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We analyze the number of payoff queries needed to compute approximate equilibria of multi-player games.
We find that query complexity is an effective tool for distinguishing the computational difficulty of alterna-
tive solution concepts, and we develop new techniques for upper- and lower bounding the query complexity.
For binary-choice games, we show logarithmic upper and lower bounds on the query complexity of approxi-
mate correlated equilibrium. For well-supported approximate correlated equilibrium (a restriction where a
player’s behavior must always be approximately optimal, in the worst case over draws from the distribu-
tion) we show a linear lower bound, thus separating the query complexity of well supported approximate
correlated equilibrium from the standard notion of approximate correlated equilibrium.

Finally, we give a query-efficient reduction from the problem of computing an approximate well-supported
Nash equilibrium to the problem of verifying a well supported Nash equilibrium, where the additional query
overhead is proportional to the description length of the game. This gives a polynomial-query algorithm
for computing well supported approximate Nash equilibria (and hence correlated equilibria) in concisely
represented games. We identify a class of games (which includes congestion games) in which the reduction
can be made not only query efficient, but also computationally efficient.
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1. PRELIMINARIES
This paper compares the query complexity of alternative game-theoretic solution con-
cepts. Instead of a game G being presented in its entirety as input to an algorithm A,
we assume that A may submit queries consisting of strategy profiles, and get told the
resulting payoffs to the players in G. This model is appealing when G has many play-
ers, in which case a naive representation of G would be exponentially-large. Assuming
G belongs to a known class of games G, this gives rise to the question of how many
queries are needed to find a solution, such as exact/approximate Nash/correlated equi-
librium. One can study this question is conjunction with other notions of cost, such
as runtime of the algorithm. An appealing aspect of query complexity is that it allows
new upper and lower bounds to be obtained, providing a mathematical criterion to
distinguish the difficulty of alternative solution concepts, as discussed in more detail
below.

We consider queries that consist of pure-strategy profiles, and in which the answer
to any query is the payoffs that all the players receive from that profile. In this paper
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we mostly focus on n-player binary-action games, which have 2n pure profiles. In the
context of approximate equilibria, we use ε to denote the bound on a player’s incentive
to deviate, and we make the standard assumption that all payoffs lie in the range
[0, 1]. We are interested in algorithms with query complexity at most polynomial in n,
meaning of course that only a very small fraction of a game’s profiles may be queried.

Notation. We have n players denoted by the numbers {1, 2, . . . , n}. Let Ai be the set
of possible actions, or pure strategies, of player i and let A = A1 × . . . × An be the set
of pure profiles. In this paper we assume all players have the same number m of pure
strategies, i.e. |Ai| = m for all i. ui : A −→ [0, 1] denotes player i’s utility function.
Generally G will denote a class of games, and G denotes a specific game. Gn denotes
n-player binary-choice games, in which m = 2.

1.1. Alternative definitions of approximate equilibrium
We review the notions of exact and approximate correlated equilibrium (CE), and in-
troduce the definition of well-supported approximate CE. A probability distribution ψ
on A is a correlated equilibrium if for every player i, all pure strategies j, k ∈ Ai we
have (letting (k, a−i) denote the profile a with i’s strategy replaced with k)∑

a∈A:ai=j

ψ(a)[ui(k, a−i)− ui(a)] ≤ 0. (1)

An ε-approximate correlated equilibrium (ε-CE) is a distribution ψ where for every
player i, every function f : Ai −→ Ai, we have∑

a∈A
ψ(a)[ui(f(ai), a−i)− ui(a)] ≤ ε. (2)

The above definition is based on swap regret, from [Blum and Mansour 2007], although
other definitions (e.g. based on internal regret) are possible. An alternative definition
from [Hart and Mas-Colell 2000] of correlated ε-equilibrium replaces the RHS of (1)
with ε > 0. The definitions are not quite the same: an ε-CE is a correlated ε-equilibrium,
while a correlated ε-equilibrium need only be a mε-CE.

An ε-approximate coarse correlated equilibrium (ε-CCE) is a distribution ψ in which
for all players i, strategies j,∑

a∈A
ψ(a)[ui(j, a−i)− ui(a)] ≤ ε.

In general an ε-CE is an ε-CCE, but the converse does not hold.1 However, in the case
of binary-choice games (the class of games we mainly consider here) an ε-CE is an ε-
CCE, while an ε-CCE is a 2ε-CE, hence the two notions are basically the same from
the perspective of our interest in asympototic query complexity in terms of n and ε.

An ε-well-supported approximate correlated equilibrium (ε-WSCE) imposes the more
demanding requirement that after a player observes his own action, his expected gain
from switching to any other action is at most ε. It can be precisely defined by saying
that for any player i, strategies j, k ∈ Ai, letting pij = Pra∼ψ[ai = j],∑

a∈A:ai=j

ψ(a)ui(k, a−i)−
∑

a∈A:ai=j

ψ(a)ui(j, a−i) ≤ pijε

1For example, in the game of rock-paper-scissors, the uniform distribution over the 3 strategy profiles in
which both players play the same strategy is a CCE but not a CE.
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which is equivalent to E[ui(k, a−i)]− E[ui(j, a−i)] ≤ ε, where the expectations are w.r.t.
ψ restricted to profiles where i plays j.

It may be helpful to note the following comparison with the earlier definition of
correlated ε-equilibrium. Observe that if

∑
a∈A:ai=j ψ(a) is small (meaning that it is

unlikely that in a random profile, player i plays j) then putting some given ε > 0
into the RHS of (1) introduces more slackness than would be the case if

∑
a∈A:ai=j ψ(a)

were large. The definition of ε-WSCE corresponds to an attempt to redress this variable
slackness.

OBSERVATION 1. Let G be a game and fix ε > 0. The set of ε-WSCE of G is convex.

PROOF. Let ψ and ψ′ be two ε-WSCE of G. We show that ψ′′ = λψ+ (1− λ)ψ′ is also
an ε-WSCE (for λ ∈ (0, 1)). Suppose strategy profile s is sampled from ψ′′ and some
player i observes his action a, i.e. his marginal observation of s on his own behavior. If
there was some action a′ that would pay i more then ε more (in expectation) then one
(or both) of ψ or ψ′ would have to have that property.

For completeness, recall that ψ is a Nash equilibrium (NE) if it obeys the further
constraint that ψ is a product distribution of its restriction to the individual players.

Example 1.1. In the directed path graphical game Gn, each player i ∈ {1, 2, . . . , n}
has two actions, 0 and 1. Player 1 gets paid 1 for playing 1 and 0 for playing 0. For
i > 1, player i gets paid 1 for copying player i− 1 and 0 for playing the opposite action.

