
Nash Equilibria in Graphical Games on Trees Revisited ∗

Edith Elkind
University of Warwick

Coventry, CV4 7AL, U.K.

Leslie Ann Goldberg
University of Warwick

Coventry, CV4 7AL, U.K.

Paul Goldberg
University of Warwick

Coventry, CV4 7AL, U.K.

ABSTRACT
Graphical games have been proposed as a game-theoretic model of
large-scale distributed networks of non-cooperative agents. When
the number of players is large, and the underlying graph has low
degree, they provide a concise way to represent the players’ pay-
offs. It has recently been shown that the problem of finding Nash
equilibria in a general degree-3 graphical game with two actions
per player is complete for the complexity class PPAD, indicating
that it is unlikely that there is any polynomial-time algorithm for
this problem. In this paper, we study the complexity of graphical
games with two actions per player on bounded-degree trees. This
setting was first considered by Kearns, Littman and Singh, who pro-
posed a dynamic programming-based algorithm that computes all
Nash equilibria of such games. The running time of their algorithm
is exponential, though approximate equilibria can be computed ef-
ficiently. Later, Littman, Kearns and Singh proposed a modification
to this algorithm that can find a single Nash equilibrium in polyno-
mial time. We show that this modified algorithm is incorrect — the
output is not always a Nash equilibrium. We then propose a new
algorithm that is based on the ideas of Kearns et al. and computes
all Nash equilibria in quadratic time if the input graph is a path, and
in polynomial time if it is an arbitrary graph of maximum degree 2.
Moreover, our algorithm can be used to compute Nash equilibria
of graphical games on arbitrary trees, but the running time can be
exponential, even when the tree has bounded degree. We show that
this is inevitable — any algorithm of this type will take exponen-
tial time, even on bounded-degree trees with pathwidth 2. It is an
open question whether our algorithm runs in polynomial time on
graphs with pathwidth 1, but we show that finding a Nash equilib-
rium for a 2-action graphical game in which the underlying graph
has maximum degree 3 and constant pathwidth is PPAD-complete
(so is unlikely to be tractable).

∗This research is supported by the EPSRC research grants “Al-
gorithmics of Network-sharing Games” and “Discontinuous Be-
haviour in the Complexity of randomized Algorithms”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’06, June 11–15, 2006, Ann Arbor, Michigan, USA.
Copyright 2006 ACM 1-59593-236-4/06/0006 ...$5.00.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity; J.4 [Computer Applications]: Social and Behav-
ioral Sciences—economics

General Terms
Algorithms, Economics, Theory

Keywords
Graphical games, Nash equilibrium, PPAD-completeness

1. INTRODUCTION
Graphical games were introduced in the papers of Kearns et

al. [8] and Littman et al. [9] as a succinct representation of games
with a large number of players. The classical normal form (or ma-
trix form) representation has a size that is exponential in the number
of players, making it unsuitable for large-scale distributed games.
A graphical game associates each player with a vertex of an un-
derlying graph G, and the payoff to that player is a function of the
actions chosen by himself and his neighbours in G; if G has low
degree, this is a concise way to represent a game with many players.

The papers [8, 9] give a dynamic-programming algorithm for
finding Nash equilibria in graphical games where there are two ac-
tions per player and G is a tree. The first of these papers describes
a generic algorithm for this problem that can be specialized in two
ways: as an algorithm that computes approximations to all Nash
equilibria in time polynomial in the input size and the approxima-
tion quality, or as an exponential-time algorithm that allows the
exact computation of all Nash equilibria in G. In [9], the authors
propose a modification to the latter algorithm that aims to find a
single Nash equilibrium in polynomial time. This does not quite
work, as we show in Section 3, though it introduces a useful idea.

1.1 Background
The generic algorithm of [8] consists of two phases which we

will refer to as the upstream pass and the downstream pass; 1 the
former starts at the leaves of the tree and ends at the root, while the
latter starts at the root and ends at the leaves. It is assumed that
each player has two pure strategies (actions), which are denoted
by 0 and 1; it follows that any mixed strategy can be represented
as a single number x ∈ [0, 1], where x is the probability that the
player selects 1. During the upstream pass, each vertex V computes
the set of its potential best responses to every mixed strategy w
of its parent W ; a strategy v is a potential best response to w if

1Note that the terminology “upstream” and “downstream” are re-
versed in [8, 9] — our trees are rooted at the top.

100

there is a Nash equilibrium in the graphical game downstream of V
(inclusive) given that W plays w (for a more technical definition,
the reader is referred to Section 2). The output of this stage can
be viewed as a (continuous) table T (w, v), where T (w, v) = 1
if and only if v is a potential best response to w; we refer to this
table as the best response policy for V . The generic algorithm does
not address the problem of representing the best response policy; in
fact, the most important difference between the two instantiations
of the generic algorithm described in [8] is in their approach to this
issue. The computation is performed inductively: the best response
policy for V is computed based on the best response policies of V ’s
children U1, . . . , Uk. By the end of the upstream pass, all children
of the root have computed their best response policies.

In the beginning of the downstream pass, the root selects its strat-
egy and informs its children about its choice. It also selects a strat-
egy for each child. A necessary and sufficient condition for the al-
gorithm to proceed is that the strategy of the root is a best response
to the strategies of its children and, for each child, the chosen strat-
egy is one of the pre-computed potential best responses to the cho-
sen strategy of the root. The equilibrium then propagates down-
stream, with each vertex selecting its children’s actions. The action
of the child is chosen to be any strategy from the pre-computed
potential best responses to the chosen strategy of the parent.

To bound the running time of this algorithm, the paper [8] shows
that any best response policy can be represented as a union of an
exponential number of rectangles; the polynomial time approxima-
tion algorithm is obtained by combining this representation with a
polynomial-sized grid. The main idea of [9] is that it is not nec-
essary to keep track of all rectangles in the best response policies;
rather, at each step of the upstream pass, it is possible to select
a polynomial-size subset of the corresponding policy (in [9], this
subset is called a breakpoint policy), and still ensure that the down-
stream pass can proceed successfully (a sufficient condition for this
is that the subset of the best response policy for V stored by the al-
gorithm contains a continuous path from w = 0 to w = 1).

1.2 Our Results
One of the main contributions of our paper is to show that the

algorithm proposed by [9] is incorrect. In Section 3 we describe a
simple example for which the algorithm of [9] outputs a vector of
strategies that does not constitute a Nash equilibrium of the under-
lying game.

In Sections 4, 5 and 6 we show how to fix the algorithm of [9] so
that it always produces correct output.

Section 4 considers the case in which the underlying graph is a
path of length n. For this case, we show that the number of rectan-
gles in each of the best response policies is O(n2). This gives us
an O(n3) algorithm for finding a Nash equilibrium, and for com-
puting a representation of all Nash equilibria. (This algorithm is a
special case of the generic algorithm of [8] — we show that it runs
in polynomial time when the underlying graph is a path.)

We can improve the running time of the generic algorithm us-
ing the ideas of [9]. In particular, we give an O(n2) algorithm for
finding a Nash equilibrium of a graphical game on a path of length
n. Instead of storing best response policies, this algorithm stores
appropriately-defined subsets, which, following [9], we call break-
point policies (modifying the definition as necessary). We obtain
the following theorem

THEOREM 1. There is an O(n2) algorithm that finds a Nash
equilibrium of a graphical game with two actions per player on
an n-vertex path. There is an O(n3) algorithm that computes a
representation of all Nash equilibria of such a game.

In Section 5 we extend the results of Section 4 to general degree-
2 graphs, obtaining the following theorem.

THEOREM 2. There is a polynomial-time algorithm that finds a
Nash equilibrium of a graphical game with two actions per player
on a graph with maximum degree 2.

In Section 6 we extend our algorithm so that it can be used to find
a Nash equilibrium of a graphical game on an arbitrary tree. Even
when the tree has bounded degree, the running time can be expo-
nential. We show that this is inevitable by constructing a family of
graphical games on bounded-degree trees for which best response
policies of some of the vertices have exponential size, and any two-
pass algorithm (i.e., an algorithm that is similar in spirit to that
of [8]) has to store almost all points of the best response policies.
In particular, we show the following.

