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ABSTRACT

We address the fundamental question of whether the Nash equilib-
ria of a game can be computed in polynomial time. We describe
certain efficient reductions between this problem for normal form
games with a fixed number of players and graphical games with
fixed degree. Our main result is that the problem of solving a game
for any constant number of players, is reducible to solving a 4-
player game.
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F.2.0 [Analysis of Algorithms and Problem Complexity]:General

General Terms
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Keywords
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1. INTRODUCTION

The question of whether a Nash equilibrium of a game can be
found in polynomial time has been of considerable interest to the
algorithms and computational complexity field. Prior to this pa-
per and subsequent work discussed in the next section, little was
known about the general problem of finding an unconstrained Nash
equilibrium. It is known that the problem is in P in the 2-player,
zero-sum case, by a reduction to linear programming [17], but very
little is known about reductions between variants of the problem. It
is known that finding a symmetric Nash equilibrium in a symmet-
ric game is no easier than the general, asymmetric problem, and
it is trivial, of course, to reduce r-player games to r + 1-player
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games by introducing a dummy player (actually, to r + 1-player
zero-sum games by having the dummy player absorb everybody’s
payoffs). Also, evidence from Nash’s original 1951 paper suggests
that it may be harder to solve a 3-player game than a 2-player game,
since in the 3-player case, the resulting probabilities may be irra-
tional. In other words, all we know about the complexity of the
Nash equilibrium problem is that it comprises a potentially infi-
nite hierarchy 2-NASH, 3-NASH, . .., r-NASH, . .. In this paper we
show that this hierarchy collapses to the 4th level. In a further pa-
per [5] we show that 4-NASH is PPAD-complete; as a result we
obtain PPAD-completeness for r-NASH (for » > 4) in addition to
the Nash equilibrium problem for graphical games, described be-
low.

Games with many players require exponential data for their de-
scription; hence multiplayer games are typically represented suc-
cinctly. A most useful and influential succinct representation are
the graphical games of [13], in which players are nodes of a graph,
and the payoffs of each player depend only on the choices of the
adjacent players. (In this paper we suggest a useful generalization,
also proposed by Schoenebeck and Vadhan [20], in which the graph
is directed, and player u’s choice can affect the payoff of player v
only if edge (u,v) is present.) When the degree of the underlying
graph is bounded, the representation of the game is polynomial in
the number of players and strategies. In this paper we reduce the
Nash problem for graphical games to the standard version. The
reduction is a polynomial one for graphical games with bounded
degree (which is the intended use of graphical games). More pre-
cisely, for fixed d > 1 let d-GRAPHICAL NASH be the problem of
finding Nash equilibria in graphical games with maximum degree
d. We present a reduction from d-GRAPHICAL NASH to d*-NASH.

We also give a reduction in the opposite direction: For any nor-
mal form game we can construct a graphical game with all degrees
bounded by three and with two strategies per player such that we
can recover a Nash equilibrium of the original game from any Nash
equilibrium of the graphical game. Notice that the degree 3 and two
strategies restriction is significant here, since otherwise the reduc-
tion is immediate (via a graphical game played on an r-clique).

In fact, our reduction from r-player games to 4-player games is
a composition of these two reductions: First we reduce the r-player
game to a graphical game, then we reduce the graphical game to a
normal form game, and we obtain the 4-player result by specializ-
ing the latter reduction to the output of the former. Our mapping
from r-player to 4-player games allows important examples and
counterexamples in game theory to be encoded succinctly using
just 4 players. This includes games showing bounds on the alge-
braic degree of solutions, discussed in Section 6.

Our reduction from graphical games to normal form games is
based on a rather simple idea: We color the graph, and simulate all



vertices in a color class by a single player. This player represents
the whole class by playing a mixed strategy that is the average of
the mixed strategies played by the vertices in the class. In order to
make sure that a color class player does not “neglect” any node by
failing to include its strategies in its mixed strategy, we pair up the
players, and have the pairs play against each other a generalization
of Matching Pennies (see Definition 1) at very high-stakes: at any
Nash equilibrium the color class player is now forced to assign the
same probability mass to each vertex that it represents.

Our reduction from normal form games to graphical games is
more sophisticated. Every vertex in the graphical game has two
strategies, and thus, at Nash equilibrium, it can be considered as
a real number: the probability that it plays strategy 1. For every
player p and every strategy j or p we have such a vertex. The
challenge now is to make sure that, at any Nash equilibrium of
the graphical game (a) these numbers add up to 1 for every p and,
more importantly (b) they encode a Nash equilibrium of the original
game. (b) is accomplished by “gadgets” performing arithmetic op-
erations such as addition (with ceiling 1, of course), multiplication,
comparison, and copying. Using these gadgets we create arithmetic
circuits which compute the multinomials describing the Nash equi-
librium conditions of the game. Finally, (a) above is guaranteed by
a hierarchy of players connected by addition gadgets.

Review of Related Work

This paper has led to our subsequently paper with Daskalkis [5]
in which we show that the problems studied here are complete for
the complexity class PPAD of [19]. That paper has in turn led to
further improvements and extensions [1, 7, 2] which are reviewed
in more detail in [5].

Prior to the above results, hardness results have not been known
for the problem of finding unrestricted Nash equilibria. It is known
from [12, 4] that it is NP-complete to find various specific kinds
of Nash equilibria, even in the 2-player case. For example, it is
NP-hard to find the Nash equilibrium with maximal social welfare.
While it is of course easy to find pure Nash equilibria of normal
form games, Gottlob et al. [11] show that most versions of the
problem of finding pure Nash equilibria are hard when the game
is described succintly. Also from Fabrikant et al. [10] we know
that for congestion games (where Nash equilibria minimize a po-
tential function) it is PLS-complete to find a pure Nash equilibrium
in general (noting that pure Nash equilibria are guaranteed to exist
in congestion games).

In contrast with Nash equilibrium, the problem of finding corre-
lated equilibria is substantially more tractable: Papadimitriou [18]
shows that for most standard forms of succinctly represented games,
including graphical games, correlated equilibria can be found in
polynomial time.

