to process k. Lines 1
through 3 simply copy the old cost function fa into the new cost function fa+1. This
ensures that fa+1 is an extension of fa. The algorithm then picks an arbitrary k-d path p.
The loop on lines 5 through 10 compute the function t, which for each incoming edge (e, k),
gives the cost of allocating one player to ep. Note, in particular, that the value of the

408

Proceedings Article

Algorithm 3 ProcessK

Input: A partial equivalent cost function fa, such that fae (1) is defined for all edges (v, u)
with u ≺ k.

Output: A partial equivalent cost function fa+1, such that fae (1) is defined for all edges
(v, u) with u � k.

1: for all e for which fae (1) is defined do
2: fa+1

e (1)← fae (1)
3: end for
4: p← an arbitrary k-d path
5: for all e = (v, k) ∈ E do
6: p′ ← an arbitrary o-v path
7: s← (1 7→ p′ep)
8: cs ← Query(s)
9: t(ep)← cs(p

′ep)−
∑
e′∈p′ f

a
e′(1)

10: end for
11: m← edge e = (v, k) that minimises t(ep)
12: fa+1

m (1)← 0
13: for all e = (v, k) ∈ E with e 6= m do
14: fa+1

e (1)← t(ep)− t(mp)
15: end for

expression
∑
e′∈p′ f

a
e′(1) is known to the algorithm, because every vertex visited by p′ has

already been processed. The algorithm then selects m to be the edge that minimises t, and
sets the cost of m to be 0. Once it has done this, lines 13 through 15 compute the costs of
the other edges relative to m.

When we set the cost of m to be 0, we are making use of equivalence. Suppose that the
actual cost of m is cm. Setting the cost of m to be 0 has the following effects:

— Every incoming edge at k has its cost reduced by cm.
— Every outgoing edge at k has its cost increased by cm.

This maintains equivalence with the original cost function, because for every path p that
passes through k, the total cost of p remains unchanged. The following lemma formalises
this and proves that fa+1 is indeed a partial equivalent cost function.

Lemma 5.9. Let k 6= d be a vertex, and let fa be a partial equivalent cost function
such that fae (1) is defined for all edges e = (v, u) with u ≺ k. When given these inputs,
Algorithm 3 computes a partial equivalent cost function fa+1 such that fa+1

e (1) is defined
for all edges e = (v, u) with u � k.

The k = d case. When the algorithm processes d, it will have a partial cost function fa

such that fae (1) is defined for every edge e = (v, u) with u 6= d. The algorithm is required
to produce a partial cost function fa+1 such that fae (1) is defined for all e ∈ E. We use
Algorithm 4 to do this. Lines 1 through 3 ensure that fa+1 is equivalent to fa. Then, the
algorithm loops through each incoming edge e = (v, d), and line 8 computes fa+1

e (1). Note,
in particular, that fae′(1) is defined for every edge e′ ∈ p, and thus the computation on line 8
can be performed. Lemma 5.10 shows that Algorithm 4 is correct.

Lemma 5.10. Let k 6= d be a vertex, and let fa be a partial equivalent cost function
defined for all edges (v, u) with u ≺ d. When given these inputs, Algorithm 4 computes a
partial equivalent cost function fa+1.

Query complexity. The algorithm makes exactly |E| payoff queries in order to find the
one-player costs. When Algorithm 3 processes a vertex k, it makes exactly one query for

409

Proceedings Article

Algorithm 4 ProcessD

Input: A partial equivalent cost function fa, such that fae (1) is defined for all edges e =
(v, u) with u ≺ d.

Output: A partial equivalent cost function fa+1, such that fae (1) is defined for all edges
e ∈ E.

1: for all e for which fae (1) is defined do
2: fa+1

e (1)← fae (1)
3: end for
4: for all e = (v, d) ∈ E do
5: p← an arbitrary o-v path
6: s← (1 7→ pe)
7: cs ← Query(s)
8: fa+1

e (1)← cs(pe)−
∑
e′∈p f

a
e′(1)

9: end for

each incoming edge (v, k) at k. The same property holds for Algorithm 4. This implies that,
in total, the algorithm makes |E| queries.