Observations about Example 1.1. In an exact Nash equilibrium of Gn, all players
play 1 with probability 1. Furthermore it is not hard to see that for ε < 1, the only
ε-WSCE requires all players to play 1 with probability 1. In an ε-Nash equilibrium of
Gn, for small ε all players play 1 with high probability. For example, putting ε = 1

100 , it
can be proved by induction on i that player i plays 1 with probability > 9

10 . By contrast,
for any ε > 0 there exist ε-CE where the probability that i plays 1 can decrease towards
0 as i increases. Specifically, let z ∼ U [0, 1]; if z ∈ [rε, (r+ 1)ε] let players {1, . . . , r} play
1 and let the other players play 0. It can be checked that the resulting distribution
over pure-strategy profiles is an ε-approximate CE.

These observations indicate that for some games, there are many approximate corre-
lated equilibria that are ruled out when the “well-supported” requirement is imposed.

1.2. Related work
Various game-theoretic settings have been studied in which an agent’s type may be
exponentially-complex (raising the spectre of exponential communication complexity),
but a solution may be found via a feasibly small sequence of queries to an agent about
his type. Some examples are the following. In the setting of combinatorial auctions
where buyers have valuations for bundles (subsets) of a set of items, [Conen and Sand-
holm 2001] present algorithms that exploit properties of valuation functions in or-
der to find a good allocation without querying the functions exhaustively. [Blum et al.
2004] study (from the learning-theory perspective) welfare-optimal allocation of items
amongst buyers, obtained via value queries in which the query elicits the value a buyer
places on a bundle. [Conitzer 2009] studies rank aggregation in a setting where a voter
may be asked which of 2 alternatives he prefers; that paper makes the point that to find
a winner, it is not always necessary to learn all voters’ complete rankings (although,
the query complexity of finding an aggregate ranking is similar to that of learning all
the voters’ rankings).

Work on the query complexity of the solution concepts of Section 1.1 for general
multi-player games is more recent. [Fearnley et al. 2013] point out that payoff queries
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have a motivation coming from empirical game-theoretical analysis; some alternative
queries are mentioned. They present algorithms for congestion games and bimatrix
games. For general multiplayer games (the subject of this paper), payoff query com-
plexity has recently been studied by [Hart and Nisan 2013; Babichenko and Barman
2013; Babichenko 2013]. The main focus of these papers is on exponential (in n) lower
bounds for solutions of n-player games having a constant number m of pure strategies
per player. For deterministic algorithms, approximate Nash/CE needs exponentially-
many queries [Hart and Nisan 2013], which motivates a focus on randomized algo-
rithms (in this paper, all algorithms are randomized). [Hart and Nisan 2013] also
shows that exact Nash/CE have exponential query complexity even with randomness,
which motivates a focus on approximate solution concepts. The main open question
(noted in [Hart and Nisan 2013]) is the query complexity of ε-NE; in this paper we give
a positive result2 for the special case of concisely-represented games (Theorem 3.3).
[Hart and Nisan 2013; Babichenko and Barman 2013] note that (with randomization)
one can obtain query-efficient algorithms for approximate correlated equilibrium by
simulating regret-based algorithms. In this paper we analyze this query complexity in
more detail, and use it as a criterion to distinguish the difficulty of approximate CE
from well-supported approximate CE. Most recently, [Babichenko 2013] shows that ε-
well-supported approximate NE needs exponentially-many queries, for m = 104 and
ε = 10−8; it is currently an open question whether these constants can be improved.
ε-WSCE is a refinement of approximate CE that is analogous to well-supported ap-

proximate Nash equilibrium, studied in [Kontogiannis and Spirakis 2010; Fearnley
et al. 2012; Goldberg and Pastink 2014; Babichenko 2013]. In an ε-Nash equilibrium
(ε-NE), a player’s payoff is allowed to be up to ε worse than his best response. The mo-
tivation behind the “well-supported” refinement is that in an ε-NE, it may still be the
case that a player allocates positive probability to some strategy whose payoff is more
than ε worse than his best response. Such behavior is disallowed in a well-supported
ε-NE. Under this more demanding definition of approximate Nash equilibrium, the
values of ε known to be achievable in polynomial time (in the context of bimatrix
games) are accordingly higher; ε-NE can be computed for ε slightly above 1

3 [Tsak-
nakis and Spirakis 2008] while for ε-WSNE, the best value known is slightly less than
2
3 [Fearnley et al. 2012]. For the games studied in this paper, we will see that the pay-
off query complexity of ε-WSCE is strictly higher than that of ε-CE. The technique
of [Daskalakis et al. 2009] (Lemma 4.28) (see also [Chen et al. 2009] Lemma 3.2) for
converting approximate NE into approximate WSNE works for Nash equilibria but
not for correlated equilibria, and so we need new upper-bounding techniques.

Communication complexity was analysed for n-player binary-choice games by Hart
and Mansour [Hart and Mansour 2010], and for bimatrix games in [Goldberg and
Pastink 2014]. [Hart and Nisan 2013] notes that payoff-query bounded algorithms
can be efficiently converted into communication-bounded algorithms. Lower bounds
seem to be easier to obtain in the payoff-query setting. In the communication-bounded
setting, [Hart and Mansour 2010] show efficient upper bounds for ε-CE, and exponen-
tial lower bounds just for exact (pure or mixed) Nash equilibria. The communication
complexity of finding an exact correlated equilibrium is polynomial in the number of
players, in contrast with the exponential requirement of NE. It uses Papadimitriou’s
approach [Papadimitriou 2005] (using the Ellipsoid algorithm) to compute a mixture
of product distributions that constitutes a CE. The algorithm interacts with the game
using mixed-strategy payoff queries and receiving exact answers. Note that mixed-
strategy payoff queries can be approximately simulated by randomly-sampled pure-

2That is, a query-efficient algorithm, but one that need not be computationally-efficient.

642



strategy payoff queries; this suggests that pure payoff queries can be used by a ran-
domized algorithm to find approximate correlated equilibria.

The connection between no-regret algorithms and equilibrium notions, including cor-
related equilibria, were first noted by [Freund and Schapire 1999; Hart and Mas-
Colell 2000]. For an excellent survey of this connection, see [Blum and Mansour
2007]. Appendix B.3 of [Hart and Mansour 2010] makes the observation that regret-
minimization techniques yield simple polynomial upper bounds for the communication
complexity of approximate CE. We note that this straightforward approach also gives
a polynomial upper bound on the number of payoff queries needed to compute ap-
proximate correlated equilibrium (but not well-supported correlated equilibrium). We
improve this straightforward polynomial dependence on n to an O(log n) dependence,
and give a matching lower bound. To our knowledge, we are the first to study bounds
on computing well supported correlated equilibria, which do not follow from no-regret
guarantees.

1.3. Our results and techniques
Section 2 gives bounds on the query complexity of ε-CE in terms of n and ε, while
Section 3 gives bounds on the query complexity of ε-WSCE in terms of n and ε. As
functions of the number of players n, the bounds for ε-CE are logarithmic. For ε-WSCE
we have a linear lower bound, thus showing a separation between the two solution
concepts. The following observation is a useful starting-point:

OBSERVATION 2. For binary-choice games the uniform distribution is a 1
2 -

approximate Nash equilibrium, thus also an ε-approximate CE for any ε ≥ 1
2 .

