
Approximate Well-Supported Nash Equilibria
Below Two-Thirds!

John Fearnley1, Paul W. Goldberg1,
Rahul Savani1, and Troels Bjerre Sørensen2

1 Department of Computer Science, University of Liverpool, UK
2 Department of Computer Science, University of Warwick, UK

Abstract. In an ε-Nash equilibrium, a player can gain at most ε by
changing his behaviour. Recent work has addressed the question of how
best to compute ε-Nash equilibria, and for what values of ε a polynomial-
time algorithm exists. An ε-well-supported Nash equilibrium (ε-WSNE)
has the additional requirement that any strategy that is used with non-
zero probability by a player must have payoff at most ε less than a best
response. A recent algorithm of Kontogiannis and Spirakis shows how to
compute a 2/3-WSNE in polynomial time, for bimatrix games. Here we
introduce a new technique that leads to an improvement to the worst-
case approximation guarantee.

1 Introduction

In a bimatrix game, a Nash equilibrium is a pair of strategies in which both play-
ers only assign probability to best responses. The apparent hardness of comput-
ing an exact Nash equilibrium [5,4] has led to work on computing approximate
Nash equilibria, and two notions of approximate Nash equilibria have been de-
veloped. The first, and more widely studied, notion is of an ε-approximate Nash
equilibrium (ε-Nash), where each player is required to achieve an expected payoff
that is within ε of a best response. A line of work [7,6,2] has investigated the
best ε that can be guaranteed in polynomial time. The current best result in this
setting is a polynomial time algorithm that finds a 0.3393-Nash equilibrium [12].

However, ε-Nash equilibria have a drawback: since they only require that the
expected payoff is within ε of a pure best response, it is possible that a player
could be required to place probability on a strategy that is arbitrarily far from
being a best response. This issue is addressed by the second notion of an ap-
proximate Nash equilibrium. An ε-well supported approximate Nash equilibrium
(ε-WSNE), requires that both players only place probability on strategies that
have payoff within ε of a pure best response. This is a stronger notion of equi-
librium, because every ε-WSNE is an ε-Nash, but the converse is not true.

! This work is supported by by EPSRC grant EP/H046623/1 “Synthesis and Ver-
ification in Markov Game Structures”, and EPSRC grants EP/G069239/1 and
EP/G069034/1 “Efficient Decentralised Approaches in Algorithmic Game Theory.”
A full version of this paper is available at http://arxiv.org/abs/1204.0707

M. Serna (Ed.): SAGT 2012, LNCS 7615, pp. 108–119, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Approximate Well-Supported Nash Equilibria Below Two-Thirds 109

In contrast to ε-Nash, there has been relatively little work ε-WSNE. The first
result on the subject gave a 5

6 additive approximation [7], but this only holds if
a certain a graph-theoretic conjecture is true. The best-known polynomial-time
additive approximation algorithm was given by Kontogiannis and Spirakis, and
achieves a 2

3 -approximation [10]. We will call this algorithm the KS algorithm.
In [9], which is an earlier conference version of [10], the authors presented an
algorithm that they claimed was polynomial-time and achieves a φ-WSNE, where

φ =
√
11
2 −1 ≈ 0.6583, but this was later withdrawn, and instead the polynomial-

time 2
3 -approximation algorithm was presented in [10]. It has also been shown

that there is a PTAS for ε-WSNE if and only if there is a PTAS for ε-Nash [4].

!
!!
I

II

T

B

" r

1
3−τ 1

1 1
3−τ

τ τ

0 0

(a)

!
!!
I

II

T

M

B

" r

1
3−τ 1

1 1
3−τ

1 1
3−τ

1
3−τ 1

τ τ

0 0

(b)

Fig. 1. Two examples that approach the worst case for the KS algorithm

Our approach. We build on the KS algorithm for finding a 2
3 -WSNE. Figure 1a

gives a game where the KS algorithm produces a 2
3 -WSNE. The KS algorithm

begins by checking there is a pure 2
3 -WSNE. In Figure 1a, there is a pure 2

3 -
WSNE when τ = 0, but not when τ > 0, because any pure profile where both
payoffs are at least 1

