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ABSTRACT
The stable marriage problem and its extensions have been
extensively studied, with much of the work in the literature
assuming that agents fully know their own preferences over
alternatives. This assumption however is not always prac-
tical (especially in large markets) and agents usually need
to go through some costly deliberation process in order to
learn their preferences. In this paper we assume that such
deliberations are carried out via interviews, where an in-
terview involves a man and a woman, each of whom learns
information about the other as a consequence. If everybody
interviews everyone else, then clearly agents can fully learn
their preferences. But interviews are costly, and we may
wish to minimize their use. It is often the case, especially
in practical settings, that due to correlation between agents’
preferences, it is unnecessary for all potential interviews to
be carried out in order to obtain a stable matching. Thus
the problem is to find a good strategy for interviews to be
carried out in order to minimize their use, whilst leading to a
stable matching. One way to evaluate the performance of an
interview strategy is to compare it against a näıve algorithm
that conducts all interviews. We argue however that a more
meaningful comparison would be against an optimal offline
algorithm that has access to agents’ preference orderings un-
der complete information. We show that, unless P=NP, no
offline algorithm can compute the optimal interview strat-
egy in polynomial time. If we are additionally aiming for a
particular stable matching (perhaps one with certain desir-
able properties), we provide restricted settings under which
efficient optimal offline algorithms exist.

Categories and Subject Descriptors
Theory of Computation [Algorithmic game theory and
mechanism design]: Algorithmic game theory

General Terms
Algorithms, Economics, Theory
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1. INTRODUCTION
Two-sided matching markets model many practical set-

tings, such as corporate hiring and university admission [21,
16]. The classical stable marriage problem is perhaps the
most widely studied matching problem in this class, where
participants are partitioned into two disjoint sets – men and
women – and each participant on one side of the market
wishes to be matched to a candidate from the other side of
the market, and has preferences over potential matches. A
matching is called stable if no pair of participants would
prefer to leave their assigned partners to pair with each
other. Gale and Shapley’s seminal paper [4] proposed a
polynomial-time algorithm for finding a stable matching.
The books by Knuth [13], Gusfield and Irving [6], Roth and
Sotomayor [21], and Manlove [16] provide excellent intro-
ductions and surveys.

A key assumption in much of this literature is that all mar-
ket participants know their full preference orderings. The
classical Gale-Shapley (GS) algorithm [4] and its variants
require participants’ preferences as input. This assumption
is reasonable in some settings. However, as markets grow
large (e.g., in the hospitals-residents matching market [20,
8] or college admission market [4, 22]) it quickly becomes
impractical for participants to assess their precise prefer-
ence rankings. Instead, participants usually start out with
some partial knowledge about their preferences and need
to perform some deliberation in order to learn their precise
preference ordering. In this paper we assume that delib-
erations are carried out via interviews, where an interview
is a unit operation that involves one agent from each side
of the market and is informative to both participants. For
example, in the hospitals-residents problem (which models
the entry-level labor market in which graduating medical
students, or residents, are seeking to be assigned to hospi-
tal posts), hospitals are likely to be able to identify their
“top-tier” residents, “second-tier” residents and so on, and in
order to rank the residents in each tier they need to inter-
view them. An interview between a hospital h and a resident
r yields information about the qualities of each party to the
other. Thus we initially assume that each agent’s preference
list is in general expressed in terms of a partial order, and af-
ter an agent has interviewed ` members of the opposite side
of the market, he/she has discovered enough information to
rank those elements in strict order.

In order to be able to use the GS algorithm to find a sta-
ble matching in this setting, a näıve solution is for each par-
ticipant to conduct all potential interviews and fully learn
their preferences. Interviews however are usually costly both



in terms of time, mental energy, and money, therefore we
wish to minimize their usage. Indeed, the näıve approach
may impose unnecessary deliberation. For example, in the
hospitals-residents problem, one expects some degree of cor-
relation across hospitals in the assessment of the most de-
sirable residents, and likewise residents are expected to have
correlated views (at least to some extent) on the desirabil-
ity of hospitals. Therefore, it is expected that more desir-
able residents get matched to more desirable hospitals and
so on. It is then not hard to see that it is wasted effort
if a top-tier resident is to interview low-tier hospitals, or a
second-tier resident is to interview top-tier hospitals. For
a concrete example, consider a setting with four residents
and four hospitals where each hospital can admit (at most)
one resident. Assume that residents r1 and r2 are top-tier
residents and r3 and r4 are second-tier residents. Likewise
assume that h1 and h2 are top-tier hospitals and h3 and h4

are second-tier hospitals. The preference lists of all agents
are correlated according to these hierarchies, although each
agent’s individual strict ranking (initially unknown) within
these hierarchies may differ. It is not hard to verify that no
matter what the true (initially unknown) preference order-
ings of the participants are, under a stable matching r1 and
r2 each gets matched to either h1 or h2, and r3 and r4 each
gets matched to either h3 or h4. Thus an interview between
r1 and either h3 or h4 is unnecessary, for example.

Unfortunately, we cannot always avoid unnecessary inter-
views. For example consider a setting with two residents and
two hospitals, where initially agents have no information on
their preference orderings and hence cannot compare the two
alternatives. W.l.o.g. assume that h1 interviews both resi-
dents and learns that it prefers r1 to r2. If r1 additionally
interviews h2 and learns that he prefers h1 to h2, then a
stable matching µ is found after 3 interviews, in which hi
is matched to ri (1 ≤ i ≤ 2). Now imagine that r1 instead
learns that he prefers h2 to h1. It is easy to verify that the
identity of a stable matching is not yet revealed and hence
more interviews are required. The only remaining interview
is between h2 and r2 after which one can definitely identify
a stable matching. If h2 learns that it prefers r2 to r1 then
µ is a stable matching. Assume that r2 also prefers h2 to h1.
In this case the interview between h1 and r1 is unnecessary
as the three other interviews would have provided enough
information – that h2 and r2 are each others’ top choice –
for µ to be identified as a stable matching. However, a priori
we can not always rule the interview between h1 and r1 as
unnecessary; for example when h2’s top choice is r2 but r2’s
top choice is h1.

