
PAC Classification based on PAC Estimates of

Label Class Distributions?

Nick Palmer and Paul W. Goldberg

Dept. of Computer Science, University of Warwick, Coventry CV4 7AL, U.K.
(npalmer|pwg)@dcs.warwick.ac.uk,

Research group home page: http://www.dcs.warwick.ac.uk/research/acrg

Abstract. A standard approach in pattern classification is to estimate
the distributions of the label classes, and then to apply the Bayes clas-
sifier to the estimates of the distributions in order to classify unlabeled
examples. As one might expect, the better our estimates of the label class
distributions, the better the resulting classifier will be. In this paper we
make this observation precise by identifying risk bounds of a classifier in
terms of the quality of the estimates of the label class distributions. We
show how PAC learnability relates to estimates of the distributions that
have a PAC guarantee on their L1 distance from the true distribution,
and we bound the increase in negative log likelihood risk in terms of
PAC bounds on the KL-divergence. We give an inefficient but general-
purpose smoothing method for converting an estimated distribution that
is good under the L1 metric into a distribution that is good under the
KL-divergence.

keywords. Bayes error, Bayes classifier, plug-in decision function

1 Introduction

We consider a general approach to pattern classification in which elements of
each class are first used to train a probabilistic model via some unsupervised
learning method. The resulting models for each class are then used to assign
discriminant scores to an unlabeled instance, and a label is chosen to be the one
associated with the model giving the highest score. For example [3] uses this
approach to classify protein sequences, via training a well-known probabilistic
suffix tree model of Ron et al. [18] on each sequence class. Indeed, even where
an unsupervised technique is mainly being used to gain insight into the process
that generated two or more data sets, it is still sometimes instructive to try out
the associated classifier, since the misclassification rate provides a quantitative
measure of the accuracy of the estimated distributions.

? This work was supported by EPSRC Grant GR/R86188/01. This work was sup-
ported in part by the IST Programme of the European Community, under the PAS-
CAL Network of Excellence, IST-2002-506778. This publication only reflects the
authors’ views.
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The work of [18] has led to further related algorithms for learning classes of
probabilistic finite state automata (PDFAs) in which the objective of learning has
been formalized as the estimation of a true underlying distribution (over strings
output by the target PDFA) with a distribution represented by a hypothesis
PDFA. The natural discriminant score to assign to a string, is the probability
that the hypothesis would generate that string at random.

As one might expect, the better one’s estimates of label class distributions
(the class-conditional densities), the better should be the associated classifier.
The contribution of this paper is to make precise that observation. We give
bounds on the risk of the associated Bayes classifier1 in terms of the quality of
the estimated distributions.

These results are partly motivated by our interest in the relative merits of
estimating a class-conditional distribution using the variation distance, as op-
posed to the KL-divergence (defined in the next section). In [4] it has been
shown how to learn a class of PDFAs using KL-divergence, in time polynomial
in a set of parameters that includes the expected length of strings output by
the automaton. In [15] we show how to learn this class with respect to variation
distance, with a polynomial sample-size bound that is independent of the length
of output strings. Furthermore, it can be shown that it is necessary to switch
to the weaker criterion of variation distance, in order to achieve this. We show
here that this leads to a different—but still useful—performance guarantee for
the Bayes classifier.

Abe and Warmuth [2] study the problem of learning probability distributions
using the KL-divergence, via classes of probabilistic automata. Their criterion
for learnability is that—for an unrestricted input distribution D—the hypothesis
PDFA should be almost (i.e. within ε) as close as possible to D. Abe, Takeuchi
and Warmuth [1] study the negative log-likelihood loss function in the context
of learning stochastic rules, i.e. rules that associate an element of the domain
X to a probability distribution over the range Y . We show here that if two or
more label class distributions are learnable in the sense of [2], then the resulting
stochastic rule (the conditional distribution over Y given x ∈ X) is learnable in
the sense of [1].