Graphical games were introduced by Kearns et al. [13, 15]; they
consider the problem of solving graphical games in the case where
the graph is a tree and all players have 2 strategies. In [15] an algo-
rithm is given which was believed to find Nash equilibria for tree-
structured graphical games in polynomial time. However, in [9] it
is shown that the type of algorithms proposed in [13, 15] are expo-
nential in the worst case, but that a Nash equilibrium can be found
in polynomial-time for degree-2 graphs (again, in the two strate-
gies per player case). Now that general 2-strategy graphical games
are known from [5] to be PPAD-complete, it is natural to consider
subclasses of graphs; for unrestricted trees the computational com-
plexity is still an open problem (although approximate Nash equi-
libria —see Section 5 for a definition— are tractable). In Section 6
it is shown that planar grid graphs are as hard as the general case,
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and [9] has extended the PPAD-completeness of 2-strategies-per-
player graphical games to graphs with bounded pathwidth.

Lipton and Markakis [14] study the algebraic properties to the
solution of a game. For a r-player game they exhibit a polynomial
of degree 2r whose roots contain the Nash equilibria, and they give
algorithms for computing Nash equilibria and approximate Nash
equilibria, using existing quantifier elimination algorithms. By ap-
plying our reduction the degree of the associated polynomial is 8,
which should lead to an improved upper bound on the time taken to
find these equilibria. Note that is not an upper bound on the alge-
braic degree of the solutions of a game, which may be exponential
in the number of actions per player, in the 4-player case.

Finally, certain other interesting reductions between equilibrium
problems have been recently pointed out [3, 20]. Some of the re-
sults of [20] are conceptually similar to ours, for example, The-
orem 4.1 of [20] reduces graphical games to 2-strategy “circuit
games”, such that there are polynomial-time computable functions
that map Nash equilibria from the graphical game to the corre-
sponding circuit game, and back. (A circuit game has payoffs
specified by boolean circuits that compute them, given as inputs
the strategies chosen by the players.)

Definitions—Notation

A game G in normal form has r > 2 players (indexed by p) and
for each player p a finite set S, of pure strategies. The set S of pure
strategy profiles is the Cartesian products of the S),’s. The set of all
strategy profiles of players other than p is denoted S_,,. Finally, for
each p < r and s € S we have a payoff or utility u%. We also use
the notation uf, forp < r,j € Sp,s € S—p.

Given real numbers ;z:? for each player p and strategy j € S}, and
a strategy profile s = (s1,...,s,) Where s, € Sp, we denote by
xs the product z, - x5, - - 25, . Fors € S_;, let
Ts = mil . m§2 .- ~a:§;_1m§:'11 -+ -y . Such real numbers consti-
tute a Nash equilibrium if the following conditions hold for all p,
and all j, 5" € Sp.

z¥ € [0,1]
2,5 =

P P N P _
Zses_p ujsxs > ZSES_p uj’5$5 mj/ =0

ey

Intuitively, a Nash equilibrium is a probability distribution on the
strategies of each player so that no player can improve its expected
utility by unilaterally changing its distribution.

In a game in normal form we are given a rational number u% for
every p and s — a total of 7|.S| numbers. A graphical game GG is
an undirected graph G = (V, E'), where each vertex v has an asso-
ciated set of strategies .S,,. Let NV (v) denote v and v’s neighbors in
G, and let Syr(,) denote the set of all pure profiles of A'(v). In a
graphical game, the utilities to v are given by {ug : s € Syr()}-
Intuitively, a graphical game is a succinct representation of a game
in normal form, when it so happens that for every p, u% only de-
pends on a small set of other players. Hence there is no need to re-
define Nash equilibrium here. A generalization of graphical games
are the directed graphical games, where G is directed and N (v)
consists of v and the predecessors of v.

Definition 1. The (2-player) game Generalized Matching Pen-
nies is defined as follows. Call the 2 players the pursuer and the
evader, and let [n] denote their strategies. If for any ¢ € [n] both
players play ¢, then the pursuer receives a positive payoff v > 0
and the evader receives a payoff of —u. Otherwise both players
receive 0. It is not hard to check that the game has a unique Nash
equilibrium in which both players use the uniform distribution.



We next introduce certain simple concepts from the complex-
ity theory of total functions, see [19] for a formalism in the same
spirit. A search problem S is a set of inputs /s such that for each
x € Is there is an associated set of solutions S, (each of length
bounded by a polynomial in |z|) such that for each z € Is and

Yy € »l=1" whether y € Sy is decidable in polynomial time (note
that this is essentially NP, except that the emphasis is on finding a
witness). For example, r-NASH is the search problem S in which
Is is all r-player games in normal form and S, is the set of Nash
equilibria of game € Is. Similarly, d-GRAPHICAL NASH is the
search problem with inputs the set of all graphical games with de-
gree at most d, and solutions the corresponding Nash equilibria.
(Strictly speaking, since the solutions of these problems are poten-
tially irrationally numbers, the input also includes a specification
of the desired accuracy.) The search problem is fotal if S, # 0
for all z € Is. For example, Nash’s 1951 theorem [16] implies
that r-NASH is total. Obviously, the same is true of d-GRAPHICAL
NASH.

A polynomially computable function f is a polynomial-time re-
duction from total search problem S to total search problem 7" if
for every input © € Ig of S f(x) € Ir is an input of T, and fur-
thermore there is another polynomial function g such that for every
Y € Tf(a), 9(y) € Sz If furthermore for all z g is an isomorphism
between T'f(,) and Sy, f is said to be faithful. All reductions pre-
sented in this paper happen to be faithful.

2. REDUCTION FROM GRAPHICAL GAMES

TO NORMAL FORM GAMES

THEOREM 1. For every d > 1 there is a polynomial reduction
from d-GRAPHICAL NASH o d>-NASH.

PROOF. Overview. Figure 1 shows the construction of G =
f(GG). We show that f is computable in polynomial-time, and for
any Nash equilibrium Ng of G we can construct Ngg = g(Ng), a
Nash equilibrium of GG.