In Section 2 we show that for any ε < 1
2 , the query complexity is Θ(log n), showing

that the constant 1
2 in Observation 2 represents a crisp threshold at which the query

complexity becomes non-trivial.
For (non-well-supported) correlated equilibria, our algorithms for query-efficient up-

per bounds use the Multiplicative Weights algorithm, applying it in two alternative
ways. To obtain an upper bound that works well for the case of many strategies per
player (Section 2.1), a polynomial (in the number of players) query upper bound follows
straightforwardly from an application of multiplicative weights: the standard proof is
included in the full version of the paper. We note that this also yields an O(m logm)
upper bound for the problem of computing an approximate Nash equilibrium in a 2-
player m ×m zero-sum game, which is substantially smaller than the representation
size of the game matrix.

The case of many players having just 2 strategies (Section 2.2) is more subtle: a
straightforward application of multiplicative weights would yield a superlinear query
complexity upper bound (in the number of players n), but as we show, this linear de-
pendence on n is not necessary: we are instead able to achieve a logarithmic upper
bound. The reason the naive application of multiplicative weights requires a linear
number of queries is because at every round of the algorithm, it is necessary to esti-
mate the payoff for every action of each of the n players. We observe that if we had a
guarantee that at each stage of the algorithm, every player was playing a mixed strat-
egy that placed at least Ω(ε) probability mass on each action, then it would be possible
to estimate the payoffs of every player simultaneously from a single sample consisting
of ≈ log(n)/ε3 randomly chosen value queries. Moreover, we can enforce this condition
by having each player play according to multiplicative weights coupled with a Breg-
man projection into an appropriately defined convex polytope. We show that even with
this projection, play still converges to an approximate correlated equilibrium. Using
this technique we obtain quite an efficient upper bound on the query complexity of
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computing an ε-CE, using O(log n/ε5) queries. The lower bound of Section 2.3 shows
that Ω(log n) queries are indeed required for any ε < 1

2 . Theorem 2.4 contrasts with the
exponential lower bound for deterministic algorithms [Babichenko and Barman 2013;
Hart and Nisan 2013].

The lower bounds of Theorems 2.8 and 3.1 work by identifying distributions over the
payoff functions of the target game, so that Yao’s minimax principle can be applied to
algorithms having lower query complexity. Finally, we apply Theorem 3.1 to show that
small-support approximate CE are harder (in the query complexity sense) to find than
are larger-support approximate CE.

Finally, we give query efficient reductions from the problem of computing an ε-
approximate well supported Nash equilibrium to the problem of verifying an ε-
approximate well supported Nash equilibrium (and hence correlated equilibrium),
where the query overhead is proportional to the description length of the game. Since
verifying equilibria can be done query efficiently, this gives query efficient algorithms
for computing approximate well supported equilibria in concisely represented games.
In special classes of games (including some congestion games) in which the payoff
function can be represented as a linear function over polynomially many dimensions,
this reduction can be made computationally efficient as well. The main technique is to
use no-regret algorithms as mistake bounded learning algorithms for the underlying
game, which is similar to how no-regret algorithms have been recently used in data
privacy [Roth and Roughgarden 2010; Hardt and Rothblum 2010; Gupta et al. 2012].
We use the algorithms to learn a hypothesis game representation: at each stage, we
compute an equilibrium of the hypothesis game, and then make polynomially many
queries to check if our computed equilibrium is an equilibrium of the real game. If it
is, we are done: otherwise, we have forced the learning algorithm to make a mistake,
which we charge to its mistake bound.

2. BOUNDS FOR THE QUERY COMPLEXITY OF ε-CE
We use the Multiplicative Weights algorithm to get upper bounds on the query com-
plexity of coarse correlated equilibrium. The first one is applied to zero-sum bimatrix
games, and the second one is applied to n-player binary-action games.

2.1. Upper bound for ε-approximate coarse correlated equilibrium; few players, many
strategies

As a warmup, we consider a straightforward upper bound on the query complexity of
computing approximate coarse-correlated equilibria that follows from using no-regret
algorithms. In the special case of two player zero-sum games, [Freund and Schapire
1999] showed that two no regret algorithms played against each other converge to an
approximate Nash equilibrium. We here observe that this approach yields an upper
bound for the query complexity of these equilibrium concepts. The proof is standard,
and we include the algorithm and the proof in the full version for completeness.

Theorem 2.1 identifies useful bounds in the case of m � n; in particular it has an
interesting application to the case of 2-player zero-sum games in Corollary 2.2.

THEOREM 2.1. Let G be a game with n players, each with m pure strategies where
m ≥ n; payoffs lie in [0, 1]. With probability 1− nm− 1

8 , Algorithm APPROX COARSE CE
(Figure 1) finds an ε-approximate coarse correlated equilibrium of G, using O(nm logm

ε2 )
payoff queries.

COROLLARY 2.2. Let G be a m × m zero-sum bimatrix game. It is possible to ef-
ficiently compute (w.h.p., using a randomized algorithm) an ε-Nash equilibrium of G,
using O(m logm

ε2 ) payoff queries.
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APPROX COARSE CE
Parameters: learning rate η = ε

3
; number of iterations T = 9 lnm

ε2
.

wij(t) is the weight of the j-th strategy of player i at iteration t;

initially wij(1) = 1 for all i, j. Do the following for iterations t = 1, . . . , T:

(1) For each player i, let pi(t) = (pi1(t), . . . , p
i
m(t)) be the probability

distribution over i’s strategies corresponding to the weights; pij(t) =

wij(t)/
∑
j w

i
j(t).

(2) For each player i, sample a pure strategy si(t) from pi(t). Let s(t) = ×isi(t)
be the resulting strategy profile.

(3) ∀i, query the payoffs of all responses to s(t). Let mi
j(t) be the cost

(negated payoff) of strategy j.

(4) update weights: for each i, j, set wij(t+ 1) = wij(t)(1− ηmi
j(t)).

Output: The distribution p = 1
T

∑T
t=1 p(t).

Fig. 1. Using (the naive) application of Multiplicative Weights to compute an approximate coarse CE

This follows from the observation that for zero-sum bimatrix games, an ε-
approximate coarse correlated equilibrium ψ can be converted to a 2ε-NE by taking
the product of the marginal distributions of ψ for each player. This result was recently
extended to well-supported ε-NE [Fearnley and Savani 2013].

2.2. Upper bound for n players, binary actions
We noted at the end of Section 1.2 that no-regret algorithms can be applied directly to
yield a polynomial upper bound on the query complexity of ε-CE of binary-choice games
(more generally for ε-CCE when players have more than 2 actions). In this section, we
take a more sophisticated approach to show a logarithmic upper bound. We will give a
matching lower bound to show that this is optimal.