THEOREM 3. There is an infinite family of graphical games on
bounded-degree trees with pathwidth 2 such that any two-pass al-
gorithm for finding Nash equilibria on these trees requires expo-
nential time and space.

It is interesting to note that the trees used in the proof of Theorem 3
have pathwidth 2, that is, they are very close to being paths. It is
an open question whether our algorithm runs in polynomial time
for graphs of pathwidth 1. This question can be viewed as a gener-
alization of a very natural computational geometry problem — we
describe it in more detail in Section 8.

In Section 7, we give a complexity-theoretic intractability result
for the problem of finding a Nash equilibrium of a graphical game
on a graph with small pathwidth. We prove the following theorem.

THEOREM 4. Consider the problem of finding a Nash equilib-
rium for a graphical game in which the underlying graph has max-
imum degree 3 and pathwidth k. There is a constant k such that
this problem is PPAD-complete.

Theorem 4 limits the extent to which we can exploit “path-like”
properties of the underlying graph, in order to find Nash equilibria.
To prove Theorem 4, we use recent PPAD-completeness results for
games, in particular the papers [7, 4] which show that the problem
of finding Nash equilibria in graphical games of degree d (for d ≥
3) is computationally equivalent to the problem of solving r-player
normal-form games (for r ≥ 4), both of which are PPAD-complete.

2. PRELIMINARIES AND NOTATION
We consider graphical games in which the underlying graph G

is an n-vertex tree. Each vertex has two actions, which are denoted
by 0 and 1. A mixed strategy is given by a single number x ∈ [0, 1],
which denotes the probability that the player selects action 1.

Fur the purposes of the algorithm, the tree is rooted arbitrarily.
For convenience, we assume without loss of generality that the root
has a single child, and that its payoff is independent of the action
chosen by the child. This can be achieved by first choosing an
arbitrary root of the tree, and then adding a dummy “parent” of this
root, giving the new parent a constant payoff function.

Given an edge (V, W) of the tree G, and a mixed strategy w
for W , let G(V,W),W=w be the instance obtained from G by (1)
deleting all nodes Z which are separated from V by W (i.e., all
nodes Z such that the path from Z to V passes through W), and
(2) restricting the instance so that W is required to play mixed strat-
egy w.

Definition 1. Suppose that (V, W) is an edge of the tree, that
v is a mixed strategy for V and that w is a mixed strategy for W .

101

We say that v is a potential best response to w (denoted by v ∈
pbrV (w)) if there is an equilibrium in the instance G(V,W),W=w in
which V has mixed strategy v. We define the best response policy
for V , given W , as B(W, V) = {(w, v) | v ∈ pbrV (w), w ∈
[0, 1]}. Typically, W is the parent of V , and this is just referred to
as “the best response policy for V ”. The expression B(W, V)|V =v

is used to denote the set B(W, V) ∩ [0, 1]×{v}.

The upstream pass of the generic algorithm of [8] computes the
best response policy for V for every node V other than the root.
With the above assumptions about the root, the downstream pass
is straightforward: Let W denote the root and V denote its child.
The root selects any pair (w, v) from B(W, V). It decides to play
mixed strategy w and it instructs V to play mixed strategy v. The
remainder of the downward pass is recursive. When a node V is
instructed by its parent to adopt mixed strategy v, it does the fol-
lowing for each child U — It finds a pair (v, u) ∈ B(V, U) (with
the same v value that it was given by its parent) and instructs U to
play u.

3. ALGORITHM OF LITTMAN ET AL.
The algorithm of [9] is based on the following observation: to

compute a single Nash equilibrium by a two-pass algorithm, it is
not necessary to construct the entire best response policy for each
vertex. As long as, at each step of the downstream pass, the ver-
tex under consideration can select a vector of strategies for all its
children so that each child’s strategy is a potential best response to
the parent’s strategy, the algorithm succeeds in producing a Nash
equilibrium. This can be achieved if, at the beginning of the down-
stream pass, we have a data structure in which each vertex V with
parent W stores a set B̂(W, V) ⊆ B(W, V) (called a breakpoint
policy) which covers every possible w ∈ [0, 1]. We will show
later that a sufficient condition for the construction of such a data
structure is the invariant that, at every level of the upstream pass,
B̂(W,V) contains a continuous path from w = 0 to w = 1.

In [9], it is suggested that we can select the breakpoint policy in
a particular way. Namely, the paper uses the following definition:

Definition 2. (cf. [9]) A breakpoint policy for a node V with
parent W consists of an ordered set of W -breakpoints w0 = 0 <
w1 < w2 < · · · < wt−1 < wt = 1 and an associated set of
V -values v1, . . . , vt. The interpretation is that for any w ∈ [0, 1],
if wi−1 < w < wi for some index i and W plays w, then V shall
play vi; and if w = wi for some index i, then V shall play any
value between vi and vi+1. We say such a breakpoint policy has
t − 1 breakpoints.

The paper then claims that any vertex V can compute its break-
point policy with respect to its parent W given the breakpoint poli-
cies of its children U1, . . . , Uk . The proof proceeds by ordering
the children’s breakpoints (i.e., the respective values of v) from left
to right (it can be assumed without loss of generality that all these
breakpoints are distinct) and considering them in turn; each such
point vl ∈ {v1, . . . , vL} corresponds to a fixed choice of strategies
for k − 1 children and an interval of admissible strategies for one
child. Assume for convenience that this child is U1 and its inter-
val of admissible strategies at vl is [a, b]; assume also that for Uj ,
j = 2, . . . , k, their respective breakpoint policies prescribe them to
play uj in response to vl. Let P i(u, w), i = 0, 1, be the expected
payoff for V when V plays i, U1 plays u, each Uj , j = 2, . . . , k,
plays uj , and W plays w, and consider the set

Wl = {w ∈ [0, 1] | ∃u ∈ [a, b] s.t. P 0(u, w) = P 1(u, w)};

note that for any w ∈ Wl we have vl ∈ pbrV (w).

v1

v2

v3

v4

v5

v6

v7

V

W

Figure 1: LKS: Trimming to find breakpoint policies.

The authors show that for any breakpoint vl, the set Wl is either
empty, a single interval, or a union of two non-floating intervals (an
interval is non-floating if one of its endpoints is 0 or 1); moreover,
the union of all sets Wl, l = 1, . . . , L, covers the interval [0, 1]. It
follows easily that one can cover [0, 1] with at most L+2 intervals,
each of which is a subset of some Wl. The authors then claim that
any such cover can be transformed into a breakpoint policy for V .
Namely, they say that for any two intervals Wl1 and Wl2 in the
cover, “Any overlap between Wl1 and Wl2 can be arbitrarily as-
signed coverage by Wl1 and Wl2 “trimmed” accordingly (cf. [9],
p. 5). They illustrate their approach in a figure, which is reproduced
as Figure 1 here. In the figure, the dashed horizontal lines represent
the breakpoints v1, v2, . . . , v7 and the solid intervals along these
breakpoints are the sets W1,W2, . . . ,W7. The thick connected
path is the corresponding breakpoint policy. It is chosen as fol-
lows: begin on the left, and always “jump” to the interval allowing
greatest progress to the right.

To see why this approach does not work in general, consider a
path of length 4 consisting of an indifferent root R, its child W ,
W ’s child V , and V ’s child U . Suppose that U receives a pay-
off of 1 if it plays differently to V and 0 otherwise. Thus, if v
denotes the mixed strategy of V (i.e., V plays 1 with probabil-
ity v), then the expected payoff that U derives from playing 0 is
given by P 0(U) = v and the expected payoff that U derives from
playing 1 is given by P1(U) = 1 − v. Suppose that V derives
no payoff from playing 1 (so P1(V) = 0) and that its payoff

matrix for playing 0 is

�
1 −9
9 −1

�
, so if u denotes the mixed

strategy of U and w denotes the mixed strategy of W , the ex-
pected payoff that V derives from playing 0 is given by P0(V) =
(1 − u)(1 − w) + (1 − u)w(−9) + u(1 − w)9 + uw(−1).