5.4. Symmetric Network Congestion Games on DAGs: Many-player games

We now assume that we have a partial equivalent cost function fa such that fae (j) is defined

whenever j ≤ i. We give an algorithm to produce a partial cost function fa
′
, such that fae (j)

is defined whenever j ≤ i+ 1.
We will proceed as in the one-player case, by processing vertices according to their topo-

logical order. The algorithm is complicated by bridges. An edge e is a bridge between two
vertices v and u, if every v-u path contains e. Furthermore, if we fix a vertex k ∈ V , then
we say that an edge e is a k-bridge if e is a bridge between k-d. The following lemma can
be proved using the max-flow min-cut theorem.

Lemma 5.11. Let v and u be two vertices. There are two edge disjoint paths between v
and u if, and only if, there is no bridge between v and u.

Bridges. Given a vertex k, we show how to determine the cost of the k-bridges. Let b1,
b2, . . . , bm denote the list of k-bridges sorted according to the topological ordering �. That
is, if b1 = (v1, u1), and b2 = (v2, u2), then we have v1 ≺ v2, and so on. Our algorithm is
given a partial cost function fa, such that fae (j) is defined for all j ≤ i, and returns a cost
function fa+1 that is an extension of fa where, for all l, we have that fa+1

bl
(i+1) is defined.

Our algorithm processes the k-bridges in reverse topological order, starting with the final
bridge bm. Suppose that we are processing the bridge bj = (v, u). We will make one payoff
query to find the cost of bj , which is described by the following diagram.

o k v u d
bj

p4

p5

p2 p3

p1

The dashed lines in the diagram represent paths. They must satisfy some special require-
ments, which we now describe. The paths p4 and p5 must be edge disjoint, apart from
k-bridges. The following lemma shows that we can always select two such paths.

Lemma 5.12. For each k-bridge bj = (v, u), there exists two paths p4 and p5 from u to
d such that p4 ∩ p5 = {bj+1, bj+2, . . . bm}.
On the other hand, the paths p1, p2, and p3 must satisfy a different set of constraints, which
are formalised by the following lemma.

410

Proceedings Article

Lemma 5.13. Let bj = (v, u) be a k-bridge, let p2 be an arbitrarily chosen o-k path.
There exists an o-k path p1 and a k-v path p3 such that: p1 and p3 are edge disjoint; and if
p1 visits k, then p2 and p1 use different incoming edges for k.

Algorithm 5 FindKBridges(k)

Input: A vertex k, and a partial equivalent cost function fa, such that fae (j) is defined for
every j ≤ i.

Output: A partial equivalent cost function fa+1, such that fa+1 is an extension of fa, and
fa+1
e is defined for every e that is a k bridge.

1: for all e and j for which fae (j) is defined do
2: fa+1

e (j)← fae (j)
3: end for
4: for j = m to 1 do
5: p4, p5 ← paths chosen according to Lemma 5.12
6: p1, p2, p3 ← paths chosen according to Lemma 5.13
7: s← (1 7→ p1bjp4, i 7→ p2p3bjp5)
8: cs ← Query(s)
9: fa+1

bj
(i+ 1)← cs(p1bjp4)−

∑
e∈p1 f

a+1
e (ne(s))−

∑
e∈p4 f

a+1
e (ne(s))

10: end for

Algorithm 5 shows how the cost of placing i+ 1 players on each of the k-bridges can be
discovered. Note that on line 9, since s assigns one player to p1, we have ne(s) = 1 for every
e ∈ p1. Therefore, fa+1

e (ne(s)) is known for every edge e ∈ p1. Moreover, for every edge
e ∈ p4, we have that ne(s) = i+ 1 if e is a k-bridge, and we have ne(s) = 1, otherwise. Since
the algorithm processes the k-bridges in reverse order, we have that fa+1

e (ne(s)) is defined
for every edge e ∈ p4. The following lemma shows that line 9 correctly computes the cost
of bj .

Lemma 5.14. Let k be a vertex, and let fa be a partial equivalent cost function, such
that fae (j) is defined for every j ≤ i. Algorithm 5 computes a partial equivalent cost function
fa+1, such that fa+1 is an extension of fa, and fa+1

e is defined for every e that is a k-bridge.