3 is a 2
3 -WSNE. If no pure 2

3 -WSNE exists, the algorithm
solves the zero-sum game (D,−D), where D = 1

2 (R−C), and gives the solution
as a WSNE in the original game. In Figure 1a, if τ is small, then the solution
to the zero-sum game has the row player playing B, and the column player
mixing equally between $ and r. The regret for the row player is the difference
between the payoff of a best response, and the lowest payoff of a row used by
the row player. In our example, the row player’s regret is the difference between
the payoff of B and the payoff of T , and we can see that as τ → 0, the row
player’s regret approaches 2

3 . Since we have a ε-WSNE only if both players
have regret smaller than ε, the quality of the WSNE approaches the worst-case
bound of 2

3 .

110 J. Fearnley et al.

Notice that in Figure 1a we can improve things for the row player by trans-
ferring some of the column player’s probability from r to $. The row player’s
regret is reduced, and the column player’s regret is the same. However, consider
Figure 1b. Once again this is approximately worst-case for the KS algorithm;
the column player again mixes $ and r, while the row player uses row B, again
getting regret of about 2

3 . This game is designed to prevent the trick of shifting
some of the column player’s probability so as to reduce the row player’s regret.

In this case however, there is a new trick, which is to focus on rows T and
M , and columns $ and r, where the payoffs are similar to the Matching Pennies
game. By mixing uniformly on these strategies, the players both obtain average
payoffs more than 1

3 , so that their regret in the entire game must be less than 2
3 .

Our main result is to show that one of these tricks can always be applied,
and that we can always produce an ε-WSNE with ε < 2

3 . We give an algorithm
with three steps. The first step finds the best pure WSNE, and corresponds to
the preprocessing step of the KS algorithm. The second step searches for the
best WSNE where both players use at most two strategies, which corresponds to
checking whether the Matching Pennies trick can be applied. The third step uses
the KS algorithm to find a 2

3 -WSNE, and then finds the best possible WSNE that
can be produced through our trick of shifting probabilities. We show that one of
these three steps will always produce an ε-WSNE with ε = 2

3−0.004735 ≈ 0.6619.

2 Definitions

A bimatrix game is a pair (R,C) of two n×nmatrices: R gives payoffs for the row
player, and C gives payoffs for the column player. We assume that all payoffs are
in the range [0, 1]. We use [n] = {1, 2, . . . n} to denote the pure strategies for each
player. To play the game, both players simultaneously select a pure strategy: the
row player selects a row i ∈ [n], and the column player selects a column j ∈ [n].
The row player then receives Ri,j , and the column player receives Ci,j .

A mixed strategy is a probability distribution over [n]. We denote a mixed
strategy as a vector x of length n, such that xi is the probability that the pure
strategy i is played. The support of mixed strategy x, denoted Supp(x), is the
set of pure strategies i with xi > 0. If x and y are mixed strategies for the row
and column player, respectively, then we call (x,y) a mixed strategy profile.

Let y be a mixed strategy for the column player. The best responses against y
for the row player is the set of pure strategies that maximize the payoff against
y. More formally, a pure strategy i ∈ [n] is a best response against y if, for
all pure strategies i′ ∈ [n] we have:

∑
j∈[n] yj · Ri,j ≥

∑
j∈[n] yj · Ri′,j . Column

player best responses are defined analogously. A mixed strategy profile (x,y) is
a mixed Nash equilibrium if every pure strategy in Supp(x) is a best response
against y, and every pure strategy in Supp(y) is a best response against x.
Nash [11] showed that all bimatrix games have a mixed Nash equilibrium.

