A Proportionate Fair Scheduling Rule with Good Worst-case
Performance*

Micah Adlerf Petra Berenbrink! Tom Friedetzky® Leslie Ann Goldberg?
Paul Goldberg! Mike Paterson¥

November 16, 2004

Abstract

In this paper we consider the following scenario. A set of n jobs with different threads is being
run concurrently. Each job has an associated weight, which gives the proportion of processor
time that it should be allocated. In a single time quantum, p threads of (not necessarily distinct)
jobs receive one unit of service, and we require a rule that selects those p threads, at each
quantum. Proportionate fairness means that over time, each job will have received an amount
of service that is proportional to its weight. That aim cannot be achieved exactly due to the
discretisation of service provision, but we can still hope to bound the extent to which service
allocation deviates from its target. It is important that any scheduling rule be simple since the
rule will be used frequently.

We consider a variant of the Surplus Fair Scheduling (SFS) algorithm of Chandra, Adler,
Goyal, and Shenoy. Our variant, which is appropriate for scenarios where jobs consist of multiple
threads, retains the properties that make SFS empirically attractive but allows us to prove that
it achieves proportionate fairness, a result not known previously for any simple scheduler in a
multiprocessor context. We show that when the variant is run, no job lags more than H(n)—p+1
steps below its target number of services, where H(n) is the Harmonic function. Also, no job is
over-supplied by more than O(1) extra services. This analysis is tight and it also extends to an
adversarial setting, which models some situations in which the relative weights of jobs change
over time.
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1 Introduction

In this paper, we consider the problem of scheduling a set of n jobs on p processors, where the
objective is to schedule the jobs so that, at every time step in the schedule, each job has received
as close to a proportionate share of scheduling slots as possible. Assuming that time is discretised
into time steps (or quanta), a scheduler may, in each step, allocate processors to p out of the n
jobs. If job i has a weight w; associated with it, proportionate fairness requires that after t steps,
the number of times that job ¢ has been assigned a processor should be close to ¢ - p-w;/ Y Wy

A very strict sense of this kind of fairness is called P-Fairness (5), which requires that after ¢
steps, job ¢ has been assigned to a processor for either |(¢-p-wi/ >, w;)] or [(¢-p-wi/ >, w;)] time
steps. In other words, every job receives as close to its proportion of service as is possible given
integral service constraints. P-Fairness was first introduced in (5), and a number of papers have
addressed the problem of designing P-Fair scheduling algorithms that are efficient and practical
(4; 1; 2; 11; 7).

An important application of proportionate scheduling algorithms is an operating system as-
signing jobs to quanta on a multi-processor system. There are a number of practical reasons why
existing P-Fair algorithms are not ideally suited for this task. For example, these algorithms as-
sume fixed-length quanta (i.e., no job ever blocks in the middle of a quantum), and they assume
that there are no arrivals or departures of jobs. Furthermore, in (7) it is shown that when one of
the existing P-Fair algorithms is applied to scenarios with both variable-length quanta and arrivals
and departures, the schedule becomes non-work-conserving: at some time steps, a processor is left
idle even when there are more jobs in the system than processors. Also, existing P-Fair algorithms
are still somewhat complicated and, in fact, (1) provides evidence that designing simpler P-Fair
algorithms may be quite difficult. However, for a task such as the assignment of jobs to quanta on
a multi-processor system, it is crucial that the scheduling algorithm be extremely fast, since the
scheduler will be called by the operating system on the expiration of every quantum.

A simple proportionate fair scheduling algorithm is introduced in (6). This algorithm is called
SFS (Surplus Fair Scheduling), and can be viewed as a generalisation to multiprocessors of schedul-
ing techniques based on generalised processor sharing, which have been well studied for use in
uniprocessor systems (10; 8; 12). In SFS, each job i maintains a quantity S;, the “start time”.
For every round where job i is run, S; is incremented by w% At the start of each round, the p
jobs are run that have the minimum values of o; = w;(S; — v), where v = min; S;. (6) provides
empirical evidence that SFS has good fairness properties. Furthermore, the algorithm is simple,
and generalises quite easily to scenarios with both variable-length quanta, as well as arrivals and
departures of jobs. Also, the algorithm is always work-conserving. However, despite the experimen-
tal evidence that SFS performs well, the task of proving that SFS does in fact always schedule jobs
so that each receives close to a proportionate share of the available processing power has remained
an open problem. We note that a number of simple schedulers have been introduced for the (easier)
uniprocessor case that have provable guarantees on fairness, including (10; 14; 15; 13).

Note that SFS is not P-fair. Initially, all values of S; are zero. Hence, any job ¢ has a; = 0
before it is run for the first time by a processor. Hence, any job that has not yet been run will have
a higher priority than any job that has been run, so in the first approximately n/p steps, all jobs
will be run for the first time. However, P-fairness could require high-weight jobs to be run more



than once before the low-weight jobs are run. For a high-weight job 7 at time ¢t = |n/p], its target
service allocation ¢ - p - w;/ Y ;w; could be more than 2 (if p|n this just requires w; > 2 > wj).

1.1 The “Leaky Bucket” Representation

A version of the SFS algorithm has an intuitively appealing interpretation, which we call the leaky-
bucket problem; the focus of this paper will be on studying this problem. We think of each job as a
bucket of water that leaks. During each time step, k; units leak from bucket ¢, and the total volume
of leaked water is p. This is replaced by adding p refills of unit size into each of the p emptiest
buckets. Initially, all the buckets have A units of water, for some value of A.

