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Abstract. We study set-system auctions whereby a single buyer wants
to purchase Q items of some commodity. There are multiple sellers, each
of whom has some known number of items, and a private cost for sup-
plying those items. Thus a “feasible set” of sellers (a set that is able to
comprise the winning bidders) is any set of sellers whose total quantity
sums to at least Q. We show that, even in a limited special case, VCG
has a frugality ratio of at least n−1 (with respect to the NTUmin bench-
mark) and that this matches the upper bound for any set-system auction.
We show a lower bound on the frugality of any truthful mechanism of√
Q in this setting and give a truthful mechanism with a frugality ratio

of 2
√
Q. However, we show that similar types of ‘scaling’ mechanism, in

the general (integer) case, give a frugality ratio of at least 4Qe−2

ln2 Q
.

1 Introduction

In this paper we examine a simple and natural type of procurement auction,
whereby some central authority wishes to purchase some items from amongst
a set E of possible sellers, or agents, by requesting quotes for their costs of
supplying the items, then selecting and paying the winners so as to incentivise
true bidding. We examine some alternative mechanisms, which consist of a set
of rules that determine how the auction is run. We assume each seller e ∈ E
provides a (sealed) bid be to the auction mechanism. The auctioneer then utilises
a mechanism, M, to choose a set S of winning agents (a selection rule) and a
price pe to pay each agent (a payment rule).

We focus on so-called truthful mechanisms. In such a mechanism each agent
may maximise its profit simply by making a bid equal to the value that they
have (privately) determined as their true cost — the cost the agent incurs as
a result of participating in the winning set — for agent e we denote this cost
by ce. At first glance, this may appear to be somewhat restrictive, but truthful
mechanisms turn out to be widespread. The first study of a truthful mechanism
was by Vickrey in 1961 [11] showing how a sealed-bid second-price auction is
truthful (an item is sold to the highest bidder, at a price equal to the second-
highest bid). Furthermore, due to the revelation principle (see, e.g., [5,9]), it is
possible to take any mechanism that has a dominant strategy and convert it into
a truthful mechanism.
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However, a truthful mechanism may not be optimal in terms of revenue. For
example, if there are two sellers with very different prices, we must end up pay-
ing the larger of the prices. While accepting that some measure of overpayment
is necessary, it seems reasonable to try and keep this as low as possible, particu-
larly if we are looking for any real-world motivation. This overpayment is often
described (see, e.g., [1,10,7]) in terms of a frugality ratio. The frugality ratio is
defined as the worst-case ratio between the payments made by a given truthful
mechanism and a benchmark figure for the same instance. It has been called “the
price of truthfulness” [4]. When frugality was first studied [1,10], it was in the
context of path auctions, and benchmark figures were described as properties of
the paths. More recently, Karlin, Kempe and Tamir [7] described a benchmark
figure that can be used to express a benchmark figure for any monopoly-free
set-system auction (where the solutions deemed to be acceptable are described
as sets of the agents). They also proposed a scaling mechanism for path auctions,
and describe its frugality ratio. They give a lower-bound on the frugality ratio
for any truthful mechanism, and show that their mechanism is within a constant
factor of this lower bound. This constant factor was later improved by Yan [12]
and Chen et al. [2].

Since then, Elkind, Goldberg and Goldberg [4] considered alternatives to the
benchmark that was proposed in [7] (in [4] they are denoted TUmin, TUmax,
NTUmin, NTUmax). Formal definitions of these are given in Definition 1. They
also described a polynomial-time mechanism, based on an approximation algo-
rithm, which gives a frugality ratio which is close to that of the well-known
Vickrey-Clarke-Groves (VCG) [11,3,6] mechanism (the VCG mechanism must
solve the vertex cover problem exactly, which is known to be NP-complete and
hence cannot be solved in polynomial time unless P=NP). We give, in Sec-
tion 2.1, a more general framework for determining the frugality ratios of sim-
ilarly well-behaved approximation algorithms. (An approximation algorithm is
well-behaved if it is monotonic in the bid values, i.e. an agent cannot go from
being a loser to a winner by increasing its bid.) Most recently, two groups of
researchers [8,2] independently proposed a more general framework of ‘scaling’
mechanisms that produce improved frugality ratios for a number of set-system
auctions, including vertex-covers, flows and cuts. In common with the scaling
mechanisms of Karlin et al. [7] they take advantage of the idea that the size of
the winning set has a large influence on the overpayment made by a mechanism,
and that improvements can be made when the mechanism biases the choice of
winning set towards smaller winning sets (by scaling the bids). The frugality
results that we present in Section 3 are slightly different, in that the feasible sets
may be of similar sizes, yet the frugality ratio can still vary by a large degree.