Any interviewing strategy leads to refinements of the par-
tial orders contained in the original problem instance that
represented uncertainty over the true preferences. A key aim
could be to carry out sufficient interviews so as to arrive at
an instance that admits a super-stable matching µ. Super-
stability will be defined formally in the next section, but
informally it ensures that µ will be stable regardless of how
the remaining uncertainty is resolved. The original instance
need not admit a super-stable matching (see [9] for an ex-
ample) but we are guaranteed that a super-stable matching
is always achievable (e.g., by conducting all possible inter-
views, we will arrive at a strictly-ordered instance, where
super-stability and classical stability become equivalent, and
the existence of a stable matching is assured [4]).

Thus our aim is to find a good strategy that conducts as

few interviews as possible so as to obtain a refined instance
that admits a super-stable matching. In general any such
strategy will be an online algorithm, since the next interview
to be carried out might depend on the results of previous
ones.

This leads to the question of how to evaluate the perfor-
mance of any given interview strategy. One could compare it
against the näıve algorithm described above that conducts
all interviews. We argue however, by analogy with online
algorithms and their competitive ratio, that it makes more
sense to compare it against an optimal “offline” algorithm.
Here, the optimal offline algorithm has access to agents’ pref-
erence orderings under full information and has to compute
the optimal (i.e., minimum) number of interviews required
in order to reach an information state under which it can
identify a super-stable matching. In this paper we show that
unless P=NP, no offline algorithm can compute an optimal
interview strategy in polynomial time.

Some stable matchings have desirable properties, and we
may be interested in refining the preferences further so as
to obtain such matchings. For example, in the man-optimal
stable matching, each man has the best partner that he could
obtain in any stable matching, whilst the woman-optimal
stable matching has a similar optimality property for the
women. As described above, after a certain number of inter-
views we may reach an instance that admits a super-stable
matching µ. But by carrying out more interviews, some
men, for example, may end up with better partners than
they had in µ. This would be the case if µ is not the man-
optimal stable matching in the instance with the strict (true
underlying) preferences.

If we wish to evaluate the performance of an online algo-
rithm that aims for potential improvements in men’s part-
ners even after a super-stable matching has been identified,
then a suitable offline benchmark for the competitive ratio
would be the minimum number of interviews required to re-
fine the original instance so as to make a specified matching
super-stable. In this paper we show that, whilst this prob-
lem is NP-hard in general, there are restricted cases that are
solvable in polynomial time.

Related work.
Until very recently, the problem of incremental preference

elicitation has received little attention. Several works in the
past few years however have addressed this problem from
different angles [12, 14, 1, 3, 19, 7, 2]. Those closest in spirit
to ours are [1, 19, 2].

In [19] the authors introduced a stable matching model
in which participants start out with incomplete information
about their preferences, in the form of partially ordered sets,
and are able to refine their knowledge by performing inter-
views. They investigated the problem of minimizing the
number of interviews required to find a matching that is
stable w.r.t. the true underlying strict preference ordering
and additionally is optimal for one side of the market. They
presented several results among which are the following two:
(i) finding a minimum certificate, that is a set of partial pref-
erences that supports an optimal (for one side of the mar-
ket) stable matching is NP-hard, and (ii) in a setting where
participants on one side of the market have the same par-
tially ordered preferences, an optimal interview policy can
be found in polynomial time.

In [1], the authors studied a setting where deliberation is



in the form of pairwise comparison queries (that is, a query
leads to strict order of preference being determined over
two acceptable agents for a given agent). They proposed
a method for finding approximately stable matchings, using
minimax regret as a measure, while keeping the number of
required comparisons relatively low. In [2] the authors com-
bined the comparison query model of [1] with the interview
model of [19] and introduced a unified model where both
types of elicitation can take place. They provided an effi-
cient (polynomial-time) scheme for generating queries and
interviews, and examined the effectiveness of their scheme
via empirical evaluation including comparison against the
polynomial-time algorithm of [19] for the restricted setting
in which participants on one side of the market have the
same partially ordered preferences.

Our work is also related to the body of literature studying
variants of stability defined in settings where agents’ pref-
erences may include ties. As discussed above, super-stable
matchings are relevant in the context of incomplete prefer-
ence information, because they are stable no matter which
refinements represent the true (strict) preferences. Poly-
nomial time algorithms have been proposed for finding a
super-stable matching, or reporting that none exists, in var-
ious two-sided matching markets [9, 15, 10, 18].

In the next section we provide definitions of notation and
terminology, leading to formal statements of the problems
under consideration in this paper. A roadmap of the re-
maining sections is then given at the end of Section 2.

2. PRELIMINARY DEFINITIONS AND
RESULTS

SMPI, SMTI, and levels of stability.
In an instance of the Stable Marriage problem with Par-

tially ordered preferences and Incomplete lists (SMPI), there
are two sets of agents, namely a set of menM = {m1,m2, . . . ,
mn}, and a set of women W = {w1, w2, . . . , wn}. We as-
sume without loss of generality that |M | = |W | (we can
easily reduce the case where the two sets are of different
sizes to our setting). Let [i] denote the set {1, 2, . . . , i}. We
use the term agents when making statements that apply
to both men and women, and the term candidates to refer
to agents on the opposite side of the market to that of an
agent under consideration. Each agent a finds a subset of
candidates acceptable – we refer to these as a’s acceptable
candidates. An agent a’s preferences over his/her accept-
able candidates need not be strict. That is, given two can-
didates, a might not be able to compare them against each
other. We denote by pmi and pwj the partial orders that
represent the preferences of mi and wj , respectively. We
let pM,W = (pm1 , . . . , pmn , pw1 , . . . , pwn) and call pM,W a
partial preference ordering profile.

Let I = (M,W, pM,W ) be an instance of SMPI, let a be
an agent and let c1 and c2 be two acceptable candidates for
a in I. We say that a strictly prefers c1 to c2 if (c1, c2) ∈ pa,
and we say that a cannot compare c1 and c2 (or that a finds
c1 and c2 incomparable) if (c1, c2) /∈ pa and (c2, c1) /∈ pa.
We sometimes use the graph-theoretic representation of pa
where candidates in pa correspond to vertices and there is
an arc from a candidate ci to a candidate cj if and only if
(ci, cj) ∈ pa.