An approximate well-supported Nash equilibrium weakens the requirements
of a mixed Nash equilibrium. For a mixed strategy y of the column player, a
pure strategy i ∈ [n] is an ε-best response for the row player if, for all pure

Approximate Well-Supported Nash Equilibria Below Two-Thirds 111

strategies i′ ∈ [n] we have:
∑

j∈[n] yj · Ri,j ≥
∑

j∈[n] yj · Ri′,j − ε. We define
ε-best responses for the column player analogously. A mixed strategy profile
(x,y) is an ε-well-supported Nash equilibrium (ε-WSNE) if every pure strategy
in Supp(x) is an ε-best response against y, and every pure strategy in Supp(y)
is an ε-best response against x.

3 Our Algorithm

We begin with an algorithm for finding the best WSNE on a given pair of
supports. Let Sc and Sr be supports for the column and row player, respectively.
We define an LP, which assumes that the row player uses a strategy with support
Sr, and then finds a strategy on Sc that minimizes the row player’s regret.

Definition 1. Let y′ be a mixed strategy for the column player. We define:

Minimize: ε

Subject to: Ri′ · y′ −Ri · y′ ≤ ε i ∈ Sr, i
′ ∈ [n] (1)

y′
j = 0 j /∈ Sc (2)

A linear program for the row player can be defined symmetrically.
Let (y∗, εy) be a solution of the LP given in Definition 1 (that is, y∗ and

εy are the values of y′ and ε that result) with parameters Sr and Sc, and let
(x∗, εx) be a solution of the corresponding LP for the row player. We define ε∗

to be max(εx, εy), and we have the following property.

Proposition 2. (x∗,y∗) is an ε∗-WSNE.

More importantly, we can show that (x∗,y∗) is at least as good, or better than,
all well-supported Nash equilibria with support Sc and Sr.

Proposition 3. For every ε-WSNE (x,y) with Supp(x) = Sr and Supp(y) =
Sc, we have ε∗ ≤ ε.

Our algorithm for finding a WSNE consists of three distinct procedures.

(1) Find the best pure WSNE. The KS algorithm requires a preprocessing
step that eliminates all pure 2

3 -WSNE, and this is a generalisation of that
step. Suppose that the row player plays row i, and that the column player
plays column j. Let: εr = maxi′(Ri′,j) − Ri,j , and εc = maxj′(Ci,j′) − Ci,j .
Thus i is an εr-best response against j, and that j is an εc-best response
against i. Therefore, (i, j) is a max(εr, εc)-WSNE. We can find the best pure
WSNE by checking all O(n2) possible pairs of pure strategies. Let εp be the
best approximation guarantee that is found by this procedure.

(2) Find the best WSNE with 2×2 support. We can use the linear program
from Definition 1 to implement this procedure. For each of the O(n4) possible
2×2 supports, we solve the LPs to find a WSNE. Proposition 3 implies that
this WSNE is at least as good as the best WSNE on those supports. Let εm
be the best approximation guarantee that is found by this procedure.

112 J. Fearnley et al.

(3) Find an improvement over the KS algorithm. The KS algorithm con-
structs a zero-sum game (D,−D), where D = 1

2 (R − C), and solves it.
Kontogiannis and Spirakis showed that, if there is no pure 2

3 -WSNE, the
min-max strategies for the zero-sum game are always a 2

3 -WSNE in the orig-
inal game [10]. To find an improvement over the KS algorithm, we take the
mixed strategy pair (x,y) that is produced by the KS algorithm, and we
use the linear program from Definition 1 with parameters Sr = Supp(x) and
Sc = Supp(y). Let (x∗,y∗) be the mixed strategy profile returned by the
LPs, and let εi be the smallest value such that (x∗,y∗) is a εi-WSNE.

We take the smallest of εp, εm, and εi, and return the corresponding WSNE.

4 Outline

We want to show that our algorithm finds a (23 − z)-WSNE, for some z > 0. The
precise value of z will be determined during the proof, so for now we treat z as
a parameter. At a high level, we will show that if εp > 2

3 − z, and if εm > 2
3 − z,

then we must have εi ≤ 2
3−z. Recall that Procedure (3) takes the mixed strategy

profile (x,y), and finds the best WSNE on the supports of x and y. Our approach
is to use the assumptions that εp > 2

3 − z and εm > 2
3 − z to construct (x′,y′),

which is a specific (23 − z)-WSNE on the supports of x and y. The existence of
(x′,y′) then implies that Procedure (3) must produce at least a (23 − z)-WSNE.