Incoming edges of k. We now describe the second part of the many-player case. After
finding the cost of each k-bridge, we find the cost of each incoming edge at k. The following
diagram describes how we find the cost of e = (v, k), an incoming edge at k .

o v k d
ep

p1

p2

The path p is an arbitrarily chosen path from o to v. The paths p1 and p2 are chosen
according to the following lemma.

Lemma 5.15. There exist two k-d paths p1, p2 such that every edge in p1 ∩ p2 is a
k-bridge.

Algorithm 6 shows how we find the cost of putting i + 1 players on each edge e that is
incoming at k. Consider line 9. Note that every vertex in p is processed before k is processed,
and therefore fa+1

e′ (i + 1) is known for every e′ ∈ p. Moreover, for every edge e′ ∈ p1, we
have that ne′(s) = i+ 1 if e′ is a k-bridge, and we have ne′(s) = 1 otherwise. In either case,
the fa+1

e′ (ne′(s)) is known for every edge e′ ∈ p1. The following lemma show that line 9
correctly computes fa+1

e (i+ 1).

411

Proceedings Article

Algorithm 6 MultiProcessK

Input: A vertex k, and a partial equivalent cost function fa, such that fae (j) is defined for
all e ∈ E when j ≤ i, all e = (v, u) with u ≺ k when j = i+ 1, and all k-bridges when
j = i+ 1.

Output: A partial equivalent cost function fa, such that fae (j) is defined for all e ∈ E
when j ≤ i, and for all e = (v, u) with u � k when j = i+ 1.

1: for all e and j for which fae (j) is defined do
2: fa+1

e (j)← fae (j)
3: end for
4: for all e = (v, k) ∈ E do
5: p← an arbitrary o-v path
6: p1, p2 paths chosen according to Lemma 5.15
7: s← (1 7→ pep1, i 7→ pep3)
8: cs ← Query(s)
9: fa+1

e (i+ 1)← cs(pep1)−
∑
e′∈p f

a+1
e′ (ne′(s))−

∑
e′∈p1 f

a+1
e′ (ne′(s)).

10: end for

Lemma 5.16. Let k be a vertex, and let fa be a partial equivalent cost function, such
that fae (j) is defined for all e ∈ E when j ≤ i, all e = (v, u) with u ≺ k when j = i + 1,
and all k-bridges when j = i + 1. Algorithm 6 produces a partial equivalent cost function
fa, such that fae (j) is defined for all e ∈ E when j ≤ i, and for all e = (v, u) with u � k
when j = i+ 1.

Query complexity. We argue that the algorithm can be implemented so that the costs
for (i + 1) players can be discovered using at most |E| many payoff queries. Every time
Algorithm 5 discovers the cost of placing i+ 1 players on a k-bridge, it makes exactly one
payoff query. Every time Algorithm 6 discovers the cost of an incoming edge (v, k), it makes
exactly one payoff query. The key observation is that the costs discovered by Algorithm 5
do not need to be rediscovered by Algorithm 6. That is, we can modify Algorithm 6 so
that it ignores every incoming edge (v, k) that has already been processed by Algorithm 5.
This modification ensures that the algorithm uses precisely |E| payoff queries to discover
the edge costs for i+ 1 players.

6. CONCLUSIONS AND FURTHER WORK

We first consider open questions in the setting of payoff queries, which has been the main
setting for the results in this paper. We then consider alternative query models.

Open questions concerning payoff queries. In the context of strategic-form games, various
questions have been raised by our results. Theorem 3.5 gives a lower bound on the payoff
query complexity of computing an ε-Nash equilibrium of an k×k bimatrix game in terms of
k, for small positive ε; what about for larger ε < 1

2? What about a non-trivial upper bound

for ε < 1
2? Also, what is the exact expression for the payoff query complexity of bimatrix

games when ε ≥ 1
2? It would also be interesting to investigate the payoff query complexity of

finding an ε-Nash equilibrium in an n-player strategic-form game for small n > 2. However,
for polynomial-time algorithms only a weak upper bound of ε ≤ 1 − 1

n is known [Briest
et al. 2008; Hémon et al. 2008]. To achieve a better ε with only polynomially-many queries,
either non-polynomial-time algorithms would need to be used, or the 1 − 1

n upper bound
would need to be improved.