We first rescale all payoffs so they are nonnegative and at most
1, and assume that all vertices have the same number of strategies
|Sw| = t. We then color the vertices of G with at most d*> — 1
colors such that any two adjacent vertices have different colors, but
also no two vertices with a common neighbor have the same color.
This is tantamount to coloring the union of G and the square of G,
a graph that has degree d*> — 1 and is hence d*> — 1-colorable. We
assume for simplicity that each color class has the same number
n/(d* — 1) of vertices (adding dummy vertices if not).

We construct a normal form game G with r < d? players. Each
player has tn/(d> — 1) strategies, the ¢ strategies of each of the
n/(d® — 1) vertices in its color class. We can assume r is even, and
we divide the r players into pairs, who play generalized Match-
ing Pennies at very high stakes, so as to ensure that they will all
randomize uniformly over their vertices. (A similar trick is used
in Theorem 7.3 of [20], a hardness result for a class of circuit
games.) Within each set of strategies associated with each vertex,
the Matching Pennies game expresses no preference, and payofts
are augmented to correspond to the payoffs that would arise in the
original graphical game GG.

Polynomial size of G = f(GG).
The input size is |GG| = ©(nq - t+1), where ¢ is the size of input
quantities ué’ in the logarithmic cost model.

The normal form game G has at most d? players, each having
d2

tn/(d* — 1) strategies. Hence there are at most (%) matrix
entries in G. This is polynomial so long as d is constant.
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Input: Degree d graphical game GG, players {v1,...,v,} each
with ¢ strategies.

Output: Normal-form game G.

1. Re-scale the utilities u} so that they lie in the range [0, 1].
2. Letr = d? orr = d? — 1; r chosen to be even.

3. Letc: V — {1,...,r} be a r-coloring of G such that no
two adjacent vertices have the same color, and furthermore
no two vertices having a common neighbor have the same
color. Assume the same number of vertices for each color,
adding extra isolated vertices to make up any shortfall.

Let {v\”, ... ,v(i/)T} denote {v : ¢(v) =1i}.

4. For p € [r] player p in G has strategy set .S, with |S,| =
tn/r; Sp is the union (assumed disjoint) of all S, with

c(v) =p.
Sy = {(vi,a) : c(v) = pa € Su,).
5. Let s € S be a strategy profile. For p € [r], uP(s) is defined
as follows:

(a) Initially, all utilities are 0.

(b) For vo € V having neighbors v1,...,vy in G, if
c(vo) = p (that is, vo = vj(.m for some j5) and for i =
0,...,d, s contains (v;,a;), then uP(s) = u*0(s")
for " a strategy profile of GG in which v; plays a; for
i=0,...,d.

(¢) Let M = (tn/(d* — 1))d271n4tr.

(d) For odd number p < 2r, if player p plays (U§P ), a) and
p+ 1 plays (vl(pH), a'),forany i,a,a’,then add M to
uP(s) and subtract M from uP(s).

Figure 1: Reduction from graphical game GG to normal form
game G

The size of M (in logarithmic cost) is O(q(d?) log(tn/d?)), and
all other non-zero entries of G are payoffs (of size ¢) that appear in

gg.

Construction of g(Ng) (where Ng denotes a Nash equilibrium
of G).

Given a Nash equilibrium Ng of f(GG), we claim we recover a
Nash equilibrium of GG, Ngg = g(Ng), as follows. For t' €
[t], 28 = a0, 1)/ Dae() Tlo,a)» Where p = c(v). Clearly g is
computable in polynomial time.

Proof that the reduction preserves Nash equilibria.
Forv € V, c(v) = p, let “p plays v denote the event that p plays
(v, a) for some a € Sy.

First we prove that in a Nash equilibrium Ng, for every player p,
every v € V with ¢(v) = p, Pr(p plays v) > 2r/n. Note that the
“fair share” for v is r/n.

Suppose for a contradiction that in a Nash equilibrium of G,
Ep)) < ir/n. If p is odd (the pursuer) then p + 1
(the evader) will prefer vgp *1) to some other vertex v§p +1 which
p plays with probability > r/n and which p + 1 will play with
probability zero. But if the evader is choosing certain vertices
1) such that Pr(p +

i

Pr(p plays v

with probability zero, then there is some v



1 plays vgpﬂ))

> r/n. The pursuer p gets an expected payoff
for playing vfp ) of at least Mr /n, and from playing j an expected
payoff of at most 1 + %M /™. The additive 1 comes from the pay-
offs (in [0, 1]) in GG. M has been chosen large enough such that
Mr/n > 1+ 1M/™, which contradicts the assumption that we
have a Nash equilibrium.

If p is even, then for some j, p plays vj(-p ) with probability greater

than r/n. Choose j such that p has a non-zero probability of play-
(r—1)

ing v§p). Then p — 1 plays v; with probability 0 (since p — 1

gets a better payoff from playing v](.p 71)). But then p has a better
payoff for playing ¢ than for 7, a contradiction.

As aresult, every vertex is chosen with probability greater than
%r /n by the player that represents its color class. The division
of Pr(p plays v) into Pr(p plays (v,a)) for various values of
a, is driven entirely by the same payoffs as in GG; there is some
probability p(v) > (47/n)? that the neighbors of v are chosen by
other players, and the additional payoff resulting from the choice
of Pr(p plays(v,a)),a € [t], is p(v) times the payoff v would get
in GG

Uniqueness of ¢! (Ngg).

There is a 1-1 correspondence between the Nash equilibria of G and
GG, since every Nash equilibrium of GG encodes a specific Nash
equilibrium of G. [

3. REDUCTION FROM NORMAL FORM
GAMES TO GRAPHICAL GAMES

Given a normal form game G having r players, we construct a
graphical game GG, with a bipartite underlying graph with max-
imum degree 3, and two strategies per vertex, with description
length polynomial in the description length of G, so that from every
Nash equilibrium of GG we can recover a Nash equilibrium of G.
In this subsection we decribe the basic building blocks of the con-
struction. Each player in GG will have just two strategies, denoted
0 and 1. Also, it will be easy to check that the graph of GG is bipar-
tite and has degree 3; this graph will be denoted G = (VU W, E),
where W and V' are disjoint, and each edge in E goes between V'
and W.