First, we give the intuition for the approach. The naive application of no-regret al-
gorithms gives a query complexity that is linear in the number of players n because
we must take samples to estimate the payoffs of the 2 actions for each of the n players.
The improved algorithm in this section is based on the following two optimizations:

(1) If the distribution over game states induced by the mixed strategies of all n players
were such that each player had probability mass at least ε on each of his two actions,
then it would be enough to take O(log(n)/ε3) samples from this joint distribution to
simultaneously estimate the payoffs of all n players. We formalize this below in
Proposition 2.3.

(2) We can simulate play of the game in such a way so as to force each agent to play a
mixed strategy that puts weight at least ε/4 on each of their two actions. One way
to do this is to have each player play multiplicative weights, coupled with a Breg-
man projection into the polytope Kε/4, where Kε/4 is the 2-dimensional probability
simplex over distributions p, intersected with the linear inequalities constraining
||p||∞ ≥ ε/4. The result is that the final empirical average of player strategies will
always place minimum weight ε/4 on any action, and each player will have no regret
to the best mixed strategy inKε/4 (see e.g. [Arora et al. 2012]). However, because the
total variation distance between any probability distribution andKε/4 is at most ε/2,
this means that no player will have regret greater than ε/2 to any strategy. Hence,
the resulting play will be an ε/2-approximate coarse correlated equilibrium, and
therefore an ε-approximate correlated equilibrium.
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The algorithm is given in Figure 2. Using standard concentration bounds we can es-
tablish the following fact:

PROPOSITION 2.3. Let s be a mixed-strategy profile of an n-player 2-action game,
having the property that for any player i and strategy j, i plays j with probability at
least γ. Let si(a) be the expected payoff to i when i plays a and the other players play
s−i.

With probability 1 − δ we can find, with additive error β ≤ γ/2, all the
si(a) values, using N payoff queries randomly sampled from s, whenever N ≥
max

{
1
γβ2 log

(
8n
δ

)
, 8γ log

(
4n
δ

)}
.

THEOREM 2.4. Let G be a game with n players, each with 2 actions; payoffs lie in
[0, 1]. For any ε, with probability 1 − 2

n , Algorithm APPROX COARSE CE (2) (Figure 2)
finds an ε-approximate coarse correlated equilibrium ofG, using Õ( logn

ε5 ) payoff queries.

PROOF. If Algorithm APPROX COARSE CE (2) updated its probabilities using the
true losses of each action mi

j(t) (rather than with the noisy estimates m̂i
j(t)), then it

would be simulating play of the n player game where each player would be using the
“Multiplicative Weights Update Algorithm with Restricted Distributions” from [Arora
et al. 2012], where each player is restricted to playing a distribution in Kε/6. The guar-
antee of the multiplicative weights update algorithm with restricted distributions (see
e.g. [Arora et al. 2012] Theorem 2.4) gives us (where mi(t) denotes the loss vector
(mi

j(t))j):

1

T

T∑
t=1

mi(t) · pi(t) ≤ min
p∈Kε/6

1

T

T∑
t=1

mi(t) · p+ η +
ln 2

ηT

We now make several observations. First, note that for every probability distribution
p, there exists a distribution p̂ ∈ Kε/6 such that dTV (p, p̂) ≤ ε/3, where dTV represents
the total variation distance. Therefore, since the losses mi(t) ∈ [0, 1] we can deduce:

1

T

T∑
t=1

mi(t) · pi(t) ≤ min
p

1

T

T∑
t=1

mi(t) · p+ η +
ln 2

ηT
+ ε/3

which follows from Holder’s inequality.
Similarly, as observed by [Kearns et al. 2013], if we have that maxi,j,t |mi

j(t)−m̂i
j(t)| ≤

β, then we can deduce:

1

T

T∑
t=1

m̂i(t) · pi(t) ≤ min
p

1

T

T∑
t=1

m̂i(t) · p+ η +
ln 2

ηT
+ ε/3 + 2β

Proposition 2.3 gave conditions for the observed losses to be within β of true losses.
Applying Proposition 2.3 with β = ε/6 and γ = ε/6, we have that with probability at

least 1− δ/T the following value of N is sufficient for observed losses to be within β of
true losses, at any iteration:

N ≥ 216

ε3
log

(
8nT

δ

)
. (3)

We therefore have:

1

T

T∑
t=1

m̂i(t) · pi(t) ≤ min
p

1

T

T∑
t=1

m̂i(t) · p+ η +
ln 2

ηT
+ 2ε/3
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APPROX COARSE CE (2)
Parameters: learning rate η = ε

6
; number of iterations T = 36 ln 2

ε2
; sample size

N = 216
ε3

log
(
8nT
δ

)
.

(a) Let pij(t) denote the probability mass on strategy j ∈ {0, 1} of player i at

iteration t; initially pij(1) = 1/2 for all i, j ∈ {0, 1}.
(b) Kε = {(p0, p1) : p0 + p1 = 1 and min(p0, p1) ≥ ε} is the convex body

defined to be the 2-dimensional probability simplex intersected with
the constraints that p0, p1 must both be greater than or equal to ε.

Do the following for iterations t = 1, . . . , T:

(1) For each player i let p̂i(t) = argminp∈Kε/6 RE(p||pi(t)). Here RE is the
relative entropy function.

(2) Let p(t) be the product distribution over mixed-strategy profiles that

results from each player i playing p̂i(t).

(3) Sample N pure-strategy profiles S(t) = {s1(t), . . . , sN (t)} from p(t).

(4) query the payoffs for all the profiles in S(t). Let m̂i
j(t) be the empirical

cost of strategy j when used by player i. (That is, letting Sij(t) = {s ∈
S : i plays j in S}, mi(s) be 1 minus the payoff to i for s ∈ Sij(t), then

m̂i
j(t) = |Sij(t)|−1∑

s∈Sij(t)
mi(s). If i never plays j in the profiles S(t), the

algorithm fails.)

(5) update weights: for each i, j, set pij(t + 1) = p̂ij(t)(1 − ηm̂i
j(t))/φ where φ is

the normalization constant needed to make pi a probability distribution.

Output: The distribution p = 1
T

∑T
t=1 p(t).

Fig. 2. Using Multiplicative Weights to compute an approximate coarse CE

Plugging in our values for T and η bounds the regret of each player by at most:

1

T

T∑
t=1

m̂i(t) · pi(t)−min
p

1

T

T∑
t=1

m̂i(t) · p ≤ ε

which proves the theorem.

We believe Theorem 2.4 could generalize to m actions, at the cost of a factor-m in-
crease in sample complexity. We focus on the 2-action case since in this case, an ε-
approximate coarse correlated equilibrium is a 2ε-approximate correlated equilibrium,
so we have the following result:

COROLLARY 2.5. For binary-choice games (where each player has 2 pure strategies),
for any ε, with probability 1 − 1

n , Algorithm APPROX COARSE CE (2) finds an ε-CE,
using Õ( logn

ε5 ) payoff queries.