For congestion games, our lower bound of logn arises from a game with two parallel
links. The upper bound is only a poly-logarithmic factor off from this lower bound, with
the factor depending on m and not n. Thus a lower bound construction that also depends
on m would be interesting. For DAGs it is unclear whether the payoff query complexity

412

Proceedings Article

is sub-linear in n. Non-trivial lower and upper bounds for more general settings, such as
asymmetric network congestion games (DAG or not) or general (non-network) congestion
games would also be interesting.

Other query models. We have defined a payoff query as given by a pure (not mixed) profile
s, since that is of main relevance to empirical game-theoretic modelling. Furthermore, if s
was a mixed profile, it could be simulated by sampling a number of pure profiles from s and
making the corresponding sequence of pure payoff queries. An alternative definition might
require a payoff query to just report a single specified player’s payoff, but that would change
the query complexity by a factor at most n.

Our main results have related to exact payoff queries, though other query models are
interesting too. A very natural type of query is a best-response query, where a strategy s
is chosen, and the algorithm is told the players’ best responses to s. In general s may have
to be a mixed strategy; it is not hard to check that pure-strategy best response queries
are insufficient; even for a two-player two-action game, knowledge of the best responses to
pure profiles is not sufficient to identify an ε-Nash equilibrium for ε < 1

2 . Fictitious Play
([Fudenberg and Levine 1998], Chapter 2) can be regarded as a query protocol that uses
best-response queries (to mixed strategies) to find a Nash equilibrium in zero-sum games,
and essentially a 1/2-Nash equilibrium in general-sum games [Goldberg et al. 2013]. We
can always synthesize a pure best-response query with n(k − 1) payoff queries. Hence, for
questions of polynomial query complexity, payoff queries are at least as powerful as best-
response queries. Are there games where best-response queries are much more useful than
payoff queries? If k is large then it is expensive to synthesize best-response queries with
payoff queries. The DMP-algorithm [Daskalakis et al. 2009b] finds a 1

2 -Nash equilibrium
via only two best-response queries, whereas Theorem 3.1 notes that Θ(k) payoff queries are
needed.

A noisy payoff query outputs an observation of a random variable taking values in [0, 1]
whose expected value is the true payoff. Alternative versions might assume that the observed
payoff is within some distance ε from the true payoff. Noisy query models might be more
realistic, and they are suggested by by the experimental papers on querying games. However
in a theoretical context, one could obtain good approximations of the expected payoffs for
a profile s, by repeated sampling. It would interesting to understand the power of different
query models.

ACKNOWLEDGMENTS

We would like to thank Michael Wellman for interesting discussions on this topic.

REFERENCES

Alon, N., Emek, Y., Feldman, M., and Tennenholtz, M. 2011. Economical graph
discovery. In Proc. of ICS. 476–486.

Angluin, D. 1987. Learning regular sets from queries and counterexamples. Information
and Computation 75, 2, 87–106.

Berenbrink, P., Friedetzky, T., Goldberg, L., Goldberg, P., and Martin, R.
2007. Distributed selfish load balancing. SIAM Journal on Computing 37, 1163–1181.

Briest, P., Goldberg, P. W., and Röglin, H. 2008. Approximate equilibria in games
with few players. CoRR abs/0804.4524.

Chien, S. and Sinclair, A. 2011. Convergence to approximate Nash equilibria in con-
gestion games. Games and Economic Behavior 71, 2, 315–327.

Daskalakis, C., Frongillo, R., Papadimitriou, C., Pierrakos, G., and Valiant,
G. 2010. On learning algorithms for Nash equilibria. In Proc. of SAGT. 114–125.

413

Proceedings Article

Daskalakis, C., Goldberg, P., and Papadimitriou, C. 2009a. The complexity of
computing a Nash equilibrium. SIAM Journal on Computing 39, 1, 195–259.