An instance I ′ = (M,W, p′M,W ) of SMPI is a refinement

of I if for each agent a, any strict total order that is a linear
extension of p′a is also a linear extension of pa. We may
also refer to p′M,W being a refinement of pM,W (or indeed
I) using the same definition. Also we can define p′a being a
refinement of pa for some specific agent a similarly.

Observation 1. Given two instances I and I ′ of SMPI,
I ′ is a refinement of I if and only if the following condition
holds: for each agent a and every two candidates c1 and c2
acceptable to a, if (c1, c2) ∈ pa then (c1, c2) ∈ p′a.

A well studied special case of SMPI is the Stable Marriage
problem with Ties and Incomplete lists (SMTI), in which in-
comparability is transitive and is interpreted as indifference.
In SMTI, each agent has a partition of acceptable candi-
dates into indifference classes or ties such that he or she is
indifferent between the candidates in the same indifference
class, but has a strict preference ordering over the indiffer-
ence classes. In an instance of SMTI, let Cat denote the t-th
indifference class of agent a, where t ∈ [n]. We assume that
Cat = ∅ implies Cat′ = ∅ for all t′ > t. The Stable Marriage
problem with Incomplete lists (SMI) is the special case of
SMTI in which each tie is of size one. Similarly the Stable
Marriage problem with Ties (SMT) is the special case of
SMTI in which each man finds each woman acceptable and
vice versa.

Given an instance I of SMPI, a matching µ is a pairing of
men and women such that each man is paired with at most
one woman and vice versa, and no agent is matched to an
unacceptable partner. If m and w are matched in µ then
µ(m) = w and µ(w) = m. We say that µ(a) = ∅ if a is
unmatched under µ. Different levels of stability can be de-
fined in the context of SMPI [9, 15]. A strong blocking pair
is an acceptable (man,woman) pair, each of whom is un-
matched or strictly prefers the other to his/her partner. A
weakly stable matching is a matching with no strong block-
ing pair. Every instance of SMPI admits a weakly stable
matching [17]. An acceptable (man,woman) pair is a weak
blocking pair if each member of the pair is either unmatched
or strictly prefers the other to his/her partner or cannot
compare the other with his/her partner, and one member of
the pair is either unmatched or strictly prefers the other to
his/her partner. A strongly stable matching is a matching
with no weak blocking pair. Finally a very weak blocking
pair is an acceptable (man,woman) pair, each of whom is
unmatched or strictly prefers to other to his/her partner or
cannot compare the other with his/her partner. A super-
stable matching is a matching with no very weak blocking
pair. It can be easily verified that a matching is super-stable
if and only if it is weakly stable w.r.t. all strict total orders
that are linear extensions of the given partial preference or-
derings [16, Lemma 3.2.4]. In instances of SMI, weak sta-
bility, strong stability and super-stability are all equivalent
to classical stability.

Interviews to refine the partial orders.
In a given instance I = (M,W, pM,W ) of SMPI in this pa-

per, we assume that pM,W , the partial preference ordering
profile, represents the agents’ initial information state. That
is, agents may not have enough information initially in order
to rank their acceptable candidates in strict order. However
in the problem instances that we will later define in this sec-
tion, we will assume that each agent a has a strict preference
ordering �a over his or her acceptable candidates. This rep-



resents the true (and strict) underlying preferences over a’s
acceptable candidates, although crucially, a may not (and in
general will not) initially be aware of the entire ordering. We
let �M,W= (�m1 , . . . ,�mn ,�w1 , . . . ,�wn) and call �M,W a
strict (true underlying) preference ordering profile. The task
of the agents is to learn enough information about their ac-
ceptable candidates in order to refine their preferences, in a
manner consistent with �M,W , to obtain an SMPI instance
I ′ that admits a super-stable matching µ (thus µ will be
stable with respect to �M,W ).

Following the model introduced in [19], we assume that
instances can be refined through interviews. Each interview
pairs one man m with one woman w. An interview is infor-
mative to both parties involved. Hence saying “m interviews
w” is equivalent to saying “w interviews m”. When agent a
interviews ` candidates, this results in a new refined SMPI
instance which is exactly the same as I except that a now
has a strict preference ordering over the ` interviewed can-
didates.

Notice that if an agent interviews only one candidate, no
refinement takes place. Note also that not all refinements
of I can be reached by a set of interviews. For example,
suppose that in I we have one man m1 and three women w1,
w2, and w3. Suppose m1 finds the three women acceptable
and incomparable. Assume that in I ′ man m1 prefers w1 to
both w2 and w3, and cannot compare w2 and w3. It is easy
to see that I ′ is a refinement of I, but no set of interviews
can reach I ′: for m1 to learn that he prefers w1 to the other
two women he must interview all three women, but then he
will have a strict preference ordering over the three of them.

We say that an SMPI instance I ′ is an interview-compatible
refinement of an SMPI instance I if I ′ can be refined from
I using interviews. We now show that interview-compatible
refinements can be recognized easily.

Proposition 2. Let I and I ′ be two instances of SMPI.
We can determine in O(n3) time whether I ′ is an interview-
compatible refinement of I.

Proof. To verify whether I ′ is a refinement of I, it is
sufficient to check whether the condition of Observation 1
holds. With a suitable data structure, we can do this in
O(n3) time. For each agent a identify the edges present in p′a
that are not in pa, and let S(a) be the set of candidates in p′a
that form an endpoint of at least one such edge. For I ′ to be
an interview-compatible refinement of I, it is necessary and
sufficient that, for every a, S(a) forms a complete subgraph
in the undirected graph corresponding to p′a. This can be
tested in O(n3) time overall.

Let I ′ be an SMPI instance that is an interview-compatible
refinement of a given SMPI instance I. We define the cost
of I ′ given I to be the minimum number of interviews re-
quired to refine I into I ′. The following proposition shows
how to compute this cost efficiently.

Proposition 3. Let I be an SMPI instance and let I ′ be
an interview-compatible refinement of I. We can determine
in O(n3) time the cost of I ′ given I.

