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Abstract. In this work, we study multiple item auctions in a setting
where items are distinguished by their relative values; any pair of items
have the same ratio of values to all buyers. Buyers have additive valua-
tions for multiple items. The application we have in mind is that items
are positions in an ad auction, and an item’s value corresponds to its
click-through rate. Buyers have various per-click valuations, which is
their private information. We consider a Bayesian model for the values
of buyers on the positions.

We develop the optimal (maximum revenue) auction for a relaxed de-
mand model (where each buyer i wants at most di items) and a sharp
demand model (where buyer i wants exactly di items). We also find a
1/2 approximation for the case when the buyers are budget constrained.

1 Introduction

Internet markets have opened up many opportunities for applications of dif-
ferent marketing models. Search engine advertising, as an example, makes the
matching market model practical: Advertisement slots of Google and Yahoo! are
created as products for advertisers, the buyers, who want to display their ads
to users searching keywords related to their business. Each such ad slot may be
of different importance which is measured by the Click Through Rates (CTR),
the average number of clicks on the ad placed at the slot for a unit time. Slots
with higher CTR are more likely to be clicked by customers. On the other hand,
user interest expressed by a click on an ad may have different values to differ-
ent advertisers. Combining the two major factors, we have a standard model of
sponsored search market [6, 12]. Note that the private information of the value
for each advertiser creates an asymmetry among the participants and the market
maker. Truthful market design relies on the general revelation principle [10] to
simplify the search for mechanisms with desirable properties, such as one that
brings in the maximum revenue. Therefore, our focus will be considering market
mechanisms that bring in the (approximate) optimum revenue, and yet ensuring
the participants’ incentives to speak truth about their private values.
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Our study considers a more general setting where one advertiser may request
more than one slot: in one version an advertiser requests a fixed number of slots;
in the other version the request is for a number of slots up to some maximum.
This is intended to model setting such as TV ads in TV networks [5].

Similar to the position auction, we consider the problem of assigning m slots
or items to n buyers where buyer i’s valuation for slot i is given by vicj , where vi
is i’s per-click value and cj is position j’s CTR. Differing from the standard spon-
sored search auction, we consider two extra constraints: the demand constraint
and the budget constraint. These are natural considerations for advertisers. We
study the problem for two types of demand constraint, the relaxed demand con-
straint (where each buyer i requests a number of positions not exceeding a given
number di) and the sharp demand constraint (where each buyer buys his desired
number of positions or buys nothing). The budget constraint requires that no
buyer can pay more than his budget.

Instead of the standard deterministic model, we consider a Bayesian model
for the private values vi of the buyers, i = 1, 2, · · · , n. The private value vi
of advertiser i follows a publicly known distribution. Therefore, an advertiser
knows its exact per-click value vi but other advertisers as well as the seller of
the slots only know that vi is generated by the given probability distribution.
Therefore, we adapt Myerson’s classic setting [11], where each buyer’s private
value is independently drawn from a publicly known distribution. We focus on
truthful mechanisms, i.e., bidding his true value is a Bayesian dominant strategy
for every buyer. We are interested in obtaining mechanisms to optimize or ap-
proximate the expected optimal revenue, taking into consideration the demand
constraints and the budget constraints for all the buyers. Our main results are
summarized as follows:

Theorem 1. For the relaxed demand or the sharp demand case without bud-
get constraints, an optimal mechanism can be constructed efficiently; for the
case with the budget constraint but without demand constraint, a 2-approximate
mechanism can be constructed efficiently.

Related Work

The theoretical study of sponsored search under the generalized second price
auction was initiated in [6, 12]. There has been a series of studies of position
auctions in deterministic settings [9]. Our consideration of Bayesian settings of
position auction fits in the general one dimensional auction design framework [7]
with demand constraints and budget constraints. The work in [7] compares the
VCG revenue with reserved prices versus optimal revenues in many one dimen-
sional settings. For a single item with budget constraints, the problem is reduced
to the case of single item without budget [4] where a 2-approximate mechanism
was introduced. Their method does not directly apply to our problem.