We show that if instead the label class distributions are well estimated using
the variation distance, then the associated classifier may not have a good negative
log likelihood risk, but will have a misclassification rate that is close to optimal.
This result is for general k-class classification, where distributions may overlap
(i.e. the optimum misclassification rate may be positive). We also incorporate
variable misclassification penalties (sometimes one might wish a false positive to
cost more than a false negative), and show that this more general loss function
is still approximately minimized provided that discriminant likelihood scores are
rescaled appropriately.

1 The Bayes classifier associated with two or more probability distributions is the
function that maps an element x of the domain to the label associated with the
probability distribution whose value at x is largest. This is of course a well-known
approach for classification, see [7].
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As a result we show that PAC-learnability and more generally p-concept2

learnability [12], follows from the ability to learn class distributions in the setting
of Kearns et al. [11]. Papers such as [5, 14, 8] study the problem of learning various
classes of probability distributions with respect to KL-divergence and variation
distance, in this setting.

It is well-known (noted in [12]) that learnability with respect to KL-divergence
is stronger than learnability with respect to variation distance. Furthermore, the
KL-divergence is usually used (for example in [4, 10]) due to the property that
when minimized with respect to an sample, the empirical likelihood of that sam-
ple is maximized. An algorithm that learns with respect to variation distance
can sometimes be converted to one that learns with respect to KL-divergence
by a smoothing technique [5], when the domain is {0, 1}n, and n is a parameter
of the learning problem. In this paper we give a related smoothing rule that ap-
plies to the version of the PDFA learning problem where we seem to “need” to
use the variation distance. However, the smoothed distribution does not have an
efficient representation, and requires the probabilities used in the target PDFA
to have limited precision.

1.1 Notation and Terminology

In k-class classification, labeled examples are generated by distribution D over
X ×{1, ..., k}. We consider the problem of predicting the label ` associated with
x ∈ X , where x is generated by the marginal distribution of D on X , D|X . A
non-negative cost is incurred for each classification, based either on a cost matrix
(where the cost depends upon both the hypothesized label and the true label) or
the negative log-likelihood of the true label being assigned. The aim is to optimize
the expected cost given by the occurrence of a randomly generated example. We
refer to the expected cost associated with any classifier f : X → {1, ..., k}, as
risk (as described by Vapnik [17]), denoted as R(f).

Let D` be D restricted to points (x, `), ` = {1, ..., k}. D is a mixture
∑k

`=1 g`D`,

where
∑k

i=1 gi = 1, and g` is the class prior of class `—the probability that a
randomly generated data point has label `.

In Section 2 it is shown that if we have upper bounds on the inaccuracy
of the estimated distributions of each class label, then we can derive bounds
on the risk associated with the classifiers. Suppose D and D′ are probability
distributions over the same domain X . We define the L1 distance as L1(D, D′) =
∫

X
|D(x)−D′(x)| dx. We usually assume that X is a discrete domain, in which

case
L1(D, D′) =

∑

x∈X

|D(x) − D′(x)|.

The KL-divergence from D to D′ is defined as

I(D||D′) =
∑

x∈X

D(x) log

(

D(x)

D′(x)

)

.

2 p-concepts are functions probabilistically mapping elements of the domain to 2
classes.
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1.2 Learning Framework

In the PAC-learning framework an algorithm receives labeled samples generated
independently according to distribution D over X , where distribution D is un-
known, and where labels are generated by an unknown function f from a known
class of functions F . The algorithm must output a hypothesis h from a class of
hypotheses H, such that with probability at least 1− δ, errh ≤ ε, where ε and δ
are parameters. Notice that in this setting, if f ∈ H, then err∗ = 0, where err∗

is the error associated with the optimal hypothesis.
We use a variation on the framework used in [12] for learning p-concepts,

which adopts performance measures from the PAC model, extending this to learn
stochastic rules with k classes. Therefore it is the case that err∗ = infh∈H{errh}.
The aim of the learning algorithm in this framework is to output a hypothesis
h ∈ H such that with probability of at least 1 − δ, the error errh of h satisfies
errh ≤ err∗ + ε.

Our notion of learning distributions is similar to that of Kearns et al. [11].