Proof. We identify the set of interviews T that refines
I into I ′ as follows. Initially T = ∅. For each agent a and
every two candidates c1 and c2, if a cannot compare c1 and
c2 under I, but prefers one to the other under I ′, a must
have interviewed both c1 and c2. Add both of these inter-
views to T . Notice that we might have already accounted

r1 : h1 h2 h1 : r2 r1
r2 : h2 h1 h2 : r2 r1

Figure 1: A stable marriage problem instance.

for one or both of these interviews. However since T is a set,
no interview is going to be included in T more than once.
With a suitable data structure, the aforementioned proce-
dure terminates in O(n3) time overall, and once it does, |T |
denotes the cost of I ′.

Problem definitions.
The motivating problem is as follows: given an instance

I = (M,W, pM,W ) of SMPI, find an interview-compatible
refinement I ′ of minimum cost such that I ′ admits a super-
stable matching. Since the result of one interview might
influence which interview/s to carry out next, any strategy
for carrying out interviews should be regarded as an online
algorithm.

In fact there may be no online algorithm that can guaran-
tee to provide an optimal solution in all cases. To see this,
let us return to the example of Section 1 involving two resi-
dents and two hospitals, and suppose that initially everyone
finds the two agents on the other side of the market accept-
able and incomparable. Let the true underlying preferences
be given by Figure 1 (here, preference lists are ordered from
left to right in decreasing order of preference). Any online
interviewing strategy must start with one interview in the
absence of any knowledge; w.l.o.g. suppose that the first in-
terview involves r1 and h1. Then it may be verified that the
algorithm is bound to use 3 more interviews before a super-
stable matching can be found. (If one interview does not
take place then two agents on opposite sides of the market
cannot compare the two candidates in their preference list;
it then follows that each of the two possible matchings would
be blocked according to super-stability.) On the other hand
the interview involving r1 and h1 was unnecessary and an
optimal strategy uses only 3 interviews.

Towards computing bounds for the competitive ratio of an
online algorithm, the offline scenario is of interest, and that
is what we consider in what follows. In the offline case, the
mechanism designer is given �M,W , the strict (true under-
lying) preference ordering profile of the agents, and would
like to compute an optimal interviewing schedule, i.e., an
interview-compatible refinement I ′ of I, such that �M,W
refines I ′. This is reflected in the definition of the follow-
ing problem, named Min-ICR, which is an abbreviation for
“Minimum-cost Interview Compatible Refinement problem”.

Definition 4. An instance of Min-ICR comprises a tu-
ple (I,�M,W ), where I is an instance of SMPI and �M,W
is a strict preference ordering profile that refines I. The
problem is to find an interview-compatible refinement I ′ of
I such that (i) �M,W refines I ′, (ii) I ′ admits a super-
stable matching, and (iii) I ′ is of minimum cost amongst
interview-compatible refinements that satisfy (i) and (ii).

The decision version of Min-ICR is defined as follows.

Definition 5. An instance of ICR-Dec comprises a tu-
ple (I,�M,W ,K), where I is an instance of SMPI, �M,W



is a strict preference ordering profile that refines I, and K
is a non-negative integer. The problem is to decide whether
there exists an interview-compatible refinement I ′ of I, with
cost at most K, such that �M,W refines I ′ and I ′ admits a
super-stable matching.

As discussed in Section 1, it is sometimes the case that we
aim for a particular matching, stable under �M,W , that has
some desirable properties, for example the woman-optimal
stable matching. The offline problem can then be viewed
as a restricted variant of Min-ICR where, in addition to I
and �M,W , we are also equipped with a matching µ. This is
reflected in the definition of the following problem, named
Min-ICR-Exact, which is an abbreviation for “Minimum-
cost Interview Compatible Refinement problem with Exact
matching”.

Definition 6. An instance of Min-ICR-Exact comprises
a tuple (I,�M,W , µ), where I is an instance of SMPI, �M,W
is a strict preference ordering profile that refines I, and µ is
a matching that is weakly stable w.r.t. �M,W . The problem
is to find an interview-compatible refinement I ′ of I, such
that (i) �M,W refines I ′, (ii) µ is super-stable in I ′, and (iii)
I ′ is of minimum cost amongst interview-compatible refine-
ments of I that satisfy (i) and (ii).

The decision version of Min-ICR-Exact, called ICR-
Exact-Dec, is then defined analogously to the way that
ICR-Dec was obtained from the definition of Min-ICR.

The remainder of this paper is organized as follows. In
Section 3 we first show that ICR-Dec is NP-complete even
under quite restricted settings. The proof is by reduction
from Vertex Cover. We also leverage the same proof to show
that ICR-Exact-Dec is also NP-complete. Then in Section
4 we provide a reverse reduction, from Vertex Cover to ICR-
Exact-Dec, and utilize it to show that Min-ICR-Exact
is polynomial-time solvable for several restricted settings.
Some concluding remarks are presented in Section 5.

3. NP-COMPLETENESS RESULTS
We show that ICR-Dec is NP-complete even if I is an

instance of SMTI in which each indifference class is of size
at most 3. Further, we prove that ICR-Dec is NP-complete
even for SMT instances, and even if all men are indifferent
between all women. We first provide a lemma that will come
in handy in proving our claims; the proof is straightforward,
and is omitted.

Lemma 7. Let G = (V,E) be an undirected graph where
for each vertex v, deg(v) ≤ 3. We can direct the edges in E
such that for each v, deg+(v) ≤ 2 and deg−(v) ≤ 2.

Unlike many problems that are NP-complete, the mem-
bership of ICR-Dec in the class NP is not trivial. Hence,
we provide a proof via the following lemma.

Lemma 8. ICR-Dec is in NP.

Proof. To prove this, it is sufficient to show that given
SMPI instances I and I ′, a strict preference profile �M,W
and an integer K, we can decide in polynomial time whether
(i) I ′ is an interview-compatible refinement of I, (ii) I ′ has
cost at most K, (iii) �M,W refines I ′, and (iv) I ′ admits a
super-stable matching.

Both (i) and (ii) are established by Propositions 2 and
3 respectively. For (iii), it is straightforward to check in
polynomial time whether �M,W refines I ′.

Finally to establish (iv), we can use the polynomial time
algorithm of [18], SUPER-SMP, to decide whether I ′ admits
a super-stable matching or not.