Preliminaries

Denote a set system as a pair (E ,F), where E is the ground set of n elements
and F ⊆ 2E is a collection of feasible sets.

Each element e ∈ E has cost ce; denote the cost vector c = (c1, . . . , cn).
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Definition 1. Let (E ,F) be a set system, let c be a cost vector, and let S be the
lowest-cost feasible set (with ties broken lexicographically)S ∈ argminT∈F

∑
e∈T ce.

Let NTUmin(c) be the solution to the problem: Minimize B =
∑

e∈S be subject to
the following conditions.

(1) be ≥ ce for all e ∈ S
(2)

∑
e∈S\T be ≤

∑
e∈T\S ce for all T ∈ F

(3) for every e ∈ S, there is Te ∈ F such that e /∈ Te

and
∑

e′∈S\Te
be′ =

∑
e′∈Te\S ce′

As noted, a mechanism M takes a cost vector c, selects a winning feasible set
S, and pays S, incurring a price pM(c). The frugality ratio for mechanism M is

φNTUmin(M) = sup
c
(pM(c)/NTUmin(c)).

We will also consider one of the alternative benchmarks of Elkind et al. [4]. Let
NTUmax(c) be the solution to the problem: Maximize B =

∑
e∈S be subject to

conditions (1), (2), and (3). Let φNTUmax(M) = supc(pM(c)/NTUmax(c)).
To simplify notation, define the aggregates for a set V ⊆ E ; let bV =

∑
e∈V be,

cV =
∑

e∈V ce, and pV =
∑

e∈V pe.

2 Preliminary Results

Let d(V ) be the best feasible set (with the lowest sum of costs) using only
agents in V where V ⊆ E . We will now see a lower bound for NTUmin(c) which,
informally, states that NTUmin must be at least as large as the worst-case cost
of replacing one of the agents to make a feasible set without it. (The proof is
omitted due to space constraints.)

Lemma 1. NTUmin ≥ maxe cd(E\{e}).

This lower bound for NTUmin(c) is a useful tool in analysing frugality ratios,
and we will now see how it can be used to prove an upper bound on the frugality
of mechanisms based on approximation algorithms.

2.1 Frugality of Approximation Mechanisms

Let P be some approximation algorithm, and let SP be the feasible set returned
by P (which uses the bids as an input parameter). We will assume that P is
monotonic in the bids (that is, given fixed bids of the other agents, no agent can
be chosen in the winning set when some smaller bid may result in that agent not
being chosen). So if we use this algorithm as a selection rule, and use threshold
payments as a payment rule, then it is well-known (e.g. [9]) that we have a
resulting truthful mechanism MP . (A threshold payment is the supremum of
the amounts that the agent can bid and still be selected in the winning set,
given the fixed bids of the other agents.) Let k be the approximation ratio of
the algorithm; i.e. some k, such that for all instances of the problem bSP ≤ k · bS
holds. (Note that, as the mechanism is truthful, we can assume that be = ce).
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Lemma 2. Let k be the approximation ratio of the algorithm P. Then ∀e ∈
SP , pe ≤ k ·NTUmin(c).

Proof. We have defined d(E\{e}) to be a (lowest cost) feasible set, not containing
e. Assume, for contradiction, that e were to make a threshold bid, be > k ·
NTUmin(c), and the winning set SP (chosen by P) includes e. From Lemma 1
we can observe that bd(E\{e}) ≤ NTUmin(c). As we have assumed that be ≥
k · NTUmin(c), and as e ∈ SP we have bSP > k · NTUmin(c) (this holds for all
choices of SP when e ∈ SP). Hence, by transitivity, we have bSP > k · bd(E\{e}).
As d(E \ {e}) is a feasible set, the approximation ratio of P is at least

bSP
bd(E\{e})

.