In our proof, we focus on how the mixed strategy y′ can be constructed from y.
However, all of our arguments can be applied symmetrically in order to construct
x′ from x. Our approach is to take the strategy y and to improve it. If x is not
a (23 − z)-best response against y, then there must be at least one row i such
that Ri · y > 2

3 − z. We call these bad rows, and the goal of our construction
is to improve all bad rows, so that we can find a (23 − z)-WSNE. We will first
define a strategy yimp, which improves a specific bad row. Then, we define y′

to be a convex combination of y and yimp. Formally, we will define y′ = y(t),
where t ∈ [0, 1], and y(t) := (1− t) · y + t · yimp.

For the remainder of the proof, we will be concerned with finding a value of z
for which the following property holds.

Definition 4. P (z) is the property of (non-negative real value) z that there ex-
ists t ∈ [0, 1] such that, for all row player strategies x′ with Supp(x′) = Supp(x),
x′ is a (23 − z)-best response against y(t).

Since all of our arguments can also be applied to the row player, if P (z) holds
then there must exist a t such that (x(t),y(t)) is a (23 −z)-WSNE. Our goal is to
find the largest value of z for which P (z) holds in all bimatrix games. Once we
have determined the appropriate z, we will have then shown that our algorithm
will always find a (23 − z)-WSNE for all possible input games.

In the final part of our proof, we will develop a test that represents a sufficient
condition for P (z) to hold in all bimatrix games. If the test is passed then P (z)
holds in all bimatrix games, but we do not prove that P (z) does not hold when

Approximate Well-Supported Nash Equilibria Below Two-Thirds 113

the test is failed. Our test is monotone in z, and so to complete our proof, we use
binary search to find the largest z for which the test tells us that P (z) holds. We
find that the test is passed when z = 0.004735, but failed when z = 0.004736.
Thus, we arrive at our main result.

Theorem 5. The algorithm given in Section 3 finds a (23 − 0.004735)-WSNE.

5 The Proof

5.1 Re-analysing the KS Algorithm

The original KS algorithm uses a preprocessing step that checks for a pure 2
3 -

WSNE, and stops if one is found. In our version we initially check for a pure
2
3 − z-WSNE, a stronger requirement that leaves more input games that have to
be handled by the rest of the algorithm. The results we establish for the rest of
the algorithm are given in terms of the column player’s strategy; corresponding
results hold when the row player is considered.

Proposition 6. Assume that εp > 2
3 − z, and let (x,y) be the WSNE returned

by the KS algorithm. If the row player has regret larger than 2
3 −z in (x,y), then

for all rows i′ we have both of the following:

Ri′ · y ≤ 2

3
+ 2z, Ri′ · y − Ci′ · y ≤ 3z.

This proposition shows that, under our new assumptions the KS algorithm will
now produce a mixed strategy pair (x,y) that is a (23 + 2z)-WSNE. The main
goal of our proof is to show that the probabilities in x and y can be rearranged to
construct a (23 −z)-WSNE. From this point onwards, we only focus on improving
the strategy y, with the understanding that all of our techniques can be applied
in the same way to improve the strategy x.

Our improvement procedure must consider the rows i whose payoff lies in the
range 2

3 − z < Ri ·y ≤ 2
3 +2z. We call these rows bad rows, because they are the

rows that must be improved to produce a (23 − z)-WSNE. We classify the bad
rows according to how bad they are.

Definition 7. A row i is q-bad if Ri · y = 2
3 + 2z − qz.

It can be seen from Proposition 6 that every row is q bad for some q ≥ 0, and
we are particularly interested in the q-bad rows with 0 ≤ q < 3.