We show that ICR-Dec is NP-hard by reducing from the
decision version of the Vertex Cover problem (VC). VC is
defined as follows: given a graph G = (V,E) and an integer
K, decide whether G admits a vertex cover of size at most
K. VC is NP-complete even if each vertex has degree at
most 3 [5]; let VC-3 denote this restriction. We denote by
Min-VC the optimization version of VC, that is the problem
of finding a minimum vertex cover in a given graph G.

Theorem 9. ICR-Dec is NP-complete even for SMTI
instances in which each indifference class has size at most 3.

Proof. By Lemma 8, ICR-Dec belongs to NP. To show
NP-hardness, we reduce from VC-3. Let the undirected
simple graph G = (V,E) be given such that deg(v) ≤ 3,
∀v ∈ V . Let V = {v1, . . . , vn}. Let G′ = (V,E′) be a
digraph where (i) ∀(vi, vj) ∈ E′, (vi, vj) ∈ E, (ii) ∀(vi, vj) ∈
E, either (vi, vj) ∈ E′ or (vj , vi) ∈ E′ (but not both), and
(iii) ∀v ∈ V , deg+(v) ≤ 2 and deg−(v) ≤ 2. Note that by
Lemma 7 such a graph G′ exists. We create an instance
I = (M,W, pM,W ) of SMTI as follows:

• For each vertex vi ∈ V there is a man mi ∈ M and
a woman wi ∈ W . That is M = {mi|∀vi ∈ V } and
W = {wi|∀vi ∈ V }.

• Each man mi finds acceptable wi and all women wj
such that (vi, vj) ∈ E′. Moreover, each man mi is
indifferent between all his acceptable women.

• Each woman wi finds acceptable mi and all men mj

such that (vj , vi) ∈ E′. Moreover, each woman wi is
indifferent between all her acceptable men.

Note that the total length of the men’s preference lists
is equal to |E| + |V |. Also note that as deg+(v) ≤ 2 and
deg−(v) ≤ 2 for all v ∈ V , hence the indifference classes are
of size at most 3. Let �M,W be a strict preference ordering
under which mi and wi rank each other at the top of their
preference lists. We prove that G has a vertex cover of size
at most K if and only if there exists a refinement I ′ of I, of
cost at most K′ = K + |E|, such that �M,W refines I ′ and
I ′ admits a super-stable matching. Notice that �M,W ad-
mits only one stable matching, that being µ = {(mi, wi)|∀i}.
This implies that I ′ must admit exactly one super-stable
matching, that being µ.

Proof of the only-if direction: Assume that G has a vertex
cover C of size k ≤ K. We show that there is a refinement
I ′ of cost k′ = k + |E| ≤ K′ such that �M,W refines I ′ and
µ is super-stable in I ′. We create I ′ as follows. For each
vertex vi ∈ C refine I such that both mi and wi now have
strict preferences as in �M,W This refinement can of course
be achieved by having both mi and wi interview all candi-
dates in their lists; this includes an interview between mi

and wi. Notice that since interviews are informative to both
parties involved, partial refinements in the preference order-
ings of those persons whose corresponding vertices are not
in C must have taken place as well. For example, consider a
case in which vi, vj ∈ C, vk /∈ C, and (vi, vk), (vj , vk) ∈ E′.



Then both mi and mj interview wk and hence wk must now
rank mi and mj in strict order of preferences as in �M,W .
An interview is either between same indexed agents, e.g., be-
tween mi and wi, or between agents of different indices, e.g.,
between mi and wj where i 6= j. We refer to an interview of
the former type as a same-index interview and an interview
of the latter type as a different-index interview. The total
number of interviews performed by all agents is going to be
k same-index interview plus a number of different-index in-
terviews. The number of different-index interviews under
any refinement can be at most |E|, and under our proposed
refinement is exactly |E| (since C is a vertex cover). There-
fore the total number of interviews is exactly k + |E|. It
remains to show that µ is a super-stable matching in I ′. We
call a (man,woman) pair a fixed pair if they are matched
in every stable matching of every strict order refinement of
I ′. We show that (mi, wi) is a fixed pair for all i ≤ n, hence
proving that µ is the only stable matching in every strict
order refinement of I ′ and therefore definitely a super-stable
matching in I ′. Take any pair (mi, wi) such that vi ∈ C.
By our construction, mi and wi rank each other at top, so
clearly (mi, wi) is a fixed pair. Now take any pair (mj , wj)
such that vj /∈ C. Since vj is not in the vertex cover, there-
fore it must be the case that all neighbors of vj are in C.
Thus, for any vk that is a neighbor of vj , it has been already
established that (mk, wk) is a fixed pair. Therefore (mj , wj)
is also a fixed pair. Moreover, neither mj nor wj can form a
very weak blocking pair with a person they are not matched
to.

Proof of the if direction: Assume that I has a refinement
I ′ of cost k′ ≤ K′ such that �M,W refines I ′ and µ is super-
stable in I ′. We show that G admits a vertex cover of size
at most k′ − |E| ≤ K. We first show that in order to arrive
at I ′, every agent should have interviewed every candidate
s/he finds acceptable and to whom s/he is not matched. As-
sume for a contradiction that this is not the case. Take a
pair (mi, wj), acceptable to each other, who have not in-
terviewed. Therefore, under I ′, mi is indifferent between
wj and wi (to whom he is matched in µ), and wj is indif-
ferent between mi and mj (to whom she is matched in µ).
Hence (mi, wj) constitutes a very weak blocking pair in µ
under I ′, a contradiction. We have established so far that
every agent must have interviewed acceptable candidates to
whom s/he is not matched, which means that each agent
has interviewed all candidates in his/her list who have a dif-
ferent index from him/her. This amounts to the total of
|E| interviews. The only remaining interviews for which we
have not yet accounted are those corresponding to matched
pairs. Let C be a set of vertices such that vertex vi is in
C if and only if mi and wi have interviewed under I ′. No-
tice that |C| = k′ − |E|. Take any vj /∈ C. We show that
all neighbors of vj are in C, establishing that C is a vertex
cover. Since vj 6∈ C, it follows from the construction of C
that mj and wj have not interviewed under I ′. Assume for
a contradiction that vj has a neighbor, say vk, who too is
not in C. Therefore mk and wk have not interviewed under
I ′ either. W.l.o.g. assume that (vj , vk) ∈ E′. (A similar
argument applies if (vk, vj) ∈ E′.) Therefore mj and wk
are acceptable to each other. Furthermore, since neither mj

nor wk have interviewed their partners in µ, it is the case
that mj is indifferent between wj (his partner in µ) and wk,
and wk is indifferent between mk (her partner in µ) and mj .
Therefore (mj , wk) constitutes a very weak blocking pair in

µ under I ′, a contradiction.