Using the techniques of [8] (or, alternatively, those of Section 4),
it is not hard to verify that the best response policies for U and V
(as in Definition 1) are given by the graphs in Figure 2. The best
response policy for U is a breakpoint policy for U (as in Definition
2) with V -breakpoints v0 = 0, v1 = 1/2 and v2 = 1 with associ-
ated values u1 = 1 and u2 = 0. The best response policy for V is
not a breakpoint policy (because of how the curve from w = 0 to
w = 1 “doubles back”).

The LKS algorithm would “trim” to get a breakpoint policy such
as the one in Figure 3. Note that this breakpoint policy B̂(W,V) is
invalid in the sense that it does not satisfy B̂(W,V) ⊆ B(W, V).

102

1

10.5

0.5

1

10.1 0.9

u v

v w

Figure 2: Best response policies for U and V .

0.1 0.9 1

0.5

1

v

w

Figure 3: A “trimmed” policy for V

The point is that the payoff matrix of W can now be chosen to
prevent the LKS algorithm from finding a Nash equilibrium. For
example, suppose the payoffs are given so that P0(W) = v and
P 1(W) = (1−v)2. The best response policy for W is a horizontal
line at w = .1 (This is the value of w that allows v = 2/3 — see
Figure 2, which makes P 0(W) = P 1(W).) In the downward pass,
the chosen values are w = .1, then, from the trimming, v = 0 and
u = 1, which is not a Nash equilibrium since W prefers action 1.

The failure of the algorithm is not caused by the fact that the
trimming policy goes as far to the right as possible. Any other
“trimming” would be just as bad. For example, suppose the break-
point policy for V has v = 0 until some point w∗ < .9 and then
jumps to v = 1. The algorithm is then defeated by the payoff ma-
trix with P 0(W) = 2v and P 1(W) = (1 − v) in which the best
response policy for W is a horizontal line at w = .9. The algo-
rithm then gives w = .9, v = 1, and u = 0, which is not a Nash
equilibrium since W prefers action 0.

We conclude that the LKS algorithm does not always find a Nash
equilibrium. In Sections 4 and 6 we show how to modify the algo-
rithm so that it always finds a Nash equilibrium. For the modified
algorithm, we have to extend the definition of “breakpoint policy”
(see Definition 3) so that it includes breakpoint policies such as
the best response policy for V in Figure 2. Unfortunately, such a
breakpoint policy may be exponential in size (see Figure 7) so the
corrected algorithm does not run in polynomial time on all trees. In
the next section, we show that it runs in polynomial time on a path.

4. FINDING EQUILIBRIA ON A PATH
In this section, we focus on the case when the underlying graph

is a path, i.e., its vertex set is {V1, . . . , Vn}, and its edge set is
{(Vj , Vj+1) | j = 1, . . . , n − 1}. We show that in this case the
best response policy for each vertex can be represented as a union
of a polynomial number of rectangles, where a rectangle is defined
by a pair of closed intervals (IV , IU) and consists of all points in

IV × IU ; it may be the case that one or both of the intervals IV and
IU consists of a single point.

THEOREM 5. For any j = 1, . . . , n, the set B(Vj , Vj−1) can
be represented as a disjoint union of at most (j + 4)2 rectangles.
Moreover, given such representation of B(Vj , Vj−1), one can com-
pute a representation of B(Vj+1, Vj) in time O(j2).

PROOF. For any set A ⊆ [0, 1]2 that is represented as a union of
a finite number of rectangles, we say that a point u ∈ [0, 1] on the
U -axis is a U -event point of A if u = 0 or u = 1 or A contains a
rectangle of the form IV × IU and u is an endpoint of IU ; V -event
points are defined similarly. Observe that for any u ∈ [0, 1], the
number of connected components of [0, 1]×{u} ∩A is at most the
number of V -event points of A.

We use induction on j to show that for each Vj the statement of
the theorem holds and, additionally, each B(Vj , Vj−1) has at most
2j + 4 event points.

To simplify the base case, we modify the graphical game by ap-
pending a dummy vertex V0 to the beginning of the path: the only
neighbour of V0 is V1, the payoffs of V0 are always equal to 0, and
the payoffs of all other vertices (including V1) are the same as in
the original game.

For j = 0, we have B(V1, V0) = [0, 1]2, so the statement of the
theorem is trivially true.

Now, suppose that j > 0, set V = Vj and let U = Vj−1 and
W = Vj+1 be the vertices that precede and follow V , respectively.
The payoffs to V are described by a 2×2×2 matrix P : Pxyz is the
payoff that V receives when U plays x, V plays y, and W plays z,
where x, y, z ∈ {0, 1}. Suppose that U plays 1 with probability u
and W plays 1 with probability w. Then V ’s expected payoff from
playing 0 is

P 0=(1−u)(1−w)P000+(1−u)wP001+u(1−w)P100+uwP101,

while its expected payoff from playing 1 is

P 1=(1−u)(1−w)P010+(1−u)wP011+u(1−w)P110+uwP111.

If P 0 > P 1, V strictly prefers to play 0, if P 0 < P 1, V strictly
prefers to play 1, and if P 0 = P 1, V is indifferent, i.e., can play
any (mixed) strategy. Since P 0 and P 1 are linear in w and u, there
exist some constants A1, A0, B1, and B0 that depend on the matrix
P , but not on u and w, such that

P 0 − P 1 = w(B1u + B0) − (A1u + A0). (1)

Depending on the values of A1, A0, B1, and B0, we subdivide
the rest of the proof into the following cases.

• B1 = 0, B0 = 0.

In this case, P 0 > P 1 if and only if A1u + A0 < 0.
If also A1 = 0, A0 = 0, clearly, B(W, V) = [0, 1]2, and the

statement of the theorem is trivially true.
Otherwise, the vertex V is indifferent between 0 and 1 if and only

if A1 �= 0 and u = −A0/A1. LetV = {v | v ∈ (0, 1),−A0/A1 ∈
pbrU (v)}. By the inductive hypothesis, V consists of at most
2(j − 1) + 4 segments and isolated points.

For any v ∈ V , we have B(W, V)|V =v = [0, 1]: no matter
what W plays, as long as U is playing −A0/A1, V is content
to play v. On the other hand, for any v ∈ (0, 1) \ V we have
B(W, V)|V =v = ∅: when V plays v, U can only respond with
u �= −A0/A1, in which case V can benefit from switching to one
of the pure strategies.

To complete the description of B(W,V), it remains to analyze
the cases v = 0 and v = 1. The vertex V prefers to play 0 if
A1 > 0 and u ≤ −A0/A1, or A1 < 0 and u ≥ −A0/A1, or

103

A1 = 0 and A0 < 0. Assume for now that A1 > 0; the other
two cases can be treated similarly. In this case 0 ∈ pbrV (w) for
some w ∈ [0, 1] if and only if there exists a u ∈ pbrU (0) such that
u ≤ −A0/A1: if no such u exists, whenever V plays 0 either U ’s
response is not in pbrU (0) or V can improve its payoff by playing
1. Therefore, either B(W, V)|V =0 = [0, 1] or B(W, V)|V =0 = ∅.
Similarly, B(W, V)|V =1 is equal to either [0, 1] or ∅, depending on
pbrU (1).

Therefore, the set B(W, V) consists of at most 2j + 4 ≤ (j +
4)2 rectangles: B(W, V) ∩ [0, 1]×(0, 1) = [0, 1]×V contributes
at most 2j + 2 rectangles, and each of the sets B(W, V)|V =0 and
B(W, V)|V =1 contributes at most one rectangle. Similarly, its total
number of event points is at most 2j + 4: the only W -event points
are 0 and 1, each V -event point of B(W, V) is a V -event point of
B(V, U), and there are at most 2j + 2 of them.

• B1u + B0 �≡ 0, A1 = αB1, A0 = αB0 for some α ∈ R.