Our study considers continuous distributions on buyers’ values. For discrete
distribution, Cai et al. [3] presents an optimal mechanism for budget constraint
buyers without demand constraints in multi-parameter settings; for buyers with
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both budget constraints and demand constraints, 2-approximate mechanisms [1]
and 4-approximate mechanisms [2] exist in the literature.

2 Preliminaries

Throughout the paper, we use the notation vi to represent the ith buyer’s value,
i = 1, 2, · · · , n and cj for the jth position’s CTR, j = 1, 2, · · · ,m. Thus, the
ith buyer’s value for position j is vicj . Since we consider truthful mechanisms
in this work, the private value vi is also the bid of buyer i. Therefore, we may
use bid and value interchangeably when there is no ambiguity. The vector of all
the buyers’ bids is denoted by v (called the bid vector) or sometimes (vi; v−i)
where v−i is the joint bids of all bidders other than i. We also assume that all
buyers’ bids are distributed independently according to publicly known bounded
distributions, i.e. vi ∈ [vi, vi] and V =

∏
i[vi, vi]. For each buyer i, let Fi be the

Cumulative Distribution Function (CDF) of buyer i’s value distribution and let
fi be the Probability Density Function (PDF) of this distribution. In addition,
we assume that the concave closure or convex closure or integration of those
functions can be computed efficiently.

A mechanism M consists of allocation and payment functions (X, p), that is,
buyer i receives position j iff Xij(v) = 1 and pays pi(v). Since the mechanism
can be randomized, we use xij to denote Pr[Xij = 1]. Thus, the expected revenue
of the mechanism is Rev(M) = Ev [

∑
i pi(v)] where Ev denotes the expectation

with respect to components of v sampled from their respective distributions.

In our model, a buyer may buy more than one position from the mechanism.
The buyers’ valuation functions are additive, i.e. vi(S) =

∑
j∈S vij . Each buyer i

is associated with an integer di related to its demand of the number of positions.
We consider the following two kinds of constraints on buyers’ demands.

Definition 1 (Relaxed Demand Constraint). Buyer i’s demand is relaxedly
constrained by di if i may buy any number of positions up to a maximum di in
this auction, i.e.

∑
j Xij ≤ di.

Definition 2 (Sharp Demand Constraint). Buyer i’s demand is sharply
constrained by di if i must buy exactly di positions in this auction or alternatively
buys nothing, i.e.

∑
j Xij = 0 or

∑
j Xij = di.

In addition to the demand constraints, we also consider the budget con-
straints. That is, buyers can be restricted by their budget in what they purchase.

Definition 3 (Budget Constraint). Buyer i’s budget is constrained by a pub-
licly known number Bi if i cannot pay more than Bi, i.e. pi(v) ≤ Bi.

Let Ui(v) =
∑

j xij(v)vij − pi(v) be the expected utility of buyer i when all
buyers’ bids are v. We proceed to define the Bayesian Incentive Compatibility
of a mechanism and the ex-interim Individual Rationality:
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Definition 4. A mechanism M is called Bayesian Incentive Compatible (BIC)
iff the following inequalities hold for all i, vi, v

′
i.

Ev−i [Ui(v)] ≥ Ev−i

[∑
j

xij(v
′
i; v−i)vij − pi(v′i; v−i)

]
(1)

If Ui(v) ≥
∑

j xij(v
′
i; v−i)vij − pi(v′i; v−i), for all v, i, v′i, we say M is Incentive

Compatible.

It is not hard to see that all Incentive Compatible mechanisms are Bayesian
Incentive Compatible.

Definition 5. A mechanism M is called ex-interim Individual Rational (IR) iff
the following inequalities hold for all i, vi.

Ev−i
[Ui(v)] ≥ 0 (2)

If Ui(v) ≥ 0 for all v, i, we say M is ex-post Individual Rational.

Obviously, an ex-post Individual Rational mechanism must be ex-interim Indi-
vidual Rational.
Finally, we present the formal definition of approximate mechanism.