For the correspondence between the leaky-bucket problem and SFS, we first redefine the value

v of SFS as the weighted average of the start times (v = EZ]:L;]]]) instead of the minimum start
J

time. Note that this new value of v grows at the same rate as with the original definition from (6),
and the algorithm maintains all of the properties that make it attractive from a practical point
of view. With the new version of v, the value a; represents the water level in bucket ¢. During a
step of SFS, the value of v increases by p/ Zj w,, which corresponds to a decrease in each «; of
k; = pw;/ Zj w; and a total decrease of ), k; = p. On the other hand, each job 7 that gets run
has «a; increased by 1, giving a total increase of p.

The key observation that relates the leaky-bucket problem to fairness guarantees is the following.
After t steps, the number of times that job ¢ is assigned a processor is (tpwi/ >_; wj) + X;(t) — 4,
where X;(t) denotes the current load of bucket ¢ and A denotes the initial (and average) load. (This
is formalised as Observation 1.)

Observation 1 Consider any fized system and scheduler. After t steps, the number of times that
job i is assigned a processor is (tpw;/ ), w;) + Xi(t) — A.

Proof. X;(t) is equal to A plus the number of times that bucket i is refilled minus ¢tk;. The number
of refills is equal to the number of services for job i. Also, recall that k; = pw;/ j Wj- O

In this paper we study the following scheduler, that corresponds to a variant of SFS. Instead
of refilling the p emptiest buckets, at each step we refill the buckets sequentially, where, for each
of the p refills, we choose the current emptiest bucket and add one unit of water. Thus, the same
bucket can be refilled multiple times. We refer to this process of refilling buckets as scheduler Sp.
We study Sp for two reasons: first, understanding this variant will lead to insights concerning the
behaviour of the p-emptiest-buckets scheduler that corresponds to SFS. Second, &y also represents
an important scenario from a practical perspective. In particular, Sy corresponds to the case
where several processors can service (different threads of) the same job simultaneously. Thus, it
can be used when jobs have multiple threads which must all be executed and may be executed
simultaneously. We here assume that each job always has at least p available threads.

We derive bounds on how much the loads of buckets deviate from the average load A, using
scheduler S§y. These bounds translate directly to additive bounds on the deviation between the
number of times that a job is serviced in ¢ steps, and the number of times that it should be
serviced.



We also prove analogous results for adversarial systems, where the sequence k; is no longer
fixed, but instead can vary with time. This corresponds to the situation where the weights of
jobs can vary with time, which might occur as a result of changes in the relative importance of
the individual jobs, or due to jobs arriving and departing. While this is an important practical
consideration, to the best of our knowledge there have not been any previous results proven for
proportionate fair scheduling of jobs with varying weights.

We define the system more formally in Section 1.2 and state our results in Section 1.3. Note
that in some respects our leaky-bucket model resembles the scheduling problems studied in (3; 9)
in which a scheduler must, in an on-line manner, repeatedly select one of a number of buffers
to be served, and the service has the effect of reducing the queue at that buffer. Meanwhile,
packets are arriving at buffers, and the general aim is to minimise the maximum length attained
by any queue. These papers study the competitive ratio of scheduling algorithms, which is the ratio
between the performance of the scheduler (largest queue length arising), and the largest queue
length for an optimal schedule (chosen in an off-line manner). The rule Longest queue first studied
in (9) corresponds with the scheduler Sy we consider here (where buckets correspond to buffers,
and loss of water level corresponds to queue length). By contrast, in this paper we do not compare
the bucket loads obtained via Sy with sequences of bucket loads obtained via some alternative
schedule; instead we are just concerned with the extent to which they may deviate, in absolute
terms, from their initial values (which are the target loads at all times). The problem we face here
is the fractional leakage rates in conjunction with discretised service provision. Sy is shown to be
— in the adversarial setting — at least as good as any other scheduler in addressing that problem.

1.2 Models, Terminology and Notation

Let Bi,...,B, denote a sequence of n buckets, having associated variables X1i,...,X,, where
X; € IR denotes the amount of material being held in B;. X; will be called the load of B;.

The system evolves over discrete time steps, so that X; = X;(¢),t =0,1,2,.... In a single time
step, each X; is first reduced by some amount k; > 0. Assume that the total depletion is p, i.e.,
p=>. j k;. We consider algorithms which restore the total load ) j X by adding the p units back,
but are constrained to do so by adding p refills of size 1 to some of the X;’s. Given a rule for
selecting which buckets are replenished, we consider how much the X;’s may fluctuate from their
original levels.

A system is said to be stable whenever there are upper and lower bounds on the values that any
of the X; can take, over time. We are interested in proving stability, and furthermore in identifying
bounds on the values of the X;. The main technical challenge is in finding lower bounds. If initially
we have X;(0) = A for i = 1,...,n, we analyse how large A must be to ensure that no bucket
ever becomes empty. Let the intermediate state X)(t) denote the level of the i-th bucket after
the depletions in step ¢ but before the refills. That is, the level changes from X;(t — 1) to X](t)
by doing depletions, then to X;(¢) by refills. (In Section 3 we extend the notation to denote the
loads resulting when some but not all of the refills have been completed.) Define the outcome 1) of
the system to be infi—1 9., i=1,..n X}(t), i.e., the greatest lower bound (if it exists) on any bucket
load. Thus a stable system is one that has a finite outcome, and we are looking for bounds on the
outcome.