In this case, V is indifferent between 0 and 1 if and only if w =
α, or B1 �= 0 and u = −B0/B1 = −A0/A1. Similarly to the
previous case, we can show that B(W, V)∩[0, 1]×(0, 1) consists of
the rectangle {α}×[0, 1] and at most 2j + 2 rectangles of the form
[0, 1]×IV , where each IV corresponds to a connected component
of B(V, U)|U=−B0/B1 .

Furthermore, V prefers to play 0 if B1u + B0 > 0 and w ≥ α
or B1u + B0 < 0 and w ≤ α. Therefore, if B1u

∗ + B0 > 0
for some u∗ ∈ pbrU (0), then B(W, V)|V =0 contains [α, +∞) ∩
[0, 1] and if B1u

∗∗ + B0 < 0 for some u∗∗ ∈ pbrU (0), then
B(W, V)|V =0 contains [−∞, α] ∩ [0, 1]; if both u∗ and u∗∗ exist,
B(W, V)|V =0 = [0, 1]. The set B(W, V)|V =1 can be described in
a similar manner.

By the inductive hypothesis, B(V, U) has at most 2j + 2 event
points; as at least two of these are U -event points, it has at most
2j V -event points. Since each V -event point of B(W, V) is a V -
event point of B(V, U) and B(W, V) has at most 3 W -event points
(0, 1, and α), its total number of event points is at most 2j + 3 <
2j +4. Also, similarly to the previous case it follows that B(W, V)
consists of at most 2j + 4 < (j + 4)2 rectangles.

• B1u + B0 �≡ 0, α(B1u + B0) �≡ A1u + A0.

In this case, one can define the indifference function f(·) as
f(u) = A(u)

B(u)
= A1u+A0

B1u+B0
, where A(u) and B(u) never turn

into zero simultaneously. Observe that whenever w = f(u) and
u, w ∈ [0, 1], V is indifferent between playing 0 and 1. For any
A ⊆ [0, 1]2, we define a function f̂V by f̂V (A) = {(f(u), v) |
(v, u) ∈ A}; note that f̂V maps subsets of [0, 1]2 to subsets of
R×[0, 1]. Sometimes we drop the subscript V when it is clear
from the context.

LEMMA 1. For any (w, v) ∈ [0, 1]×(0, 1) we have (w, v) ∈
B(W, V) if and only if there exists a u ∈ [0, 1] such that (v, u) ∈
B(V, U) and w = f(u).

PROOF. Fix an arbitrary v ∈ (0, 1). Suppose that U plays some
u ∈ pbrU (v), w = f(u) satisfies w ∈ [0, 1], and W plays w.
There exists a vector of strategies v1, . . . , vj−1 = u, vj = v such
that for each Vk, k < j, its strategy is a best response to its neigh-
bours’ strategies. Since w = f(u), V is indifferent between play-
ing 0 and 1; in particular, it can play v. Therefore, if we define
vj+1 = w, the vector of strategies (v1, . . . , vj+1) will satisfy the
conditions in the definition of potential best response, i.e., we have
v ∈ pbrV (w).

Conversely, suppose v ∈ pbrV (w) for some w ∈ [0, 1], v �=
0, 1. Then there exists a vector of strategies v1, . . . , vj−1, vj =
v, vj+1 = w such that for each Vk, k ≤ j, its strategy is a best

response to its neighbours’ strategies. As v �= 0, 1, V is, in fact,
indifferent between playing 0 and 1, which is only possible if w =
f(vj−1). Choose u = vj−1; by construction, u ∈ pbrU (v).

Lemma 1 describes the situations when V is indifferent between
playing 0 and playing 1. However, to fully characterize B(W, V),
we also need to know when V prefers a pure strategy.

Define f̂(0) = ∪u∈pbrU (0)Ru, where

Ru =

�
[f(u), +∞)×{0} if B(u) > 0,

(−∞, f(u)]×{0} if B(u) < 0.

and f̂(1) = ∪u∈pbrU (1)R
′
u, where

R′
u =

�
[f(u), +∞)×{1} if B(u) < 0,
(−∞, f(u)]×{1} if B(u) > 0.

LEMMA 2. For any w ∈ [0, 1], we have (w, 0) ∈ f̂(0) if
and only if 0 ∈ pbrV (w) and (w, 1) ∈ f̂(1) if and only if 1 ∈
pbrV (w).

PROOF. Consider an arbitrary u0 ∈ pbrU (0). If B(u0) > 0,
for u = u0 the inequality P 0 ≥ P 1 is equivalent to w ≥ f(u0).
Therefore, when U plays u0 and W plays w, w ≥ f(u0), V prefers
to play 0; as u0 ∈ pbrU (u), it follows that 0 ∈ pbrV (w). The
argument for the case B(u0) < 0 is similar.

Conversely, if 0 ∈ pbrV (w) for some w ∈ [0, 1], there ex-
ists a vector (v1, . . . , vj−1, vj = 0, vj+1 = w) such that for each
Vk, k ≤ j, Vk plays vk, and this strategy is a best response to
the strategies of Vk’s neighbours. Note that for any such vec-
tor we have vj−1 ∈ pbrU (0). By way of contradiction, assume
(w, 0) �∈

�
u∈pbrU (0) Ru. Then it must be the case that for any

u0 ∈ pbrU (0) either f(u0) < w and Ru0 = (−∞, f(u0)]×{0}
or f(u0) > w and Ru0 = [f(u0), +∞)×{0}. In both cases,
when V plays 0, U plays u0, and V plays w, the inequality between
f(u0) and w is equivalent to P0 < P 1, i.e., V would benefit from
switching to 1.

The argument for f̂(1) is similar.

Together, Lemma 1 and Lemma 2 completely describe the set
B(W, V): we have

B(W, V) =
�
f̂(0) ∪ f̂(B(V, U)) ∪ f̂(1)

��
[0, 1]2.

It remains to show that B(W, V) can be represented as a union of
at most (j + 4)2 rectangles, has at most 2j + 4 event points, and
can be computed in O(j2) time.

Set u∗ = −B0/B1. 2 Consider an arbitrary rectangle R =
[v1, v2]×[u1, u2] ⊆ B(V, U). If u∗ �∈ [u1, u2], the function f(·) is
continuous on [u1, u2] and hence f̂(R) = [fmin, fmax]×[v1, v2],
where

fmin = min{f(u1), f(u2)}, fmax = max{f(u1), f(u2)},

i.e., in this case f̂(R) ∩ [0, 1]2 consists of a single rectangle.
Now, suppose that R is intersected by the line [0, 1]×{u∗}; as

was noted earlier, there are at most 2j+2 such rectangles. Suppose
that limu→u∗− f(u) = +∞; as f(·) is a fractional linear function,
this implies that limu→u∗+ f(u) = −∞ and also f(u1) > f(u2).
Since f(·) is continuous on [u1, u

∗) and (u∗, u2], it is easy to see
that

f̂([v1, v2]×[u1, u
∗)) = [f(u1), +∞)×[v1, v2]

2The case B1 = 0 causes no special problems. For completeness,
set u∗ to be any value outside of [0, 1] in this case.

104

v

u v

u*

1

f(0) f(a)f(b) f(1)

a

b

(0, 0) w

v

2v

(0, 0)

 1

 1

 1

v 2v 1 1

Figure 4: f is increasing on (−∞, u∗) and (u∗, +∞).

and

f̂([v1, v2]×(u∗, u2]) = (−∞, f(u2)]×[v1, v2],

i.e., in this case f̂(R) ∩ [0, 1]2 consists of at most two rectangles.
The case limu→u∗− f(u) = −∞ is similar.

As f̂(B(V, U)) =
�

R⊂B(V,U) f̂(R), it follows that f̂(B(V, U))

consists of at most (j + 3)2 + 2j + 2 rectangles. Also, it is easy
to see that both f̂(0) and f̂(1) consist of at most 2 line segments
each. We conclude that B(W, V) can be represented as a union of
at most (j + 3)2 + 2j + 6 < (j + 4)2 rectangles.