Hence when bSP > k · bd(E\{e}) we have
bSP

bd(E\{e})
> k, showing that P does

not have an approximation ratio of k, giving a contradiction. Therefore for the
threshold bid the inequality be ≤ k · NTUmin(c) holds, and hence the payment
pe ≤ k · NTUmin(c). &'

Theorem 1. Let P be a monotonic approximation algorithm with an approxi-
mation ratio of k. Then the resulting mechanism MP (with selection rule P and
threshold payments) has φNTUmin(c)(MP) ≤ k(n− 1).

Proof. In a monopoly-free setting we have a winning set SP such that |S| ≤
n − 1. from Lemma 2, we have upper bounds on the payment for each e ∈ S,
pe ≤ k ·NTUmin(c). Summing over e ∈ S gives p(SP) ≤ (n− 1)k ·NTUmin(c).

&'

While the approximation result is not strictly relevant to the rest of this paper,
it does imply, when k = 1, that φNTUmin(V CG) ≤ n − 1. (This is more precise
than the observation made by Karlin et al. [7] that the frugality ratio of VCG is
O(n).) We will also see, in Section 3.1, that even our most restricted commodity
auction has a frugality ratio that is exactly as high as this upper bound.

3 The Single-Commodity Auction

We consider a single-commodity auction where we have some number of identical
items for sale, and a quantity Q, the number of these items the auctioneer
requires. Each agent e ∈ E can provide a fixed, indivisible, quantity of these
items, denoted by qe. The private cost value of e is denoted by ce, while the
bid made to the mechanism is denoted by be. Again, since we focus on truthful
mechanisms, we can assume be = ce.

One could regard this more abstractly as modelling a setting where each seller
has some level of capacity to assist with a task, and the buyer wants the task
done, and the total capacity to be at least some amount. However, for our results
to apply we would need these capacities to be small integers.

The feasible sets F , are defined based on these quantity parameters as follows:

F = {T ∈ 2E :

(
∑

e∈T

qe

)
≥ Q}. (4)
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Initially in Section 3.1 we focus on the special case where each agent e only
has at most 2 items for sale. We call this the {1,2} single-commodity auction.
In Section 3.3 we move to the more general integer single-commodity auctions,
where a seller’s capacity may be any positive integer, not just 1 or 2.

3.1 The {1, 2} Single-Commodity Auction

The {1, 2} Single-Commodity Auction is a single-commodity auction with the
additional restriction, that ∀e ∈ E , qe ∈ {1, 2}. While we could simply use VCG
to run this auction (recall that VCG chooses the lowest-cost solution and pays
each winning agent a threshold value), Table 1 shows that VCG performs poorly
in terms of frugality (in fact, matching the upper bound given in Section 2.1). It
is also interesting to note that this frugality ratio is as large as Q, the number
of items to purchase. We can argue that measuring the frugality ratio in terms
of Q seems to make sense for these types of commodity auctions, as it is more
naturally a parameter of the auction than the number of agents is. Hence, we
will generally consider the frugality ratio in terms of Q, although the results in
terms of n are generally similar.

Table 1. In this example we see that VCG has poor frugality; we have a commodity
auction for quantity Q items and observe that the number of agents n = Q + 1. For
each agent e ∈ E the quantity qe and cost ce are given in the table. A value bmin

e for
a NTUmin bid vector is also given, as is the payment made by the VCG mechanism
pVCG
e .

Agent qe ce bmin
e pVCG

e

S






1 1 0 1 1
2 1 0 0 1
...

...
...

...
...

n− 1 1 0 0 1
n 2 1

Total 1 n− 1

In an attempt to improve frugality, we will now look at a class of (truthful)
mechanisms that choose a winning set a little more intelligently.