Definition 1. Let Dn be a class of distributions. Dn is said to be efficiently
learnable if an algorithm A exists, such that given ε > 0 and δ > 0 and access
to randomly drawn examples (see below) from any unknown target distribution
D ∈ Dn, A runs in time polynomial in

(

1
ε

)

,
(

1
δ

)

and n and returns a proba-
bility distribution D′ that with probability at least 1 − δ is within L1-distance
(alternatively KL-divergence) ε of D.

We define p-concepts as introduced by Kearns and Shapire [12]. This defini-
tion is for 2-class classification, but generalizes in a natural way to more than 2
classes.

Definition 2. A Probabilistic Concept (or p-concept) f on domain X is given
by a real-valued function pf : X → [0, 1]. An observation of f consists of some
x ∈ X together with a 0/1 label ` with Pr(` = 1) = pf (x).

2 Results

In Section 2.1 we give bounds on the risk associated with a hypothesis, with
respect to the accuracy of the approximation of the underlying distribution gen-
erating the instances. In Section 2.2 we show that these bounds are close to
optimal, and in Section 2.3 we give corollaries showing what these bounds mean
for PAC learnability.

We define the accuracy of an approximate distribution in terms of L1 dis-
tance and KL divergence, both of which are commonly used measurements. It
is assumed that the class priors of each class label are known.

2.1 Bounds on Increase in Risk

First we examine the case where the accuracy of the hypothesis distribution is
such that the distribution for each class label is within L1 distance ε of the true
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distribution for that label, for some 0 ≤ ε ≤ 1. A cost matrix C specifies the
cost associated with any classification, where the cost of classifying a data point
which has label i as some label j is denoted as cij (where cij ≥ 0). It is usually
the case that cij = 0 for i = j. We introduce the following notation:

Given classifier f over discrete domain X , f : X → {1, ..., k}, the risk of f is
given by

R(f) =
∑

x∈X

k
∑

i=1

cif(x).gi.Di(x).

Let f∗ be the Bayes optimal classifier, i.e. the function with the minimal risk,
or optimal expected cost, and f ′(x) is the function with optimal expected cost
with respect to alternative distributions D′

i, i ∈ {1, ..., k}. For x ∈ X ,

f∗(x) = argminj

∑k
i=1 cij .gi.Di(x)

f ′(x) = arg minj

∑k
i=1 cij .gi.D

′
i(x).

Theorem 1. 3 Let f∗ be the Bayes optimal classifier and let f ′ be the Bayes
classifier associated with estimated distributions D′

i. Suppose that for each label
i ∈ {1, ..., k}, L1(Di, D

′
i) ≤ ε/gi. Then R(f ′) ≤ R(f∗) + ε.k. maxij{aij}.

Proof. Let Rf (x) be the contribution from x ∈ X towards the total expected
cost associated with classifier f . For f such that f(x) = j,

Rf (x) =
k
∑

i=1

cij .gi.Di(x).

Let τ`′−`(x) be the increase in risk for labelling x as `′ instead of `, so that

τ`′−`(x) =
∑k

i=1 ci`′ .gi.Di(x) −
∑k

i=1 ci`.gi.Di(x)

=
∑k

i=1(ci`′ − ci`).gi.Di(x).
(1)

Note that due to the optimality of f∗ on Di, ∀x ∈ X : τf ′(x)−f∗(x)(x) ≥ 0.
In a similar way, the expected contribution to the total cost of f ′ from x must
be less than or equal to that of f∗ with respect to D′

i – given that f ′ is chosen
to be optimal on the D′

i values. We have:

k
∑

i=1

cif ′(x).gi.D
′
i(x) ≤

k
∑

i=1

cif∗(x).gi.D
′
i(x).

3 This result is essentially a generalization of Exercise 2.10 of Devroye et al’s text-
book [6], from 2 class to multiple classes, and in addition we show here that variable
misclassification costs can be incorporated. This is the closest thing we have found
to this Theorem that has already appeared, but we suspect that other related results
may have appeared. We would welcome any further information or references on this
topic. Theorem 2 is another result which we suspect may be known, but likewise we
have found no statement of it.
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Rearranging, we have

k
∑

i=1

D′
i(x).gi.