Moreover, if v is a V -event point of B(W, V), then v is a V -
event point of B(V, U) (this includes the cases v = 0 and v = 1,
as 0 and 1 are V -event points of B(V, U)) and if w is a W -event
point of B(W,V), then either w = 0 or w = 1 or there exists some
u ∈ [0, 1] such that w = f(u) and u is a U -event point of B(V, U).
Hence, B(W,V) has at most 2j + 4 event points.

The O(j2) bound on the running time in Theorem 5 follows from
our description of the algorithm. The O(n3) bound on the overall
running time for finding a Nash equilibrium (and a representation
of all Nash equilibria) follows.

4.1 Finding a Single Nash Equilibrium in O(n2)

Time
The upper bound on the running time of our algorithm is tight, at

least assuming the straightforward implementation, in which each
B(Vj+1, Vj) is stored as a union of rectangles: it is not hard to
construct an example in which the size of B(Vj+1, Vj) is Ω(j2).

However, in some cases it is not necessary to represent all Nash
equilibria; rather, the goal is to find an arbitrary equilibrium of the
game. In this section, we show that this problem can be solved in
quadratic time, thus obtaining a proof of Theorem 1. Our solution
is based on the idea of [9], i.e., working with subsets of the best
response policies rather than the best response policies themselves;
following [9], we will refer to such subsets as breakpoint policies.
While it is not always possible to construct a breakpoint policy as
defined in [9], we show how to modify this definition so as to ensure
that a breakpoint policy always exists; moreover, we prove that for
a path graph, the breakpoint policy of any vertex can be stored in
a data structure whose size is linear in the number of descendants
this vertex has.

Definition 3. A breakpoint policy B̂(V, U) for a vertex U whose
parent is V is a non-self-intersecting curve of the form

X1 ∪ Y1 ∪ · · · ∪ Ym−1 ∪ Xm,

where Xi = [vi−1, vi]×{ui}, Yi = {vi}×[ui, ui+1] and ui, vi ∈
[0, 1] for i = 0, . . . , m. We say that a breakpoint policy is valid if
v0 = 0, vm = 1, and B̂(V, U) ⊆ B(V, U).

We will sometimes abuse notation by referring to B̂(V, U) as a
collection of segments Xi, Yi rather than their union. Note that

we do not require that vi ≤ vi+1 or ui ≤ ui+1; consequently,
in any argument involving breakpoint policies, all segments are to
be treated as directed segments. Observe that any valid breakpoint
policy B̂(V, U) can be viewed as a continuous 1–1 mapping γ(t) =
(γv(t), γu(t)), γ : [0, 1] �→ [0, 1]2, where γ(0) = (0, u1), γ(1) =
(1, um) and there exist some t0 = 0, t1, . . . , t2m−2 = 1 such that
{γ(t) | t2k ≤ t ≤ t2k+1} = Xk+1, {γ(t) | t2k+1 ≤ t ≤
t2k+2} = Yk+1.

As explained in Section 3, we can use a valid breakpoint policy
instead of the best response policy during the downstream pass, and
still guarantee that in the end, we will output a Nash equilibrium.
Theorem 6 shows that one can inductively compute valid break-
point policies for all vertices on the path; the proof of this theorem
can be found in the full version of this paper [6].

THEOREM 6. For any V = Vj , one can find in polynomial time
a valid breakpoint policy B̂(W,V) that consists of at most 2j + 1
segments.

5. NASH EQUILIBRIA ON GRAPHS WITH
MAXIMUM DEGREE 2

In this section we show how the algorithm for paths can be ap-
plied to solve a game on any graph whose vertices have degree at
most 2. A graph having maximum degree 2 is, of course, a union
of paths and cycles. Since each connected component can be han-
dled independently, to obtain a proof of Theorem 2, we only need
to show how to deal with cycles.

Given a cycle with vertices V1, . . . , Vk (in cyclic order), we make
two separate searches for a Nash equilibrium: first we search for a
Nash equilibrium where some vertex plays a pure strategy, then we
search for a fully mixed Nash equilibrium, where all vertices play
mixed strategies. For i ≤ k let vi denote the probability that Vi

plays 1.
The first search can be done as follows. For each i ∈ {1, . . . , k}

and each b ∈ {0, 1}, do the following.

1. Let P be the path (Vi+1, Vi+2 . . . , Vk, V1, . . . , Vi−1, Vi)

2. Let payoff to Vi+1 be based on putting vi = b (so it depends
only on vi+1 and vi+2.)

3. Apply the upstream pass to P

4. Put vi = b; apply the downstream pass For each vertex, Vj ,
keep track of all possible mixed strategies vj

5. Check whether Vi+1 has any responses that are consistent
with vi = b; if so we have a Nash equilibrium. (Otherwise,
there is no Nash equilibrium of the desired form.)

For the second search, note that if Vi plays a mixed strategy,
then vi+1 and vi−1 satisfy an equation of the form vi+1 = (A0 +
A1vi−1)/(B0 + B1vi−1). Since all vertices in the cycle play
mixed strategies, we have vi+3 = (A′

0+A′
1vi+1)/(B

′
0+B′

1vi+1).
Composing the two linear fractional transforms, we obtain vi+3 =
(A′′

0 +A′′
1vi−1)/(B

′′
0 +B′′

1 vi−1). for some new constants A′′
0 , A′′

1 ,
B′′

0 , B′′
1 .

Choose any vertex Vi. We can express vi in terms of vi+2, then
vi+4, vi+6 etc. and ultimately vi itself to obtain a quadratic equa-
tion (for vi) that is simple to derive from the payoffs in the game. If
the equation is non-trivial it has at most 2 solutions in (0, 1). For an
odd-length cycle all other vj ’s are derivable from those solutions,
and if a fully mixed Nash equilibrium exists, all the vj should turn
out to be real numbers in the range (0, 1). For an even-length cy-
cle, we obtain two quadratic equations, one for vi and another for

105

vi+1, and we can in the same way test whether any solutions to
these yield values for the other vj , all of which lie in (0, 1).

If the quadratic equation is trivial, there is potentially a contin-
uum of fully-mixed equilibria. The values for vi that may occur in a
Nash equilibrium are those for which all dependent vj values lie in
(0, 1); the latter condition is easy to check by computing the image
of the interval (0, 1) under respective fractional linear transforms.

6. FINDING EQUILIBRIA ON AN (ARBI-
TRARY) TREE

For arbitrary trees, the general structure of the algorithm remains
the same, i.e., one can construct a best response policy (or, alter-
natively, a breakpoint policy) for any vertex based on the best re-
sponse policies of its children. We assume that the degree of each
vertex is bounded by a constant K, i.e., the payoff matrix for each
vertex is of size O(2K).

Consider a vertex V whose children are U1, . . . , Uk and whose
parent is W ; the best response policy of each Uj is B(V, Uj).
Similarly to the previous section, we can compute V ’s expected
payoffs P 0 and P 1 from playing 0 or 1, respectively. Namely,
when each of the Uj plays uj and W plays w, we have P0 =
L0(u1, . . . , uk, w), P 1 = L1(u1, . . . , uk, w), where the func-
tions L0(·, . . . , ·), L1(·, . . . , ·) are linear in all of their arguments.
Hence, the inequality P 0 > P 1 can be rewritten as

wB(u1, . . . , uk) > A(u1, . . . , uk),

where both A(·, . . . , ·) and B(·, . . . , ·) are linear in all of their ar-
guments. Set �u = (u1, . . . , uk) and define the indifference func-
tion f : [0, 1]k �→ [0, 1] as f(�u) = A(�u)/B(�u); clearly, if each
Uj plays uj , W plays w and w = f(�u), V is indifferent between
playing 0 and 1. For any X = X1 × · · ·×Xk , where Xi ⊆ [0, 1]2

define

f̂(X) = {(f(�u), v) | (v, ui) ∈ Xi, i = 1, . . . , k}

Also, set

f̂(0) = {(w, 0) | ∃�u s.t. ui ∈ pbrUi
(0) and wB(�u) ≥ A(�u)}

and

f̂(1) = {(w, 1) | ∃�u s.t. ui ∈ pbrUi
(1) and wB(�u) ≤ A(�u)}.

