
PAC-learnability of Probabilistic

Deterministic Finite State Automata in terms

of Variation Distance ⋆

Nick Palmer a Paul W. Goldberg b,∗

aDept. of Computer Science, University of Warwick, Coventry CV4 7AL, U.K.
bDept. of Computer Science, University of Liverpool, Ashton Building, Ashton

Street, Liverpool L69 3BX, U.K.

Abstract

We consider the problem of PAC-learning distributions over strings, represented
by probabilistic deterministic finite automata (PDFAs). PDFAs are a probabilistic
model for the generation of strings of symbols, that have been used in the context
of speech and handwriting recognition, and bioinformatics. Recent work on learning
PDFAs from random examples has used the KL-divergence as the error measure;
here we use the variation distance. We build on recent work by Clark and Thollard,
and show that the use of the variation distance allows simplifications to be made to
the algorithms, and also a strengthening of the results; in particular that using the
variation distance, we obtain polynomial sample size bounds that are independent
of the expected length of strings.

Key words: Computational complexity, machine learning

1 Introduction

A probabilistic deterministic finite automaton (PDFA) is a finite automaton
that has, for each state, a probability distribution over the transitions going

⋆ This work was supported by EPSRC Grant GR/R86188/01. This work was sup-
ported in part by the IST Programme of the European Community, under the
PASCAL Network of Excellence, IST-2002-506778. This publication only reflects
the authors’ views.
∗ Corresponding author.

Email addresses: npalmer@dcs.warwick.ac.uk (Nick Palmer),
P.W.Goldberg@liverpool.ac.uk (Paul W. Goldberg).

Preprint submitted to Theoretical Computer Science 8 June 2007

out from that state. Each transition emits a symbol from a finite alphabet,
and the automaton is deterministic in that at most one transition with a
given symbol is possible from any state. Thus, a PDFA defines a probability
distribution over the set of strings over its alphabet.

PDFAs are just one of a variety of structures used to model stochastic processes
in fields such as AI and machine learning. Similar structures seen in related
work include

• Probabilistic nondeterministic finite automata (PNFA),
• Hidden Markov models (HMM), and
• Partially observable Markov decision processes (POMDP).

A PNFA is similar to a PDFA, but whereas a PDFA may have at most one
transition with a given symbol leaving a state, a PNFA may have more than
one transition emitting the same symbol. Thus even with knowledge of the
starting state and the symbol generated by a transition from this state, the
machine may be in one of several states. This model has more expressive
power, and consequently it is harder to obtain positive results for learning.

In a HMM, each state has a probability distribution over symbols, and a sym-
bol is emitted when that state is visited. HMMs and PNFAs have essentially
the same expressive power [7]. Abe and Warmuth [2] give a strong computa-
tional negative result for learning PNFAs and HMMs, namely that is it hard
to maximise the likelihood of an individual string using these models. This
holds for a fixed number of states, non-fixed alphabet.

POMDPs are associated with online learning problems, where choices can be
made by the learner as data is analysed. There is an underlying probabilistic
finite automaton whose states are not directly observable. A POMDP takes
actions as input from the learner, where an observation is output and a reward
is awarded to the learner (at each step, the reward depends on the transition
taken and the learner’s action). The objective in these learning problems is
to maximise some function of the rewards. A POMDP is an extension of the
notion of a Markov decision process to situations where the state is not always
known to the algorithm.

Positive results for PAC-learning 1 sub-classes of PDFAs were introduced by
Ron et al. [13], where they show how to PAC-learn acyclic PDFAs, and ap-
ply the algorithm to speech and handwriting recognition. Recently Clark and
Thollard [4] presented an algorithm that PAC-learns general PDFAs, using the
Kullback-Leibler divergence (see Cover and Thomas [5]) as the error measure
(the distance between the true distribution defined by the target PDFA, and
the hypothesis returned by the algorithm). The algorithm is polynomial in

1 PAC (probably approximately correct) learnability is defined in Section 2.

2

three parameters: the number of states, the “distinguishability” of states, and
the expected length of strings generated from any state of the target PDFA.
Distinguishability (defined in Section 3) is a measure of the extent to which
any pair of states have an associated string that is significantly more likely to
be generated from one state than the other. While unrestricted PDFAs can
encode noisy parity functions [10] (believed to be hard to PAC-learn), these
PDFAs have “exponentially low” distinguishability.

In this paper we study the same problem, using variation distance instead of
Kullback-Leibler divergence. The general message of this paper is that this
modification allows some strengthening and simplifications of the resulting al-
gorithms. The main one is that—as conjectured in [4]—a polynomial bound on
the sample-size requirement is obtained that does not depend on the length of
strings generated by the automaton. We also have no need for a distinguished
“final symbol” that must terminate all data strings, or a “ground state” in
the automaton constructed by the algorithm. We have also simplified the al-
gorithm by not re-sampling at each iteration; instead we use the same sample
in all iterations.

The variation distance between probability distributions D and D′ is the L1

distance; for a discrete domain X, it is L1(D, D′) =
∑

x∈X |D(x)−D′(x)|. KL
divergence is in a strong sense a more “sensitive” measure than variation dis-
tance – this was pointed out in Kearns et al. [10], which introduced the general
topic of PAC-learning probability distributions. In Cryan et al. [6] a smoothing
technique is given for distributions over the boolean domain (where the length
of strings is a parameter of the problem)—an algorithm that PAC-learns dis-
tributions using the variation distance can be converted to an algorithm that
PAC-learns using the KL-divergence. (Abe et al. [1] give a similar result in the
context of learning p-concepts.) Over the domain Σ∗ (strings of unrestricted
length over alphabet Σ) that technique does not apply, which is why we might
expect stronger results as a result of switching to the variation distance.

In the context of pattern classification, the variation distance is useful in the
following sense. Suppose that we seek to classify labelled data by fitting distri-
butions to each label class, and using the Bayes classifier on the hypothesis dis-
tributions. (See [8] for a discussion of the motivation for this general approach,
and results for PAC-learnability.) We show in [12] that PAC-learnability using
the variation distance implies agnostic PAC classification. The corresponding
result for KL-divergence is that the expected negative log-likelihood cost is
close to optimum.