(

cif∗(x) − cif ′(x)

)

≥ 0. (2)

From (1) and (2) it can be seen that

τf ′(x)−f∗(x)(x) ≤ (Di − D′
i(x)) .gi.

(

cif ′(x) − cif∗(x)

)

≤
∑k

i=1 |(Di − D′
i(x))| .gi.

∣

∣

(

cif ′(x) − cif∗(x)

)
∣

∣ .

Let di(x) be the difference between the probability densities of Di and D′
i at

x ∈ X , di(x) = |Di(x) − D′
i(x)|. Therefore,

τf ′(x)−f∗(x)(x) ≤

k
∑

i=1

|cif ′(x)−cif∗(x)|.gi.di(x) ≤ τf ′(x)−f∗(x)(x) ≤

k
∑

i=1

max
j

{cij}.gi.di(x).

In order to bound the expected cost, it is necessary to sum over the range of
x ∈ X :

∑

x∈X

τf ′(x)−f∗(x)(x) ≤
∑

x∈X

k
∑

i=1

max
j

{cij}.gi.di(x) =

k
∑

i=1

max
j

{cij}.gi.
∑

x∈X

di(x).

(3)
Since L1(Di, D

′
i) ≤ ε/gi for all i, ie.

∑

x∈X di(x) ≤ ε/gi, it follows from (3)
that

∑

x∈X

τ(x) ≤

k
∑

i=1

max
j

{cij}.gi.

(

ε

gi

)

.

This expression gives an upper bound on expected cost for labelling x as
f ′(x) instead of f∗(x). By definition,

∑

x∈X

τ(x) = R(f ′) − R(f∗).

Therefore it has been shown that

R(f ′) ≤ R(f∗) + ε.

k
∑

i=1

max
j

{cij} ≤ R(f∗) + ε.k. max
ij

{cij}.

ut

We next prove a corresponding result in terms of KL-divergence, which uses
the negative log-likelihood of the correct label as the cost function. We de-
fine Pri(x) to be the probability that a data point at x has label i, such that

Pri(x) = gi.Di(x)
(

∑k

j=1 gj .Dj(x)
)−1

. Given a function f : X → Rk, where
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f(x) is a prediction of the probabilities of x having each label i ∈ {1, ..., k} (so
∑k

i=1 fi(x) = 1), the risk associated with f can be expressed as

R(f) =
∑

x∈X

D(x)

k
∑

i=1

− log(fi(x)).Pri(x). (4)

Let f∗ : X −→ Rk output the true class label distribution for an element of
X . From Equation (4) it can be seen that

R(f∗) =
∑

x∈X

D(x)
k
∑

i=1

− log(Pri(x)).Pri(x). (5)

Theorem 2. For f : X −→ Rk suppose that R(f) is given by (4). If for each
label i ∈ {1, ..., k}, I(Di||D

′
i) ≤ ε/gi, then R(f ′) ≤ R(f∗) + kε.

Proof. Let Rf (x) be the contribution at x ∈ X to the risk associated with classi-

fier f , Rf (x) =
∑k

i=1 − log(fi(x)). Pri(x). Therefore R(f ′) =
∑

x∈X D(x).Rf ′(x).
We define Pr′i(x) to be the estimated probability that a data point at x ∈ X

has label i ∈ {1, ..., k}, from distributions D′
i, such that Pr′i(x) = gi.D

′
i

(

∑k

j=1 gj .D
′
j(x)

)−1

.

Rf ′(x) = D(x).
k
∑

i=1

− log
(

Pr′i(x)
)

.Pri(x).

Let ξ(x) denote the contribution to additional risk incurred from using f ′ as
opposed to f∗ at x ∈ X . From (5) it can be seen that

ξ(x) = Rf ′(x) − D(x).
k
∑

i=1

− log (Pri(x)) .Pri(x)

= D(x).

k
∑

i=1

Pri(x).
(

log (Pri(x)) − log
(

Pr′i(x)
))

= D(x).

k
∑

i=1

(

gi.Di(x)
∑k

j=1 gj .Dj(x)

)(

log

(

gi.Di(x)
∑k

j=1 gj .Dj(x)

)

− log

(

gi.D
′
i(x)

∑k

j=1 gj .D′
j(x)

))

= D(x).

k
∑

i=1

((

gi.Di(x)
∑k

j=1 gj .Dj(x)

)

.