Definition 6 (α-approximate Mechanism). Given any feasible mechanism
set M, we say a mechanism M is an α-approximate mechanism in M iff M ∈M
and for each mechanism M ′ ∈M, Rev(M ′) ≤ α ·Rev(M). We say a mechanism
is optimal in M if it is a 1-approximate mechanism in M.

3 Optimal Mechanism for Demand Constraints

In this section, we will describe an optimal (in revenue) mechanism among all
feasible mechanisms that are Bayesian Incentive Compatible, ex-interim Individ-
ual Rational and satisfying buyers’ demand constraints (relaxed or sharp). We
will show the optimal auctions for the relaxed demand constraints and sharp de-
mand constraints in Section 3.1 and 3.2 respectively. Our mechanism is inspired
by Myerson’s prominent optimal auction in [11] which has proven fruitful for the
one-dimensional setting.

3.1 Relaxed Demand Constraints

Recall that a mechanism M = (X, p) satisfies the relaxed demand constraint
di for buyer i iff

∑
j(Xij) ≤ di. By the Birkhoff-Von Neumann theorem [8], it

suffices to satisfy
∑

j(xij) ≤ di where xij = Pr[Xij = 1]. Thus, a mechanism M
can be represented by (x, p). Let Ui(x, p, v) denote the utility of buyer i if the
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mechanism is (x, p) and all buyers’ profile is v. Hence, we formalize our problem
as the following optimization problem denoted by Relaxed.

Maximize:
∑
i∈[n]

Ev[pi(v)]

s.t.
∑
j

xij(v) ≤ di,
∑
i

xij(v) ≤ 1, xij(v) ≥ 0 ∀i, j, v (∗)

Ev−i [Ui(x, p, v)] ≥ Ev−i [
∑
j

vijxij(v
′
i; v−i)− pi(v′i; v−i)] ∀ i, v, v′i

Ev−i
[Ui(x, p, v)] ≥ 0 ∀i, v

(Relaxed)

Now let gi be the virtual valuation function for buyer i, i.e., gi(t) = t− 1−Fi(t)
fi(t)

.

We assume gi(t) is monotone increasing. This assumption is without loss of
generality because if gi(t) is not monotone, Myerson’s ironing technique can be
utilized to make gi(t) monotone — it is here that we invoke our assumption that
we can efficiently compute the convex closure of a continuous function.

For convenience of presentation, let qi(v) =
∑

j xij(v)cj andQi(vi) = Ev−i
[qi(vi; v−i)].

Similar to Myerson’s work, we have the following lemma.

Lemma 1. Suppose x is the function that maximizes

Ev

∑
i∈[n]

∑
j∈[m]

cjgi(vi)xij(v)


subject to the constraints that Qi(vi) is non-decreasing monotone and inequali-
ties (∗). Suppose also that

pi(v) = viqi(v)−
∫ vi

vi

qi(v−i, si)dsi (3)

Then (x, p) represents an optimal mechanism for Relaxed, the relaxed demand
case.

By Lemma 1, given buyers’ bids v, the optimal mechanism always maxi-
mize

∑
i

∑
j cjgi(vi)xij(v). This problem can be solved by the following greedy

algorithm.

Theorem 2. The mechanism that applies the allocation rule according to Algo-
rithm 1 and payment rule according to Equation (3) is an optimal mechanism
for the position auction design problem with relaxed demand constrained buyers.

Proof. By Lemma 1, it suffices to prove that Qi(vi) is non-decreasing monotone.
We prove strong monotonicity by proving qi(v−i, vi) is non-decreasing as vi in-
creases. In Algorithm 1, given v−i, let Xi(vi) denote the set of positions al-
located to buyer i when i declares vi, then the monotonicity of qi(v−i, vi) is
equivalent to

∑
j∈Xi(vi)

cj ≤
∑

j∈Xi(v′i)
cj given v′i > vi. If v′i > vi, w.l.o.g.,
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Input: Demands di, CDFs Fi, PDFs fi, CTRs cj and bids v
Output: Allocation xij

gi ← vi − 1−Fi(vi)
fi(vi)