Our approach follows [4], in that we divide the algorithm into two parts. The
first (Algorithm 1 of Figure 1) finds a DFA that represents the structure of
the hypothesis automaton, and the second (Algorithm 2 of Figure 2) finds
estimates of the transition probabilities. Algorithm 1 constructs (with high

3

probability) a DFA whose states and transitions are a subset of those of the
target. Algorithm 2 learns the transition probabilities by following the paths
of random strings through the DFA constructed by Algorithm 1. We take
advantage of the fact that commonly-used transitions can be estimated more
precisely.

2 Terms and Definitions

A probabilistic deterministic finite state automaton (PDFA) can stochastically
generate strings of symbols as follows. The automaton has a finite set of states
– one of which is distinguished as the initial state. The automaton generates
a string by making transitions between states (starting at the initial state),
each transition occurring with a constant probability specifically associated
with that transition. The symbol labelling that transition is then output. The
automaton halts when the final state is reached.

Definition 1 A PDFA A is a sextuple (Q, Σ, q0, qf , τ, γ), where

• Q is a finite set of states,
• Σ is a finite set of symbols (the alphabet),
• q0 ∈ Q is the initial state,
• qf /∈ Q is the final state,
• τ : Q× Σ→ Q ∪ {qf} is the (partial) transition function,
• γ : Q × Σ → [0, 1] is the function representing the probability of a given

symbol (and the corresponding transition) occurring from a given state.

It is required that
∑

σ∈Σ γ(q, σ) = 1 for all q ∈ Q, and when τ(q, σ) is unde-
fined, γ(q, σ) = 0. In addition qf is reachable from any state of the automaton,
that is, for all q ∈ Q there exists s ∈ Σ∗ such that τ(q, s) = qf ∧ γ(q, s) > 0.

It is common for a definition of a PDFA to include the specification of a final
symbol at the end of all words; we do not require that restriction here. Where
appropriate, we extend the use of τ and γ to strings:

τ(q, σ1σ2...σk) = τ(τ(q, σ1), σ2...σk)

γ(q, σ1σ2...σk) = γ(q, σ1).γ(τ(q, σ1), σ2...σk)

If A denotes a PDFA, it follows that A defines a probability distribution over
strings in Σ∗. (The reachability of the final state ensures that A will halt with
probability 1.) Let DA(s) denote the probability that A generates s ∈ Σ∗, so
we have

DA(s) = γ(q0, s) for s such that τ(q0, s) = qf .

4

We use the pair (q, σ) to denote the transition from state q ∈ Q labelled
with character σ ∈ Σ. Let DA(q) denote the probability that a random string
generated by A uses state q ∈ Q. Thus DA(q) is the probability that s ∼ DA

(i.e. s sampled from distribution DA) has a prefix p with τ(q0, p) = q. In a
similar way, DA(q, σ) denotes the probability that a random string generated
by A uses transition (q, σ)—the probability that a random string s ∼ DA has
a prefix pσ with τ(q0, p) = q.

Suppose D and D′ are probability distributions over Σ∗. The variation (L1)
distance between D and D′ is L1(D, D′) =

∑

s∈Σ∗ |D(s)−D′(s)|. A class C of
probability distributions is PAC-learnable by algorithm A with respect to the
variation distance if the following holds. Given parameters ǫ > 0, δ > 0, and
access to samples from any D ∈ C, using runtime and sample size polynomial
in ǫ−1 and δ−1, A should, with probability 1−δ, output a distribution D′ with
L1(D, D′) < ǫ. If D ∈ C is described in terms of additional parameters that
represent the complexity of D, then we require A to be polynomial in these
parameters as well as ǫ−1 and δ−1.

3 Constructing the PDFA

In this section we describe the first part of the algorithm, which constructs the
underlying DFA of a target PDFA A. That is, it constructs the states Q and
transitions given by τ , but not the probabilities given by γ. The algorithms has
access to a source of strings in Σ∗ generated by DA. We allow “very unlikely”
states to be ignored, as described at the end of this section where we explain
how our algorithm differs from previous related algorithms. Properties of the
constructed DFA are proved in Section 4.

The algorithm is shown in Figure 1. We have the following parameters (in
addition to the PAC parameters ǫ and δ):

• |Σ|: the alphabet size,
• n: an upper bound on the number of states of the target automaton,
• µ: a lower bound on distinguishability, defined below.

In the context of learning using the KL-divergence, a simple class of PDFAs
(see Clark and Thollard [4]) can be constructed to show that the parameters
above are insufficient for PAC learnability in terms of just those parameters.
In [4], parameter L is also used, denoting the expected length of strings.

From the target automaton A we generate a hypothesis automaton H using
a variation on the method described by [4] utilising candidate nodes, where
the L∞ norm between the suffix distributions of states is used to distinguish

5

between them (as studied also in [9,13]). We define a candidate node in the
same way as [4]. Suppose G is a graph whose vertices correspond to a subset
of the states of A, and whose edges correspond to transitions. Initially G will
have a single vertex corresponding to the initial state; G is then constructed
in a greedy incremental fashion.

G = 〈V, E〉 denotes the directed graph constructed by the algorithm. V is the
set of vertices and E the set of edges. Each edge is labelled with a letter σ ∈ Σ,
so an edge is a member of V ×Σ×V . Note that due to the deterministic nature
of the automaton, there can be at most one vertex vq such that (vp, σ, vq) ∈ E
for any vp ∈ V and σ ∈ Σ.

Definition 2 A candidate node in hypothesis graph G is a pair (u, σ) (also
denoted q̂u,σ), where u is a node in the graph and σ ∈ Σ where τG(u, σ) is
undefined.

Let Dq denote the distribution over strings generated using state q as the
initial state, so that

Dq(s) = γ(q, s) for s such that τ(q, s) = qf .

Given a sample S of strings generated from DA, we define a multiset associated
with each node or candidate node in a hypothesis graph. The multiset for node
q is an i.i.d. sample from Dq, derived from S, obtained by taking members
of S that use q and deleting their prefixes that reach q for the first time in a
string. For a candidate node, we use the following definition.

Definition 3 Given a sample S, candidate node q̂u,σ has multiset Su,σ asso-
ciated with it, where for each s ∈ S, we add s′′ to Su,σ whenever s = s′σs′′ and
τG(q0, s

′) = u.

The L∞-norm is a measure of distance between a pair of distributions, defined
as follows.