As in previous section, we can show that B(W, V) is equal to�
f̂(0) ∪ f̂(B(V, U1) × · · · × B(V, Uk)) ∪ f̂(1)

��
[0, 1]2;

also, any path from w = 0 to w = 1 that is a subset of B(W, V)
constitutes a valid breakpoint policy.

6.1 Exponential Size Breakpoint Policy
While the algorithm of Section 4 can be generalized for bounded-

degree trees, its running time is no longer polynomial. In fact, the
converse is true: we can construct a family of trees and payoff ma-
trices for all players so that the best response policies for some of
the players consist of an exponential number of segments. More-
over, in our example the breakpoint policies coincide with the best
response policies, which means that even finding a single Nash
equilibrium using the approach of [8, 9] is going to take expo-
nentially long time. In fact, a stronger statement is true: for any
polynomial-time two-pass algorithm (defined later) that works with
subsets of best response policies for this graph, we can choose the
payoffs of the vertices so that the downstream pass of this algorithm
will fail.

S 1

1T

S n−1
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

S S

T T T2 n−1 n

2 n

1 n−12 n
VVVVV 0

Figure 5: The tree Tn that corresponds to exponential-size
breakpoint policy.

In the rest of this subsection, we describe this construction. Con-
sider the tree Tn given by Figure 5; let Vn be the root of this tree.
For every k = 1, . . . , n, let the payoffs of Sk and Tk be the same as
those for the U and V described in Section 3; recall that the break-
point policies for U and V are shown in Figure 2. It is not hard to
see that the indifference function for Tk is given by f(s) = .8s+.1.

The payoff of V0 is 1 if V1 selects the same action as V0 and 0
otherwise; V0’s best response policy is given by Figure 6.

LEMMA 3. Fix k < n, and let u, t, v, and w denote the strate-
gies of Vk−1, Tk, Vk, and Vk+1, respectively. Suppose that Vk

prefers playing 0 to playing 1 if and only if .5t + .1u + .2 > w.
Then B(Vk+1, Vk) consists of at least 3k segments. Moreover,

{(v, w) | (v, w) ∈ B(Vk+1, Vk), 0 ≤ w ≤ .2} = [0, .2]×{0}

and

{(v, w) | (v, w) ∈ B(Vk+1, Vk), .8 ≤ w ≤ 1} = [.8, 1]×{1}.

PROOF. The proof proceeds by induction on k. For k = 0, the
statement is obvious. Now, suppose it is true for B(Vk, Vk−1).

One can view B(Vk+1, Vk) as a union of seven components:
f̂(0) ∩ [0, 1]×{0}, f̂(1) ∩ [0, 1]×{1}, and five components that
correspond to the segments of B(Vk, Tk). Let us examine them in
turn.

To describe f̂(0)∩ [0, 1]×{0}, note that f(u, t) = .5t+ .1u+ .2
is monotone in t and u and satisfies f(0, 0) = .2. Also, we have
pbrVk−1

(0) = {0} and pbrTk
(0) = {0}. For any w ∈ [0, 1]

we have f(0, 0) ≥ w if and only if w ∈ [0, .2]. We conclude
that f̂(0) ∩ [0, 1]×{0} = [0, .2]×{0}. Similarly, it follows that
f̂(1) ∩ [0, 1]×{1} = [.8, 1]×{1}.

Define

S1 = {(f(u, 0), v) | (v, u) ∈ B(Vk, Vk−1) ∩ [0, .9]×[0, 1]},
S2 = {(f(u, .5), v) | (v, u) ∈ B(Vk, Vk−1) ∩ [.1, .9]×[0, 1]},
S3 = {(f(u, 1), v) | (v, u) ∈ B(Vk, Vk−1) ∩ [.1, 1]×[0, 1]};

these sets correspond to horizontal segments of B(Vk, Tk).
It is easy to see that S1, S2, S3 ⊂ B(Vk+1, Vk). Since f is a

continuous function, the number of segments in each Si is at least
the number of segments in B(Vk, Vk−1)∩[.1, .9]×[0, 1], which is at
least 3k−1 by induction hypothesis. Moreover, as f is monotone in
u and f(1, 0) < f(0, .5) < f(1, .5) < f(0, 1), all Si, i = 1, 2, 3,
are disjoint.

Finally, the set B(Vk+1, Vk) contains two segments that corre-
spond to the vertical segments of B(Vk, Tk), i.e.,

S4 = {(f(0, t), .1) | t ∈ [.5, 1]) = [.45, .7]×{.1} and

S5 = {(f(1, t), .9) | t ∈ [0, .5]) = [.3, .55]×{.9}.

Clearly, S4 connects S2 and S3, S5 connects S1 and S2, and S4

and S5 do not intersect each other. We conclude that B(Vk+1, Vk)

106

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������������������

1

1

10.8

1

1

0.9

0.1

V

V0.5 0.2

V

V
21

10

Figure 6: Breakpoint policies for V0 and V1.

is a continuous line that consist of at least 3k segments and satisfies
the condition of the lemma.

To complete the construction, we need to show that we can de-
sign the payoff matrix for Vk so that it prefers playing 0 to playing
1 if and only if .5t + .1u + .2 > w. To this end, we prove a
more general statement, namely, that the indifference function of
a vertex can be an arbitrary fractional multilinear function of its
descendants’ strategies.

We say that a function of k variables is multilinear if it can be
represented as a sum of monomials and each of these monomials
is linear in all of its variables. Note that this definition is different
from a more standard one in that we do not require that all of the
monomials have the same degree. Recall that the payoffs of a ver-
tex with k + 1 neighbours are described by matrices P0 and P 1,
where P j

i0i1...ik
is the payoff that V gets when it plays j, and its

neighbours play i0, . . . , ik, and j, i0, . . . , ik ∈ {0, 1}. Let P [j] =
P [j](w, u1, . . . , uk) be the expected payoff obtained by this ver-
tex when it plays j and the (mixed) strategies of its neighbours
are given by a vector (w, u1, . . . , uk), i.e., P [j] = E[P j

i0i1...ik
]

where i0, . . . , ik are independent Bernoulli random variables, each
of which is 1 with the respective probabilities w, u1, . . . , uk.

LEMMA 4. Given a tree vertex V whose parent is W and whose
children are U1, . . . , Uk , for any function f = f(u1, . . . , uk) that
can be represented as a ratio of two multilinear functions f1, f2,
i.e., f = f1(u1,...,uk)

f2(u1,...,uk)
, there exist payoff matrices P 0 and P 1 for V

such that

P [0] − P [1] = wf2(u1, . . . , uk) − f1(u1, . . . , uk).

The proof of this lemma is based on the fact that every monomial
of the form as(u0)

s0 . . . (uk)sk , s1, . . . , sk ∈ {0, 1}, can be rep-
resented as�

t=t0...tk∈Σk+1

Ct(u0)
t0(1 − u0)

1−t0 . . . (uk)tk(1 − uk)1−tk

for some Ct, t ∈ {0, 1}k+1. The details can be found in the full
version of this paper [6].

6.2 Irreducibility of the Best Response Policy
for Tn

While the best response policy constructed in the previous sub-
section has exponential size, it is not clear à priori that it is nec-
essary to keep track of all of its line segments rather than to focus
on a small subset of these segments. However, it turns out that for
two-pass algorithms such as the algorithm of [8], the best response
policy cannot be simplified. More precisely, we say that an algo-
rithm A is a two-pass algorithm if

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��

0.2 0.8

0.9

1

0.1

1

V

V

2

3

S 1 S S

S

S

1

T 0

T

2 3

4

5

Figure 7: Breakpoint policy for V2.

• A consists of an upstream pass and a downstream pass.

• During the upstream pass, for each vertex V with parent W ,
A constructs a set BB(W,V) ⊆ B(W, V). This set is pro-
duced from the sets {BB(V, U) | U is a child of V } by ap-
plying the procedure from the beginning of Section 6 (sub-
stituting BB(V, Uj) for B(V, Uj) for all children Uj of V) ,
and then possibly omitting some of the points of the resulting
set (which is then stored explicitly).