(

log

(

gi.Di(x)

gi.D′
i(x)

)

− log

(

∑k
j=1 gj .Dj(x)

∑k

j=1 gj .D′
j(x)

)))

.

We define D′ such that D′(x) =
∑k

i=1 gi.D
′
i(x). Since it is the case that

D(x) =
∑k

i=1 gi.Di(x), ξ(x) can be rewritten as

ξ (x) = D(x).
∑k

i=1

(

gi.Di(x)
D(x)

)

.
(

log
(

gi.Di(x)
gi.D

′

i
(x)

)

− log
(

D(x)
D′(x)

))

=
∑k

i=1

(

gi.Di(x) log
(

Di(x)
D′

i
(x)

))

− D(x) log
(

D(x)
D′(x)

)

.
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We define I(D||D′)(x) to be the contribution at x ∈ X to the KL-divergence,
such that I(D||D′)(x) = D(x) log (D(x)/D′(x)). It follows that

∑

x∈X

ξ(x) =
k
∑

i=1

(gi.I(Di||D
′
i)) − I(D||D′). (6)

We know that the KL divergence between Di and D′
i is bounded by ε/gi for

each label i ∈ {1, ..., k}, so (6) can be rewritten as

∑

x∈X

ξ(x) ≤

k
∑

i=1

(

gi.

(

ε

gi

))

− I(D||D′) ≤ k.ε − I(D||D′).

Due to the fact that the KL-divergence between two distributions is non-
negative, an upper bound on the cost can be obtained by letting I(D||D′) = 0,

so R(f ′)−R(f∗) ≤ kε. Therefore it has been proved that R(f̂) ≤ R(f∗)+kε. ut

2.2 Lower Bounds

In this section we give lower bounds corresponding to the two upper bounds
given in Section 2.

Example 1. Consider a distribution D over domain X = {x0, x1}, from which
data is generated with labels 0 and 1 and there is an equal probability of each
label being generated (g0 = g1 = 1

2 ). Di(x) denotes the probability that a point
is generated at x ∈ X given that it has label i. D0 and D1 are distributions over
X , such that at x ∈ X , D(x) = 1

2 (D0(x) + D1(x)).
Suppose that D′

0 and D′
1 are approximations of D0 and D1, and that L1(D0, D

′
0) =

ε
g0

= 2ε and L1(D1, D
′
1) = ε

g1

= 2ε, where ε = ε′ + γ (and γ is an arbitrarily

small constant).
Given the following distributions, assuming that a misclassification results in

a cost of 1 and that a correct classification results in no cost, it can be seen that
R(f∗) = 1

2 − ε′:

D0(x0) =
1

2
+ ε′, D0(x1) =

1

2
− ε′,

D1(x0) =
1

2
− ε′, D1(x1) =

1

2
+ ε′.

Now if we have approximations D′
0 and D′

1 as shown below, it can be seen
that f ′ will misclassify for every value of x ∈ X :

D′
0(x0) =

1

2
− γ, D′

0(x1) =
1

2
+ γ,

D′
1(x0) =

1

2
+ γ, D′

1(x1) =
1

2
− γ.

This results in R(f ′) = 1
2 + ε′. Therefore R(f ′) = R(f∗) + 2ε′ = R(f∗) +

2(ε − γ).
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In this example the risk is only 2γ under R(f ∗)+ε.k. maxj{aij}, since k = 2.
A similar example can be used to give upper bounds to the lower bound given
in Theorem 2.

Example 2. Consider distributions D0, D1, D′
0 and D′

1 over domain X = {x0, x1}
as defined in Example 1. It can be seen that the KL-divergence between each
label’s distribution and its approximated distribution is

I(D0||D
′
0) = I(D1||D

′
1) =

(

1

2
+ ε′

)

log

( 1
2 + ε′

1
2 − γ

)

+

(

1

2
− ε′

)

log

( 1
2 − ε′

1
2 + γ

)

.