Definition 4 L∞(D, D′) = maxs∈Σ∗ |D(s)−D′(s)|.

Definition 5 The parameter of distinguishability, µ, is a lower bound on the
L∞-norm between Dq1

and Dq2
for any pair of nodes (q1, q2), where q1 and q2

are regarded as having sufficiently different suffix distributions in order to be
considered separate states.

We define as follows the L̂∞-norm (an empirical version of the L∞-norm)
with respect to multisets of strings Sq1

and Sq2
, where Sq1

and Sq2
have been

respectively sampled from Dq1
and Dq2

.

Definition 6 For nodes q1 and q2, with associated multisets Sq1
and Sq2

,

6

L̂∞ (Dq1
, Dq2

) = max
s∈Σ∗

(∣

∣

∣

∣

∣

|s ∈ Sq1
|

|Sq1
|
−
|s ∈ Sq2

|

|Sq2
|

∣

∣

∣

∣

∣

)

where Dq is the empirical distribution over the strings in the multiset Sq as-
sociated with q, and where |s ∈ Sq| is the number of occurrences of string s in
multiset S.

As in [13,4], we say that a pair of nodes (q1, q2) are µ-distinguishable if
L∞(Dq1

, Dq2
) = maxs∈Σ∗ |Dq1

(s)−Dq2
(s)| ≥ µ.

The algorithm uses two quantities, m0 and N . m0 is the number of suffixes
required in the multiset of a candidate node for the node to be added as a state
(or as a transition) to the hypothesis. It will be shown that m0 is a sufficiently
large number to allow us to establish that the distribution over suffixes in the
multiset that begin at state q is likely to approximate the true distribution
Dq over suffixes at that state. N is the number of (i.i.d.) strings in the sample
generated by the algorithm. Polynomial expressions for m0 and N are given
in Algorithm 1.

We show that the probability of Algorithm 1 failing to adequately learn the
structure of the automaton is upper bounded by δ′. In Section 5 we show
that the transition probabilities are learned (with sufficient accuracy for our
purposes) by Algorithm 2 with a failure probability of at most δ′′. Overall,
the probability of the algorithms failing to learn the target PDFA within a
variation distance of ǫ is at most δ, for δ = δ′ + δ′′.

Algorithm 1 differs from [4] as follows. We do not introduce a “ground node”
– a node to catch any undefined transitions in the hypothesis graph so as to
give a probability greater than zero to the generation of any string. Instead,
any state q for which DA(q) < ǫ

2n|Σ|
can be discarded – no corresponding node

is formed in our hypothesis graph. There is only a small probability that our
hypothesis automaton rejects a random string generated by DA (when there is
no corresponding path through the graph), which means that the contribution
to the overall variation distance is very small. This is in contrast to the KL
distance, which would become infinite.

Note that in contrast to the previous version of this algorithm in [11], and the
algorithm of [4], we make a single sample at the beginning of the algorithm and
we use the whole sample at each iteration. The trade-off is that by re-using the
same sample at each iteration, we need a much lower failure probability (or
higher reliability). It turns out that the total sample-size is about the same,
but the algorithm is simpler and corresponds with the natural way one would
treat real-world data.

7

Algorithm 1

Hypothesis Graph G = 〈V, E〉 = 〈{q0}, ∅〉;
m0 = (16/µ)2(log(16/δ′µ) + log(n|Σ|) + n|Σ|);

N = max
(

8n2|Σ|2

ǫ2
ln
(

2n|Σ|n|Σ|
δ′

)

, 4m0n|Σ|
ǫ

)

;

generate a sample S of N strings iid from DA;

repeat

for (each v ∈ V , σ ∈ Σ, where τG(v, σ) is undefined)

create a candidate node q̄v,σ with associated

multiset Sv,σ = ∅;
for (each string s ∈ S, where s = rσ′t and q̄τG(q0,r),σ′ is

a candidate node)

Sτ(q0,r),σ′ ← Sτ(q0,r),σ′ ∪ {t};
identify candidate node q̄u,σ′′ with the largest multiset, Su,σ′′;

if (|Su,σ′′ | ≥ m0) % candidate node has large enough multiset

if
(

∃v ∈ V : L̂∞

(

Dq̄u,σ′′ , Dv

)

≤ µ
2

)

% candidate “looks like” existing node
add edge (u, σ′′, v) to E;

else

add node q̄u,σ′′ to V , with multiset Su,σ′′;

add edge (u, σ′′, q̄u,σ′′) to E;

until(|Su,σ′′ | < m0); % no candidate node has large enough multiset
return G.

Fig. 1. Constructing the underlying graph

4 Analysis of PDFA Construction Algorithm

The initial state q̄0 of H corresponds to the initial state q0 of A. Each time a
new state q̄v,σ is added to H , its corresponding state in A is (with high proba-
bility) τ(qv, σ). (Note that qv in H already has a corresponding state in A.) Of
course, we will argue that the correspondence is 1-1, and that we reproduce a
subgraph of A. We claim that at every iteration of the algorithm, with high
probability a bijection Φ exists between the states of H and candidate states,
and a subset of the states of A, such that τA(u, σ) = v ⇔ τH(Φ(u), σ) = Φ(v).

We start by showing that with high probability, candidate states are correctly
identified as being either unseen so far, or the same as a pre-existing state in
the hypothesis. This part exploits the distinguishability assumption.

Proposition 7 Let D be a distribution over a countable domain. Let δ and
µ be positive probabilities. Suppose we draw a sample S of (16/µ)2 log(16/δµ)
observations of D. Let D̂ be the empirical distribution, i.e. the uniform distri-

8

bution over multiset S. Then with probability 1− δ, L∞(D, D̂) < 1
4
µ.

Proof: Let X = {x1, x2, . . .} be the domain. Associate xi with the interval
Ii = [

∑

j<i Pr(xj),
∑

j≤i Pr(xj)]. Let U1 denote the uniform distribution over
the unit interval; a point drawn from U1 selects xi with probability Pr(xi).

Suppose k ∈ N, k ≤ 16/µ. We identify a sufficiently large size for a sample
S from U1 such that with probability at least 1− (δµ/16), the proportion of
points in S that lie in [0, k(µ/16)], is within µ/16 of k(µ/16). By Hoeffding’s
inequality it is sufficient that m = |S| satisfies

δµ

16
≥ 2 exp

(

−2m
(

µ

16

)2)

.