• The downstream pass is identical to the downstream pass
of [8] as described in Section 2 except that it operates on
the sets BB(W,V) rather than on the sets B(W, V).

Theorem 7 demonstrates that any two-pass algorithm will fail
during the downstream pass on Tn if there is an index j such that
the set BB(Vj+1, Vj) omits any interior point of any of the (at least
3j) segments of B(Vj+1, Vj). This implies Theorem 3.

THEOREM 7. For any two-pass algorithm A for which there
exists an index j, j ∈ [1, n/4], a segment S of B(Vj , Vj−1), and an
interior point (x, y) of S such that BB(Vj , Vj−1) does not contain
(x, y), we can choose payoff matrices of the vertices Vj , . . . , Vn so
that the downstream pass of A will fail, and, additionally, payoffs
to V4j , . . . , Vn are identically 0.

We sketch the proof of Theorem 7; the details can be found in
the full version of this paper [6]. We proceed by induction. For
j = 1, the argument is similar to that in Section 3. For the inductive
step, the main idea is that we can “zoom in” on any part of a best
response policy (including the part that was omitted!) by using an
appropriate indifference function; this allows us to reduce the case
j = j0 to j = j0 − 1.

7. PPAD-COMPLETENESS OF BOUNDED
PATHWIDTH GRAPHICAL GAMES

In the previous section, we showed that for graphical games on
trees that are almost but not quite paths, two-pass algorithms fail to
find Nash equilibria in polynomial time. We next show that a milder
path-like graph property allows us to construct graphical games for
which it is unlikely that any polynomial-time algorithm will find
Nash equilibria.

7.1 Pathwidth
A path decomposition of a graph G = (V, E) is a sequence of

subset Si(V) ⊆ V such that for each edge (v, v′) ∈ E, v, v′ ∈
Si(V) for some i, and furthermore, for each v ∈ V , if v ∈ Si(V)
and v ∈ Sj(V) for j > i, then v ∈ Sk(V) for all i ≤ k ≤ j. The
path decomposition has width k if all sets Si(V) have cardinality
at most k + 1. The pathwidth of G is the minimum width of any
path decomposition of G.

107

Pathwidth is a restriction of treewidth (in which one would seek
a tree whose vertices were the sets Si(V), and the sets contain-
ing some vertex would have to form a subtree). For any constant
k it can be decided in polynomial time whether a graph has path-
width (or treewidth) k. Furthermore many graph-theoretic prob-
lems seem easier to solve in polynomial time, when restricted to
fixed treewidth, or pathwidth, graphs, see [1] for an overview. Note
that a path has pathwidth 1 and a cycle has pathwidth 2.

7.2 PPAD-completeness
We review some basic definitions from the computational com-

plexity theory of search problems. A search problem associates
any input (here, a graphical game) with a set of solutions (here, the
Nash equilibria of the input game), where the description length of
any solution should be polynomially bounded as a function of the
description length of its input. In a total search problem, there is
a guarantee that at least one solution exists for any input. Nash’s
theorem assures us that the problem of finding Nash equilibria is
total.

A reduction from search problem S to problem S′ is a mecha-
nism that shows that any polynomial-time algorithm for S′ implies
a polynomial-time algorithm for S . It consists of functions f and
g, computable in polynomial time, where f maps inputs of S to
inputs of S ′, and g maps solutions of S′ to solutions of S , in such a
way that if IS is an input to S , and SS′ is a solution to f(IS), then
g(SS′) is a solution to IS .

Observe that total search problems do not allow the above re-
ductions from problems such as CIRCUIT SAT (where the input is
a boolean circuit, and solutions are input vectors that make the out-
put true) due to the fact that CIRCUIT SAT and other NP-complete
problems have inputs with empty solution sets. Instead, recent
work on the computational complexity of finding a Nash equilib-
rium [7, 4, 5, 2, 3] has related it to the following problem.

Definition 4. END OF THE LINE. Input: boolean circuits S and
P , each having n input and n output bits, where P (0n) = 0n and
S(0n) �= 0n. Solution: x ∈ {0, 1}n such that S(x) = x, or
alternatively x ∈ {0, 1}n such that P (S(x)) �= x.

S and P can be thought of as standing for “successor” and “pre-
decessor”. Observe that by computing Si(0n) (for i = 0, 1, 2, . . .)
and comparing with P (Si+1(0n)), we must eventually find a so-
lution to END OF THE LINE. END OF THE LINE characterizes the
complexity class PPAD (standing for parity argument on a graph,
directed version), introduced in Papadimitriou [11], and any search
problem S is PPAD-complete if END OF THE LINE reduces to
S . Other PPAD-complete problems include the search for a ham
sandwich hyperplane, and finding market equilibria in an exchange
economy (see [11] for more detailed descriptions of these prob-
lems).

3-GRAPHICAL NASH is the problem of finding a Nash equilib-
rium for a graphical game whose graph has degree 3. Daskalakis et
al. [4] show PPAD-completeness of 3-GRAPHICAL NASH by a re-
duction from 3-DIMENSIONAL BROUWER, introduced in [4] and
defined as follows.

Definition 5. 3-DIMENSIONAL BROUWER. Input: a circuit C
having 3n input bits and 2 output bits. The input bits define a
“cubelet” of the unit cube, consisting of the 3 coordinates of its
points, given to n bits of precision. The output represents one of
four colours assigned by C to a cubelet. C is restricted so as to
assign colour 1 to cubelets adjacent to the (y, z)-plane, colour 2 to
remaining cubelets adjacent to the (x, z)-plane, colour 3 to remain-
ing cubelets on the (x, y)-plane, and colour 0 to all other cubelets
on the surface of the unit cube.

A solution is a panchromatic vertex, a vertex adjacent to cubelets
that have 4 distinct colours.

The reason why a solution is guaranteed to exist, is that an as-
sociated Brouwer function φ can be constructed, i.e. a continuous
function from the unit cube to itself, such that panchromatic ver-
tices correspond to fixpoints of φ. Brouwer’s Fixpoint Theorem
promises the existence of a fixpoint.

The proof of Theorem 4 uses a modification of the reduction
of [4] from 3-DIMENSIONAL BROUWER to 3-GRAPHICAL NASH.
To prove the theorem, we begin with some preliminary results as
follows. Each player has 2 actions, denoted 0 and 1. For a player
at vertex V let p[V] denote the probability that the player plays 1.

LEMMA 5. [7] There exists a graphical game Gshift of fixed
size having vertices V , V ′ where p[V ′] is the fractional part of
2p[V].

COROLLARY 1. There exists a graphical game Gn−shift of size
Θ(n) of constant pathwidth, having vertices V , Vn where p[Vn] is
the fractional part of 2n.p[V].

PROOF. Make a chain of n copies of Gshift in Lemma 5. Each
subset of vertices in the path decomposition is the vertices in a copy
of Gshift.

Let In(x) denote the n-th bit of the binary expansion of x, where
we interpret 1 as true and 0 as false. The following uses gadgets
from [7, 4].

COROLLARY 2. There exists k such that for all n, and for all
n1, n2, n3 ≤ n, there exists a graphical game of size O(n) with
pathwidth k, having vertices V1, V2, V3 where p[V3] = p[V1] +
2−n3(In1p[V1] ∧ In2p[V2]).

PROOF OF THEOREM 4. Let C be the boolean circuit describ-
ing an instance of 3-DIMENSIONAL BROUWER. Let g1, . . . , gp(n)

be the gates of C indexed in such a way that the input(s) to any gate
are the output(s) of lower-indexed gates. g1, . . . , g3n will be the 3n
inputs to C.

All players in the graphical game G constructed in [4] have 2
actions denoted 0 and 1. The probability that V plays 1 is denoted
p[V]. G has 3 players Vx, Vy and Vz for which p[Vx], p[Vy] and
p[Vz] represent the coordinates of a point in the unit cube. G is
designed to incentivize Vx, Vy and Vz to adjust their probabilities
in directions given by a Brouwer function which is itself specified
by the circuit C. In a Nash equilibrium, p[Vx], p[Vy] and p[Vz]
represent coordinates of a fixpoint of a function that belongs to the
class of functions represented by 3-DIMENSIONAL BROUWER.