3.2 The Mα Mechanism

Here we analyse a class of mechanisms, Mα , each of which is uniquely defined
by its ‘scaling’ value α ∈ R; a definition for this mechanism follows. Mα will
calculate ‘virtual’ bids ve for each agent e by using a scaling factor as follows:

ve =

{
αbe, if qe = 1

be, otherwise.
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For ease of notation, let the aggregate be vV =
∑

e∈V ve. Let Sα ∈ argminT∈F vT
be the winning set (the lexicographically first of the feasible sets that have the
lowest sum of virtual bids). The payment rule is threshold payments. It is easy
to observe that this selection rule is monotonic in the bids, and recall that these
are sufficient conditions for a mechanism to be truthful.

Frugality Ratio for Mα . Recall that S is the lowest-cost feasible set, and
partition S into two sets, S1 having agents with quantity 1, and S2 for those
agents having quantity 2.

As choosing both S and Sα requires that ties are broken lexicographically,
there is no agent in Sα \ S that has the same quantity as an agent in S \ Sα

(if it is chosen in Sα then it would have been chosen in S). For any α > 1,
then where S contains some agent e having qe = 2, then Sα must also contain
agent e. (If there existed i, j /∈ S such that vi + vj ≤ ve, then ci + cj ≤ ce/α
contradicting e being chosen in S in preference to {i, j}). Therefore, where S
and Sα are different, Sα \ S contains only agents with quantity 2 and S \ Sα

contains only agents with quantity 1.
We now partition the winning set Sα into three sets, Sα ∩ S1, Sα ∩ S2, and

Sα \ S then consider the payments to members of each set separately.

Lemma 3. For every instance of Mα when α =
√
Q then pSα∩S1 ≤

√
Q ·

NTUmin.

Proof. We will examine this as two cases. Case 1. Suppose that for every e ∈
Sα∩S1 there exists a Te set satisfying (3) when (Te\S)∩E1 is not empty. Let j be
some agent in Te\S with qj = 1. Assume, for contradiction, that pe > cj . Hence,
agent e’s threshold bid be = pe > cj. As j would bid cj in a truthful mechanism,
butMα chose e then cj ≥ pe giving a contradiction. W.l.o.g., we can assume that
Te = S \{e}∪{j}. Observe that T ′

e \{j}∪{e} is also a feasible set, hence it must
satisfy condition (2), giving bmin

S\(T ′
e∪{e}) ≤ cT ′

e\(S∪{j}, and hence bmin
e ≥ cj or T ′

e

does not satisfy condition (3), showing that Te = S \{e}∪{j} satisfies condition
(3). Using bmin

e = cj we have pSα∩S1 ≤ bmin
Sα∩S1

and hence pSα∩S1 ≤ NTUmin.
Case 2. Suppose that for some e ∈ Sα ∩ S1 there is some Te set satisfying

(3) when (Te \ S) ∩ E1 is empty. There is some j ∈ (Te \ S) ∩ E2 such that
bmin
S\Te

= cTe\S . W.l.o.g. assume that qS\Te
≤ 2. For each e ∈ Sα ∩ S1 agent e’s

threshold bid must be be ≤ cj/α. Hence pe = be ≤ cj/α. As α =
√
Q and Q is

trivially an upper bound on the size of S1, pSα∩S1 ≤
√
Q · cj , with bmin

Sα∩S1
≥ cj

(from S \ Te ⊆ Sα ∩ S1), this gives pSα∩S1 ≤
√
Q · bmin

Sα∩S1
≤

√
Q·NTUmin.

Similar proofs for the other two sets are omitted due to space constraints.

Lemma 4. For every instance of Mα when α =
√
Q then pSα∩S2 ≤

√
Q·bmin

Sα∩S2
.

Lemma 5. For every instance of Mα having α =
√
Q then pSα\S ≤

√
Q ·bmin

S\Sα.