That is satisfied by

m ≥
(

16

µ

)2

log
(

16

δµ

)

.

Furthermore, by a union bound we can deduce that with probability at least
1 − δ, for all k ∈ {0, 1, . . . , 16/µ}, the proportion of points in [0, k(µ/16)] is
within µ/16 of expected value. This implies that for all intervals, including
the Ii intervals, the proportion of points in those intervals is within µ/4 of
expected value. 2

The following result shows that given any partially-constructed DFA, a can-
didate state is correctly identified with very high probability, using a sample
of size m0 = (16/µ)2(log(16/δ′µ) + log(n|Σ|) + n|Σ|).

Proposition 8 Let G be a DFA with transition function τG whose vertices
and edges are a subgraph of the underlying DFA for PDFA A. Suppose DA is
repeatedly sampled, and we add s2 to Sq,σ whenever we obtain a string of the
form s1σs2, where τG(s1) is state q of G.

If |Sq,σ| ≥ m0, then with probability at least 1−δ′(n|Σ|2n|Σ|)−1, L̂∞(Sq,σ, Dq,σ) <
µ/4.

Proof: Given any G, strings s2 obtained in this way are all sampled inde-
pendently from Dq,σ.

Proposition 7 shows that a sufficiently large sample size is given by

(

16

µ

)2

log
(

16

δ′µ(n|Σ|2n|Σ|)−1

)

=
(

16

µ

)2(

log
(

16

δ′µ

)

+ log(n|Σ|) + n|Σ|
)

.

2

The following result applies a union bound to verify that whatever stage we

9

reach at an iteration, and whatever candidate state we examine, the algorithm
is unlikely to make a mistake.

Proposition 9 With probability δ′, for all candidate nodes q̄u,σ′′ found by the
algorithm, q̄u,σ′′ is added to G such that G continues to be a subgraph of the
PDFA for A.

Proof: Proposition 7 and the metric property of L∞ show that if distri-
butions Dv associated with states v are empirically estimated to within L∞

distance µ/4, then our threshold of µ/2 that is used to distinguish a pair of
states, ensures that no mistake is made.

There are at most 2n|Σ| possible subgraphs G and at most n|Σ| candidate
nodes for any subgraph. If the probability of failure is at most δ′(n|Σ|2n|Σ|)−1

for any single combination of G and candidate node, then by a union bound
and Proposition 8, the probability of failure is at most δ′. 2

We have ensured that m0 is large enough that with high probability the algo-
rithm does not

• identify two distinct nodes with each other, or
• fail to recognize a candidate node as having been seen already.

Next we have to check that it does not “give up too soon”, as a result of not
seeing m0 samples from a state that really should be included in G.

Proposition 10 Let A′ be a PDFA whose states and transitions are a subset
of those of A. Assume A′ contains the initial state q0. Suppose q is a state
of A′ but (q, σ) is not a transition of A′. Let S be a sample from DA, |S| ≥
(8n2|Σ|2/ǫ2) ln(2n|Σ|n|Σ|/δ′). Let Sq,σ(A

′) be the number of elements of S of
the form s1σs2 where τ(q0, s1) = q and for all prefixes s′1 of s1, τ(q0, s

′
1) ∈ A′.

Then

Pr

(∣

∣

∣

∣

∣

(

Sq,σ(A′)

|S|

)

− E

[

Sq,σ(A
′)

|S|

]∣

∣

∣

∣

∣

≥
ǫ

8n|Σ|

)

≤
δ′

2n|Σ|n|Σ|
.

Proof: From Hoeffding’s Inequality it can be seen that

Pr

(∣

∣

∣

∣

∣

(

Sq,σ(A
′)

|S|

)

−E

[

Sq,σ(A′)

|S|

]∣

∣

∣

∣

∣

≥
ǫ

8n|Σ|

)

≤ 2 exp

−2|S|

(

ǫ

4n|Σ|

)2

 .

(1)

We need |S| to satisfy exp(−|S|ǫ2(8n2|Σ|2)−1) ≤ δ′(2n|Σ|n|Σ|)−1. Equivalently,

8n2|Σ|2

ǫ2
ln

(

2n|Σ|n|Σ|

δ′

)

≤ |S|.

10

So the sample size identified in the statement is indeed sufficiently large. 2

The following result shows that the algorithm constructs a subset of the states
and transitions that with high probability accepts a random string from DA.

Theorem 11 There exists T ′ a subset of the transitions of A, and Q′ a subset
of the states of A, such that

∑

(q,σ)∈T ′ DA(q, σ) +
∑

q∈Q′ DA(q) ≤ ǫ
2
, and with

probability at least 1−δ′, every transition (q, σ) /∈ T ′ in target automaton A has
a corresponding transition in hypothesis automaton H, and every state q /∈ Q′

in target automaton A has a corresponding state in hypothesis automaton H.

Proof: Proposition 9 shows that the probability of all candidate nodes
having “good” multisets (if the multisets contain at least m0 suffixes) is at
least 1 − δ′/2, from which we can deduce that all candidate nodes can be
correctly distinguished from any nodes 2 in the hypothesis automaton.

Proposition 10 shows that with a probability of at least 1 − δ′(2n|Σ|n|Σ|)−1,
the proportion of strings in a sample S (generated i.i.d. over DA, and for |S| ≥
(8n2|Σ|2/ǫ2) ln(2n|Σ|n|Σ|/δ′)) reaching candidate node q̄ is within ǫ(8n|Σ|)−1

of the expected proportion DA(q̄). This holds for each of the candidate nodes
(of which there are at most n|Σ|), and for each possible state of the hypothesis
graph in terms of the combination of edges and nodes found (of which there
are at most 2n|Σ|), with a probability of at least 1− δ′/2.

If a candidate node (or a potential candidate node 3) q̄, for which DA(q̄) ≥
ǫ(2n|Σ|)−1, is not included in H , then from the facts above it follows that at
least ǫN(4n|Σ|)−1 strings in the sample are not accepted by the hypothesis
graph. For each string not accepted by H , a suffix is added to the multiset of
a candidate node, and there are at most n|Σ| such candidate nodes. From this
it can be seen that some candidate node has a multiset containing at least
1
4
ǫN suffixes. From the definition of N , N ≥ (4m0n|Σ|/ǫ). Therefore, some

multiset contains at least m0n|Σ| suffixes, which must be at least as great
as m0. This means that as long as there exists some significant transition or
state that has not been added to the hypothesis, some multiset must contain
at least m0 suffixes, so the associated candidate node will be added to H , and
the algorithm will not halt.