For 1 ≤ i ≤ p(n) we introduce a vertex V
(i)

C such that for

1 ≤ j ≤ i, Ij(p[V
(i)

C]) is the output of gate gj ; for i < j ≤ p(n),

Ij(p[V
(i)

C]) is 0.

Construct V
(i)

C from V
(i−1)

C using Corollary 2. Let G(i) be the
graphical game that does this. Let S1(G(i)), . . . , Sn(G(i)) be a
length n path decomposition of G(i), where V

(i−1)
C ∈ S1(G(i))

and V
(i)

C ∈ Sn(G(i)).
Then, a path decomposition of ∪1≤i≤p(n)G(i) is obtained by tak-

ing the union of the separate path decompositions, together with
Sn(G(i−1)) ∪ S1(G(i)) for 2 ≤ i ≤ p(n).

Let GC be the above graphical game that simulates C. GC has
3n inputs, consisting of the first n bits of the binary expansions of
p[Vx], p[Vy] and p[Vz]. Similarly to [4], the output of GC affects
Vx, Vy and Vz as follows. Colour 0 incentivizes Vx, Vy and Vz

108

to adjust their probabilities p[Vx], p[Vy] and p[Vz] in the direc-
tion (−1,−1,−1); colour 2 incentivizes them to move in direction
(1, 0, 0); colour 2, direction (0, 1, 0); colour 3, direction (0, 0, 1).

We need to ensure that at points at the boundaries of adjacent
cubelets, the change of direction will be approximately the aver-
age of directions of surrounding points. That way, all four col-
ors/directions must be nearby so that they can cancel each other out
(and we are at a panchromatic vertex). This is achieved using the
same trick as [4], in which we make a constant number M of copies
of GC , which differ in that each copy adds a tiny displacement vec-
tor to its copies of p[Vx], p[Vy] and p[Vz] (which are derived from
the original using the addition gadget of [7]). Using the addition
and multiplication gadgets of [7] we average the directions and add
a small multiple of this average to (p[Vx], p[Vy],p[Vz]).

At a Nash equilibrium the outputs of each copy will cancel each
other out. The pathwidth of the whole game is at most M times the
pathwidth GC .

8. OPEN PROBLEMS
The most important problem left open by this paper is whether

it is possible to find a Nash equilibrium of a graphical game on a
bounded-degree tree in polynomial time. Our construction shows
that any two-pass algorithm that explicitly stores breakpoint poli-
cies needs exponential time and space. However, it does not pre-
clude the existence of an algorithm that is based on a similar idea,
but, instead of computing the entire breakpoint policy for each ver-
tex, uses a small number of additional passes through the graph
to decide which (polynomial-sized) parts of each breakpoint pol-
icy should be computed. In particular, such an algorithm may be
based on the approximation algorithm of [8], where the value of ε
is chosen adaptively.

Another intriguing question is related to the fact that the graph
for which we constructed an exponential-sized breakpoint policy
has pathwidth 2, while our positive results are for a path, i.e., a
graph of pathwidth 1. It is not clear if for any bounded-degree
graph of pathwidth 1 the running time of (the breakpoint policy-
based version of) our algorithm will be polynomial. In particular,
it is instructive to consider a “caterpillar” graph, i.e., the graph that
can be obtained from Tn by deleting the vertices S1, . . . , Sn. For
this graph, the best response policy of a vertex Vk in the “spine”
of the caterpillar is obtained by combining the best response pol-
icy of its predecessor on the spine Vk−1 and its other child Tk;
since the latter is a leaf, its best response policy is either trivial
(i.e., [0, 1]2, [0, 1]×{0}, or [0, 1]×{1}) or consists of two horizon-
tal segments and one vertical segment of the form {α}×[0, 1] that
connects them. Assuming for convenience that

B(Vk, Tk) = [0, α]×{0} ∪ {α}×[0, 1] ∪ [α, 1]×{1},

and f is the indifference function for Vk, we observe that the best
response policy for Vk consists of 5 components: f̂(0), f̂(1), and
three components that correspond to [0, α]×{0}, {α}×[0, 1], and
[α, 1]×{1}.

Hence, one can think of constructing B(Vk+1, Vk) as the fol-
lowing process: turn B(Vk, Vk−1) by π/2, cut it along the (now
horizontal) line vk = α, apply a fractional linear transform to the
horizontal coordinate of both parts, and reconnect them using the
image of the segment {α}×[0, 1] under f . This implies that the
problem of bounding the size of the best response policy (or, alter-
natively, the breakpoint policy), can be viewed as a generalization
of the following computational geometry problem, which we be-
lieve may be of independent interest:

PROBLEM 1. Given a collection of axis-parallel segments in
R2, consider the following operation: pick an axis-parallel line
li (either vertical or horizontal), cut the plane along this line, and
shift one of the resulting two parts by an arbitrary amount δi; as a
result, some segments will be split into two parts. Reconnect these
parts, i.e., for each segment of the form [a, b]×{c} that was trans-
formed into [a, t] × {c + δi} and [t, b] × {c}, introduce a segment
{t}×[c, c+δi]. Is it possible to start with the segment [0, 1] and af-
ter n operations obtain a set that cannot be represented as a union
of poly(n) line segments? If yes, can it be the case that in this set,
there is no path with a polynomial number of turns that connects
the endpoints of the original segment?

It turns out that in general, the answer to the first question is
positive, i.e., after n steps, it is possible to obtain a set that consists
of Θ(cn) segments for some c > 0. This implies that even for
a caterpillar, the best response policy can be exponentially large.
However, in our example (which is omitted from this version of
the paper due to space constraints), there exists a polynomial-size
path through the best response policy, i.e., it does not prove that
the breakpoint policy is necessarily exponential in size. If one can
prove that this is always the case, it may be possible to adapt this
proof to show that there can be an exponential gap between the
sizes of best response policies and breakpoint policies.

9. REFERENCES
[1] H. Bodlaender and T. Kloks. Efficient and constructive

algorithms for the pathwidth and treewidth of graphs. Journal
of Algorithms, 21:358–402, 1996.

[2] X. Chen and X. Deng. 3-NASH is PPAD-complete. Technical
Report TR-05-134, Electronic Colloquium in Computational
Complexity, 2005.

[3] X. Chen and X. Deng. Settling the complexity of 2-player
Nash equilibrium. Technical Report TR-05-140, Electronic
Colloquium in Computational Complexity, 2005.

[4] C. Daskalakis, P. Goldberg, and C. Papadimitriou. The
complexity of computing a Nash equilibrium. In Proceedings
of the 38th ACM Symposium on Theory of Computing, 2006.

[5] C. Daskalakis and C. Papadimitriou. Three-player games are
hard. Technical Report TR-05-139, Electronic Colloquium in
Computational Complexity, 2005.

[6] E. Elkind, L. Goldberg, and P. Goldberg. Nash equilibria in
graphical games on trees revisited. Technical Report
TR-06-005, Electronic Colloquium in Computational
Complexity, 2006.

[7] P. Goldberg and C. Papadimitriou. Reducibility among
equilibrium problems. In Proceedings of the 38th ACM
Symposium on Theory of Computing, 2006.

[8] M. Kearns, M. Littman, and S. Singh. Graphical models for
game theory. In Proceedings of the 17th Conference on
Uncertainty in Artificial Intelligence, 2001.

[9] M. Littman, M. Kearns, and S. Singh. An efficient exact
algorithm for singly connected graphical games. In
Proceedings of the 15th Annual Conference on Neural
Information Processing Systems, 2001.

[10] L. Ortiz and M. Kearns. Nash propagation for loopy
graphical games. In Proceedings of the 17th Annual
Conference on Neural Information Processing Systems, 2003.

[11] C. Papadimitriou. On the complexity of the parity argument
and other inefficient proofs of existence. J. Comput. Syst. Sci.,
48(3):498–532, 1994.

109

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