FiXxeDp SYsTEMS In a fixed system, the values k; are constants, and are the parameters of problem
instances. Each k; is the rate of depletion for B;. In step t of this basic system, we first deplete
each X;(t —1) by k;, giving a sequence of intermediate values X (t) with X/(t) = X;(t — 1) — k; for
1 <4 < n. Then scheduler §j selects some buckets in order to refill them using the following rules.
Iteratively for p rounds, Sy finds an emptiest bucket and adds 1 to its load. This means that one
bucket can be refilled more than once in a time step.

ADVERSARIAL SYSTEMS In adversarial systems, we no longer have a fixed sequence of k; but
assume the presence of an adversary. At each step the adversary is free to choose a sequence
ki(t),...,kn(t) (Where t again denotes the time parameter), subject to k;(t) > 0, and }, k;(t) = p.
Hence the depletion rate of a bucket can differ from round to round. These systems turn out to be
useful to establish bounds on worst-case behaviour.

1.3 Summary of Results

Let H(n) denote the harmonic function, H(n) =1+ 3 + £ +--- + 2.

Theorem 1 of Section 2 is a strong positive result about the outcome achieved by scheduler S
in the adversarial setting. The theorem states that (i) There is an adversary 4y which achieves an
outcome of at most A — (H(n) + p — 1) against any scheduler S that refills buckets in p units of
size 1 at each step (regardless of how S chooses the buckets). Also, (ii) Scheduler Sy achieves an
outcome of at least A — (H(n) + p — 1) against any adversary A. Thus, scheduler Sy is optimal
in the adversarial setting. Theorem 1 implies that in any fixed system, the outcome 1) is at least
A — (H(n) +p—1). This implies that no job lags more than H(n) + p — 1 steps below the target
number of services.

In Section 3 we show that this bound is tight, for fixed systems. In particular, Theorem 2 states
that for all 7 > 0 there are constant depletion rates ki, ks, ..., k, such that the minimum load of
any bucket is less than A — (1 — 7)(H(n) + p — 1) when scheduler Sy is run. The construction uses
a sequence of k;’s that converges to 0 very quickly, suggesting that scheduler Sy may do better in
cases in which the relative values of the k;’s are constrained. Theorem 3 identifies some cases in
which this is true. In particular, if each k; is a multiple of the smallest depletion rate kmi, then
scheduler Sy achieves an outcome of at least A — pkyax/Emin-

It is also shown that for scheduler Sy there is an easy upper bound of A + 1 on the maximum
load of any bucket. This means that no job gets more than one extra service at any point.

2 Adversarial Systems

In this section we restrict our attention to adversarial systems, as introduced in Section 1.2. In
contrast to fixed systems, we may assume without loss of generality that the states (sequences of
X; values) are sorted in non-decreasing order, i.e., X (t) = (X1(t),--- , X, (¢)) with X5 (¢) < Xo(t) <
-++ < X, (t). This means we may “re-sort” our buckets at the end of every step. We introduce the
following notation to represent quantities that are used throughout the proof. For 1 < ¢ < n let

Lowit) = § 51 X5(t)



2. Vit) = pa(t) — H(7)
3. V(t) = min; V;(t)
4. L(t) =min{l: V(t) =V (t)}.

wi(t) is the average load of buckets By, ..., B;; by our “sortedness” assumption, it is the average
of the 7 lowest loads. Vj(t) is a measure of the outcome achievable by an adversary restricted to
By,...,Bj; V(t) is the minimum value of V;(t) for all choices of 4; finally £(¢) is smallest value of 4
that minimises Vj(t).

The following technical lemma, is used in the proof of Theorem 1.

Lemma 1 For any state X(t), j € {1,...,n — 1},
Via() > Vi(t) < Xja(t) > ult) + 1.
Proof. Consider the following sequence of equivalent inequalities.

Via(t) > V(1)
b —HG+1) > w(t) - HG)

1 j+1 1 J
ASPIRCOREI AR >3§}mm—Hm
k=1 k=1
Xjt) 1 S Xa(t) + -+ X;(¢)
Jj+1 j+1 j(G+1)
Xjat) -1 > AUk ] ubs L 1 (t).

O

Informally, Theorem 1 says that regardless of what scheduler is used, adversary Ay (as defined
in the proof) manages to get the minimum X(¢) at least as far as (H(n) + p — 1) below the
starting line. But, irrespective of any strategy used by an adversary, scheduler Sy will keep the
all-time minimum no lower than that level. Hence, in the presence of a “worst-case” mechanism
for depleting the buckets, scheduler Sy is as good as any other scheduler using p unit refills.

Theorem 1 Let S be an arbitrary scheduler that refills buckets in p units of size 1 at each step.
Let Sy be the scheduler defined in Section 1.2.

1. There is an adversary Ay which achieves an outcome of < A — (H(n) + p — 1) against any
scheduler S.

2. The scheduler Sy achieves an outcome of > A — (H(n) +p — 1) against any adversary A.

Proof. We put A = 0, allow bucket loads to become negative, and establish —(H(n) +p — 1) as
the bound on how negatively large any X; need become. Hence, X (0) = (0,...,0).



PROOF OF (1) To define Ay, we use the following rule that for any state finds a set of depletions
that add up to p. Then we show that after finitely many steps the lowest bucket load becomes at
most —(H(n) +p —1).