2.3. Lower bound for n players, binary actions
For positive integer k > 2 we lower-bound the number of queries needed to find a
( 1
2 −

1
k )-approximate CE, by fixing the number of queries to be Q = blogk(k−1) nc and

applying Yao’s minimax principle. The cost of the output of algorithm A is the smallest
value of ε for which A’s output is an ε-approximate CE. We identify a distribution over
payoff functions of n-player binary-action games such that the expected cost of the
solution output by any algorithm A that uses Q queries (or fewer) is approximately 1

2 .
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A distribution over payoff functions. Define the following probability distribution
over payoffs of n-player binary-choice games. Each player i ∈ [n] shall be a “type-0”
player or a “type-1” player, a player’s type being obtained by flipping a fair coin. Let
ti be the type of player i. After types have been obtained, for each player i, construct
i’s payoff function as follows. For each strategy profile s−i of players other than i, with
probability k−1

k player i gets paid 1 to play ti and 0 to play 1− ti. With probability 1
k , i

gets paid 0 to play ti and 1 to play 1− ti. Hence, for a (expected) fraction k−1
k of profiles

s−i, player i has ti as best response, with 1− ti as the best response for the remaining
profiles s−i.

Notation. Let A be an algorithm that makes Q pure profile queries, for Q =
logk(k−1) n. Let s1, . . . , sQ be the queried profiles, where sj is the j-th query in the se-
quence made by A.

An important observation is that, conditional on a choice of player types, all payoff
vectors are generated independently of each other. Consider the process of generating
the payoff function as above, and then querying it. That process is equivalent to one
where the type vector is initially generated, then the algorithm selects various pure-
strategy profiles to query, and then each time a pure-strategy profile is queried, we
flip the biased coins that produce its payoff vector. This shows a useful limitation on
how the answers to a sequence of queries can indicate what the answer will be to any
subsequent query.

PROPOSITION 2.6. For 0 ≤ j ≤ Q, let pj be the probability distribution over type
vectors, conditioned on the answers to the first j queries (i.e. the players’ payoffs for
{s1, . . . , sj}). Then pj is a product distribution, pj = ×ipji , where pji is the probability
that player i has type 1.

PROOF. The claim follows by induction on j. Initially, p0 is the uniform distribution.
Subsequently, the payoffs for each queried profile sj are obtained by making a (biased)
coin-flip independently for each player. (After the type vector has been selected, we
can assume that the payoffs for a queried pure profile, are generated by making biased
coin-flips, independently of the results of previous queries.)

In particular, when A queries strategy profile sj , A observes a payoff for each player
i consisting of the result of a coin-flip which is

— equal to 1 with probability k−1
k and 0 with probability 1

k if ti = sji , and
— equal to 1 with probability 1

k and 0 with probability k−1
k if ti = 1− sji .

OBSERVATION 3. We say that the payoffs for sj indicate that player i is type t ∈
{0, 1} if i plays 1 and gets paid t, or i plays 0 and gets paid 1− t. Let Qit be the number of
queries that indicate that player i is type t. It is not hard to check that Pr[ti = 1]/Pr[ti =

0] = (k − 1)(2Q
i
1−Q), where Pr[ti = t] is the probability that i has type t, conditioned on

the data.

Definition 2.7. A outputs a distribution ψ over pure-strategy profiles. Let ψu be ψ
restricted to the un-queried profiles. We will say that A has bias b for player i, if on
profiles sampled from ψu, i plays 1 with probability b, i.e. Ex∼ψu [xi] = b where xi is the
action played by i in profile x.

THEOREM 2.8. Let k > 2 be an integer. Let A be a payoff-query algorithm that uses
at most logk(k−1) n queries, where n is the number of players, and outputs distribution
ψ.
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With probability more than 1
2 there will exist a player i who would improve his payoff

by 1
2 −

1
k by playing some fixed strategy in {0, 1}, relative to the payoff he gets in ψ.

PROOF. Assume that the payoffs for game G are generated by the distribution de-
fined above.

We identify a lower bound on the probability that any individual player i is paid 0 in
every profile in {s1, . . . , sQ}, and has a type ti that is in a sense “bad” for ψ.

We start by lower-bounding the probability that a given player gets paid zero on
every query. To this end, suppose that A tries to maximize the probability that each
player gets paid at least 1. This is done by selecting sj that allocates to each player i,
the action that is more likely to pay 1 to i, conditioned on the answers to s1, . . . , sj−1.
However, since i’s payoff is obtained by a coin flip that pays i zero with probability
either 1

k or k−1
k , at each query there is probability at least 1

k that i will get paid 0.
Hence with probability at least 1

k

Q, i is paid zero on all queries.
Conditioned on the answers to all Q queries, we have (noting Observation 3) for any

player i that Pr[ti = 1]/Pr[ti = 0] ≤ (k − 1)Q and similarly Pr[ti = 0]/Pr[ti = 1] ≤
(k − 1)Q, where Pr[ti = t] is the conditional probability that ti is equal to t. Hence,
any prediction of a player’s type has probability at least (k − 1)−Q of being incorrect,
regardless of how much that player was paid during the queries.

Consider some player i who gets paid zero on all Q queried profiles. Let b be the
bias (Definition 2.7) for player i and let λ be the probability that x ∼ ψ happens to be
a queried profile. Thus ψ = λψq + (1 − λ)ψu where ψq is a distribution over queried
profiles and ψu is a distribution over unqueried profiles.

Let p0 (resp. p1) be the probability that x ∼ ψ is a queried profile where i plays 0
(resp. 1). Let p′0 (resp. p′1) be the probability that x ∼ ψ is an unqueried profile where i
plays 0 (resp. 1). Thus p0 +p1 +p′0 +p′1 = 1; p0 +p1 = λ; p′0 = (1−λ)(1− b); p′1 = (1−λ)b.

Suppose player i is paid 0 in all queried profiles.

— If ti = 0, then i’s expected payoff under ψ is p′0
k−1
k + p′1

1
k .

— If ti = 1, then i’s expected payoff under ψ is p′1
k−1
k + p′0

1
k .

Furthermore:

— If ti = 0 and i plays 0 against all profiles generated by ψ, i’s expected payoff is

p1 + (1− λ)
k − 1

k
= p1 +

k − 1

k
(p′0 + p′1).

— If ti = 1 and i plays 1 against all profiles generated by ψ, i’s expected payoff is

p0 + (1− λ)
k − 1

k
= p0 +

k − 1

k
(p′0 + p′1).