Therefore it has been shown that all candidate nodes which are significant
enough to be required in the hypothesis automaton (at least a fraction ǫ(2n|Σ|)−1

of the strings generated reach the node) are present with a probability of at

2 Note that due to the deterministic nature of the automaton, distinguishability of
transitions is not an issue.
3 A potential candidate node is any state or transition in the target automaton
which has not yet been added to H, and is not currently represented by a candidate
node.

11

least 1 − 1
2
δ′, and that since all multisets contain at least m0 suffixes, the

candidate nodes and hypothesis graph nodes are all correctly distinguished
from each other (or combined as appropriate) with a probability of at least
1− 1

2
δ′/2.

T ′ is those transitions that have probability less than ǫ/2n|Σ| of being used
by a random string, and there can be at most n|Σ| such transitions. Hence a
random string uses an element of T ′ with probability at most 1

2
ǫ. We conclude

that with a probability of at least 1− δ′, every transition (q, σ) /∈ T ′ in target
automaton A for which DA(q, σ) ≥ ǫ(2n|Σ|)−1 and every state q /∈ Q′ in target
automaton A for which DA(q) ≥ ǫ(2n|Σ|)−1, has a corresponding transition
or state in hypothesis automaton H . 2

5 Finding Transition Probabilities

The algorithm is shown in Figure 2. We can assume that we have at this stage
found DFA H , whose graph is a subgraph of the graph of target PDFA A.
Algorithm 2 finds estimates of the probabilities γ(q, σ) for each state q in H ,
σ ∈ Σ.

If we generate a sample S from DA, we can trace each s ∈ S through H ,
and each visit to a state qH ∈ H provides an observation of the distribution
over the transitions that leave the corresponding state qA in A. For string s =
σ1σ2 . . . σℓ, let qi be the state reached by the prefix σ1 . . . σi−1. The probability
of s is DA(s) =

∏ℓ−1
i=0 γ(qi, σi+1). Letting nq,σ(s) denote the number of times

that string s uses transition (q, σ), then

DA(s) =
∏

q,σ

γ(q, σ)nq,σ(s). (2)

Let γ̂(q, σ) denote the estimated probability that is given to transition (q, σ)
in H . Provided H accepts s, the estimated probability of string s is given by

DH(s) =
∏

q,σ

γ̂(q, σ)nq,σ(s). (3)

We aim to ensure that with high probability for s ∼ DA, if H accepts s then
the ratio DH(s)/DA(s) is close to 1. This is motivated by the following simple
result.

Proposition 12 Suppose that with probability 1 − 1
4
ǫ for s ∼ DA, we have

DH(s)/DA(s) ∈ [1− 1
4
ǫ, 1 + 1

4
ǫ]. Then L1(DA, DH) ≤ ǫ.

12

Proof:

L1(DA, DH) =
∑

s∈Σ∗

|DA(s)−DH(s)|

Let X = {s ∈ Σ∗ : DH(s)/DA(s) ∈ [1− 1
4
ǫ, 1 + 1

4
ǫ]}. Then

L1(DA, DH) =
∑

s∈X

|DA(s)−DH(s)|+
∑

s∈Σ∗\X

|DA(s)−DH(s)| (4)

The first term of the right-hand side of (4) is

∑

s∈X

DA(s)

∣

∣

∣

∣

(1−DH(s)/DA(s))

∣

∣

∣

∣

≤
∑

s∈X

DA(s).
(

ǫ

4

)

≤
ǫ

4
.

DA(X) ≥ 1− 1
4
ǫ and DH(X) ≥ DA(X)− 1

4
ǫ, equivalently DA(Σ∗\X) ≤ 1

4
ǫ and

DH(Σ∗ \X) ≤ DA(Σ∗ \X)+ 1
4
ǫ ≤ 1

2
ǫ, hence the second term in the right-hand

side of (4) is at most 3
4
ǫ. 2

We have so far allowed the possibility that H may fail to accept up to a
fraction 1

4
ǫ of strings generated by DA. Of the strings s that are accepted by

H , we want to ensure that with high probability DH(s)/DA(s) is close to 1,
to allow Proposition 12 to be used.

Suppose that nq,σ(s) is large, so that s uses transition (q, σ) a large number
of times. In that case, errors in the estimate of transition probability γ(q, σ)
can have a disproportionately large influence on the ratio DH(s)/DA(s). What
we show is that with high probability for random s ∼ DA, regardless of how
many times transition (q, σ) typically gets used, the training sample contains
a large enough subset of strings that use that transition more times than s
does, so that γ(q, σ) is nevertheless known to a sufficiently high precision.

We say that s′ ∈ Σ∗ is (q, σ)-good for some transition (q, σ), if s′ satisfies

Pr
s∼DA

(nq,σ(s) > nq,σ(s′)) ≤
ǫ

4n|Σ|
.

Informally, a (q, σ)-good string is one that is more useful than most in pro-
viding an estimate of γ(q, σ).

Proposition 13 Let m ≥ 1. Let S be a sample from DA, |S| ≥m(32n|Σ|/ǫ) ln(2n|Σ|/δ′′).
With probability 1−δ′′(2n|Σ|)−1, for transition (q, σ) there exist at least ǫ(8n|Σ|)−1|S|
(q, σ)-good strings in S.

Proof: From the definition of (q, σ)-good, the probability that a string
generated at random over DA is (q, σ)-good for transition (q, σ), is at least
ǫ(4n|Σ|)−1.

Applying a standard Chernoff bound (see [3], p.360), for any transition (q, σ),

13

with high probability over samples S, the number of (q, σ)-good strings in S
is at least half the expected number as follows.