Ag’s behaviour for state X (¢):

1. If Xy(t) < —(H(n) — 1) then let X](t) = X1 (t) — p.

2. Else { since X1(t) > —(H(n) — 1) we have £(t) > 1}

3 Let j = £(t)

4 If3i € 1,...,5 with X;(t) — (u5(t) — 7) # [ Xi(t) — (u5(t) = 7)]
5 X1(t) = LX) — (5(8) — 1)

6 Let ' €1,...,7;4 # 1.

7 Xi(t) = Xp(t) —p+ (X:(t) — X(?))

8 Else fail. We show that this case never arises.

Note first that if X;(t) < —(H(n) — 1), then the adversary’s choice of depletions is simply to
deplete the minimum bucket (with load X (¢)) by p, applying line 1 above, and the claimed outcome
is attained. (Recall that bucket loads are sorted so that X;(¢) < X;41(t) for 1 <i<n-—1.)

Suppose for a contradiction that line (8) is reached. In that case, the quantities X;(¢) for
1 <i<j all satisfy X;(t) — (p;(¢) — %) € Z. Since p1(t) is the mean of these quantities, there must
exist 4 with X;(t) — (u;(t) — %) > 1. This implies that p;_i(t) < p;(t) — %, hence V;_1(t) < V;(t),
hence 4(t) < j — 1, a contradiction.

We claim that if lines (2-7) are applied, then one or both of the following takes place in going
from X (t) to X (¢ + 1).

1. The number of values of i € {1,...,£(¢)} with X;(¢) — (u;(t) — %) # | Xi(t) — (i (t) — %)J goes
down by 1, or

2. V(t+1) < V(t) - ﬁ

Suppose that the scheduler S refills any bucket with load X (¢) for £ > j. Then the total load
of the j least-loaded buckets goes down by > 1. Hence their average load goes down by at least
1/7, and we have p;(t+1) < p;(t) — % so we obtain the second of the above outcomes. It follows
that V;(t + 1) < Vj(t) — %, and hence V(t+1) <V (t) — =

If S gives all p refills to buckets with loads X (), for 1 <14 < j, then we have p;(¢t + 1) = p;(¢),
and since all refills are integer-valued, S cannot change the number of buckets whose loads differ
from p;(t) — % by an integer. Ay has thus reduced by 1 the number of such buckets, in line 5.

Putting the above two observations together, either the quantity y;(¢) must decrease by at least
some constant (while £(¢) does not increase), or alternatively (after < £(t) iterations) the value of
£(t) must decrease. Hence the process terminates, since £(t) = 1 means that line 1 applies.

PROOF OF (2) Suppose for a contradiction that there exists an adversary A which achieves an
outcome of less than —(H(n) + p — 1) against Sy. This means that after ¢ time steps for some
finite ¢, state X (t) satisfies X1(t) < —(H(n) — 1) (this is because A would deplete the smallest
bucket by p in order to minimise the outcome), i.e. u1(t) < —(H(n) — 1), hence Vi(t) < —H(n).



Observe that, by definition, for all states X (), V,,(t) = —H(n) since the overall average is always
0. Initially, V;(1) > V;41(1) for all j < n since we assume all buckets to start with load 0, i.e., the
harmonic numbers are all that count. Finally, V(¢) < —H(n) = V,(t).

Let ¢’ = min{t : V;(t) < —H(n) for some j}. From our observation above we have V,(t') =
—H(n), so we can choose the smallest j so that we also have V;(t') < Vj;1(t'). Consider the
previous state X (¢’ — 1), and we will show that V;(¢' — 1) < —H(n), contradicting our assumption
that X (¢') was the first state with the given property (which is not a property of X (0)). Since
V;(t") < Vj41(t') we have by Lemma 1

Xy () +---+ X;5(t)

Xjpa(t') > p(t) +1= ; +1.

Now observe that Sy cannot have just refilled any bucket with load Xy (¢') for k > j, just prior
to reaching state X (¢'). Since those buckets have a load more than 1 above the average of the
lowest j buckets, it follows that the lowest bucket has a load less than X (') — 1 for all & > j.
So would certainly have preferred one of the buckets with loads X (¢'),...,X;(¢'), which would
be lower prior to a refill of size 1. If Y7,...,Y; denote the loads of the buckets corresponding
to X1 (t'),...,X;(t') in state X (¢ — 1) (these are not necessarily X;(t' —1),..., X;(¢' — 1)), then
Yi+---4+Y; < X (') +---+ X;(t'), since Sy added p to these buckets and A previously subtracted

at most p. Hence
Yi+---+Y]
pi(t' = 1) < fj < p;(t).

So V;(t' — 1) < V;(¢') < —H(n), contradicting the minimality in the choice of ¢ O

3 Fixed Systems

In Section 2 we showed that scheduler Sy keeps the all-time minimum to A — (H(n)+p— 1) against
an adversary that may select the depletion rates in every step. Of course, this upper bound on the
initial bucket load holds also in the case of our fixed system. This gives the following corollary.

Corollary 1 If A > H(n) + p — 1, then loads X;(t) will always be non-negative, for any leakage
rates k1, ..., k, with scheduler Sy.

Theorem 2 uses a construction of leakage rates that show that the above condition A > H(n) +
p—1 is necessary as well as sufficient. However, the construction leads to a very large ratio between
highest and lowest depletion rates. This motivates the restriction to rational depletion rates, where
bounds are obtained in terms of the above ratio.