The optimal risk, measured in terms of negative log-likelihood, can be ex-
pressed as R(f∗) = −

(

1
2 + ε′

)

log
(

1
2 + ε′

)

−
(

1
2 − ε′

)

log
(

1
2 − ε′

)

. The risk in-

curred by using f ′ as the discriminant function is R(f ′) = −
(

1
2 + ε′

)

log
(

1
2 − γ

)

−
(

1
2 − ε′

)

log
(

1
2 + γ

)

. Therefore,

R(f ′) = R(f∗) +

(

1

2
+ ε′

)

log

( 1
2 + ε′

1
2 − γ

)

+

(

1

2
− ε′

)

log

( 1
2 − ε′

1
2 + γ

)

= R(f∗) + ε.

2.3 Learning near-optimal classifiers in the PAC sense

We show that the results of Section 2.1 imply learnability within the framework
defined in Section 1.2.

The following corollaries refer to algorithms Aclass and Aclass′ . These algo-
rithms generate classifier functions f ′ : X −→ {1, 2, . . . , k}, which label data in a
k-label classification problem, using L1 distance and KL-divergence respectively
as measurements of accuracy.

Corollary 1 shows (using Theorem 1) that a near optimal classifier can be
constructed given that an algorithm exists which approximates a distribution
over positive data in polynomial time. We are given cost matrix C, and assume
knowledge of the class priors gi.

Corollary 1. If an algorithm AL1
approximates distributions within L1 distance

ε′ with probability at least 1 − δ′, in time polynomial in 1/ε′ and 1/δ′, then an
algorithm Aclass exists which (with probability 1 − δ) generates a discriminant
function f ′ with an associated risk of at most R(f ∗)+ε, and Aclass is polynomial
in 1/δ and 1/ε.

Proof. Aclass is a classification algorithm which uses unsupervised learners to fit
a distribution to each label i ∈ {1, ..., k}, and then uses the Bayes classifier with
respect to these estimated distributions, to label data.

AL1
is a PAC algorithm which learns from a sample of positive data to

estimate a distribution over that data. Aclass generates a sample N of data, and
divides N into sets {N1, ..., Nk}, such that Ni contains all members of N with
label i. Note that for all labels i, |Ni| ≈ gi.|N |.

With a probability of at least 1 − 1
2 (δ/k), AL1

generates an estimate D′ of

the distribution Di over label i, such that L1(Di, D
′) ≤ ε (gi.k. maxij{cij})

−1.
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Therefore the size of the sample |Ni| must be polynomial in gi.k. maxij{cij}/ε
and k/δ). For all i ∈ {1, ..., k} gi ≤ 1, so |Ni| is polynomial in maxij{cij}, k, 1/ε
and 1/δ.

When Aclass combines the distributions returned by the k iterations of AL1
,

there is a probability of at least 1 − δ/2 that all of the distributions are within

ε (gi.k. maxij{cij})
−1 L1 distance of the true distributions (given that each it-

eration received a sufficiently large sample). We allow a probability of δ/2 that
the initial sample N did not contain a good representation of all labels (¬∀i ∈
{1, ...k} : |Ni| ≈ gi.|N |), and as such – one or more iteration of AL1

may not
have received a sufficiently large sample to learn the distribution accurately.

Therefore with probability at least 1 − δ, all approximated distributions are
within ε(gi.k. maxij{cij})

−1 L1 distance of the true distributions. If we use the
classifier which is optimal on these approximated distributions, f ′, then the
increase in risk associated with using f ′ instead of the Bayes Optimal Classifier,
f∗, is at most ε. It has been shown that AL1

requires a sample of size polynomial
in 1/ε, 1/δ, k and maxij{cij}. It follows that

|N | =

k
∑

i=1

|Ni| =

k
∑

i=1

p

(

1

ε
,
1

δ
, k, max

ij
{cij}

)

∈ O

(

p

(

1

ε
,
1

δ
, k, max

ij
{cij}

))

.

ut

Corollary 2 shows (using Theorem 2) how a near optimal classifier can be
constructed given that an algorithm exists which approximates a distribution
over positive data in polynomial time.