Pr

(

|{s ∈ S : s is (q, σ)−good}| <
1

2

(

ǫ

4n|Σ|
|S|

))

≤ exp

(

−
1

8

(

ǫ

4n|Σ|

)

|S|

)

(5)

We wish to bound this probability to be at most δ′′(2n|Σ|)−1, so from Equa-
tion (5),

exp

(

−
1

8

(

ǫ

4n|Σ|

)

|S|

)

≤
δ′′

2n|Σ|

|S| ≥

(

32n|Σ|

ǫ

)

ln

(

2n|Σ|

δ′′

)

which is indeed satisfied by the assumption in the statement. 2

Notation. Suppose S is as defined in Algorithm 2. Let Mq,σ(S) be the largest
number with the property that at least a fraction ǫ(8n|Σ|)−1 of strings in S
use (q, σ) at least Mq,σ(S) times.

Informally, Mq,σ(S) represents a “big usage” of transition (q, σ) by a random
string — the fraction of elements of S that use (q, σ) more than Mq,σ(S) times
is less than ǫ(8n|Σ|)−1. The next proposition states that Mq,σ is likely to be
an over-estimate of the number of uses of (q, σ) required for (q, σ)-goodness.

Proposition 14 For any (q, σ), with probability 1−δ′′(2n|Σ|)−1 (over random
samples S with |S| as given in the algorithm),

Pr
s∼DA

(nq,σ(s) > Mq,σ(S)) ≤
ǫ

4n|Σ|
(6)

Proof: This follows from Proposition 13 (plugging in m = (2n|Σ|/δ′′)(64n|Σ|/ǫδ′′)2).
2

Theorem 15 Suppose that H is a DFA that differs from A by the removal of
a set of transitions that have probability at most 1

2
ǫ of being used by s ∼ DA.

Then Algorithm 2 assigns probabilities γ̂(q, σ) to the transitions of H such the
resulting distribution DH satisfies L1(DA, DH) < ǫ, with probability 1− δ′′.

14

Algorithm 2

Input: DFA H, a subgraph of A.

generate sample S from DA; |S| =
(

2n|Σ|
δ′′

) (

64n|Σ|
ǫδ′′

)2 (32n|Σ|
ǫ

)

ln
(

2n|Σ|
δ′′

)

;

For (each state q ∈ H, σ ∈ Σ)
repeat

for strings s ∈ S, trace paths through H;

Let Nq,−σ be random variable: number of observations of

state q up to and including the next observation of

transition (q, σ) (include observations of q and (q, σ)
in rejected strings);

until(all strings in S have been traced);

Let µ̂(Nq,−σ) be the mean of the observations of Nq,−σ;

Let γ̂(q, σ) = 1/µ̂(Nq,σ);
For each q ∈ H, rescale γ̂(q, σ) such that

∑

σ∈Σ γ̂(q, σ) = 1.

Fig. 2. Finding Transition Probabilities

Proof: Recall Proposition 14, that with probability 1− δ′′(2n|Σ|)−1,

Pr
s∼DA

(nq,σ(s) > Mq,σ) ≤
ǫ

4n|Σ|

By definition of Mq,σ(S), at least |S|ǫ(8n|Σ|)−1 > (2n|Σ|/δ′′)(64n|Σ|/ǫδ′′)2

members of Sq,σ use (q, σ) at least Mq,σ(S) times. Hence for any (q, σ), with
probability 1− δ′′(2n|Σ|)−1, there are Mq,σ(S)(2n|Σ|/δ′′)(64n|Σ|/ǫδ′′)2 uses of
transition (q, σ).

Consequently, (again with probability 1− δ′′(2n|Σ|)−1 over random choice of
S), for any (q, σ) the set S generates a sequence of independent observations
of state q, which continues until at least Mq,σ(S)(2n|Σ|/δ′′)(64n|Σ|/ǫδ′′)2 of
them resulted in transition (q, σ).

Let Nq,−σ denote the random variable which is the number of times q is ob-
served before transition (q, σ) is taken. Each time state q is visited, the se-
lection of the next transition is independent of previous history, so we ob-
tain a sequence of independent observations of Nq,−σ. So, with probability
1− δ′′(2n|Σ|)−1, the number of observations of Nq,−σ is at least
Mq,σ(S)(2n|Σ|/δ′′)(64n|Σ|/ǫ)2.

Recall Chebyshev’s inequality, that for random variable X with mean µ and

15

variance σ2, for positive k,

Pr(|X − µ| > k) ≤
σ2

k2
.

Nq,−σ has a discrete exponential distribution with mean γ(q, σ)−1 and vari-
ance≤ γ(q, σ)−2. Hence the empirical mean µ̂(Nq,−σ) is a random variable with
mean γ(q, σ)−1 and variance at most γ(q, σ)−2(Mq,σ)−1(2n|Σ|/δ′′)−1(64n|Σ|/ǫδ′′)−2.
Applying Chebyshev’s inequality with µ̂(Nq,−σ) for X, and

k = γ(q, σ)−1ǫδ′′(64n|Σ|
√

Mq,σ)−1, we have

Pr

|µ̂(Nq,−σ)− γ(q, σ)−1| > γ(q, σ)−1

ǫδ′′

64n|Σ|
√

Mq,σ

 ≤
δ′′

2n|Σ|
.

Note that for x, y > 0 and 1
2

> ξ > 0, if |y−x| < xξ then |y−1−x−1| < 2x−1ξ,
and applying this to the left-hand side of the above, we deduce

Pr

|γ̂(q, σ)− γ(q, σ)| > 2γ(q, σ)

ǫδ′′

64n|Σ|
√

Mq,σ

 ≤
δ′′

2n|Σ|
.

The rescaling at the end of Algorithm 2 (which may be needed as a result of
infrequent transitions not being included in the hypothesis automaton) loses
a factor of at most 2 from the upper bound on |γ(q, σ)− γ̂(q, σ)|. Overall, with
high probability 1− δ′′(2n|Σ|)−1,

|γ̂(q, σ)− γ(q, σ)| ≤

ǫδ′′γ(q, σ)

16n|Σ|
√

Mq,σ

 . (7)

For s ∈ Σ∗ let nq(s) denote the number of times the path of s passes through
state q. By definition of Mq,σ(S), for any transition (q, σ) with high probability
1− ǫ(4n|Σ|)−1,

Es∼DA
[nq(s)] < Mq,σ(S)/γ(q, σ). (8)

For s ∼ DA we upper bound the expected log-likelihood ratio,

log

(

DH(s)

DA(s)

)

=
|s|
∑

i=1

γ̂(qi, σi)

γ(qi, σi)

where σi is the i-th character of s and qi is the state reached by the prefix of
length i− 1.