We next show that ICR-Dec is also NP-complete under
a different restricted setting by making small alterations to
the proof of Theorem 9.

Corollary 10. ICR-Dec is NP-complete even for SMT
instances and even if agents on one side of the market are
indifferent between all the candidates.

Proof. W.l.o.g. assume that all men are indifferent be-
tween all women. Modify the reduction presented in the
proof of Theorem 9 as follows.

• For each vertex vi ∈ V there is a man mi in M and
a woman wi in W . That is M = {mi|∀vi ∈ V } and
W = {wi|∀vi ∈ V }.

• Each man mi finds all women acceptable and is indif-
ferent between them.

• Each woman wi finds all men acceptable and has two
indifference classes. In the top indifference class are mi

and all men mj such that (vi, vj) ∈ E. In the second
indifference class are all other men.

Note that the total length of the women’s first indifference
classes is equal to 2|E|+|V |. Let �M,W be a strict preference
ordering under which mi and wi rank each other at the top
of their preference lists. We prove that G has a vertex cover
of size at most K if and only if there exists a refinement
I ′ of I, of cost at most K′ = K + 2|E|, such that �M,W
refines I ′ and I ′ admits a super-stable matching. Notice
that �M,W admits only one stable matching, that being µ =
{(mi, wi)|∀i}. This implies that I ′ must admit exactly one
super-stable matching, that being µ. Modify the proof of
Theorem 9 as follows.

In the only-if direction: For each vertex vi ∈ C refine I
such that mi has a strict preference ordering, as in �mi , over
women in {wi} ∪ {wj |(vi, vj) ∈ E} and wi has a strict pref-
erence ordering, as in �wi , over men in {mi}∪{mj |(vi, vj) ∈
E}. Consequently, for all vj adjacent to vi, mi prefers wi
to wj and likewise wi prefers mi to mj . This refinement
can be achieved by having mi interview wi and all wj such
that (vi, vj) ∈ E, and additionally having wi interview all
mj such that (vi, vj) ∈ E. The number of different-index
interviews under any refinement can be at most 2|E|, and
under our proposed refinement is exactly 2|E| (since C is a
vertex cover). So the total number of interviews is exactly
k+ 2|E|. It remains to show that µ is a super-stable match-
ing in I ′. Assume for a contradiction that there exists a very
weak blocking pair (mi, wj).

• If (vi, vj) ∈ E, then vi or vj is in C. If vi ∈ C then mi

and wi have interviewed and therefore wi �mi wj . If
vj ∈ C then mj and wj have interviewed and therefore
mj �wj mi. Both cases imply that (mi, wj) is not a
very weak blocking pair, a contradiction.

• If (vi, vj) /∈ E then mj �wj mi, therefore (mi, wj) is
not a very weak blocking pair, a contradiction.

In the if direction: We show that in order to arrive at I ′,
every man mi should have interviewed all women wj such
that (vi, vj) ∈ E, and likewise every woman wi should have
interviewed all men mj such that (vi, vj) ∈ E. The proof is



similar to that presented in the proof of Theorem 9. Hence
we can conclude that at least 2|E| different-index interviews
must have taken place in the refinement. The rest of the
proof is similar to that presented in the proof of Theorem 9,
with the difference that |C| ≤ k′ − 2|E|.

In the proof of Theorem 9, µ is the unique stable match-
ing under �M,W . Therefore, it follows from the proofs of
Theorem 9 and Corollary 10 that ICR-Exact-Dec is also
NP-complete for the restrictions stated in those results.

Corollary 11. ICR-Exact-Dec is NP-complete even
for SMTI instances, and even when each indifference class
is of size at most 3. ICR-Exact-Dec is also NP-complete
even for SMTI instances and even if agents on one side of
the market are indifferent between all the candidates.

We remark that Theorem 4.4 of [19] implies that ICR-
Exact-Dec is NP-complete and, likewise, Corollary 11 im-
plies Theorem 4.4 of [19]. However, Corollary 11 is stronger
as it is stated for a more restricted setting.

4. POLYNOMIAL-TIME SOLVABLE
VARIANTS

4.1 Preliminaries
In this section we explore the tractability of Min-ICR-

Exact under various restricted settings. Recall that we
have reduced from VC to ICR-Dec and ICR-Exact-Dec
in order to show that these problems are NP-hard. Here we
present a reverse reduction, from ICR-Exact-Dec to VC,
that will come in handy in proving our claims.

Let an instance (I,�M,W , µ) of ICR-Exact-Dec be given.
As µ is weakly stable w.r.t. I, it admits no strong blocking
pair. If µ is not super-stable w.r.t. I, then µ must admit
some very weak blocking pairs. We refer to such blocking
pairs as potential blocking pairs. We distinguish between be-
tween potential blocking pairs by the degree of choice one
has when attempting to resolve them.

Definition 12 (Potential Blocking Pair (PBP)).
Given an ICR-Exact-Dec instance (I,�M,W , µ), a pair
(m,w) is a potential blocking pair (PBP) if (m,w) is a
very weak blocking pair under I. Each PBP (m,w) belongs
to either of the following classes.

• Potential Blocking Pair of Degree 1 (PBP-D1) if either
m or w strictly prefers the other to his or her current
partner under �M,W .

• Potential Blocking Pair of Degree 2 (PBP-D2) if both
m and w strictly prefer their partners to each other
under �M,W .

Let I ′ be an interview-compatible refinement of I. We say
that a given potential blocking pair of I, (m,w), is resolved
under I ′ if (µ(m), w) ∈ p′m or (µ(w),m) ∈ p′w.

If (m,w) is a PBP-D2, then it must be that m and w
cannot compare each other and their current partners under
I. Thus in order to resolve (m,w) it is sufficient, and nec-
essary, that m or w learn his/her true preference ordering
over his/her partner and the other side.