Notation. p[v] denotes the probability that v plays 1 (as opposed
to 0).

Recall that G is specified by the quantities {u? : p € [r],s €
S'}. A mixed strategy profile of G is given by probabilities {z¥ : p €
[7],J € [n]}. GG will contain a vertex v(x%) € V for each player
p and strategy j € Sy, and the construction of GG will ensure that
in any Nash equilibrium of GG, the quantities {p[v(z¥)] : p €
[r],7 € Sp}, if interpreted as values of x%, will constitute a Nash
equilibrium of G. Extending this notation, for various arithmetic
expressions A involving any x% and uf, vertex v(A) € V will
be used, and be constructed such that in Nash equilibria of GG,
plv(A)] is equal to A evaluated at the given values of % and with
¥ equal to p[v(«?)]. Elements of T are used to mediate between
elements of V, so that the latter ones obey the intended arithmetic
relationships.

The following propositions show how we can ensure various
arithmetic relations amongst the values p[v], forv € V.

PROPOSITION 1. Let o be a non-negative real number. Let v1,
v2, w be vertices in a graphical game GG, and suppose that the
payoffs to va and w are as follows.

| w plays 0 w plays 1
vz plays 0 0 1
vg plays 1 1 0

Payoffs to vs :
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Payoffs to w:
v2 plays 0 v2 plays 1
w plays 0 v plays 0 0 0
v1 plays 1 « «@
vz plays 0 v2 plays 1
w plays 1 v plays 0 0 1
v1 plays 1 0 1

Then, in any Nash equilibrium of GG, p[v2] = min(ap[vi], 1).

PROOF. If w plays 1, then the expected payoff to w is p[vz2], and
if w plays 0 then the expected payoff to w is ap[vi]. Therefore, in
a Nash equilibrium of GG, if p[v2] > aplvi] then pjw] = 1.

However, note also that if p[w] = 1 then p[v2] = 0. (Payoffs to
v2 make it prefer to disagree with w.) Consequently, p[vz2] cannot
be strictly larger than apv1].

Similarly, if p[v2] < ap[v1] then p[w] = 0, which implies that
p[v2] = 1 (again since vz has the biggest payoff by disagreeing
with w). Hence p[vz] cannot be less than min(1, aplvi]). O

Note in particular that using the above construction with o = 1,
v2 becomes a “copy” of v1 and we can make a sequence of copies
of any vertex, which form a path in the graph. The copies alternate
with distinct w vertices.

PROPOSITION 2. Let «, 3, v be non-negative real numbers.
Let v1, v2, vs, w be vertices in a graphical game GG, and suppose
that the payoffs to vs and w are as follows.

| w plays 0 w plays 1

Payoffs to vs : vz plays 0 0 1
vz plays 1 1 0
Payoffs tow:
| v2 plays 0 w2 plays 1
w plays 0 v plays 0 0 164
v1 plays 1 « a+ B+
w plays 1 w3 plays 0 0

v3 plays 1 1

Then, in any Nash equilibrium of GG, p[vs] = min(ap[v1] +
Bplvz] + yp[v1]p[v2], 1).

PROOF. If w plays 1, then the expected payoff to w is p[vs], and
if w plays O then the expected payoff to w is ap[vi] + Bplvz] +
~p[v1]p[vz]. Therefore, in a Nash equilibrium of GG, if p[vs] >
ap[vi] + Bp[vz] + yp[v1]p[vz] then plw] = 1.

However, note from the payoffs to vs that if p[w] = 1 then
plvs] = 0. Consequently, p[vs] cannot be strictly larger than
aplvi] + Bp[v2] + yplorlplva].

Similarly, if p[vs] < ap[vi] + Bp[vz2] + vp[vi]p[v2] then due
to the payoffs to w we have p[w] = 0. This in turn implies that
plvs] = 1 (since vs has the biggest payoff by disagreeing with
w). Hence p[vs] cannot be less than min(1, ap[vi] + Bplvz] +
yploilplez]). O

Using the above construction, we can compute sums and prod-
ucts of quantities represented as probabilities that particular ver-
tices choose to play strategy 1. In particular, if a vertex v(z¥) en-
codes probability xﬁ-’ , then we can compute the expressions
D ec S_, uf 5. The challenge is now to allow the values to feed

back to the vertices v(z%) encoding the x% values, the constraint
p P s —
Zses,p Uj5275 > Zses,p U‘j’sxS xj’ -



PROPOSITION 3. Let v1, v2, v3, V4, Us, Vs, W1, W2, W3, Wa be
vertices in a graphical game GG, and suppose that the payoffs to
vertices other than vi and vz are as follows.

Payoffs to wn :
v2 plays 0 vz plays 1
wi plays 0 vy plays 0 0 0
v1 plays 1 1 1
v plays 0 vz plays 1
wy plays 1 vy plays 0 0 1
v1 plays 1 0 1

| w1 plays 0wy plays 1
vs plays 0 1 0
vs plays 1 0 1

Payoffs to vs :

Payoffs to wo and vs are chosen using Proposition 2 to ensure
plus] = plv1](1 - plos]).’
Payoffs to ws and v4 are chosen using Proposition 2 to ensure
p[vs] = p[v2]p[vs].
Payoffs to wa and ve are chosen using Proposition 2 to ensure
plvs] = min(1, p[vs] + p[v4]).

Then, in any Nash equilibrium of GG, p[ve] = max(p[v1], p[vz2])-

It is actually possible to “merge” w, and vs in the above, but the
above construction maintains a bipartite structure to the graph in
which one side of the partition contains all the vertices correspond-
ing to arithmetic expressions and subexpressions from (1).

PROOF. If, in a Nash equilibrium, we have p[v1] < p[v2] then
it follows from w;’s payoffs that p[w;] = 1. It then follows that
plvs] = 1 since vs’s payoffs induce it to imitate wi. Hence,
plvs] = 0 and p[vs4] = p[vz2], and consequently, p[ve] = p[va] =
plvz2], as required. A similar argument shows that if p[v1] > p[ve]
then plvs] = p[v1].