Corollary 2. If an algorithm AKL has a probability of at least 1− δ of approxi-
mating distributions within ε KL-divergence, in time polynomial in 1/ε and 1/δ,
then an algorithm Aclass′ exists which (with probability 1− δ) generates a func-
tion f ′ that maps x ∈ X to a conditional distribution over class labels of x, with
an associated log-likelihood risk of at most R(f ∗) + ε, and Aclass′ is polynomial
in 1/δ and 1/ε.

Proof. Aclass′ is a classification algorithm using the same method as Aclass in
Corollary 1, whereby a sample N is divided into sets {N1, ..., Nk}, and each set
is passed to algorithm AKL where a distribution is estimated over the data in
the set.

With a probability of at least 1 − 1
2 (δ/k), AKL generates an estimate D′ of

the distribution Di over label i, such that I(Di||D
′) ≤ ε(gi.k)−1. Therefore the

size of the sample |Ni| must be polynomial in gi.k/ε and k/δ. Since gi ≤ 1, |Ni|
is polynomial in k/ε and k/δ.

When Aclass′ combines the distributions returned by the k iterations of AKL,
there is a probability of at least 1 − δ/2 that all of the distributions are within
ε(gi.k)−1 KL-divergence of the true distributions. We allow a probability of δ/2
that the initial sample N did not contain a good representation of all labels
(¬∀i ∈ {1, ...k} : |Ni| ≈ gi.|N |).
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Therefore with probability at least 1 − δ, all approximated distributions are
within ε(gi.k)−1 KL-divergence of the true distributions. If we use the classifier
which is optimal on these approximated distributions, f ′, then the increase in
risk associated with using f ′ instead of the Bayes Optimal Classifier f ∗, is at
most ε. It has been shown that AKL requires a sample of size polynomial in 1/ε,
1/δ and k. Let p(1/ε, 1/δ) be an upper bound on the time and sample size used
by AKL. It follows that

|N | =

k
∑

i=1

|Ni| =

k
∑

i=1

p

(

1

ε
,
1

δ

)

∈ O

(

k.p

(

1

ε
,
1

δ

))

.

ut

2.4 Smoothing: from L1 distance to KL-divergence

Given a distribution that has accuracy ε under the L1 distance, is there a generic
way to “smooth” it so that it has similar accuracy under the KL-divergence?
From [5] this can be done for X = {0, 1}n, if we are interested in algorithms
that are polynomial in n in addition to other parameters. Suppose however that
the domain is bit strings of unlimited length. Here we give a related but weaker
result in terms of bit strings that are used to represent distributions, as opposed
to members of the domain. We define class D of distributions specified by bit
strings, such that each member of D is a distribution on discrete domain X ,
represented by a discrete probability scale. Let LD be the length of the bit
string describing distribution D. Note that there are at most 2LD distributions
in D represented by strings of length LD.

Lemma 1. Suppose D ∈ D is learnable under L1 distance in time polynomial in
δ, ε and LD. Then D is learnable under KL-divergence, with polynomial sample
size.

Proof. Let D be a member of class D, represented by a bit string of length
LD, and let algorithm A be an algorithm which takes an input set S (where
|S| is polynomial in ε, δ and LD) of samples generated i.i.d. from distribution
D, and with probability at least 1 − δ returns a distribution DL1

, such that
L1(D, DL1

) ≤ ε.
Let ξ = 1

12

(

ε2/LD

)

. We define algorithm A′ such that with probability at
least 1 − δ, A′ returns distribution D′

L1
, where L1(D, D′

L1
) ≤ ξ. Algorithm A′

runs A with sample S′, where |S′| is polynomial in ξ, δ and LD (and it should
be noted that |S′| is polynomial in ε, δ and LD).

We define DLD
to be the unweighted mixture of all distributions in D rep-

resented by length LD bit strings, DLD
(x) = 2−LD

∑

D∈D
D(x). We now define

distribution D′
KL such that D′

KL(x) = (1 − ξ)D′
L1

(x) + ξ.DLD
(x).