In Theorem 3 we will show an alternative upper bound on the initial bucket load A needed to
maintain positive loads. This gives better results in the case that the k;’s are all small multiples of
a common value.



3.1 Arbitrary Real-valued Depletion Rates

In the following we show that in the worst case (worst case over all choices of k;’s summing to
p) with scheduler 8y a bucket may be depleted by up to H(n) + p — 1. An alternative statement
is that, assuming all buckets are initially set to the same level, they must start with a level of
A= H(n)+p—1 in order to avoid becoming empty.

The worst-case behaviour we obtain for constant depletion rates essentially matches the upper
bound on worst-case behaviour for the adversarial case. More precisely (see Theorem 2 below),
we show how to construct sets of depletion rates that lead to a minimum bucket value that is
arbitrarily close to the A — (H(n) + p — 1) obtained in the adversarial case.

Here is a brief overview of the strategy of the proof. Note that the adversary in part (1) of
Theorem 1 works by forcing the scheduler to raise the level of some bucket B at least one unit
above the others’ average. This trick is then repeated recursively on the un-raised buckets, until
the last one is depleted by the required amount. This process is approximately mimicked by fixed
leakage rates as follows. Give some bucket a very slow leakage rate. Verify that it is raised almost
to the level of one above the others. Verify that its leakage rate is so slow that it remains almost
at that level for long enough that the others can simulate the strategy recursively. This results in a
choice of leakage rates with k1 > ko > --- > k, where bucket B; with leakage rate k; is destined
to reach a level close to A — (H(n) +p — 1).

It is convenient to assume A = 0 and ask how negatively large can the value of any bucket
become. Thus we show that bucket B; may be depleted to a level arbitrarily close to —(H (n)+p—1),
for suitable choice of the k;.

We use the following notation to represent the sequence of values generated by an m-bucket
system S with leakage rates ki,...,kp, for n > 2. We need to use notation that is a bit more
“detailed” than that of Section 2, in order to refer to loads reached when r refills have been
completed, for 0 < r < p.

1. For i € {1,...,n} let X’(0) = 0.
2. Fort € {0,1,2...} and i € {1,...,n} let X2(t +1) = XP(t) — ki.

3. Forr €{0,...,p— 1}, (XTT'(t),..., X[ F1(t)) is obtained from (X7 (t),..., X~ (t)) by adding
1 to a minimal component of (X7 (¢),..., X/ (t)).

4. Forr € {0,...,p}, 1 <i <, let pf(t) = 1 300, XI(2).

Informally, X7 (¢) denotes the load of bucket i at time ¢, after the scheduler has completed r
out of the p refills. So item (3) above is stating the rule that a bucket with minimal load is chosen
each time. pf(t) denotes that average load of buckets 1 through 4, and recall that these are not
necessarily the buckets with the lowest loads (in contrast with p;(¢) in the previous section); they
are just the buckets with leakage rates ki, ..., k;.

Observation 2 It follows from the definition of pu(t) that

XI(t) - iy (t) = —

L (XT(0) - 1 ():

9



FEquivalently, by rearranging terms:

X7(t) - pr(t).

() — iy ) = =2

Observation 3 Fori > 1, bucket i will not be refilled if its level is above the average of the first ¢
buckets; formally, for 0 <r <p,

if X7 (t) — plf(t) > 0 then X/ () = X7 (2).
Observation 4 For all r,i,t, X](t) <1 — %
Observation 4 is proved by contradiction. Let ¢’ = min{¢ : Ir,4, X7 (t) > 1 — %}

1. Suppose that X?(#') > 1 — 1 but XP(# — 1) < 1— 1. This is impossible since X?(t') =
XP(t' 1) — ki < XP(¢' —1).

2. Alternatively suppose that X7 (') > 1—1 but X7~ (¢') <1-1 for1 <r <p. Then X]7'(¢) >

1
n
—21. But for bucket B; to be refilled, we need X7 (#) < puhmY(#") (by Observation 3). This

is a contradiction since for all ¢, 7~ 1(¢) < b ' (t) = —%.

Lemma 2 For allt>0,i€{1,...,n}, r€{0,...,p}:
[ X5 (t) — i (1) < (p + H(n)).
Proof. It follows from Theorem 1 (taking the initial loads A to be zero) that
Vi,r,t Xj(t) > —(H(n)+p—1). (1)

It follows from Observation 4 that
Vi,r,t X7 (t) <1 (2)

(We have just replaced the upper bound of 1 — % by 1 in order to simplify the expressions used
later on.) From (1) and (2) we have

vi,r,t Xi(t) € [-(H(n) +p—1),1]. 3)
Since the quantity u(t) is the mean of a subset of the X7 (¢) values we have
Viort () € [—(Hn) +p—1),1] )

The result follows from (3) and (4) since the the difference between any pair of values in
[-(H(n) +p—1),1] is at most the length of the interval. O

10



We choose leakage rates k1,...,ky, as follows. Let 7 be a small positive number. Then

fori=2,3,...,n,

Let J; = [k—(p—l— H('n,))-| Hence for i > 1,

?

()

7—'L

= [4(20i)(p + H(n))i“ﬂ .

Note that if 7 is sufficiently small then k; is positive, and in addition, k; > >
Ji; > Zj <i Jj.