If p[vi] = p[vz] then p[w:] may take any value. However, we
have

plvs] = plvi(1 - p[vs])
plva] = p[v2]p[vs] = p[v1]p(vs].
Finally,
plus] = min(l,pvs] + plv4])
= min(1, p[v1](1 — plvs]) + plv1]p[vs])
= plul]
O

We use Propositions (1-3) as building blocks of GG, starting with
r subgraphs that represent mixed strategies for the players of G. In

the following we make a binary tree with leaves v(x%) whose prob-

abilities sum to 1, and internal nodes yf which use their probabili-
ties to select subtrees (see Figure 2 for an illustration).

PROPOSITION 4. Consider a graphical game that contains
e for j € [n] a vertex v(z})
e forj € [n — 1] avertex v

e for j € [n] avertex v( Z:l )

"We can use Proposition 2 to multiply by (1 — p[vs]) in a similar
way to multiplication by p[vs]; the payoffs to ws have vs’s strate-
gies reversed.

e forj € [n—1] avertexw;(p) used to ensure pl(X)_, 2?)] =
plv(C711 2D — plvf])

o for j € [n — 1] a vertex w)(p) used to ensure plv(z% )] =
plv(375 ab)]plv?]

e avertex wi(p) used to ensure plv(z})] = plv(31_, 27)]

v(3o0, «¥) has payoff 1 when it plays 1, 0 otherwise.
J P\ —
T =

1_, plv(x?)], and the graph is bipartite and of degree 3.

Then ) ", plv(a?)] = 1 and moreover pv(

PROOF. Itis not hard to verify that the graph has degree 3. Most
of the degree 3 nodes are the w nodes used in Propositions 1 and 2
to connect the pairs or triples of graph players whose probabilities
are supposed to obey an arithmetic relationship.

In a Nash equilibrium, v(3 7" | #7) plays 1. The vertices v} split
this probability into the two subtrees below them. []
Comment. The values p[vf ] control the distribution of probability
(summing to 1) amongst the n vertices v(:v§7 ). These vertices can
set to zero any proper subset of the probabilities p[v(z})].
Notation. Fors € S_, letz, =z} 22, - -m‘s’p—_ll '3552;11 Ry

Fors € S_p let U} = Zses_p uf 5. Thus U? is the utility to p
of playing j in the context of a given mixed profile.

LEMMA 1. Suppose all utilities u? lie in the range [0,1]. We
can construct a degree 3 bipartite graph having a total of O(rn" 1)
vertices, including vertices v(z}), v(U7), v(UL;), for p € [r],
J € [n], such that in any Nash equilibrium,

po(U)] = > b J]plo(s,)],

s€S_,p t£p

P[v(Ug;)] = max > ub [ plv(t,)]

= sesS_, (#£p

The general idea is to note that the expressions for p[v(U?)]
and p[v(UZ,)] are constructed from arithmetic subexpressions us-
ing the operations of addition, multiplication and maximization. If
each subexpression F has a vertex v(E), then using Propositions 2
and 3 we can assemble them into a graphical game such that in any
Nash equilibrium, p[v(E)] is equal to the value of E with input
plu(zf)], p € [r], j € [n]. We just need to limit our usage to
O(rn") subexpressions and ensure that their values all lie in [0, 1].

PROOF.
P P 7P P _ P
UZ, =max{U;,UZ; ,}, U} = E ufl s
s€ES_p
p = p 1o Pl ptl T
E uf ws = E (G N S AR
s€ES_p s€ES_p

Let S_p = {S_p(1),...,5_p(n" ")}

nr—l
Z U?S.’Bs = Z u?sS_P(e)
=1

sES_p

For each partial sum » 7, u% S_, () include vertex
V(i u?sS—P(Z))'

Similarly for each partial product of the summands u?smil R¥ 5
include vertex v(uf,zy, - x%)



There are p partial sums for each summand. There are n” '

partial sums. There are p partial sequences over which we have
to maximize. So using a vertex for each of 2p + n" ! arithmetic
subexpressions, a Nash equilibrium will compute the desired quan-
tities. All of these quantities in the subexpressions lie in the range
[0, 1], so the ceiling of 1 in the computations of Propositions 1,2,3
is not a problem. [

The vertices whose labels include U do not form part of Proposi-
tion 4; they have been included to show how the gadget fits into the
rest of the construction, as described in Figure 3. Unshaded ver-
tices belong to V', shaded vertices belong to W (V' and W being
the two parts of the bipartite graph).

The edges are directed as described in the introduction, that is, an
edge from u to v indicates that u’s choice can affect v’s payoff.

V(éX?) O

THEOREM 2. For any fixed r > 1, there is a polynomial reduc-
tion from r-NASH to 3-GRAPHICAL NASH with two strategies per
vertex.

PROOF. Let G be a r-player normal-form game, and construct
GG from G as shown in Figure 3. The graph has degree 3, since
we use separate copies of the v(m? ) vertices to influence different
v(U7) vertices.

Polynomial size of GG = f(G).
The size of GG is proportional to the description length r - n" of G
(using the standard representation).

Construction of g(Ngg) (where Ngg denotes a Nash equilib-
rium of GG).
g(Ngg) is defined by letting ¥ = plv(x?})], clearly computable
in polynomial-time.
Proof that the reduction preserves Nash equilibria.
We show that any Nash equilibrium Ngg of GG has a correspond-
ing g(Ngg), Nash equilibrium of G.

By Proposition 4 and Lemma 1, we have the first two parts of (1).
We need to show the last part, i.e. that
Zses,p ufsxs > Zses,p u?sxs — ac?/ =0.

Suppose that Zses,p uf s > Zses,p ul, 5. Suppose first

. y

that j < j'. Then plv(UZ; ;)] > p[v(U})], so p[vf_;] = 0
and consequently v(x%) plays O as required (since p[v(z})]
p[vi_,]p[v( I aP)). Ifj > j', consider plo(UZ; )] If
pl(UZ; )] < p[(U})] then p[vf_;] = 1 and for all i < j
we get as a result p[v(z¥)] = 0 (since these quantities are mul-
tiples of 1 — p[v}_,]). If p[v(UZ,_,)] > p[v(U7})] then either
pv(U;_})] > p[v(U})] (in which case, use j — 1 instead of
§) or plu(U;_,)] < p(U})], in which case p[v(UZ; ;)] =
p[v(UZ; )], s0 again use j — 1 instead of j.