By the definition of D′
KL, L1(D

′
L1

, D′
KL) ≤ 2ξ. With probability at least 1−δ,

L1(D, D′
L1) ≤ ξ, and therefore with probability at least 1−δ, L1(D, D′

KL) ≤ 3ξ.
We define X< = {x ∈ X |D′

KL(x) < D(x)}. Members of X< contribute
positively to I(D||D′

KL). Therefore
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I(D||D′
KL) ≤

∑

x∈X<
D(x)

(

log(D(x))
log(D′

KL
(x))

)

=
∑

x∈X<
(D(x) − D′

KL(x))
(

log(D(x))
log(D′

KL
(x))

)

+
∑

x∈X<
D′

KL(x)
(

log(D(x))
log(D′

KL
(x))

)

.

(7)

We have shown that L1(D, D′
KL) ≤ 3ξ, so

∑

x∈X<
(D(x) − D′

KL(x)) ≤ 3ξ.

Analysing the first term in (7),

∑

x∈X<

(D(x) − D′
KL(x))

(

log(D(x))

log(D′
KL(x))

)

≤ 3ξ max
x∈X<

(

log(D(x))

log(D′
KL(x))

)

.

Note that for all x ∈ X , D′
KL(x) ≥ ξ.2−LD . It follows that

max
x∈X<

(

log(D(x))

log(D′
KL(x))

)

≤ log(2LD/ξ) = LD − log(ξ).

Examining the second term in (7),

∑

x∈X<

D′
KL(x)

(

log(D(x))

log(D′
KL(x))

)

=
∑

x∈X<

D′
KL(x)

(

log(D′
KL(x) + hx)

log(D′
KL(x))

)

,

where hx = D(x)−D′
KL(x), which is a positive quantity for all x ∈ X<. Due to

the concavity of the logarithm function, it follows that

∑

x∈X<
D′

KL(x)
(

log(D′

KL
(x)+hx)

log(D′

KL
(x))

)

≤
∑

x∈X<
D′

KL(x)hx

[

d
dy

(log(y))
]

y=D′

KL
(x)

=
∑

x∈X<
hx ≤ 3ξ.

Therefore, I(D||D′
KL) ≤ 3ξ(1 + LD − log(ξ)). For values of ξ ≤ 1

12

(

ε2/LD

)

,
it can be seen that I(D||D′

KL) ≤ ε. ut

Corollary 3. Consider the problem of learning PDFAs having n states, over
alphabet Σ, and probabilities represented by bit strings of length `. Using sample
size (but not time) polynomial in n, |Σ| and ` (and the PAC parameters ε and
δ), a distribution is this class can be estimated within KL distance ε.

The proof follows from the observation that such a PDFA can be represented
using a bit string whose length is polynomial in the parameters.

Consequently we can learn the same class of PDFAs under the KL-divergence
that can be learned under the L1 distance in [15], i.e. PDFAs with distinguishable
states but no restriction on the expected length of their outputs. However, note
that the hypothesis is “inefficient” (a mixture of exponentially many PDFAs).
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3 Conclusion

We have shown a close relationship between the error of an estimated input
distribution (as measured by L1 distance or KL-divergence) and the error rate
of the resulting classifier. In situations where we believe that input distributions
may be accurately estimated, the resulting information about the data may be
more useful than just a near-optimal classifier.

A general issue of interest is the question of when one can obtain good classi-
fier from estimated distributions that satisfy weaker goodness-of-approximation
criteria than those considered here. Suppose for example that elements of a 2-
element domain {x1, x2} are being labeled by the stochastic rule that assigns
labels 0 and 1 to either element of the domain, with equal probability. Then any
classifier does no better than random labeling, and so we can use arbitrary dis-
tributions D′

0 and D′
1 as estimates of the distributions D0 and D1 over examples

with label 0 and 1 respectively. In [9] we show that in the basic PAC framework
we can sometimes design discriminant functions based on unlabeled data sets,
that result in PAC classifiers without any guarantee on how well-estimated is
the input distribution. Further work should possibly compromise between the
distribution-free setting, and the objective—considered here—of approximating
the input distributions in a strong sense.
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