5.2 The Structure of a q-Bad Row

To define our improvement procedure, we must understand the structure of
a q-bad row. If i is a q-bad row, then we can apply the second inequality of
Proposition 6 to obtain:

Ci · y ≥ 2

3
− z − qz. (3)

Now consider a q-bad row i with q < 3. We can deduce the following three
properties about row i.

114 J. Fearnley et al.

– Definition 7 tells us that Ri · y is close to 2
3 .

– Equation (3) tells us that Ci · y is close to 2
3 .

– The fact that εp > 2
3 − z implies that, for each column j, we must either

have Ri,j < 1
3 + z or Ci,j < 1

3 + z, because otherwise (i, j) would be a pure
(23 − z)-WSNE.

In order to satisfy all three of these conditions simultaneously, the row i must
have a very particular form, which the rows T and M in Figure 1b show: ap-
proximately half of the probability assigned by y must be given to columns j
where Ri,j is close to 1 and Ci,j is close to

1
3 , and the other (approximately) half

of the probability assigned by y must be given to columns j where Ri,j is close
to 1

3 and Ci,j is close to 1.
Building on this observation, we split the columns of each row i into three

sets. We define the set Bi of big columns to be Bi = {j : Ri,j ≥ 2
3 + 2z}, and

the set Si of small columns to be Si = {j : Ci,j ≥ 2
3 +2z}. Finally, we have the

set of other columns Oi = {1, 2, . . . , n} \ (Bi ∪ Si), which contains all columns
that are neither big nor small. We can then formalise our observations by giving
inequalities about the amount of probability that y can assign to these sets.

Proposition 8. If i is a q-bad row then:

∑

j∈Oi

yj ≤
2qz

1
3 − 2z

,

∑

j∈Bi

yj ≥
1
3 + z − qz − (13 + z)

∑
j∈Oi

yj

2
3 − z

,

∑

j∈Si

yj ≥
1
3 − 2z − qz − (13 + z)

∑
j∈Oi

yj

2
3 − z

.

The first inequality is obtained by an application of Markov’s inequality. The
second two can be proved by substituting bounds for Bi, Si, and Oi into Defi-
nition 7 and Equation 3. The inequalities show that, if q = 0, then y must give
a roughly equal split between the big and small columns. As q increases, our
inequalities become weaker, and the split may become more lopsided.

5.3 The Improved Strategies yimp and y(t)

We now define an improved version of y. We start by constructing yimp, which
will improve the worst bad row. That is, we choose ı̄ to be the index of a row in
argmaxi(Ri · y), and therefore ı̄ is a q̄-bad row such that there is no q-bad row
with q < q̄. We fix ı̄ and q̄ to be these choices for the rest of this paper. If q̄ ≥ 3,
then y does not need to be improved. Therefore, we can assume that q̄ < 3.

We aim to improve row ı̄ by moving the probability assigned to Bı̄ to Sı̄.
This is a generalisation of shifting probability from the first column to the

Approximate Well-Supported Nash Equilibria Below Two-Thirds 115

second column in Figure 1a. Formally, we define the strategy yimp, for each j
with 1 ≤ j ≤ n, as:

yimp
j =

0 if j ∈ Bı̄,

yj +
yj·

∑
k∈Bı̄

yk∑
k∈Sı̄

yk
if j ∈ Sı̄,

yj otherwise.

The strategy yimp improves the specific bad row ı̄, but other rows may not
improve, or even get worse in yimp. Therefore, we propose that y should be
gradually improved towards yimp. More formally, for the parameter t ∈ [0, 1],
we define the strategy y(t) to be (1− t) · y + t · yimp.

5.4 An Upper Bound on Ri · yimp

Recall that P (z) checks whether there exists a t such that all row player strategies
with support Supp(x) are (23−z)-best responses against y(t). In order to perform
this test, we check whether there exists a t such that Ri · y(t) ≤ 2

3 − z, for all
rows i. Thus, eventually, we will need an upper bound on Ri · y(t) for each row
i. Since y(t) is a convex combination of y and yimp, we begin the construction
of our test by finding an upper bound on Ri · yimp.