Theorem 2. For {1, 2} Single-Commodity Auctions with quantity Q, the Mα

scaling mechanism when α =
√
Q, gives φNTUmin(αM) ≤ 2

√
Q.
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Proof. From Lemmas 3,4, and 5, the inequalities pSα∩S2 ≤
√
Q ·bmin

Sα∩S2
, pSα\S ≤√

Q · cS\Sα , and pSα∩S1 ≤
√
Q · NTUmin. hold. As S \ Sα and Sα ∩ S2 are

disjoint sets within S, then bmin
Sα∩S2

+ cS\Sα ≤ bmin
S ≤ NTUmin. Therefore, we

have pSα∩S2 +pSα\S ≤
√
Q ·NTUmin, and add to give pS ≤ 2

√
Q ·NTUmin and

hence φNTUmin(Mα) ≤ 2
√
Q. &'

A Lower Bound on Frugality. Here, we see that any truthful mechanism
must pay at least

√
Q·NTUmin, showing that the Mα mechanism with α =

√
Q

is within at most a factor of two of optimal.

Theorem 3. There exists a {1, 2} single-commodity auction for Q items such
that any truthful mechanism M, must pay at least

√
Q·NTUmin.

Proof. For any quantity Q, let I be an instance of a set-system auction having
E = {1, . . . , Q + 1} and q = {1, . . . , 1, 2}. Suppose that M is some truthful
mechanism. Consider each e ∈ {1, . . . , Q} and suppose an instance such that
be = 1, bQ+1 =

√
Q and all other agents bid 0. We are interested in two cases,

either every e ∈ {1, . . . , Q} would be chosen in the winning set by M, or else
there is some such e for which Q+ 1 would be chosen instead.

Case 1. Suppose that every e ∈ {1, . . . , Q} is chosen in preference to Q + 1.
Let b = (0, . . . , 0,

√
Q) be a bid vector. Observe that S = {1, . . . , Q} and that

bmin = (
√
Q, 0, . . . , 0) denotes a bid vector satisfying conditions (1),(2) and (3),

hence NTUmin ≤
√
Q. As every agent in S, would have been chosen by M with

a bid of 1 then SM = S and each threshold bid must be at least 1, hence pE ≥ Q
and pE/NTUmin ≥

√
Q.

Case 2. Suppose (w.l.o.g) that agent Q+1 is chosen in preference to agent 1.
Let b = (1, 0, . . . , 0, 1) be a bid vector. Observe that S = {1, . . . , Q} (with the
tie broken lexicographically) and that bmin = (1, 0, . . . , 0) denotes a bid vector
satisfying conditions (1),(2) and (3), hence NTUmin ≤ 1. As mechanism M will
choose agent Q + 1 with bid

√
Q in preference to 1, being truthful implies that

M will still choose Q + 1 with a lower bid of 1, hence Q + 1 ∈ SM. As agent
Q + 1 would still have been chosen had it bid

√
Q, its threshold bid is at least√

Q, and hence pQ+1 ≥
√
Q. This gives pE ≥

√
Q and hence pE/NTUmin ≥

√
Q.

For every truthful mechanism M, either Case 1 or Case 2 applies, hence the
frugality ratio φNTUmin(M) ≥

√
Q. &'

3.3 Integer Single-Commodity Auctions

We consider improvements to frugality bounds in the more general setting, where
the restriction on the quantity of each agent to 1 or 2 is relaxed. We have a lower
bound on frugality of

√
Q from the {1, 2} single commodity auction, but we may

believe that there is a stronger lower bound in the integer case. While we do not
have a result for all truthful mechanisms, we obtain an asymptotically stronger
lower bound on frugality that applies to a natural class of scaling mechanisms,

of at least 4Qe−2

ln2 Q , for all mechanisms in this class.
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Preliminaries. Let k be a ‘maximum quantity’ parameter such that ∀e ∈
E , qe ≤ k holds and assume that k ≤

√
Q. Let β be a scaling function, returning

a linear scaling vector, a = β(Q, k) (with ae ∈ R). Let Mβ be the mechanism
that uses the scaling vector a = (a1, . . . , ak) returned by β, as follows. Compute
a ‘virtual’ bid ve for each agent e as ve = beaqe . Let S ∈ argminT∈F vT be the
winning set. Each agent e will be paid its threshold value, pe. If we consider every
scaling function β, and the resulting class of mechanisms, then we can think of
Mβ as the class of all ‘blind-scaling’ mechanisms; where the mechanism must
choose a scaling factor for each possible quantity, based only on the quantity
required Q and the maximum quantity parameter k.