Uniqueness of g~ (Ng).
We have shown by construction of GG, that any Nash equilibrium
forces all the quantities p[v(z¥)] to obey the constraints (1). To
show the reduction is faithful, we also show that given a Nash equi-
librium Ng of G there is a unique corresponding Nash equilibrium
Ngg of GG, where Ngg = g~ (Ng).

Let Ng = {¥ :p € [r],j € Sp}. In Ngg, let p[v(z})] = =¥.

Lemma 1 shows that the values p[v(U7)] are the expected util-
ities to player p of strategy j, given that all other players use the
mixed strategy {z} : p € [r],j € Sp}.

We identify values for p[v?] that complete a Nash equilibrium

for GG.

Figure 2: Diagram of Proposition 4

Based on the payoffs to vf described in Figure 3 we have
o Ifplu(UZ;)] > plv(U7,,)] then plw(U7)] = 0; plv;] = 0
o Ifplu(UZ;)] < plv(U7,)] then plw(U7)] = 1; plv] =1

e If pu(UZ;)] = p[v(U},,)] then choose p[w(U7)]
p[v}] is arbitrary (we may assign it any value)

1.
3

Given the above constraints on the values p[v?] we must check that
we can choose them (and there is a unique choice) so as to make
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Input: Normal form game G having r players, n strategies per
player, given by utilities {u? : p € [r], s € S}
Output: graphical game GG with bipartite graph (V U W, E).

1. Re-scale the utilities uf so that they lie in the range [0, 1].

2. For each player/strategy pair (p, j) letv(z}) € V be a vertex
in GG.

3. For each p € [r] construct a subgraph as described in
Proposition 4 so that in a Nash equilibrium of GG, we have

> plo(h)] = 1.

4. Use the construction of Proposition 1 with @« = 1 to make
nr copies of the v(x}) vertices (which are added to V).

5. Use the construction of Lemma 1 to introduce (add to V)
vertices v(UY'), v(UZ;), forall p € [r],j € [n]. Eachv(U})
uses its own set of copies of the vertices v(x%). For p € [r],
J € [n] introduce (add to W) w(U7) with

(2) If w(U?) plays O then w(UY) gets payoff 1 whenever
v(UZ;) plays 1, else 0.

(b) If w(UY) plays 1 then w(U7) gets payoff I whenever
v(U7,,) plays 1, else 0.

6. Give the following payoffs to the vertices vf (the additional
vertices used in Proposition 4 whose payoffs were not speci-
fied).

() If v} plays 0 thgn v} has a payoff of 1 whenever w(U7’)
plays 0, otherwise 1.

(b) If v plays 1 thgn v¥ has a payoff of 1 whenever w(U7’)
plays 1, otherwise 0.

Figure 3: Reduction from normal form game G to graphical
game GG

them consistent with the probabilities p[v(x¥)]. We use the fact
the values xﬁ-’ form a Nash equilibrium of G. In particular, we know
that p[v(2)] = 0 if there exists j* with U, > U7
We claim that for j satisfying p[v(UZ;)] = p[v(U}, )], if we
choose
Jj+1

J
p[vf] =) plo(h)]/ Y plo(l)],
i=1 i=1
then the values p[v(z%)] are consistent. [J

4. COMBINING THE REDUCTIONS

Suppose that we take either a graphical or a normal-form game,
and apply to it both of the reductions described in the previous sec-
tions. Then we obtain a game of the same type that is at least as
hard to solve, despite having certain restrictions on its structure.
We obtain the following results.

COROLLARY 1. [f it is possible in polynomial time to solve a
graphical game having 2 strategies per player, and an underlying
graph that is bipartite and of degree 3, then it is possible in poly-
nomial time to solve a graphical game with t strategies per player
on any degree d graph, for d and t constant.

The following also follows directly from Theorems 2 and 1, but
is not as strong as Theorem 3 below.
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Input: Normal form game G having r players, n strategies per
player, given by utilities {u® : p € [r], s € [n]}
Output: 4-player Normal form game G'.

1. Let GG be a graphical game constructed from G according to
Figure 3.

2. Color the graph (V U W, E) (where F are directed edges of
the affects-graph) of GG. Let c(w) = 1 for all W-vertices
w. Initially, let c¢(v) = 2 for all V-vertices v.

3. Construct graphical game GG’ from GG as follows. While
there exist v1, v2 € V,w € W, (v1,w), (v2,w) € E with
c(v1) = e(v2):

(a) Every W-vertex has at most 1 outgoing edge, so as-
sume (w,v1) € E.

(b) Add v(v1)to V,add w(v1) to W.

(c) Replace (vi,w) with (vi,w(v1)), (w(v1),v(v1)),
(v(v1),w). Let c(w(vi)) = 1, choose c(v(v1)) €
{2,3,4} # c(v') for any v’ with (v',w) € E. Pay-
offs for w(v1) and v(v1) are chosen using Proposi-
tion 1 with o = 1 such that in any Nash equilibrium,

plv(v1)] = plu1].

4. For i € [4] let V; denote the set of vertices with color 3.
Assume all sets V; have the same cardinality V. (If necessary
add idle isolated vertices.) If a vertex v has fewer than 3
incoming edges, add extra incoming edges to v so that v has
an incoming edge from each other color class.

5. Construct a 4-player game with 21NV strategies per player. Let
M = N?.Forj € [N],

(a) If player 1 plays 25 or 25 + 1 and player 2 plays 25 or
27 + 1 then player 1 gets a payoff of M and player 2
gets a payoff of — M.

(b) If player 3 plays 25 or 25 + 1 and player 4 plays 25 or
27 + 1 then player 3 gets a payoff of M and player 4
gets a payoff of — M.