The strategy yimp is defined by moving all probability from Bı̄ to Sı̄. We are
interested in the effect that this can have on a q-bad row i)= ı̄. If we consider the
partition of the columns in ı̄ into (Bı̄, Sı̄, Oı̄), and the partition of the columns in i
into (Bi, Si, Oi), then we have a decomposition into nine possible intersections:

Row i

Row ı̄ Bı̄ Sı̄ Oı̄

Bi Bi BiSi Si SiOi Oi Oi

We cannot know the precise amount of probability that y assigns to each of the
sets in the decomposition. However, Proposition 8 gives useful constraints on the
probabilities allocated to the sets used in the decomposition. We will use these
inequalities to write down a linear program that characterises Ri · yimp.

The LP will have one variable for each of the sets in the decomposition. The
idea is that each variable should represent the amount of probability that y
assigns to that set. Thus, we have nine variables: dbb, dbs, dbo, and so on, where
the variable dbb represents

∑
j∈Bı̄∩Bi

yj , the variable dbs represents
∑

j∈Bı̄∩Si
yj ,

and so on. For convenience, we use
∑

db∗ as a shorthand for dbb + dbs + dbo, and∑
d∗b as a shorthand dbb + dsb + dob. We also use

∑
ds∗,

∑
d∗s,

∑
do∗, and∑

d∗o, which have analogous definitions. Finally, we use
∑

d∗∗ as a shorthand
for

∑
db∗ +

∑
ds∗ +

∑
do∗.

The LP is shown in Figure 2; the constraints that variables dij are non-
negative, and should sum to 1 are not shown. The LP takes three parameters: z,

116 J. Fearnley et al.

q̄, and q. The inequalities of this LP are taken directly from Proposition 8, and
each inequality appears twice: once for row ı̄, and once for row i. The objective
function is intended to capture Ri · yimp, and it the auxiliary function:

φ(z, q) =

1 +

1
3 + z + qz + 2qz

1
3−2z

1
3 − 2z − qz − (13 + z) 2qz

1
3−2z

 .

If s(z, q̄, q) is the solution of this LP, then we have the following proposition.

Proposition 9. For every q-bad row i we have Ri · yimp ≤ s(z, q̄, q).

Maximize: φ(z, q̄)

(
dsb + (

1
3
+ z) · dss + (

2
3
+ 2z) · dso

)

+ dob + (
1
3
+ z) · dos + (

2
3
+ 2z) · doo

Subject to:
∑

db∗ ≥
1
3 + z − q̄z − (13 + z)(

∑
do∗)

2
3 − z

(4)

∑
d∗b ≥

1
3 + z − qz − (13 + z)(

∑
d∗o)

2
3 − z

(5)

∑
ds∗ ≥

1
3 − 2z − q̄z − (13 + z)(

∑
do∗)

2
3 − z

(6)

∑
d∗s ≥

1
3 − 2z − qz − (13 + z)(

∑
d∗o)

2
3 − z

(7)

∑
do∗ ≤ 2q̄z

1
3 − 2z

(8)

∑
d∗o ≤ 2qz

1
3 − 2z

(9)

Fig. 2. A linear program that gives an upper bound on Ri · yimp

5.5 Applying the Matching Pennies Argument

Recall that εm is computed in stage 2 of our algorithm, and is the quality of
the best WSNE with 2 × 2 support. So far, we have not used the assumption
that εm > 2

3 − z. In this section we will see how this assumption can be used to
strengthen our LP. We define a matching pennies sub-game as follows.

Definition 10 (Matching Pennies). Let i and i′ be two rows, and let j and
j′ be two columns. If j ∈ Bi∩Si′ and j′ ∈ Bi′ ∩Si, then we say that i, i′, j, and
j′ form a matching pennies sub-game.

Approximate Well-Supported Nash Equilibria Below Two-Thirds 117

An example of a matching pennies sub-game is given by l, r, T , and M in
Figure 1b, because we have l ∈ BM ∩ ST , and we have r ∈ BT ∩ SM . In this
example, we can obtain an exact Nash equilibrium by making the row player
mix uniformly between T and M , and making the column player mix uniformly
between l and r. However, in general we can only expect to obtain an (23 − z)-
WSNE using this technique.