Suppose ti = 0. i can improve his expected payoff by p1 + k−1
k (p′0 +p′1)− (p′0

k−1
k +p′1

1
k )

by playing 0 always. Suppose ti = 1. i can improve his expected payoff by p0 + k−1
k (p′0 +

p′1) − (p′1
k−1
k + p′0

1
k ) by playing 1 always. So, there exists a value for ti such that i’s

regret is at least

max
{
p1 +

k − 1

k
(p′0 + p′1)−

(
p′0
k − 1

k
+ p′1

1

k

)
, p0 +

k − 1

k
(p′0 + p′1)−

(
p′1
k − 1

k
+ p′0

1

k

)}
which simplifies to

max
{
p1 +

k − 2

k
p′1, p0 +

k − 2

k
p′0

}
.

649



The sum of these two terms is p0 + p1 + k−2
k (p′0 + p′1), and since p0 + p1 + p′0 + p′1 = 1,

the sum of the terms is at least k−2
k , so at least one of the terms is at least k−2

2k , hence
the maximum of them is at least k−2

2k .
For a player i to have regret at least k−2

2k it is sufficient for the following 2 events to
occur: player i is paid 0 on all queried profiles, and player i turns out to have type ti that
leads to larger regret than the alternative type 1 − ti. The first of these events occurs
with probability at least 1

k

Q, and (given the first) the second occurs with probability
at least ( 1

k−1 )Q. So for any player i, with probability at least ( 1
k(k−1) )

Q, i has regret
at least k−2

2k . Thus for n ≥ (k(k − 1))Q, i.e. Q ≤ logk(k−1) n, a bad player exists with
probability more than 1

2 .

3. BOUNDS FOR THE QUERY COMPLEXITY OF ε-WSCE
In Section 3.1 we present a lower bound that is linear in n. We then present an upper
bound in Section 3.2 that applies to the class of concisely-representable games and
finds an ε-WSNE. In Section 3.3 we show that this upper bound takes the form of a
generic reduction from the problem of computing ε-WSNE to the problem of verifying
ε-WSNE, and can be implemented computationally efficiently in certain games.

3.1. Lower bound
To obtain a lower bound that applies to randomized algorithms, in a similar way to
Theorem 2.8 we define an adversarial distribution over games in Gn and argue that
given a deterministic algorithm A that uses o(n) queries, that A is likely to fail to find
an ε-WSCE.

A distribution over payoff functions. Let Dn be the following distribution over Gn.
For each player i, and each bit vector b of length i − 1, let bi,b ∈ {0, 1} be obtained by
flipping a fair coin. If players 1, . . . , i− 1 play b then i is paid bi,b ∈ {0, 1} to play 0 and
1 − bi,b ∈ {0, 1} to play 1. Note that every game generated by D has a unique (pure)
NE.

THEOREM 3.1. For ε < 1, the payoff query complexity of computing ε-WSCE of Gn
(i.e. n-player 2-action games with payoffs in [0, 1]) is Ω(n).

PROOF. For any game G in the support of Dn, observe that G has a unique (pure)
Nash equilibrium N . N is found by considering each player i in ascending order, and
noting that each player is incentivized to select one of his actions based on the behavior
of 1, . . . , i− 1, and i’s payoffs are not a function of the behavior of i+ 1, . . . , n. Moreover,
N can be seen to be the unique ε-WSCE of G.

For G ∼ Dn, let s1, . . . , sj be a sequence of query profiles for G and consider the
conditional distribution D′ on Gn that results from the answers to those queries. We
claim thatD′ has the following form. Letm be the length of the longest prefix of players
that all get paid 1 in some query,

m = arg max
m
{∃q ∈ 1 . . . j : sq pays 1 to 1, . . . ,m}.

Let s be the queried profile that pays 1 to players 1, . . . ,m and 0 to player m = 1. Then
D′ is uniform over all games G in the support of Dn that pay 1 to players 1, . . . ,m to
play as in s and pay player m+ 1 0 to play as in s.

The claim can be proved by induction on j. Let Dj be the conditional distribution
that results from the first j queries, and consider query sj+1. Define m as above. Dj
is uniform over elements of Gn in its support. Dj+1 is obtained by taking the uniform
distribution over any such game that is consistent with sj+1.
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Define the progress of query sj+1 to be the increase in the length of the prefix of
players whose behavior is determined by elements of Dj . Then the expected progress
of each query is less than 1 +

∑
r≥0 r/2

r+1 = 2. Meanwhile, the total progress of all
queries required to find an ε-WSCE is n.

Using the above result we can obtain a separation between the query complexity of
computing small support ε-CE and arbitrary support ε-CE for any ε ≥ (log(n)/n)1/3.
Without loss of generality, we can view approximate correlated equilibria as uniform
distributions over (multi)sets of action profiles S: note that multiplicative weights ex-
plicitly finds correlated equilibria of this form, and any correlated equilibrium can be
put in this form with arbitrarily small loss in the approximation factor by sampling.
We note that multiplicative weights finds a correlated equilibrium with a support size
|S| that depends on n: |S| ≥ log(n)/ε2. We show that no algorithm with polylogarith-
mic query complexity can find an approximate correlated equilibrium with support
size O(1/ε) (independent of n). Of course such a separation is vacuous in games in
which there are no ε-CE with support O(1/ε), but in any game that has a pure strat-
egy (ε)-Nash equilibrium, there is always a small support CE – in particular, one with
support just 1. On this topic, [Babichenko et al. 2013] show that multiplayer games
have approximate CEs with polylogarithmic support size, and approximate CCEs with
logarithmic support size. They note as an open problem the existence of CEs whose
support size depends only on ε and not n.

COROLLARY 3.2. The query complexity of computing ε-CE with support size |S| ≤
1/ε is Ω(n): strictly greater than the query complexity of computing ε-CE with support
size |S| > log(n)/ε2 for any constant ε.

PROOF. If ψ is an ε-CE that is supported over |S| strategy profiles a, then ψ is also a
|S|.ε-WSCE. This is because the probability p of any action a with ai = j with positive
probability in ψ must be at least 1/|S|.

Since Theorem 3.1 gives an Ω(n) lower bound for computing Ω(1)-WSCE, this in
particular also implies an Ω(n) lower bound for computing a CE with support O(1/ε).
This is in contrast to the O(log(n)/ε5) upper bound of Theorem 2.4 for computing CE
with larger support (in particular, support log(n)/ε2).

3.2. Upper bound
We give an upper bound on the query complexity of ε-WSNE (and hence ε-WSCE) that
is polynomial in the number of players n and strategies m, together with the descrip-
tion length of the target game. We leave the query complexity of ε-WSCE for unre-
stricted n-player games (i.e. those that have no polynomial length description) open.
Recall that for unrestricted games, the query complexity of ε-WSNE is exponential in
n [Babichenko 2013] for constant ε and m. The class of games used by [Babichenko
2013] are based on random walks on the n-dimensional hypercube; notice that to write
down a description of a generic member of this class would require a string of length
exponential in n. Thus, any polynomial query algorithm for ε-WSCE for general games
would have to (unlike our algorithm) avoid also computing ε-WSNE. Note that in con-
trast, Algorithms APPROX COARSE CE and APPROX COARSE CE (2) do not require
games to come from a concisely-represented class.