(@) @)
’Uj/ ’ /Uj// 9

6. Let V; = {ui", ...
(
j .
offs to v](-” depend on the actions of these 4 vertices. For s a

0P} For vertex UJ(-i) , let
i’ . . (4)
v, be the vertices that have edges going to v; . The pay-

pure profile of these vertices, let u (v](-i)) be the payoff to UJ(-i)
resulting from s. If s is the binary numbers (b,b", 0", "),
where b is the action chosen by vj(-z), and so on, give an ad-

s (2) (1)y + (%)
ditional payoff of u (vj/ ) to player c(v;"”) if playsf c(v;”)
plays j +b, player c(v](.f ) plays j+b', player c(vj(.f/ )Y plays
j +b”, player c(v](.f,/,”)) plays j +b"".

Figure 4: Reduction from normal form game G to 4-player
game G’



COROLLARY 2. For any fixed v > 1, there is a polynomial
reduction from r-NASH to 8-NASH.

PROOF. Theorem 2 converts a r-player game G into a graphical
game GG based on a graph of degree 3. Theorem 1 converts GG
into a 8-player game G, where 8 = d* — 1 whose Nash equilibria
encode the Nash equilibria of GG and hence of G. (Note that for
d an odd number, the proof of Theorem 1 implies a reduction to
(d?® — 1)-NasH; for d even it reduces to d*>-NasH.)) [

‘We next prove a stronger result, by exploiting in more detail the
structure of the graphical games GG constructed in the proof of
Theorem 2. The following definition is used in this respect.

Definition 2. Suppose that GG is a graphical game with underly-
ing graph G' = (V, E). The affects-graph G' = (V,E’) of GG is a
directed graph with edge (vi,v2) € E’ if the payoff to v2 depends
partly on the action of v; .

Thus the edge (v1, v2) in G’ represents the relationship “v; affects
v2”. Notice that if (v1,v2) € E’ then {v1,v2} € E.

THEOREM 3. For any fixed r > 1, there is a polynomial reduc-
tion from r-NASH fo 4-NASH.

PROOF. Construct G’ from G as shown in Figure 4.

Polynomial size of G’ = f(G).

By Theorem 2, GG (as constructed in Figure 4) is polynomial size.
The size of GG’ is at most 3 times the size of GG since we do not
need to apply Step 3 to any edges that are themselves constructed
by an earlier iteration of Step 3. Finally it is straightforward to
check that the size of G’ is linear in the size of GG'.

Construction of g(Ng/) (for Ng: a Nash equilibrium of G').
For each j, each p, there is a probability at least (1/4N)* that p
plays {27, 2j + 1} and the other players play the vertices that affect
v . We claim that the values Pr(p plays 2j-+1)/(Pr(p plays j)+
Pr(p plays 25 + 1)), if used for p[v,(,J)}, make a Nash equilibrium
of GG'. The Nash equilibria of GG’ and GG are in a 1-1 correspon-
dence that is clear from the construction of GG'. Finally we recover
a Nash equilibrium of G using the function g of Theorem 2.

Proof that the reduction preserves Nash equilibria.
Let Ng: be a Nash equilibrium of the 4-player game G’. We must
show that we do indeed get a Nash equilibrium of GG if we use the
above formula.

We prove the following claim (that shows that the denominator
is non-zero).
Claim. Forp € [4],j € [N],

Pr(p plays 25) + Pr(p plays 25 + 1) >
Proof. Suppose otherwise, i.e. for some p, j,

Pr(p plays 2j) + Pr(p plays 25 + 1) < oSN
Let p’ be p’s opponent in the generalized matching pennies game.
If p’ is the pursuer then p’ will not play {27,2j + 1} since if p’
transfers € from {24, 2j + 1} to elsewhere he can increase his pay-
off, and the payoffs that encode GG’ are overwhelmed by the M
payoffs. Hence p plays 2j or 2j -+ 1 for values of j which p’ plays
with probability less than ﬁ; not a Nash equilibrium. If p’ is the
evader then p’ will play 2j or 2 + 1 for values of j for which p’s
probability of playing {j, j 4+ 1} is less than ;3-, again not a Nash
equilibrium.

Letq > (1/4N)* denote the above probability. If in GG’ , the ex-
(3) (3)

pected utility to vy’ is up if vy’ plays b, then in the 4-player game,
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if p uses Pr(p plays 25 + b) /(Pr(p plays 2j) + Pr(p plays 25 +
1)) = 1 his expected payoff increases by qus. There is no other
factor influencing p’s choice about how to share the probability he
plays {27,25 + 1}, into the two alternatives 2j and 25 + 1. So the
Nash equilibria correspond.

Let G = (V U W, E) be the affects-graph of GG (V, W as
defined in Figure 3). By construction of GG,

e every IV -vertex has at most 3 incoming edges (from v-vertices)

e cvery V-vertex has at most 1 incoming edge and 2 outgoing
edges (to/from w-vertices)

e every W-vertex has < 1 outgoing edge

Let G’ = (V' UW’, E’) be the affects-graph of GG’ constructed
in Step 3. The payoffs in GG’ respect the structure of the new
affects-graph (a vertex is affected by another only if there an edge
between them in the graph.) All other aspects of any Nash equilib-
rium are preserved.

At this point we have a 4-coloring with the feature that the V-
vertices have incoming edges from vertices of distinct colors (since
they have only one incoming edge).

In Step 5 we pair off players 1 and 2, and players 3 and 4 into
two independent games of generalized Matching Pennies, and all
players will randomize uniformly over pairs {27, 25 + 1}. Next we
add payoffs that encode GG'.

In GG and hence GG', payoffs are rescaled to lie in [0, 1]. This
fact is used to argue that the M payoffs in Step 5 are large enough
that, despite the modifications to the payoffs, no player gives prob-
ability O to any pair of actions {27,25 + 1}. [

S. APPROXIMATE NASH EQUILIBRIA

Our reductions so far are given for problems of computing Nash
equilibria exactly. For more than two players, an exact solution to a
game may consist of irrational numbers; indeed as we point out in
Section 6 below, for 4 players the (algebraic) degree of a solution
may be exponential in the number of strategies per player.