Suppose A generates a prefix of s and reaches state q. Let random variable Xq

be the contribution to log(DH(s)/DA(s)) when A generates the next character.

16

E[Xq] =
∑

σ

γ(q, σ) log

(

γ̂(q, σ)

γ(q, σ)

)

=
∑

σ

γ(q, σ)[log(γ̂(q, σ))− log(γ(q, σ))]

We claim that (with high probability 1− δ′′(2n|Σ|)−1)

log(γ̂(q, σ))− log(γ(q, σ)) ≤ |γ̂(q, σ)− γ(q, σ)|

(

1

γ(q, σ)

)

Aq,σ (9)

for some Aq,σ ∈ [1 − ǫδ′′(8n|Σ|
√

Mq,σ)
−1, 1 + ǫδ′′(8n|Σ|

√

Mq,σ)−1]. The claim

follows from (7) and the inequality, for |ξ| < x, that log(x + ξ) − log(x) ≤
ξx−1(1 + 2ξ/x) (plug in γ(q, σ) for x). Consequently,

E[Xq]≤
∑

σ

γ(q, σ)

(

1

γ(q, σ)

)

Aq,σ[γ̂(q, σ)− γ(q, σ)]

=
∑

σ

Aq,σ[γ̂(q, σ)− γ(q, σ)]

=
∑

σ

[γ̂(q, σ)− γ(q, σ)] +
∑

σ

Bq,σ[γ̂(q, σ)− γ(q, σ)]

for some Bq,σ ∈ [−ǫδ′′(8n|Σ|
√

Mq,σ)−1, ǫδ′′(8n|Σ|
√

Mq,σ)−1]. The first term
vanishes, so we have

E[Xq]≤
∑

σ

Bq,σ[γ̂(q, σ)− γ(q, σ)]

=
ǫδ′′

8n|Σ|

∑

σ

1
√

Mq,σ

 [γ̂(q, σ)− γ(q, σ)]

≤
ǫδ′′

8n|Σ|

∑

σ

γ(q, σ)

Mq,σ

where the last inequality uses (7). For s ∼ DA, the expected contribution to
log(DH(s)/DA(s)) from all nq(s) usages of state q is, using (8), at most

E[nq(s)]

(

ǫ

8n|Σ|

)

∑

σ

1

E[nq(s)]
=

(

ǫδ′′nq(s)

8n|Σ|

)

|Σ|

(

1

nq(s)

)

=
ǫδ′′

8n

The total expected contribution from all n states q, each being used nq(s)
times is

∑

q∈Q

ǫδ′′

8n
=

ǫδ′′

8
. (10)

Using Markov’s inequality, there is a probability at most δ′′ that log(DH(s)/DA(s))
is more than ǫ/8.

17

Finally, in order to use Proposition 12, note that (DH(s)/DA(s)) ∈
[

1− 1
4
ǫ, 1 + 1

4
ǫ
]

follows from log(DH(s)/DA(s)) ∈
[

−1
8
ǫ, 1

8
ǫ
]

.

2

The sample size expression is polynomial in 1/δ′′; we can convert the algorithm
into one that is logarithmic in 1/δ′′ as follows. If we run the algorithm x times
using δ′′ = 1

10
, we obtain x values for the likelihood of a string, rather than

just one. It is not hard to show that for x = O(log(1/δ′′)), the median will be
accurate with probability 1− δ′′.

6 Discussion and Conclusions

We can now of course put these two algorithms together using any values of δ′

and δ′′ that add up to at most δ (δ being the overall uncertainty bound). By
combining the results of Theorem 11 and Theorem 15, we get the following.

Theorem 16 Given an automaton with alphabet Σ and at most n states,
which is µ-distinguishable for some parameter µ, then Algorithm 1 and Al-
gorithm 2 run in time polynomial in the above parameters (also ǫ and δ),
producing a model which with probability at least 1− δ differs (in L1 distance)
from the original automaton by at most ǫ.

Our algorithms are structurally similar to previous algorithms for learning
PDFAs. One change worth noting that we have made, is that for each al-
gorithm a single sample is taken at the beginning, and all elements of that
sample are treated the same way. Previous related algorithms (including the
version of this paper in [11]) typically draw a sample at each iteration, so as to
ensure independence between iterations. In practice it is natural and realistic
to assume that every measurement is extracted from all the data.

We have shown that as a result of using the variation distance as criterion
for precise learning, we can obtain sample-size bounds that do not involve
the length of strings generated by unknown PDFAs. In the appendix we show
why the KL-divergence requires a limit on the expected length of strings that
the target automaton generates. Furthermore, our approach has addressed
the issue of extracting more information from long strings than short strings,
which is necessary in order to estimate heavily-used transitions with higher
precision. Perhaps the main open problem is the issue of learnability of PDFAs
where there is no a priori “distinguishability” of states.

18

References

[1] N. Abe, J. Takeuchi and M. Warmuth. Polynomial Learnability of Stochastic
Rules with respect to the KL-divergence and Quadratic Distance. IEICE Trans.
Inf. and Syst., Vol E84-D(3) pp. 299-315 (2001).

[2] N. Abe and M.K. Warmuth. On the Computational Complexity of
Approximating Distributions by Probabilistic Automata. Machine Learning,
9, pp. 205-260 (1992).

[3] M. Anthony and P.L. Bartlett. Neural Network Learning: Theoretical
Foundations. Cambridge University Press (1999).

[4] A. Clark and F. Thollard. PAC-learnability of Probabilistic Deterministic Finite
State Automata. Journal of Machine Learning Research 5 pp. 473-497 (2004).

[5] T.M. Cover and J.A. Thomas. Elements of Information Theory Wiley Series
in Telecommunications. John Wiley & Sons (1991).

[6] M. Cryan, L. A. Goldberg and P. W. Goldberg. Evolutionary Trees can be
Learned in Polynomial Time in the Two-State General Markov Model. SIAM
Journal on Computing 31(2) pp. 375-397 (2001).