A Lower Bound for Blind-Scaling Mechanisms. The proof will examine a
series of example instances given, and show that at least one of them must cause
a payment ratio that satisfies the lower bound. We can generalise the example
given in Table 1, and will show this in Table 2. For each j ∈ {1, . . . , k − 1} let
Table 2 describe instance Ij . Observe the assumption that j < k ≤

√
Q implies

that m ≥ j which is required by the structure of the example (m is defined in
the example as m = ,Q

j -).
We can see that there are j agents in S that can have a (NTUmin) bid value

bmin
e = 1. We can show that there can be no more than j agents that can each
bid 1 as follows; j + 1 agents, each with quantity j, could be ‘replaced’ by the
j agents outside S, each with quantity j + 1, so no set of j + 1 agents in S can
bid a sum of more than j.

More formally, ∀e ∈ S, let Te = S \ {1, . . . , j, e} ∪ {(m+ 1), . . . , (m+ j + 1)}.
Observe that

(∑j
i=1 qi

)
+qe = j(j+1) and

(∑j+1
i=1 qm+i

)
= j(j+1) hence qS =

Table 2. Instance Ij : In this example we have a {j, j + 1} commodity auction for
quantity Q items. Let m = $Q

j % and observe that the winning set is given by S =
{1, . . . ,m}. For each agent e ∈ E the quantity qe and cost ce are given in the table. A
value bmin

e for a NTUmin bid vector is also given, giving NTUmin≤ j. The payment
made by the Mβ mechanism is also given in Table 2 as pe.

Agent qe ce bmin
e pe

S






1 j 0 1 aj+1/aj

...
...

...
...

j j 0 1 aj+1/aj

j + 1 j 0 0 aj+1/aj

...
...

...
...

m j 0 0 aj+1/aj

m+ 1 j + 1 1
...

...
...

m+ j + 1 j + 1 1

Total j maj+1/aj
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qT and Te is a feasible set. Using this Te in condition (3) for all e ∈ {j+1, . . . ,m}
gives

(∑j
i=1 b

min
i

)
+ bmin

e =
∑j+1

i=1 c
j
m+1. As

∑j
i=1 b

min
i = j and

∑j+1
i=1 cm+i = j

then we have bmin
e = 0, which shows that for all e ∈ {j + 1, . . . ,m} then vector

bmin has some Te satisfying condition (3) of Definition 1. For all e ∈ {1, . . . , j},
let Te = S \ {e} ∪ {m+ 1} which gives bmin

e = 1, showing that the bid vector
bmin has, for all e ∈ S, some Te satisfying condition (3) and as we can observe
bmin satisfies conditions (1) and (2) then this shows NTUmin ≤ bmin

S and hence
NTUmin ≤ j.

We can also generalise the payment to each e ∈ S. For each agent e ∈ S, if
ve > vm+1 then agent e would not be chosen, as the winning set could become
S \ {e} ∪ {m + 1}. Where ve = vm+1, then agent e may still be chosen, hence
when agent e can submit a threshold bid be such that ve = vm+1 and this gives
the threshold payment.

If we assume for all e ∈ S, that be = aj+1

aj
then as ve = beaj we have ve =

aj+1

aj
aj = aj+1 = vm+1. This shows that be = aj+1

aj
is a threshold bid for all

e ∈ S, hence the payment is given by pe =
aj+1

aj
.

Let c be a cost vector for instance Ij and let pE be the sum of payments.
We examine the payment ratio pE

NTUmin as follows. There are at least Q
j agents

in S, each is paid aj+1

aj
, and NTUmin ≤ j; hence the payment ratio satisfies

the inequality pE
NTUmin ≥ Qaj+1

j2aj
. We can then use this as we move onto the first

part of the proof. We will use the ‘maximum quantity’ parameter, k, and will
examine a series of instances where all agents have quantity at most k. We give

a certain ratio, Q
k−1
k

k2 , and we will show (from these instances) that a minimum
separation is needed between any consecutive scaling values (aj , aj+1) (where
j < k) in order to satisfy this ratio. We will then show how having this minimum
separation between consecutive scaling values implies a large separation between
the first and k-th value, and give a further instance where a large separation will

result in a frugality ratio larger than Q
k−1
k

k2 .
Finally we will show how to compute a value for k that gives a lower-bound

for any given Q.