Proposition 11. If there is a matching pennies sub-game, then we can con-
struct a (23 − z)-WSNE with a 2× 2 support.

Thus, we can assume that our game does not contain a matching pennies sub-
game, because otherwise Procedure (2) would have found a (23 −z)-WSNE. Note
that, by definition, if the game does not contain a matching pennies sub-game,
then for all rows i we must have either Bı̄ ∩ Si = ∅, or Bi ∩ Sı̄ = ∅.

We can use this observation to strengthen our LP. We define two LPs, each of
which is constructed by adding an extra constraint to our existing LP. In the first
LP we add the constraint dbs = 0, and in the second LP we add the constraint
dsb = 0. We refer to the solutions of these two LPs as s1(z, q̄, q) and s2(z, q̄, q)
respectively. We then obtain the following strengthening of Proposition 9.

Proposition 12. For each q-bad row i we either have Ri ·yimp ≤ s1(z, q̄, q), or
we have Ri · yimp ≤ s2(z, q̄, q).

5.6 A Linear Upper Bound for Our LPs

Now we can finally obtain our bound for Ri ·yimp, by proving an upper bound for
sk(z, q̄, q). It is not difficult to show that sk is monotonically increasing in q̄. Since
q̄ < 3, we can therefore argue that sk(z, q̄, q) ≤ sk(z, 3, q). Then, using standard
techniques from sensitivity analysis in linear programming, it is possible to bound
sk(z, 3, q) by a linear function.

Proposition 13. We can compute cz,k and dz,k so that sk(z, 3, q) ≤ cz,k+dz,k·q.

To obtain our final upper bound on Ri ·yimp, we simply take the maximum over
the two LPs. That is, we set cz = max(cz,1, cz,2) and dz = max(dz,1, dz,2). This
then leads to our final upper bound for Ri · yimp.

Proposition 14. We have Ri · yimp ≤ cz + dz · q, for every q-bad row i.

5.7 The Test for P (z)

Finally, we can describe the test that determines whether P (z) holds in all
bimatrix games. The test constructs a point t∗z, and then checks whether Ri ·
y(t∗z) ≤ 2

3 − z holds for all rows i.
We begin by defining t∗z , which is the smallest value of t for which, if i is a

0-bad row, then Ri · y(t) ≤ 2
3 − z. By definition we have that Ri · y = 2

3 + 2z,
and we also know that Ri · yimp ≤ cz + dz · 0. Therefore t∗z is the solution of:

(
2

3
+ 2z) · (1− t∗z) + cz · t∗z =

2

3
− z.

118 J. Fearnley et al.

This can be seen graphically in Figure 3a. The line in the figure starts at 2
3 + z

when t = 0, and ends at cz when t = 1. The point t∗z is the value of t at
which this line crosses 2

3 − z. We can solve the equation to obtain the following
formula:

t∗z =
3z

2
3 + 2z − cz

. (10)

Ri · y(t)

t

2
3 − z

2
3

2
3 + 2z

t∗z

(a) Finding t∗z.

Ri · y(t)

t
2
3 − z

2
3

2
3 + 2z

t∗z

q∗z

(b) Finding q∗z .

Fig. 3. Diagrams that show how t∗z and q∗z are found

Next, we define a constant q∗z . For each row i, there is a trivial bound of:

Ri · yimp ≤ 1. (11)

Note that if q is large, then this bound will be better than our bound of cz+dz ·q.
The next step of our procedure is to find q∗z , which is the smallest value of q
such that, using this trivial bound (11), we can conclude that Ri ·y(t∗z) ≤ 2

3 − z.
Formally, we define q∗z to be the solution of:

(
2

3
+ 2z − q∗zz) · (1− t∗z) + t∗z =

2

3
− z.