Our upper bound applies just to the query complexity, and it remains an open prob-
lem whether a computationally-efficient approach exists in general. It yields a positive
result for a special case of the question of query complexity of ε-NE using randomized
algorithms [Hart and Nisan 2013].

Algorithm APPROX WSNE of Figure 3 can be viewed as a query efficient reduction
from the problem of computing an ε-CE to the problem of verifying one, using the fol-
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APPROX WSNE
Let V be the version space, initially V = Gn, where |Gn| ≤ 2p(n).
Repeat the following until an output is obtained.

(1) Construct game G′ as follows. For each profile x, each player i is paid
the median payoff that i obtains in x for elements of V ;

(2) Compute an ε
2
-WSNE N of G′;

(3) For every player i, strategy j let N i
j be a distribution over strategy

profiles obtained by sampling from N and setting i’s strategy to
j; let Sij be a set of pure profiles sampled u.a.r. from N i

j , where

|Sij | = ( 4
ε
) log(2p(n)); query all x ∈ Sij;

(4) If any x queried above is inconsistent with G′ (in terms of the payoffs
resulting from the query) then update V , else halt and output N.

Fig. 3. Query-efficient algorithm for ε-WSNE

lowing “halving algorithm” approach. The “concisely representable” constraint means
that the number of n-player games is upper-bounded by an exponential function of n.
We maintain a “version space”, the set of all games that are consistent with queries
that have been made so far. If we can find a query that is inconsistent with some con-
stant fraction of the games in the version space, then we reduce the size of the version
space by a constant fraction, and hence only polynomially many such queries are suf-
ficient to identify the target game. In each iteration of the algorithm, we construct a
proposed solution N (a probability distribution over strategy profiles) and we sample
from it. We query the payoffs associated with each sample. With high probability, if N
is not a valid ε-WSNE, it will generate a sample that is inconsistent with at least half
the elements of the version space.

THEOREM 3.3. Let Gn be a class of n-player, m-strategy games whose elements can
be represented using bit strings of length at most p(n). With probability at least 1

2 , Al-
gorithm APPROX WSNE (Figure 3) identifies an ε-WSNE using O(nmp(n)(log p(n))/ε)
payoff queries.

PROOF. We prove that at each iteration, with high probability, either a profile is
queried that is inconsistent with at least half of the elements of V , or the algorithm
halts and outputs an ε-WSNE of the target game. Hence the number of iterations is at
most p(n).

We consider two cases. Let G(x) denote the payoff vector for game G on profile x. Let
G∗ be the target game.

Case 1: For all i, j, Prx∼N ij [G∗(x) 6= G′(x)] < ε
4 .

It follows from the condition of case 1 that for any i, j, the payoff that i gets for j in
response to N in game G∗, is within ε

4 of the payoff that i gets for j in response to N in
game G′.

Since N is an ε
2 -WSNE of G′, if i plays j with positive probability in N , then the

payoff i gets for j in game G′ in response to N is at most ε
2 less than the payoff i gets

for any j′ in game G′ in response to N .
It follows that if i plays j with positive probability in N , then the payoff that i gets

for j in N in game G∗ is at most ε less than the payoff that i get for any j′ in N in game
G∗. Hence N is an ε-WSNE of G∗, so N constitutes an acceptable output. There is also
a small probability that some x is found for which G∗(x) 6= G′(x). By construction of
G′, the payoffs resulting from the query of x are inconsistent with at least half of the
elements of V .
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Case 2: For some i, j, Prx∼N ij [G∗(x) 6= G′(x)] ≥ ε
4 .

In this case it is not hard to check that |Sij | is large enough that with probability
more than 1 − 1

2p(n) , S
i
j contains a pure profile x whose payoffs under G∗ differ from

the payoffs under G′. By construction of G′, the query of x is inconsistent with at least
half of the elements of V .

Since there are at most p(n) iterations, the overall failure probability (an iteration
where Case 2 arises and the sample does not contain x for which G∗(x) 6= G′(x)) is at
most 1

2 . The number of queries at each iteration is nm( 4
ε ) log(2p(n)).

3.3. A class of efficient algorithms
In this section, we generalize our query-efficient algorithm for finding ε-WSNE, and
instantiate an efficient version of it for classes of games that have payoff functions
with concise linear representations. Consider how our algorithm worked:

(1) We had a mechanism to generate some hypothesis game G′ given a collection of play
profiles x queried so far.

(2) We compute a WSNE N of G′ and query G to check if N is an ε-WSNE of G. If
yes, we output N . If no, we update our hypothesis G′ with the new queries we have
made, and repeat.

The algorithm works because every time we compute a distribution N which is a
WSNE of G′ but not of G, we find a profile x which has payoff differing between G
and G′ by at least ε/2: in other words, a query that witnesses that our algorithm for
predicting a hypothesisG′ made a significant mistake. Moreover, we have a polynomial
upper bound on how many mistakes our prediction algorithm can make. The running
time of the algorithm is dominated by two computations: Generating the hypothesis
G′, and computing the WSNE of G′. In our general reduction from the last section,
both are computationally expensive.

This framework suggests a more general approach. We can instantiate it with any
mistake bounded learning algorithm for player payoff functions in G. Specifically, sup-
pose we have a learning algorithm A that for any sequence of payoff-query/answer
pairs (x1, a1), . . . , (xm, am) produces a hypothesis f = A((x1, a1), . . . , (xm, am)) which
maps play profiles x to payoff values f(x), one for each player. (That is, f represents a
hypothesis gameG′). Say that the algorithm Amakes a mistake with respect to a game
G if it errs on its prediction f(x) of the payoff of some queried profile x by more than
ε/2. Suppose furthermore that for any game G in a restricted class, it is guaranteed
that A can never make more than B mistakes. We then have an algorithm for comput-
ing ε-WSNE using only B ·Q queries, where Q is the number of queries needed to check
if a distribution N is an ε-WSNE. Moreover, if algorithm A is efficient, and WSNE can
be computed efficiently for every hypothesis game G′ generated in this manner, then
the reduction is computationally efficient.

In Lemma 3.4 below, we identify conditions under which MW can be used to ob-
tain new query bounds for certain classes of games. The approach is motivated by
Algorithm APPROX WSNE , in which at each step t, a game Gt is constructed, an equi-
librium N t is obtained for Gt, and if N t does not solve the target game, we find an
informative strategy profile, obtained by querying responses to N t.

We consider games where the payoff function can be expressed as a linear function
of a limited number of attributes (or features) of strategy profiles. For example con-
sider congestion games with k facilities. The cost to a player is the sum of the costs of
facilities he uses, those costs being determined by the number of users of each facility.
Thus we extract the following nk features from a strategy profile: for each facility j
and i ∈ [n], an associated feature is set to 1 if i players use j, otherwise it is set to 0. A
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payoff query gives an observation of the input/output behavior of this linear function,
which we aim to learn. Notice that if we assumed that facility costs were linear in the
number of their users, then only k features would be needed for the payoff function.
With quadratic costs we could use 2k features (the coefficents of the loads, and the
squares of the loads).