Daskalakis, C., Mehta, A., and Papadimitriou, C. H. 2009b. A note on approximate
Nash equilibria. Theoretical Computer Science 410, 17, 1581–1588.

Daskalakis, C. and Papadimitriou, C. 2009. On oblivious PTAS’s for Nash equilibrium.
In Proc. of 41st STOC. 75–84.

Duong, Q., Vorobeychik, Y., Singh, S., and Wellman, M. 2009. Learning graphical
game models. In Proceedings of the 21st IJCAI. 116–121.

Even-Dar, E., Kesselmann, A., and Mansour, Y. 2003. Convergence time to Nash
equilibria. In Proc. of ICALP. 502–513.

Fabrikant, A., Papadimitriou, C. H., and Talwar, K. 2004. The complexity of pure
Nash equilibria. In Proc. of STOC. 604–612.

Feder, T., Nazerzadeh, H., and Saberi, A. 2007. Approximating Nash equilibria using
small-support strategies. In Proc. of 8th ACM EC. 352–354.

Feldmann, R., Gairing, M., Lücking, T., Monien, B., and Rode, M. 2003. Nashifi-
cation and the coordination ratio for a selfish routing game. In Proc. of ICALP. 514–526.

Fischer, S., Räcke, H., and Vöcking, B. 2006. Fast convergence to Wardrop equilibria
by adaptive sampling methods. In Proc. of the 38th STOC. pp. 653–662.

Fudenberg, D. and Levine, D. 1998. The Theory of Learning in Games. MIT Press.
Gairing, M., Lücking, T., Mavronicolas, M., Monien, B., and Rode, M. 2008. Nash

equilibria in discrete routing games with convex latency functions. Journal of Computer
and System Sciences 74, 1199–1225.

Goldberg, P. 2004. Bounds for the convergence rate of randomized local search in a
multiplayer, load-balancing game. In Proc. of PODC. 131–140.

Goldberg, P. and Pastink, A. 2012. On the communication complexity of approximate
Nash equilibria. In Proc. of 5th SAGT. LNCS 7615. 192–203.

Goldberg, P. W., Savani, R., Sørensen, T. B., and Ventre, C. 2013. On the
approximation performance of fictitious play in finite games. International Journal of
Game Theory , 1–25.

Hart, S. and Mansour, Y. 2010. How long to equilibrium? The communication complex-
ity of uncoupled equilibrium procedures. Games and Economic Behavior 69, 107–126.

Hart, S. and Mas-Colell, A. 2003. Uncoupled dynamics do not lead to Nash equilib-
rium. American Economic Review 93, 5, 1830–1836.

Hart, S. and Mas-Colell, A. 2006. Stochastic uncoupled dynamics and Nash equilib-
rium. Games and Economic Behavior 57, 2, 286–303.

Hémon, S., de Rougemont, M., and Santha, M. 2008. Approximate Nash equilibria
for multi-player games. In SAGT. 267–278.

Jordan, P., Schvartzman, L., and Wellman, M. 2010. Strategy exploration in empir-
ical games. In Proc. of 9th AAMAS. 1131–1138.

Jordan, P., Vorobeychik, Y., and Wellman, M. 2008. Searching for approximate
equilibria in empirical games. In Proc. of 7th AAMAS, Vol. 2. 1063–1070.

Kearns, M., Littman, M., and Singh, S. 2001. Graphical models for game theory. In
Proc. of the 17th UAI. 253–260.

Nudelman, E., Wortman, J., Shoham, Y., and Leyton-Brown, K. 2004. Run the
GAMUT: A comprehensive approach to evaluating game-theoretic algorithms. In Proc.
of 3rd AAMAS. 880–887.

Sureka, A. and Wurman, P. 2005. Using tabu best-response search to find pure strategy
Nash equilibria in normal form games. In Proc: of AAMAS. 1023–1029.

Vorobeychik, Y., Wellman, M., and Singh, S. 2007. Learning payoff functions in
infinite games. Machine Learning 67, 145–168.

Wellman, M. 2006. Methods for empirical game-theoretic analysis. In Proc. of AAAI.
1552–1555.

414