Informally, in Lemma, 3, we want to find a step in which bucket ¢ gets the last refill of the step,
and the level of bucket i was (before refilling) at most 7 below the average of the first 7 buckets.
We show that we can find such a step in any sequence of length J; in which no bucket with index
higher than 7 is refilled.

i k; and

Lemma 3 Let leakage rates k; be constructed as above with 0 < 7 < % Let i € {1,2,...,n} and
T > 1. Suppose that for allt € {T,..., T+ J;—1} and for all j > i, we have XJO(t) = X;’(t). Then
there exists t' € {T,..., T + J;—1}, with

(1) szil(t') - Mffl(t') > —7 and
(%) XI() = XPH(E) + 1.

Proof. The lemma, is proved by induction on ¢. The base case, 1 = 1, is straightforward.

For the inductive step, suppose 7 > 2 and suppose 7" > 1 has the property that V¢ € {T',..., T+
Ji — 1}, V4 > i, we have XJ(-)(t) = X;’(t). We want to show that there is a t' € {T,..., T+ J; — 1}
such that (1) and (2) hold. By the inductive hypothesis, we know that for all 7" in the range
T <T < T+ J; — Ji—1, the following is true. If, for all t € {T",...,T" + J;—1 — 1}, we have
X?2(t) = XP(t), then there is a t" € {T",...,T" + J;_; — 1} such that

(1) XPTH(#") — pb2) (") > —7 and
-1
2) XP (") = XP7 (¢") + 1.

Fort € {T,...,T+J;—2} and r € {0,...,p}, note that between X" (¢) and X" (¢+1), the system
deletes > _;; k;j units from the first ¢ buckets, and adds back p units. Thus, pi(t +1) — pi(t) =

1 .
T 2oj>ikj Since k; > 37, k; we have

1
pi(t+1) = g () < -ki <ki. (6)
Using (6) and the fact that X7 (¢t 4+ 1) — X[ (t) > —k;, we also have the following.
X;(t+1)—pr(t+1) > XT(t) — pi(t) — 2k;. (7)

11



If in addition we assume that X7 (t) = X?(¢) and X? (¢t +1) = X?(t + 1), then we also have for
r€{0,...,p} that
Xi(t+1) —pi(t+1) < X7 (t) — i (t) — ki (8)
(7) and (8) give useful upper and lower bounds on the rate of decrease of X (t) — ul(t) as a
function of t. To prove the inductive step we consider two cases.

Case 1: X'(T'—1)—puf(T—1)>0.
Let ¢ = min{t : ¢t > T and X?(¢) > X2(¢)}. (Thus, t' is the first step, after and including step T,
during which B; is refilled.) We show that ¢’ satisfies conditions (1) and (2) in the statement of the
lemma.

First, note that ¢’ < T + 2(p + H(n))/k; using (8) and Lemma 2. This implies ¢ < T + 1.J; <
T+ J;,—1.

Next, we show t' > T. To establish this fact, we will show that, for all r < p, we have
X7 (T) — ui (T) > 0 (and note Observation 3). To see this, note that

T 1 T
HUT) = wg(T) + 5 = p{(T 1) == kj+ -
J<i
p 1 T
= Nz‘(T—l)—;(P—ij)"'g
J>i

IA

W = 1) = (o~ ki =)

1
< XPM(T—-1)—-ki—~(p—ki—1)+k

t 7

1
(p—Fki—r)+ ki < X[ (T).

< X{(T) - A

1

where the last inequality uses the condition that r is strictly less than p.

Suppose, for a contradiction of (1’), that for some r < p, X7 (') — ul(¢') < —7. Then, by
Equation (7), X7 (#' — 1) — u? (¢ — 1) < 2k; — 7. By definition of ¢ we have X’(#' — 1) = X?(t' — 1),
SO

—1 —1
XPo -1 - - 1) < 2k — T (9)

Define ¢; and t; as follows:

t1 = min{t: T <t<t and XP7'(t) — 1271 (t) € (—7 + 2ki, —7 + )},
to = max{t:T <t <t and X' (t) — u ' (t) € (—7 + 2k;, —7 + D)}

To see that ¢1 and t2 are well-defined given (9), note that the interval (—7 + 2k;, —7 + 7) has
length I — 2k;, which is greater than 2k;. We have just shown that X} 1) — uy ~H(T) > 0, and
by Equation (9), Xffl(t’ -1) - uffl(t’ —1) < 2k; — 7 < 0. Equation (7) guarantees that for
te{T,...,t' =1}, X2t 4+1) — P @+ 1) — (XP7H(8) — p27 (1)) > —2k;.

Furthermore, using (7), for i > 1,

(/i) — 2k; S T/2i l(20’)(]9—!—11’(71))%Z

to —t1 > —
2= o 2k; 26 2ri

12



_ 5n4(207 ) (p+ H(n))'n'™!
i i1 -
I XP () —pPH (t) € (742K, —7+7) then XPN )P (t) < ZL(—7), so by Observation 2,

Xf_l(t) — uf__ll(t) < —7, which implies

XPHt) — P (8) < =7 for t € {t1,..., b2} (10)

To see that Equation (10) holds, we use the fact that sz_l(t—l— 1) —uf_l(t—l- 1) < Xf_l(t) —uf_l(t).
By Equation (8), this holds for t € {T,,...,t — 2}.