An e-Nash equilibrium is a standard notion of approximate Nash
equilibrium, in terms of an error parameter € > 0. In the notation
of Equation (1), an e-Nash equilibrium must satisfy for all p, and
all j, 5’ € Sp,

z¥ € [0,1]
2585 = @)
Yoses Uxs>e+d o ub xs=2", =0

es_p, Yy es_p Yjrs j

(2) differs from (1) in that a strategy may have positive probabil-
ity in the presence of another strategy whose expected payoff is
better by at most €. Note that Nash’s theorem ensures the exis-
tence of an e-Nash equilibrium whose probabilities are multiples
of €/2Uax 3, Where Upax s is the maximum, over all players p,
of the sum of all entries in the table of p. This is polynomial for
any constant number r of players in a normal-form game. In the
context of a graphical game this sum is restricted to the payoff ta-
ble involving a player and its neighbors, and probabilities in a Nash
equilibrium can be rounded to multiples of €/2Unax 3.

Our general claim is that the reductions of previous sections
translate a problem of finding e-Nash equilibria into a problem of
finding €'-Nash equilibria, for ¢’ polynomially related to €. As a
consequence, we obtain polynomial-time equivalence results for
problems of the following form: Input, a game with utilities given
as binary expansions; output, an approximate Nash equilibrium
whose precision is equal to the precision of the input quantities.



The variants that are shown to be equivalent are of course, r-player
normal form games, for any » > 4, and degree-d graphical games
ford > 3.

It is not hard to check that using the standard (logarithmic cost)
bit model for real arithmetic, that the reductions of the previous
section can still be carried out in polynomial time. We need to
check that ¢’-Nash equilibria of the outputs lead to e-Nash equilib-
ria of the inputs, for suitable ¢’. We have the following extension
of Theorem 1.

THEOREM 4. For every d > 1 there is a polynomial reduction
from d-GRAPHICAL-NASH with accuracy € to d2-NASH with accu-
racy €, for € polynomial in € and other parameters.

PROOF. Put€’ = ¢(4r/n)%/M, where
M = (tn/(d* — 1))d2_1n4tr as defined in Step 5c¢ of Figure 1.

We use the algorithm of Figure 1, with an additional final step
in which players’ utilities are re-scaled to lie in [0, 1]. Then one
can check that the part of the proof of Theorem 1 that the reduction
preserves Nash equilibria also implies that an ¢’-Nash equilibrium
of G leads to an e-Nash equilibrium of GG. The factor of 1/M
comes from the rescaling at the end, and the factor of (3r/n)?
comes from the feature that there is a lower bound of (17/n)? on

the probability that a player in G receives a payoff corresponding
to a payoff of GG. [

We have the following extension of Theorem 2.

THEOREM 5. For any fixed r > 1, there is a polynomial reduc-
tion from r-NASH with accuracy € to 3-GRAPHICAL NASH with
accuracy € with two strategies per vertex, for € polynomial in €
and other parameters.

PROOF. (sketch) The initial re-scaling of the algorithm of Fig-
ure 3 means that €’ has to gain a factor of 1/Umax, where Umax is
the maximum (in absolute value) utility in input game G.

The size of graphical game GG constructed in Figure 3 is O(r.n").

In an €'-Nash equilibrium of GG, each node introduces an error of
¢’ into the corresponding arithmetic expression it computes. Put
¢ = O(e/q.r.n"), where q is the bit precision of Umax. [

We have the following extension of Theorem 3.

THEOREM 6. For any fixed r > 1, there is a polynomial reduc-
tion from r-NASH with accuracy € to 4-NASH with accuracy €', for
€' polynomial in € and other parameters.

PROOF. (sketch) Put €’ = O(e/q.r.n” M) where M is defined
as in Step 5 of Figure 4 and construct G’ from G as shown in Fig-
ure 4. (As before, ¢ denote the bit precision used to represent pay-
offs in G.) The result follows from the same kind of argument as
above. [J

6. SOME COROLLARIES

We conclude with two results that follow in a straightforward
way using our reductions.

High degree of solutions of a 4-player game

We mentioned in Section 1 that the solution(s) of a 4-player
game may have degree exponential in the number of strategies avail-
able to the number of players. To see this, construct a graphical
game as follows. Let © = p[v], the probability that some vertex v
plays 1. Using the gadgets we introduced in Propositions (1,2), we
can construct a vertex v’ such that p[v’] = 2™, where N is expo-
nential in the number of vertices (this is done mainly with repeated
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squaring; make a copy of a vertex and multiply the two copies).
Then, if p[v'] > ., we can give v an incentive to reduce p[v], and
if p[v'] < 3 we give v an incentive to increase p[v]. As a result,
in any Nash equilibrium, p[v] = (%)UN. Datta [8] shows that a
3-player game may have solutions whose algebraic degree is lin-
ear in the number of strategies per player; we believe it is an open
question whether the degree could be much higher in the 3-player
case.

Restricting the graph underlying a graphical
game

Suppose we are interested in solving games on a graph with a 2-
dimensional grid topology. Daskalakis and Papadimitriou [6] con-
sider grid graphs where all players are the same (having the same
number of strategies, and payoffs in terms of their strategies and
their neighbors’ strategies). They show that the problem of find-
ing pure Nash equilibrium is in P in one dimension, and NEXP-
complete in more than one dimension. Let us suppose instead that
each vertex has 2 strategies, and payoffs specified in terms of its
neighbors in an ad-hoc fashion, which makes the description size
much less succinct, in particular it is proportional to the number of
vertices. We claim that under this restriction, the problem of find-
ing an unrestricted Nash equilibrium remains equivalent to general
low-degree graphs (and thus PPAD-complete by [5]).

We may use Proposition 1 with & = 1 to build paths that trans-
port values around the grid, and then what we need is a gadget that
allows two of these paths to cross. See Figure 5, which copies a
value z from (—3,0) over to (1, 0), and copies y from (0, —3) to
(0,3). The W -vertices are shaded, and do the job of computing
arithmetic relationships amongst their neighbors, as indicated by
their subscripts. Outgoing edges from W -vertices point to the ver-
tices whose values are being computed, based on the other neigh-
bors of the W -vertex.
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