Let (m,w) be a PBP-D1 and assume thatm strictly prefers
w to µ(m) (the argument is similar if m �w µ(w)). There-
fore, w must find m and µ(w) incomparable under I, or

(m,w) either blocks µ or is not a PBP, and µ(w) �w m, or
(m,w) blocks µ. Furthermore, in order to resolve this PBP
w has to learn that she prefers µ(w) to m.

In what follows we use PBP , PBP1, and PBP2 to refer
to the set of potential blocking pairs, and those of degree 1
and degree 2 respectively.

Proposition 13. Let (I,�M,W , µ) be an instance of ICR-
Exact-Dec and I ′ be an interview-compatible refinement of
I. Then µ is super-stable under I ′ if and only if all PBPs
in I are resolved under I ′.

It is easy to see that for a potential blocking pair (m,w) to
be resolved, at least one of m or w needs to interview both
the other side and his or her current partner and conclude
that s/he prefers his or her current partner to the other side.
The next proposition then immediately follows.

Proposition 14. Let (I,�M,W , µ) be an instance of ICR-
Exact-Dec and I ′ be an interview-compatible refinement of
I. Then µ is super-stable under I ′ only if, for all (m,w) ∈
PBP , m and w have interviewed under I ′.

For each agent a ∈M ∪W let PBP1(a) denote the set of
candidates c such that either (a, c) or (c, a) is in PBP1 and
a �c µ(c).

Lemma 15. Let (I,�M,W , µ) be an instance of ICR-Exact-
Dec and I ′ be an interview-compatible refinement of I. Then
µ is super-stable under I ′ only if a has interviewed µ(a)under
I ′ for all agents a where PBP1(a) 6= ∅.

Proof. Assume for a contradiction that there exists an
agent a where PBP1(a) 6= ∅ and a has not interviewed µ(a).
Therefore for every c ∈ PBP1(a) it is still the case that a
cannot compare c and µ(a), and c prefers a to µ(c). Hence
there exists at least one unresolved PBP under I ′.

4.2 Reduction from ICR-Exact-Dec to VC

Let (I,�M,W , µ) be an instance of ICR-Exact-Dec. Let
M ′ = {m|PBP1(m) 6= ∅∨PBP1(µ(m)) 6= ∅}. Let G(I, µ) =
(V,E) be an undirected graph whose vertices V correspond
to matched pairs (m,µ(m)). Let PBP ′2 = {(m,w)|(m,w) ∈
PBP2,m /∈M ′, µ(w) /∈M ′}. Let there be an edge between
any two vertices (m,µ(m)) and (m′, µ(m′)) if (m,µ(m′)) ∈
PBP ′2 or (m′, µ(m)) ∈ PBP ′2. Remove any vertex with
degree zero. Note that for any remaining vertex (m,µ(m))
it is the case that m /∈M ′.

Theorem 16. G(I, µ) has a vertex cover of size at most
K if and only if there exists a refinement I ′ of I, of cost at
most K′ = |PBP |+ |M ′|+K, such that �m,w refines I ′ and
µ is super-stable in I ′.

Proof. Assume that G(I, µ) has a vertex cover C of size
at most K. Let I ′ be a refinement of I under which the
following interviews have taken place.

1. Each pair (m,w) ∈ PBP interview each other – a total
of |PBP | interviews.

2. Each m ∈M ′ interviews his partner µ(m) – a total of
|M ′| interviews.

3. Each pair (m,µ(m)) ∈ C interview each other – a total
of K interviews.



The total number of interviews is then equal to |PBP | +
|M ′| + K. As a result of the above interviews, each agent
a learns his or her strict preference ordering over the inter-
viewed candidates, as in �a. (Recall that the interviews are
informative to both sides.) It is then easy to see that all
PBP-D1’s are resolved. It is also straightforward to see that
for a PBP-D2 (m,w), if either m ∈M ′ or µ(w) ∈M ′, then
(m,w) is resolved under I ′. It remains to show that the re-
maining PBP-D2’s, that is those in PBP ′2, are resolved as
well. Let (m,w) be such a PBP-D2. By the construction
of G(I, µ), V includes (m,µ(m)) and (µ(w), w) and there
is an edge between these two vertices. As C is a vertex
cover, at least one of (m,µ(m)) or (µ(w), w) belongs to C.
If (m,µ(m)) ∈ C then, following the results of the inter-
views, m prefers µ(m) to w under I ′. (A similar argument
holds for w if (µ(w), w) ∈ C.) Therefore (m,w) is resolved
under I ′.

Conversely, assume that I admits an interview-compatible
refinement I ′ of size at most K′ such that µ is super-stable
in I ′. We show that G(I, µ) admits a vertex cover of size
at most K′ − (|PBP | + |M ′|). Let C be a set of vertices
(m,µ(m)) in V where m and µ(m) have interviewed under
I ′. Note that as we have removed all vertices of degree zero
from G(I, µ), hence all remaining vertices are adjacent to
at least one edge corresponding to a member of PBP ′2. We
show that C is a vertex cover and then prove an upper bound
on the size of C.
C is a vertex cover: Let ((m,µ(m)), (m′, µ(m′))) be

any edge in E. By the construction of G(I, µ), (m,µ(m′)) or
(m′, µ(m)) is in PBP ′2. Assume that (m,µ(m′)) ∈ PBP ′2.
(The argument for the case where (m′, µ(m)) ∈ PBP ′2 is
similar.) As (m,µ(m′)) is resolved under I ′, either m prefers
his partner to µ(m′) under I ′, or µ(m′) prefers her partner
to m under I ′. If the former, then m must have interviewed
µ(m) and hence (m,µ(m)) ∈ C, and if the latter then µ(m′)
must have interviewed m′ and thus (m′, µ(m′)) ∈ C . Thus
C is a vertex cover.
C is of size at most K′−(|PBP |+ |M ′|): We prove this

by computing a lower bound on the number of interviews
that do not correspond to a vertex in C. It follows Proposi-
tion 14 that all PBPs must have interviewed, hence a total
of |PBP | interviews. It also follows Lemma 15 that each
agent a with PBP1(a) 6= ∅ must have interviewed his/her
partner. Looking at this from men’s perspective, all men m
must interview µ(m) if PBP1(m) 6= ∅ or PBP1(µ(m)) 6= ∅ –
hence a total of |M ′| interviews. Recall that (m,µ(m)) /∈ V
if m ∈ M ′. Therefore none of the interviews we have ac-
counted for so far, a total of |PBP | + |M ′| interviews, cor-
respond to a vertex in C.