;

Sort buyers with decreasing order on gi;
Sort positions with decreasing order on cj ;
xij ← 0;
for each buyer i do

for each position j do
if gi > 0 and

∑
i xij < 1 and

∑
j xij < di then

xij ← 1;
end

end

end
return x;

Algorithm 1: Relaxed

suppose gi(vi) < gi(v
′
i) (otherwise if gi(vi) = gi(v

′
i) since gi is regular, then

Xi(vi) = Xi(v
′
i) since the algorithm is deterministic, all done). Let M and M ′

denote the total quantities obtained by all the other buyers except buyer i in
Algorithm 1 when buyer i bids vi and v′i respectively. Then, we have∑

j∈Xi(v′i)

gi(v
′
i)cj +M ′ ≥(a)

∑
j∈Xi(vi)

gi(v
′
i)cj +M

≥(b)
∑

j∈Xi(vi)

gi(vi)cj +M ≥(c)
∑

j∈Xi(v′i)

gi(vi)cj +M ′.

(a) and (c) is due to the optimality of allocations found by the greedy Algorithm 1
when i bids vi and v′i respectively and (b) is due to gi(vi) < gi(v

′
i). From (a)

and (c), we obtain

gi(v
′
i)(

∑
j∈Xi(vi)

cj −
∑

j∈Xi(v′i)

cj) ≤M ′ −M ≤ gi(vi)(
∑

j∈Xi(vi)

cj −
∑

j∈Xi(v′i)

cj).

Since gi(vi) < gi(v
′
i),
∑

j∈Xi(vi)
cj −

∑
j∈Xi(v′i)

cj ≤ 0. ut

3.2 Sharp Demand Constraints

Recall that if a buyer is sharply constrained by di, he only wants to buy ex-
actly di positions or nothing. Thus the only difference between this problem
with Relaxed is that the inequalities (∗) should be replaced by the following
inequalities.∑

j

xij(v) = diyi(v),
∑
i

xij(v) ≤ 1, xij(v) ≥ 0, yi(v) ∈ {0, 1} ∀i, j, v

(**)
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Similar to the relaxed demand case, we have the following lemma (recall that
w.l.o.g. gi(t) is monotone non-decreasing).

Lemma 2. Suppose x be the function maximizes

Ev

∑
i∈[n]

∑
j∈[m]

cjgi(vi)xij(v)


subject to the constraints that Qi(vi) is non-decreasing monotone and inequali-
ties (∗∗). Suppose also that

pi(v) = viqi(v)−
∫ vi

vi

qi(v−i, si)dsi.

Then (x, p) represents an optimal mechanism for the sharp demand case.

By Lemma 2, we observe that the optimal mechanism always maximizes∑
i

∑
j cjgi(vi)xij(v) subject to sharp demand constraints. W.l.o.g., suppose

g1(v1) ≥ g2(v2) ≥ · · · ≥ gn(vn) > 0 (otherwise allocating nothing to buyers
i with gi(vi) ≤ 0) and c1 ≥ c2 ≥ · · · ≥ cm. If we view cjgi(vi) as weights between
buyer i and position j, then the problem is equivalent to finding the maximum
matchings, which can be solved by dynamic programming precisely.

Dynamic Programming
Let w[i, j] denote the weight of the maximum weighted matchings with buyers
1, 2, · · · , i and exactly all the positions indexed by {1, 2, · · · , j} being sold. Then
we have the transition function,

w[i, j] = max
{
w[i− 1, j], w[i− 1, j − di] +

j−di∑
k=j−di+1

gi(vi)ck

}
Finding the maximum w[i, j] over i ∈ [n] and j ∈ [m] gives the maximum
weighted matchings and optimal solutions. We decribe the mechanism in Algo-
rithm 2.

Theorem 3. The mechanism which applies the allocation rule w.r.t. the above
Dynamic Programming and payment rule w.r.t equation (3) is an optimal mecha-
nism for position auction design problem with sharp demand constrained buyers.