Applying the inductive hypothesis by plugging in ¢; for the 7" in the statement of the hypothesis,
there must exist ¢ € {t1,...,t; + J;—1 — 1} satisfying (1) and (2'). We have established that
to > t1 + Ji—1, hence t" < 5. From (10) we have

XN — W) < -
From (1'), we have
—1 —1
XP (") — @b () > -
Also, (2') implies that, for j < i —1, X;’_l(t”) > XP71(#") so X;’_l(t") — P~ (#") > —7. Hence we

should have X?(¢") = XP~'(#") +1 (B; refilled at step ¢"), where by construction, t < t,. But the
definition of ¢ implies that to < t’, contradicting the definition of #. We conclude that

XI(#) —pl(t') > —1 forallr < p. (11)

We continue by showing that X *!(¢') — X7 (#) = 1 is satisfied by r = p—1 and not by r < p—1.
Suppose for a contradiction that

X - XI(t)=1forr <p-1. (12)

1

From Observation 3 we have X7 (') — uf(¢') < 0. This implies:

Xr(t' —1) - ul(¢ —1) < 2k

7

=S XN 1) - 1) < 2k - 2T

But for r < p — 1, this contradicts (11), since the right-hand side of the above expression is less
than —7: ) . ) )
2ki—p_7,_r§2ki——,<——,<——<—’r.

1 1 24 2n
Case 2: XP(T'—1)—pl(T-1)<0.
We show that for some ¢ € {T,...,T + 2}, we have XP(t) — uf(¢) > 0, so that Case 1 applies,
and Case 1 then promises a t' satisfying (1) and (2) with ¢ < T + % + %, so we still have
te{T,..., T+ J;—1}.

13



Claim 1: Suppose that T < T" < J; — i—: and XP(T") — pP(T") < 0. Then there exists to €
{T",..., 7" + i—:} such that X7 (t2) > X?(t2).

Proof of Claim 1: Suppose for a contradiction that no such - exists.
From (8) there exists t3 with 7" < t3 <T" + klz and

X7 (ts) — i (t3) < —.

Applying the inductive hypothesis by plugging in t3 for the 7' in the statemlent of the 111ypothesis,
there exists ¢” with t3 <" < ¢3+ J;_1 such that (1’) and (2') hold so X} (t") — p? =, (¢") > —7
and for j < i, X} @ > Xf’:ll (t"). (That last inequality follows from the rule that a bucket that
is chosen to be refilled, must have minimal load.) By Observation 2 we have
i

X2(t5) 44 (t5) < g (7).
Now by what we assumed for contradiction, that no ¢y exists that satisfies the claim, X?(¢") <
XP(t3) and p?— [ (#") > uf~|(t3) so XP(t") — p?=} (") < 75 (—7). So XP~(¢") is now minimal
amongst X;’fl(t") (for 1 < j < i), hence XP(¢") = Xffl(t”) +1. But t" <T" + £~ 4 Ji—1 hence
t"<T" + %, a contradiction. This finishes the proof of Claim 1.

From (6) we know that, for T <t <T + J; — 2,
g (t+1) < pf(t) + ki,

and from Claim 1 we know that, for 7' <t < J; — i—:, if XP(t) — p?(t) < 0 then there exists
t<t+ i—: with XP(#') > X2(¢') + 1. Also, X2(t + 1) = XP(t) — k;. Putting these together, if
XPt)y—ul(t) <o,

Xf’(“r?)—uf(“?)
= X[+ 30) -t + 30

> XP() - p2 () + 1 — (2k;) ()
>

XP(t) - ul(t) + -
We also know from Lemma 2 that

XP(T) — W2(T) > —(p + H(n)).

3
The number of steps needed for X?(t) — p”(¢) to become non-negative is upper bounded by
2 1
(p+ H(n))-2- k—T <27 < i
i

Hence, Case 1 is recovered within < iJi steps. This is the end of the proof of Lemma 3. O

Lemma 4 Consider any i > 1. Using the expressions for 7, k; and J; identified previously, suppose
XP(t)—pb(t) > 1—7—1/i. Suppose that buckets i+1,...,n are not refilled during steps t+1,...,t+
Zj<i Jj. Then B; is not refilled during these steps.
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Proof. Suppose for a contradiction that B; is refilled at step ¢ + ' for some #' satisfying 1 < ¢/ <
> i<iJj but that B; is not refilled during steps t +1,...,¢ 4+t — 1. First note that X7 (¢ +1) >
X?Z(t) — ki. Also, by Equation (6), pl(t+1) < uf(t) + ki = p¥(t) — (p — 7)/i + k;i. Putting these

(2
together, we see that

X(t4+1) - pi(t+1) > XP(t) - () + P — 2k;
1 3
S loT—=—2k>2—2%>0,
1 8
so (using Observation 3) ¢’ > 1. Let ¢ =¢' —1 > 1. By Equation (7), XP(t+t") — p?(t +¢") >
1—7—1/i—2k;t". Since t" < 2J;_1, we have

1
XPE+t") Pt +1") > 1-7- i ak;J; 1

S 1 1 1 S 1
TTiTaT®
Then
XIt+t)—plt+t) > XT@t+t 1) —pl@t+t' —1)—2k;i+(p—1)/i
= X{(@t+t")—pi@E+1t") —2ki+ (p—r1)/i
1
> §—2k¢—|—(p—r)/z' > 0,
so B; cannot be refilled at step t + t/, giving a contradiction. O

Theorem 2 For all A > 0 there exist constant depletion rates ki, ko, ..., k, such that using sched-
uler Sy, the minimum load of any bucket is less than A — (1 — \)(H(n) +p — 1).