This can be seen diagrammatically in Figure 3b: we fix a line that passes through
1 when t = 1, and 2

3 − z when t = t∗z. Then, q
∗
z is defined to be the point at

which this line meets the y-axis of the graph, where t = 0. Solving the equation
gives the following formula for q∗z .

q∗z =
(2z − 1

3) · t
∗
z − 3z

zt∗z − z
(12)

For rows i that are q-bad with q ≥ q∗z , we can apply the trivial bound (11) to
argue that Ri · y(t∗z) ≤ 2

3 − z. Therefore, we need only be concerned with rows i
that are q-bad with 0 ≤ q < q∗z . The next proposition gives a simple test that can
be used to check whether all such rows will have the property Ri ·y(t∗z) ≤ 2

3 − z.

Approximate Well-Supported Nash Equilibria Below Two-Thirds 119

Proposition 15. If cz + dz · q∗z ≤ 1, then Ri · y(t∗z) ≤ 2
3 − z for all rows i.

Thus, our test for checking whether P (z) holds in all bimatrix games can be
summarised as follows. First we compute the constants cz and dz. Then we use
these to compute t∗z and q∗z . Finally, we check whether cz + dz · q∗z ≤ 1. If the
inequality holds, then Proposition 15 implies that P (z) is true. To complete the
proof of Theorem 5, it suffices to note that our test proves that P (z) holds in
all bimatrix games for z = 0.004735.

6 Conclusions

In Section 3, we presented a polynomial-time algorithm for computing a (23 −z)-
WSNE, where z = 0.004735. We do not believe that our analysis is tight, as it
uses several restrictions that our algorithm does not face. For example, y(t) uses
the same support as the strategy returned by the KS algorithm, whereas the
LP given in Definition 1 can return a subset of this support. Another example
is that in the analysis we only consider 2 × 2 subgames in which players mix
uniformly, whereas Procedure 2 considers all mixtures.

An interesting open question is the following. Does every bimatrix game pos-
sess a 1

2 -WSNE, where both players use at most two strategies? This is known
to be true with high probability in random games [1], but not known in general.

References

1. Bárány, I., Vempala, S., Vetta, A.: Nash equilibria in random games. Random
Struct. Algorithms 31(4), 391–405 (2007)

2. Bosse, H., Byrka, J., Markakis, E.: New algorithms for approximate Nash equilibria
in bimatrix games. Theoretical Computer Science 411(1), 164–173 (2010)

3. Bradley, S.P., Hax, A.C., Magnanti, T.L.: Applied Mathematical Programming.
Addison-Wesley (1977), http://web.mit.edu/15.053/www/

4. Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing two-player
Nash equilibria. Journal of the ACM 56(3),14:1–14:57 (2009)

5. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a Nash equilibrium. SIAM Journal on Computing 39(1), 195–259 (2009)

6. Daskalakis, C., Mehta, A., Papadimitriou, C.H.: Progress in approximate Nash
equilibria. In: Proceedings of ACM-EC, pp. 355–358 (2007)

7. Daskalakis, C., Mehta, A., Papadimitriou, C.H.: A note on approximate Nash equi-
libria. Theoretical Computer Science 410(17), 1581–1588 (2009)

8. Jansen, B., de Jong, J.J., Roos, C., Terlaky,T.: Sensitivity analysis in linear program-
ming: just be careful! European Journal ofOperationalResearch 101(1), 15–28 (1997)

9. Kontogiannis, S.C., Spirakis, P.G.: Efficient Algorithms for Constant Well Sup-
ported Approximate Equilibria in Bimatrix Games. In: Arge, L., Cachin, C.,
Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 595–606.
Springer, Heidelberg (2007)

10. Kontogiannis, S.C., Spirakis, P.G.: Well supported approximate equilibria in bi-
matrix games. Algorithmica 57(4), 653–667 (2010)

11. Nash, J.: Non-cooperative games. The Annals of Mathematics 54(2), 286–295
(1951)

12. Tsaknakis, H., Spirakis, P.G.: An optimization approach for approximate Nash
equilibria. Internet Mathematics 5(4), 365–382 (2008)