The proof of Theorem 3 is similar to the relaxed demand case.

4 Approximate Mechanism for Budget Constraints

In this section, we will present a 2-approximate mechanism for the position auc-
tion with budget constrained buyers. It should be noted that there is no demand
constraints for all the buyers considered in this section. Recall that a mechanism
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Input: Demands di, CDFs Fi, PDFs fi, CTRs cj and bids v
Output: Allocation xij

gi ← vi − 1−Fi(vi)
fi(vi)

;

Sort buyers with decreasing order on gi;
Sort positions with decreasing order on cj ;
w[i, j]← −∞; w[0, 0]← 0;
t[i, j]← 0; xij ← 0;
for each buyer i with positive gi do

for each position j do

tmp← w[i− 1, j − di] +
∑j−di

k=j−di+1 gick;

w[i, j]← w[i− 1, j];
if w[i, j] < tmp then

t[i, j]← 1;
w[i, j]← tmp;

end

end

end
w[i∗, j∗] = maxi,j{w[i, j]};
while i∗ > 0 do

if t[i∗, j∗] = 1 then
for each item k from j∗ − di∗ + 1 to j∗ do

xi∗,k ← 1;
end
j∗ ← j∗ − di∗ ;

end
i∗ ← i∗ − 1;

end
return x;

Algorithm 2: Sharp

M = (x, p) satisfies the buyer i’s budget constraint iff pi(v) ≤ Bi for all buyer
profiles v. If m = 1, i.e. the auctioneer only has one slot, a 2- approximate mech-
anism has been suggested in [1] and [2]. Thus, our approach is to reduce the
Position Auction to Single-item Auction, i.e. the case for m = 1. Recall that Bi

denotes bidder i’s budget and xij(v) denote the probability of allocating the po-
sition j to the buyer when the buyers’ bids revealed type is v. Then the position
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auction problem can be formalized as the following optimization problem.

Max: Ev

[∑
i

pi(v)

]
s.t.

∑
j

vicjxij(v)− pi(v) ≥
∑
j

vicjxij(v
′
i, v−i)− pi(v′), ∀v, i, v′i (BIC)

∑
j

vicjxij(v)− pi(v) ≥ 0, ∀v, i (IR)

pi(v) ≤ Bi, ∀v, i (Budget)

xij(v) ≥ 0 ∀v, i, j (Positive)∑
i

xij(v) ≤ 1 ∀v, j (Supply)

(Position)

Let yi(v) =
∑

j xij(v)cj . Observe that the condition (BIC) and (IR) can be
rewritten as

viyi(v)− pi(v) ≥ viyi(v′i, v−i)− pi(v′i; v−i)

viyi(v)− pi(v) ≥ 0

Then we need to refine the constraints (Positive) and (Supply) to be represented
by yi(v).

Lemma 3. There exists xij such that
∑

i xij ≤ 1, and xij ≥ 0 iff y satisfies the
condition that

n∑
i=1

yi ≤
m∑
j=1

cj , yi ≥ 0

Proof. For the only if direction, we have

∑
i

yi =
∑
i

∑
j

xijcj =
∑
j

cj
∑
i

xij ≤
∑
j

cj

For the if direction, given yi, let xij = yi/
∑

k ck, then we have,

∑
i

xij =

∑
i yi∑
k ck
≤ 1

ut
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Now consider the following single-item problem. Let yi(v) be the allocation
function for bidder i and qi(v) be the payment function for bidder i.

Maximize: Ev

[∑
i

qi(v)

]
s.t. viyi(v)− qi(v) ≥ viyi(v′i, v−i)− qi(v′i; v−i), ∀v, i, v′i

viyi(v)− qi(v) ≥ 0, ∀v, i
qi(v) ≤ Bi, ∀v, i
yi(v) ≥ 0 ∀v, i∑

i

yi(v) ≤
∑
j

cj ∀v

(Single)

Our main observation for the above optimization problems is the following
proposition.