Theorem 16 essentially tells us that an instance (I,�M,W
, µ) of Min-ICR-Exact is polynomial-time solvable if Min-
VC is polynomial-time solvable in G(I, µ). Equipped with
this knowledge, we provide three different restricted set-
tings under which ICR-Exact-Dec, and hence Min-ICR-
Exact, is solvable in polynomial time.

Theorem 17. Min-ICR-Exact is solvable in polynomial
time if one side has fully known strict preference ordering.

Proof. Assume that women have strict preferences and
the target matching is µ. Note that all PBPs must be of
degree 1. Therefore G(I, µ) is an empty graph with ver-
tex cover of size zero. It follows from Proposition 14 and

Lemma 15 that Min-ICR has a solution of size |PBP | +
|M ′|.

Theorem 18. Min-ICR-Exact is solvable in polynomial
time under the restriction of SMTI in which indifference
classes are of size at most 2.

Proof. We show that G(I, µ) is a collection of cycles and
paths, and hence its minimum vertex cover can be computed
in polynomial time. The size of a minimum vertex cover for
any path or cycle of length ` is

⌈
`
2

⌉
.

Take any vertex v1 = (m,µ(m)) in V . Recall that if any
vertex v2 = (m′, µ(m′)) is a neighbor of v1, then it must be
that at least one of (m,µ(m′)) or (m′, µ(m)) is in PBP ′2.
Note that if (m,µ(m′)) ∈ PBP ′2, then under I man m is
indifferent between µ(m) and µ(m′). Since each indifference
class is of size at most 2, at most one such neighbor exists.
Likewise, if (m′, µ(m)) ∈ PBP ′2 then µ(m) is indifferent
between m and m′. However, since each indifference class
is of size at most 2, at most one such neighbor exist. Thus,
each vertex has degree at most 2, henceG(I, µ) is a collection
of cycles and paths.

Theorem 19. Min-ICR-Exact is solvable in polynomial
time under the restriction of SMTI in which all men are
endowed with the same indifference classes, as well as all

women. That is Cmi = Cm
′

i for all m,m′ ∈ M and all

i ∈ [n], and Cwi = Cw
′

i for all w,w′ ∈W and all i ∈ [n].

Proof. We show that G(I, µ) is a collection of complete
graphs, and hence its minimum vertex cover can be com-
puted in polynomial time, since the size of a minimum vertex
cover for any complete graph K` is equal to `− 1. To prove
that G(I, µ) is a collection of complete graphs, we show that
for any three given vertices v1, v2 and v3, if (v1, v2) ∈ E and
(v1, v3) ∈ E then (v2, v3) ∈ E.

Take any three vertices v1 = (m,µ(m)), v2 = (m′, µ(m′)),
and v3 = (m′′, µ(m′′)). If (v1, v2) ∈ E then, under I, all men
are indifferent between µ(m) and µ(m′), all women are indif-
ferent between m and m′, and m,m′ /∈ M ′. If (v1, v3) ∈ E
then, under I, all men are indifferent between µ(m) and
µ(m′′), all women are indifferent between m and m′′, and
m′′ /∈ M ′. Therefore, since I is an instance of SMTI, all
men are indifferent between µ(m), µ(m′) and µ(m′′), and
all women are indifferent between m, m′, and m′′. Hence
(m′, µ(m′′)) and (m′′, µ(m′)) are PBPs. If (m′, µ(m′′)) is
a PBP-D2 then, as m′,m′′ /∈ M ′, (m′, µ(m′′)) ∈ PBP ′2
and therefore (v2, v3) ∈ E. Assume for a contradiction that
(m′, µ(m′′)) is a PBP-D1. Assume that µ(m′′) �m′ µ(m′)
(the argument is similar if m′ �µ(m′′) m

′′), implying that
PBP1(µ(m′′)) 6= ∅ and thus m′′ ∈M ′, a contradiction.

Theorem 18 is likely to be of more theoretical interest. For
the setting of Theorem 17, we could envisage a hospitals-
residents matching problem where residents are ranked uni-
formly (i.e., in a ”master list” common to all hospitals [11])
according to some known objective value (e.g., which may
be based on academic merit, as in the UK) and residents
must use interviews in order to determine their true prefer-
ences over acceptable hospitals. For the setting of Theorem
19, consider a market with“tiered”preferences, where every-
body agrees who/what belongs to each tier (again the mem-
bership of these tiers could relate to some objective values),
but the precise ordering within these tiers could be subjec-
tive, and up to individuals to determine themselves. For



example, students may use national league tables for deter-
mining top tier universities, second tier universities and so
on, but students’ precise ranking over the universities in any
given tier may vary.

If I is of one of the restricted forms for which Min-ICR-
Exact is polynomial time solvable, then one straightforward
approach to solving Min-ICR is to enumerate all matchings
that are stable under�M,W and then solve Min-ICR-Exact
for each of them. This approach is practical if �M,W admits
a polynomial number of stable matchings.

5. CONCLUSION AND FUTURE WORK
In this paper we have studied the complexity of the offline

problem relating to computing an optimal interview strat-
egy for a stable marriage market where initially participants
have incomplete information, and the aim is to refine the
instance using the minimum number of interviews in order
to arrive at a super-stable matching. The main direction
for future work is to investigate the online case, where the
true underlying preferences are not known to the mechanism
designer, with respect to measures such as the competitive
ratio. Furthermore, an important question for which we do
not know an answer yet is whether Min-ICR is polynomial-
time solvable under some restricted setting. Extending the
known results on interviewing in stable marriage markets to
many-to-one markets such as college admission is another
important future direction. It is also interesting to study on-
line algorithms in a setting where elicitation is taking place
via comparison queries. In this paper we assume that the
objective of the mechanism designer is to minimize the to-
tal number of interviews overall. One may however argue
that such a strategy may require one or may agents to con-
duct most of the interviews while the others do none or very
little. In the view of fairness and the practicality of such
central interview-scheduling schemes, it is also of utmost
importance to study settings in which a fair distribution of
the interviews is also considered.
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