The problem of finding an ε-NE of target game G∗ is reducible to learning the coeffi-
cients of payoff function f with accuracy ε. (A solution to a game whose payoff function
approximates G∗ will be an approximate solution to G∗.) As described in the full ver-
sion, Multiplicative Weights can be used to learn approximations of linear functions
via queries, with a mistake bound proportional to the L1 norm of the target function
and logarithmic in its dimensionality. If the target function has a low L1 norm this
leads to a good query bound on the equilibrium learning problem.

Let f∗ be the linear function associated with the target game G∗ and f corresponds
to the game G being tested. Let N be a pure Nash equilibrium of G. Check whether N
is an ε-NE of G∗ by querying all pure-strategy deviations of every player. If N is not
an ε-NE of G∗, we should be able to find an alternative (pure) strategy profile N ′ for
which in G∗ some player i’s payoff is > ε higher in N ′ than in N , but in G i’s payoff in
N ′ is at most what it is in N . This means that either N or N ′ corresponds to a point x
in feature space where |f t(x)− f(x)| > ε.

LEMMA 3.4. Suppose a target gameG∗ belongs to a class G of potential games where

(1) any G ∈ G has a payoff function that can be expressed as a linear function f(x) =
〈x, y〉, where x ∈ [0, 1]d is a d-dimensional attribute vector of strategy profiles and y
specifies G,

(2) given any strategy profile, Q queries are sufficient to search for an ε-better response.

Then for target game G∗ with payoff function f∗(x) = 〈x, y∗〉, letting ‖y∗‖ denote the L1

norm of y∗, an ε-NE of G∗ can be found using O(Q‖y∗‖2 log(d)/ε2) queries. Furthermore,
if pure ε-NE can be computed efficiently we also have that the search is efficient.

PROOF. Consider Algorithm APPROX NE OF POTENTIAL GAMES (Figure 4). Let
f∗ denote the linear function corresponding to G∗. To find an ε-NE it is sufficient to
find a game whose payoff function is given by f ′ that approximates f∗ in the sense
that |f ′(x) − f∗(x)| ≤ ε for all x ∈ [0, 1]d. This reduces the problem to approximately
learning a linear function.

We learn an approximation to y∗ as follows. Let y1 be the d-dimensional vector
(1/d, . . . , 1/d). Consider the game G1 whose payoff function is given by f1(x) = 〈x, y1〉.
Compute a pure ε-NE N 1 of G1 and check (using Q queries) whether N 1 is an ε-NE of
G∗. If it is, we are done, if not we find a value of x such that |f1(x)− f∗(x)| > ε.

Each weights-update operation (incrementing t) is based on having found a point xt
in the domain where |f∗(xt)− f t(xt)| > ε

4 . (This uses f t(N t) ≥ f t(x)− ε
2 and f∗(N t) ≤

f∗(x)− ε, from which it follows that a suitable xt is found at Step 4.)
Plugging in ε

4 as the discrepancy between the value of f∗ and the current f t, into the
mistake bound obtained in the full version, we get a mistake bound of 64 log(d)‖y∗‖2/ε2,
which appropriately upper bounds the number of iterations.

We give an example of a class of games to which the above lemma can be usefully
applied. These are network congestion games of the kind studied in [Fearnley et al.
2013], where the costs of edges are unknown increasing functions of the number of
players using them, so that these costs need to be learned in order to compute an
equilibrium. In the case of n players sharing a directed acyclic graph with m edges,
[Fearnley et al. 2013] shows how an exact equilibrium can be found using mn queries.
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APPROX NE OF POTENTIAL GAMES
Let game G1 have payoff function f1(x) = 〈x, y1〉 where y1 ∈ Rd≥0 is the
initial hypothesis of the multiplicative weights learning algorithm for
linear functions. (See the full version for details.)
For t = 1, 2, . . . do the following until a solution is found.

(1) Compute an ε
2
-NE N t of Gt;

(2) Use Q queries to G∗ to check whether a player can improve his payoff by
> ε (in G∗);

(3) If not, halt and output N t;

(4) If yes, let x be the strategy profile resulting from the deviation; if
|f∗(x)− f t(x)| > ε

4
let xt = x, else if |f∗(N t)− f t(N t)| > ε

4
let xt = −x;

(5) Feed xt as the loss vector to the multiplicative weights algorithm for
learning linear functions, and receive the new hypothesis vector yt+1. Let
game Gt+1 have payoff function f t+1(x) = 〈x, yt+1〉.

Fig. 4. Query-efficient algorithm for ε-NE

For approximate NE, we next give a query bound dependent only on ε and the number
of facilities.

THEOREM 3.5. Consider n-player congestion games over d facilities, where we think
of d as being a constant. Assume that each facility j has an increasing cost function
cj that takes values in [0, 1]. The number of queries needed to find ε-NE is at most
4.22d.d2/ε2.

PROOF. Let αi,j = cj(i) − cj(i − 1) be the extra cost incurred by raising the load on
j from i− 1 players to i players. Notice that the cost function is linear in the following
attributes xij of a strategy profile: xij = 1 if at least i players use j, otherwise xij = 0.
Any observed cost is of the form

∑
j∈S

∑Nj
i=1 αijxij , where S is the set of facilities used

by a player, and Nj is the number of players using facility j. Also, the L1 norm of any
target game cannot exceed d since for any facility j we have

∑
i αij ≤ 1.

With regard to the value of Q, given a specific pure profile x (for which we seek a ε-
better response), there are (at most) 22d queries that need to be made, since the cost of
an alternative strategy for a player will depend on which of the 2d subsets of facilities
he is using in x, and which subset of the d facilities he may move to. Finally, efficient
computation of ε-NE of these games can be done using ε-best response dynamics.

4. CONCLUSIONS AND FURTHER WORK
Query complexity provides a useful criterion for distinguishing the relative difficulty
of alternative solution concepts in game theory. Here, we have used this criterion to
formally separate the complexity of finding approximate correlated equilibria and find-
ing approximate well supported correlated equilibria. We have extended the analytical
toolkit for query complexity, and have proven a polynomial upper bound for computing
well supported Nash equilibria (Theorem 3.3) that contrasts with exponential lower
bounds in recent work, provided that the game in question has a concise represen-
tation. We applied this idea in Section 3.3 to get a robust and generic method for
efficiently finding ε-well-supported Nash equilibria of certain congestion games.

Our work leaves open the intriguing question of whether finding well supported
correlated equilibria is easier (from a query complexity standpoint) than finding well
supported Nash equilibria. Is there a polynomial upper bound for well supported cor-
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related equilibria for arbitrary (non-concisely represented) games? Are there efficient
game dynamics that converge to such equilibria?
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