[7] P. Dupont, F. Denis and Y. Esposito. Links between probabilistic automata and
hidden Markov models: probability distributions, learning models and induction
algorithms. Pattern Recognition, 38, pp. 1349-1371 (2005)

[8] P.W. Goldberg. Some Discriminant-based PAC Algorithms. Journal of Machine
Learning Research, Vol.7, pp. 283-306 (2006).

[9] C. de la Higuera and J. Oncina. Learning Stochastic Finite Automata. Procs. of
the 7th International Colloquiuum on Grammatical Inference (ICGI), LNAI
3264, pp. 175-186 (2004).

[10] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R.E. Schapire and L. Sellie.
On the Learnability of Discrete Distributions. Procs. of the 26th Annual ACM
Symposium on Theory of Computing, pp. 273-282 (1994).

[11] N. Palmer and P.W. Goldberg. PAC-learnability of Probabilistic Deterministic
Finite State Automata in terms of Variation Distance Procs. of the 16th
conference on Algorithmic Learning Theory (ALT); LNAI 3734, pp. 157-170
(2005).

[12] N. Palmer and P.W. Goldberg. PAC Classification via PAC Estimates of Label
Class Distributions. Tech rept. 411, Dept. of Computer Science, University of
Warwick (2004). Available from arXiv as cs.LG/0607047

[13] D. Ron, Y. Singer and N. Tishby. On the Learnability and Usage of Acyclic
Probabilistic Finite Automata. Journal of Computer and System Sciences,
56(2), pp. 133-152 (1998).

19

7 Appendix

We show that in order to learn a PDFA with respect to KL Divergence, an
upper bound on the expected length of string output by the target PDFA
must be known.

Theorem 17 Consider the target automaton A, shown in Figure 3.

ζ

ζ

ζ

ζ

b:

a:1-

b: ’

a:1- ’

q

q

q

0

f

1

Fig. 3. Target PDFA A.

Suppose we wish to construct, with probability at least 1−δ, a distribution DH

such that DKL(DA, DH) < ǫ, using a finite sample of strings generated by DA.
There is no algorithm that achieves this using a sample size that depends only
on ǫ and δ.

Proof: A outputs the string a with probability 1− ζ , and outputs a string
of the form b(a)∗b with probability ζ .

Suppose an algorithm draws a sample S (from DA) from which it is to con-
struct DH , with |S| = f(ǫ, δ). Let ζ = 1

2|S|
be the probability that a random

string is of the form b(a)nb. Notice that S will be composed (entirely or al-
most entirely) of observations of string a. Therefore there is no way that the
algorithm can accurately gauge the probability ζ ′ (see Figure 3).

For i ∈ N let Pi be a probability distribution over the length ℓ of output
strings, where Pi(1) = (1 − ζ) and over all values of ℓ greater than 1 the
distribution is a discrete exponential distribution defined as follows.

An infinite sequence {n1, n2, . . .} exists (see Lemma 18), such that P1 has a
probability mass of 1

4|S|
(half of the probability of generating a string of length

greater than 1) over the interval {1, ..., n1}, P2 has probability mass of 1
4|S|

over the interval {n1 + 1, ..., n2}, and in general Pi has probability of 1
4|S|

over

the interval {ni−1 + 1, ..., ni}. Let sℓ denote the string ba(ℓ−2)b (with length

20

ℓ). Given any distribution 4 DH , for any 0 < ω < 1 there exists an interval
Ik = {nk−1 + 1, ..., nk} such that

∑

ℓ∈Ik

DH(sℓ) ≤ ω.

To lower-bound the KL divergence, we now redistribute the probability dis-
tribution of DH in order to minimise the incurred KL divergence (from the
true distribution DA), subject only to the condition that Ik still contains at
most ω of the probability mass. In order to minimise the KL divergence, by
a standard convexity argument, the algorithm must distribute the probability
in direct proportion to DA.

∀ℓ ∈ Ik :
DH(ℓ)

DA(ℓ)
= 4|S|ω

∀ℓ /∈ Ik :
DH(ℓ)

DA(ℓ)
=

1− ω

1− 1
4|S|

It follows that the KL divergence can be written in terms of |S| and ω in the
following way:

DKL(DA||DH) =
∑

ℓ∈N

DA(sℓ). log

(

DA(sℓ)

DH(sℓ)

)

=
∑

ℓ∈Ik

DA(sℓ). log

(

1

4|S|ω

)

+
∑

ℓ/∈Ik

DA(sℓ). log

1− 1
4|S|

1− ω

=

(

1

4|S|

)

log

(

1

4|S|ω

)

+

(

1−
1

4|S|

)

log

1− 1
4|S|

1− ω

≥

(

1

4|S|

)

(−2 log(|S|)− log(ω)) + log

(

1−
1

4|S|

)

Suppose that ω < 2−2(|S|(ǫ−log(1− 1

4|S|))+log(|S|)). We can deduce that DKL(DA, DH) >
ǫ.

It has been shown that for any specified ǫ, given any hypothesis distribution
DH , an exponential distribution DA exists such that DKL(DA, DH) > ǫ. 2

4 Note that this is a representation independent result - the distribution need not
be generated by an automaton.

21

Lemma 18 Given any positive integer ni ≥ 1 in the domain of string lengths,
an exponential probability distribution exists such that at least 1

4|S|
of the prob-

ability mass lies in the range {ni + 1, ..., ni+1}.

Proof: If we look at strings of length greater than 1, then given some value
ni, there is some exponential distribution over these strings such that there
exists an interval {ni + 1, ..., ni+1} containing half of the probability mass of
the distribution.

For an automaton A′ (of a form similar to Figure 3), the probability of an
output string having a length greater than 1 is 1

2|S|
. Let ℓb = ℓ − 1 for those

strings with ℓ > 1 (where ℓb represents the number of characters following the
initial b), and let sℓb

represent the string starting with b which has length ℓ.
For any value of ni, we can create a distribution:

DA′(sℓb
) =

(

1

2|S|

)

ln
(

4
3

)

ni + 1

 exp

−

ln
(

4
3

)

ni + 1

 ℓ

A fraction 1
8|S|

of the probability mass lies in the interval {2, ..., ni}. There

exists a value ni+1 =
⌈

(ni + 1)
(

ln(4)/ ln
(

4
3

))⌉

such that at least 1
4|S|

of the

probability mass lies in the interval {ni + 1, ..., ni+1}. 2

22