Proposition 1. For instance Ij of Mβ with j ≤ k − 1 and aj

aj+1
≤ Q

1
k the

inequality pE
NTUmin ≥ Q

k−1
k

k2 holds.

Proof. As j ≤ k implies 1
j2 ≥ 1

k2 , then
Qaj+1

j2aj
≥ Qaj+1

k2aj
. It follows, due to transi-

tivity with pE
NTUmin ≥ Qaj+1

j2aj
that pE

NTUmin ≥ Qaj+1

k2aj
. Also aj

aj+1
≤ Q

1
k can be be

expressed as aj+1

aj
≥ Q

−1
k therefore, by transitivity pE

NTUmin ≥ Q
k2

aj+1

aj
≥ QQ

−1
k

k2 .

This can be simplified to state pE
NTUmin ≥ Q

k−1
k

k2 , completing the proof. &'

This minimum separation required between every aj and aj+1 implies that there
is large separation between a1 and ak. We will see, in Table 3, that such a large
separation then results in a similarly large frugality ratio.
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Table 3. Instance Ik: In this example we have a commodity auction for quantity Q
items with the parameter k. Let m = $Q

k % and observe that the winning set is given
by S = {1, . . . ,m}. For each agent e ∈ E the quantity qe and cost ce are given in the
table. A value bmin

e for a NTUmin bid vector is also given, showing NTUmin ≤ mk.
The payment made by the Mβ mechanism is also given in the table as pe.

Agent qe ce bmin
e pe

S






1 k 0 k ka1/ak

...
...

...
...

m k 0 k ka1/ak

m+ 1 1 1
...

...
...

m+ k 1 1

Total mk mka1/ak

Proposition 2. For instance Ik of Mβ the inequality pE
NTUmin ≥ a1

ak
holds.

Proof. For each e ∈ S, there is exactly one feasible set not containing e —
that is E \ {e}. Therefore the only bid vector that could satisfy NTUmin must
satisfy condition (3) of Definition 1 with Te = E \ {e}. Therefore the NTUmin
bid for each e ∈ S must be given by bmin

e = cTe\S = c{m+1,...,m+k+1} = k . As
there are m agents in S, each having a bid bmin

e = k, we have NTUmin ≤ mk.
Similarly, the threshold bid for e must be where ve = v{m+1,...,m+k}. Assuming

be = ka1
ak

multiplying by the scaling factor ak gives ve = ka1
ak

ak = ka1. The
virtual bids of the competing agents i ∈ {m + 1, . . . ,m + k + 1} are vi = a1,
hence v{m+1,...,m+k} = ka1 showing that be =

ka1
ak

is a threshold bid, and hence

the payment pe =
ka1
ak

.

Therefore, in Instance Ik, there are m agents in S; each is paid ka1
ak

giving a

total payment of mka1
ak

. As we have seen NTUmin ≤ mk hence pE
NTUmin ≥ a1

ak
. &'

We now see there is always some instance which implies a lower bound on the
payment ratio, for any possible scaling vector of the mechanism.

Proposition 3. For any scaling vector a given by Mβ there is either some In-
stance Ij for j ∈ {1, . . . , k−1} or Instance Ik such that the inequality pE

NTUmin ≥
Q

k−1
k

k2 holds.