Proposition 1. The problems Position and Single are equivalent:

– for any feasible mechanism M(v) = (x(v), p(v)) of problem Position, the

following mechanism M̂(v) = (y(v), p(v)) is a feasible mechanism for prob-
lem Single where yi(v) =

∑
j cjxij(v).

– for any feasible mechanism M̂(v) = (y(v), p(v)) of problem Single, the fol-
lowing mechanism M(v) = (x(v), p(v)) is a feasible mechanism for problem
Position where xij(v) = yi(v).

Ultimately, we reduce the position auction design problem to the single-item
auction design problem. By the results of [1] and [2], there exists a 2-approximate
mechanism for problem Single. Thus, we have a 2-approximate mechanism for
problem Position.

Remark 1. For the discrete distribution case, Cai et al. [3] presents an optimal
mechanism, for multi-buyers with multi-items. Their algorithm can be extended
to the case where buyers are budget constrained but not demand constrained.
Given buyers’ discrete distribution and bid profiles, a revised version of their
mechanism is an optimal mechanism and runs in in polynomial time of

∑
i |Ti|,

where |Ti| is the number of types of buyer i for all the items. Hence, restricting
their results to position auction, that optimal mechanism is indeed an optimal
mechanism for each buyer having a budget constraint but no demand constraint,
with values independently drawn from discrete distribution, running in polyno-
mial time of the input.

5 Conclusion

In this work, we study the optimal mechanism design issues for the generalized
position auction problem. We focus on two demand models, the relaxed demand
and the sharp demand model. We develop optimal (revenue) mechanisms for the
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seller of the positions. In addition, for the budget constrained model (without
demand constraints), we develop a 2-approximate truthful mechanism. We prove
that the solution is polynomial time solvable. Our results have potential to a wide
range of application areas, such as sponsored search or TV advertising.

A major open problem is to find a constant approximation scheme when
the demand constraints and the budget constraints are used simultaneously. For
discrete distribution, Aleai [1] and Bhattacharya et al. [2] suggested a constant
approximate mechanism for position auction with budget and relaxed demand
constrained buyers. However, their approach which is based on solving an asso-
ciated linear program cannot be extended to the continuous distribution case.
Of course, another direction is to improve the approximation ratio for budget
constrained cases.

References

1. Saeed Alaei. Bayesian combinatorial auctions: Expanding single buyer mechanisms
to many buyers. In Proceedings of the 52nd IEEE Symposium on Foundations of
Computer Science (FOCS), pages 512–521, 2011.

2. Sayan Bhattacharya, Gagan Goel, Sreenivas Gollapudi, and Kamesh Munagala.
Budget constrained auctions with heterogeneous items. In Proceedings of the 42nd
ACM Symposium on Theory of Computing, STOC ’10, pages 379–388, New York,
NY, USA, 2010.

3. Yang Cai, Constantinos Daskalakis, and S. Matthew Weinberg. An algorithmic
characterization of multi-dimensional mechanisms. In Proceedings of the 43rd an-
nual ACM Symposium on Theory of Computing (to appear), 2012.

4. Shuchi Chawla, David Malec, and Azarakhsh Malekian. Bayesian mechanism de-
sign for budget-constrained agents. In Proceedings of the 12th ACM Conference
on Electronic Commerce, EC ’11, pages 253–262, 2011.

5. Ning Chen, Xiaotie Deng, Paul W. Goldberg, and Jinshan Zhang. On revenue
maximization with sharp multi-unit demands. Submitted, 2012.

6. Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. Internet advertis-
ing and the generalized second price auction: Selling billions of dollars worth of
keywords. American Economic Review, 97:242–259, 2005.

7. Jason D. Hartline and Tim Roughgarden. Simple versus optimal mechanisms. In
Proceedings of the 10th ACM Conference on Electronic Commerce, pages 225–234,
2009.

8. Diane M. Johnson, A. L. Dulmage, and N. S. Mendelsohn. On an algorithm of G.
Birkhoff concerning doubly stochastic matrices. Canadian Mathematical Bulletin,
3:237–242, 1960.
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