Proof. To prove the theorem, start the system at time 7},11 = 0. Now, for all 7 € {2,...,n}, let
T; denote the smallest ¢ > T;11 such that XP(T;) — p2(T;) > 1 -7 - 1/i.

Using Lemma 3, we show by induction on 7 (starting from the base case, i = n, and working
down to i = 2) that T; < T;+1 + J;. Consider the interval T;11 + 1,...,T;11 + J;. By Lemma 4,
buckets Bjt1, ..., By, are not refilled during this interval. By Lemma 3, there is a 7; in the interval
with

(1) XP7H(T) — b~ (T3) > —7, and
(2) XP(T) = X7 () + 1.
Then, since p? (T;) = p,f_l(Ti) +1/i, we have XP(T;) — pP(T;) > 1 — 7 — 1/i. Since we have verified

that T; < T;+1 + J;, we may use the inequality T> — T; > Jo + ... + J;—1 in what follows.
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Now using Equation (7) for any i € {2,...,n} we have

X7 (o) — i (To) > X7(Ti) — g (To) — 2ki (T — T3)

2

1
> 1—T—;—2ki(J2—|-"'+Ji_1)

v

1
l1—7—-— 2k-2Ji,1
]

1 -1
> 1—2'r——>
7 7

(1—47).
Therefore, by Observation 2 (second equation),

P (Ty) — i (T») = X} (Ty) — pf (T2) Jl-dr

1 —1 )
So
XP(Ty) — X7 (T2) = XR(T») — pf(T2)
= XL(T2) — pp_1(To) +
(kp—1(T2) — uﬁ_z(Tz)) + oo (uh(Ta) — pl (T2))
> (1 -—4r) (1 + Z )
> (1—-47)H(n — 1).
Thus,

Xn(T +1) = XP (T2 + 1)

XB(T2) — kn — (X7 (T3) — k1)
(1—41)H(n — 1) + k1 — ky,

Vv

= (1-4n)H(n-1)+p— >k,

and finally, since by Observation 4 we have X2(Tx +1) < A — 1 + 1,

3=

X3P (Tp + 1)

IN

1
A——+1—(1—47)H(n—1) p+Zk

n

A—(H(n)+p—1)+ @rHn —1) + 2k2)
A—(1-57)H(n)+p-—1).

IN A
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3.2 Rational Depletion Rates

In this section we will show that the system behaves much more evenly if the depletion rates have a
“mild” constraint, specifically that ratios between them are relatively small integers. To state the
results we will assume in the following that all the k;’s are positive rationals. As before we have
ki + ...+ k, = p, but now we assume, without loss of generality, that k; = pm;/M for 1 < j < n,
where M =} . m; and the greatest common divisor of all of the m;’s is 1. All the results so far
stated in this paper also hold in this setting. Note that, using the notation of Section 2:

For all t > 0 we have }°; X;(t) = nd and }>; X}(t) = nA —p.

In the following we will show that the system is periodic. This result will be used below to give
a lower bound for the outcome achieved by scheduler Sy.

Lemma 5 For rational values, kj = pm;/M, 1 < j < n, the system returns to its initial state
after M steps.

Proof. During this period of M steps, any bucket B; is refilled at most pm,; times, because otherwise
it would have a load of at least A — k;M + (pm; +1) = A+ 1. This would contradict Observation 4
that no bucket will ever have a load exceeding A — % +1 < A+ 1. Since ) ;(pm;) = pM, each
bucket B; must be filled ezactly pm; = k; M times, and so the system returns to its initial state. [

Theorem 3 Let ki1 > ky > ... > k, be the set of depletion rates, where kj = pm;/M, for
1 <j <m, the ged of the (integer) m;’s is 1, and >, m; = M.

1. Scheduler Sy achieves an outcome of at least A — pm.

2. If each k; is a multiple of ky, then scheduler Sy achieves an outcome of at least A — pk1/ky,.

Proof. According to Lemma 5, the system returns to its initial state after M steps, and so also at
any multiple of M steps. Hence, the deviation of B;’s load from the initial value is bounded above
by kM < k1M = pm;.

If each k; is a multiple of k,, then we have m,, = 1 and the result follows, since m;/m, =
ki /kn,. O

4 Conclusions and Further Work

Our bounds on deviation from fairness do not depend on ¢ (the elapsed number of time quanta),
and it may be that the largest deviation possible grows very slowly as a function of ¢, and that as
a result better bounds could be found in terms of . Note that quanta are typically on the order
of milliseconds (sometimes even smaller), and jobs can run on the order of days. Hence ¢ might
be somewhere around 10°, for example. For this range of ¢ we may actually be able to get better
worst-case behaviour; at least it is not ruled out by our construction of Theorem 2. An alternative
approach is to obtain better bounds in terms of the ratio between largest and smallest values of
the depletion rates, which in Theorem 2 is more than exponential in n.
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We believe that the result for the adversarial model in which the k;’s may be chosen by an
adversary, should be adaptable to a situation where the number of buckets is allowed to vary.
Given an upper bound N on the number of buckets that may be present, then for a step with
n < N buckets present, we could have N — n buckets with k; = 0. It seems likely that the results
showing the buckets do not fall too far below average could be made to apply to this case. Note
that the result is not immediate, since the buckets with k; = 0 could be refilled.
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