Proof. If there existed some j ∈ {1, . . . , k − 1} such that aj

aj+1
≤ Q

1
k then

Proposition 1 implies that pE
NTUmin ≥ Q

k−1
k

k2 . So, suppose that the expression

∀j ∈ {1, . . . , k − 1}, aj

aj+1
> Q

1
k holds. We can see this implies that the con-

secutive scaling values must have a certain separation. By way of example, this
gives a1

a2
> Q

1
k , a2

a3
> Q

1
k etc. By transitivity we would have a1

a3
> Q

2
k ,a1

a4
> Q

3
k

etc. This can then be generalised, for j ∈ {1, . . . , k − 1} to give a1
aj+1

> Q
j
k .
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For j = k − 1, then we have a1
ak

> Q
k−1
k . Referring back to Proposition 2,

Instance Ik gives pE
NTUmin ≥ a1

ak
and, by transitivity, pE

NTUmin > Q
k−1
k .

Hence there is some instance, either Ij for j ∈ {1, . . . , k−1} or Ik that satisfies
the proposition. &'

Now that we have seen that there is always some instance that gives at least
this payment ratio in terms of k, we can use this to prove a lemma that shows a
lower bound on the frugality ratio for all Integer Single-Commodity Auctions.

Lemma 6. For all Integer Single-Commodity Auctions with quantity Q and
maximum quantity parameter k ≤

√
Q, for every blind-scaling scaling mecha-

nisms Mβ the inequality φNTUmin(Mβ) ≥ Q
k−1
k

k2 holds.

Proof. The blind-scaling mechanismMβ must, by definition, calculate its scaling
vector a for use on any instance that it may be given with these parameters.
Once this scaling vector is fixed the mechanism may possibly be given either
Instance Ik or Instance Ij for any j ∈ {1, . . . , k − 1}. Proposition 3 shows that

at least one of these instances gives pE
NTUmin ≥ Q

k−1
k

k2 . The existence of such an

instance proves φNTUmin(Mβ) ≥ Q
k−1
k

k2 . &'

Now that we have shown a lower bound on frugality for values of Q in terms
of the parameter k, we can specify a value of k such as to give a lower bound
entirely in terms of Q. To that end, suppose k = lnQ

2 , and we will see this implies

a lower bound of 4Qe−2

ln2 Q
for Mβ mechanisms.

Theorem 4. Given any Integer Single-Commodity Auction having quantity Q,

for every blind-scaling mechanism Mβ the inequality φNTUmin(Mβ) ≥ 4Qe−2

ln2 Q
holds.

Proof. Considering the proof of Lemma 6, suppose k = lnQ/2. The expression

given in Lemma 6 implies Q
k−1
k

k2 = 4Qe−2

ln2 Q
, and hence, φNTUmin(Mβ) ≥ 4Qe−2

ln2 Q
.
&'

4 Conclusion

While single-commodity auctions are quite simple, they show surprisingly high
frugality ratios. Particularly in the {1, 2} case, a lower bound on the frugality
ratio for every truthful mechanism of

√
Q seems unreasonably high. This result

could also seem to call into question the suitability of NTUmin as a reasonable
benchmark. Our scaling mechanism is shown to be within a factor of 2 of optimal;
it may be that this factor of 2 could be reduced with a stronger analysis.

While we have shown a fairly large lower bound on the frugality of ‘blind-
scaling’ mechanisms in the more general case of integer single-commodity auc-
tions, it is not known if some other form of mechanism would result in better
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frugality. Also, we have not presented any mechanism that would give a frugality
ratio of better than Q in this case, although it seems that some form of scaling
mechanisms should, at least, give some slightly better result. Choosing to mea-
sure frugality in terms of Q or n makes little difference in the {1, 2} case, but the
difference is more pronounced in the integer case, and showing good frugality
results in terms of n may be an interesting goal.

We have only considered frugality in this setting with respect to NTUmin.
More recently (see, e.g., [2,8]) we have seen frugality ratios analysed with re-
spect to NTUmax. It is likely that we will get more satisfactory frugality ratios
with respect to NTUmax, particularly in the {1, 2} case. Although, in the inte-
ger case, we may still get reasonably large frugality ratios. Take, for example,
Theorem 3 and amend the quantity vector to be q = (1, . . . , 1, Q). This would
give NTUmax = 1 (as Te = {Q + 1} is the only alternative feasible set, and so
must satisfy condition (3)). The rest of the proof could then be applied, with
the obvious minor changes, to show that φNTUmax(M) ≥

√
Q.
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