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Abstract. We study the problem of computing approximate Nash equi-
libria, in a setting where players initially know their own payoffs but not
the payoffs of other players. In order for a solution of reasonable quality
to be found, some amount of communication needs to take place between
the players. We are interested in algorithms where the communication is
substantially less than the contents of a payoff matrix, for example log-
arithmic in the size of the matrix. At one extreme is the case where the
players do not communicate at all; for this case (with 2 players having
n × n matrices) ε-Nash equilibria can be computed for ε = 3/4, while
there is a lower bound of slightly more than 1/2 on the lowest ε achiev-
able. When the communication is polylogarithmic in n, we show how to
obtain ε = 0.438. For one-way communication we show that ε = 1/2 is
the exact answer.

1 Introduction

Algorithmic game theory is concerned not just with properties of a solution
concept, but also how that solution can be obtained. It is considered desirable
that the outcome of a game should be “easy to compute”, and in that respect
the PPAD-completeness results of [6,2] are interpreted as a “complexity-theoretic
critique” of Nash equilibrium. Following those results, a line of work addressed
the problem of computing ε-Nash equilibrium, where ε > 0 is a parameter that
bounds a player’s incentive to deviate, in a solution. Thus, ε-Nash equilibrium
imposes a weaker constraint on how players are assumed to behave, and an exact
Nash equilibrium is obtained for ε = 0.

Besides the existence of a fast algorithm, it is also desirable that a solution
should be obtained by a process that is simple and decentralised, since that is
likely to be a better model for how players in a game may eventually reach a
solution. In that respect, most of the known efficient algorithms for computing ε-
Nash equilibria are not entirely satisfying. They take as input the payoffmatrices
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and output the approximate Nash equilibrium. If we try to translate such an
algorithm into real life, it would correspond to a process where the players pass
their payoffs to a central authority, which returns to them some mixed strategies
that have the “low incentive to deviate” guarantee. In this paper we try to
model a setting where players perform individual computations and exchange
some limited information.

There are various ways in which one can try to model the notion of a decen-
tralised algorithm; here we consider a general approach that has previously been
studied in [4,9] in the context of computing exact Nash equilibria. The players
begin with knowledge of their own payoffs but not the payoffs of the other play-
ers. An algorithm involves communication in addition to computation; to reach
an approximate equilibrium, a player usually has to know something about the
other players’ matrices, but hopefully not all of that information. We study the
computation of ε-Nash equilibria in this setting, and the general topic is the
trade-off between the amount of communication that takes place, and the value
of ε that can be obtained.

1.1 Definitions

We consider 2-player games, with a row player and a column player, who both
have n pure strategies. The game (R,C) is defined by two n×n payoff matrices,
R for the row player, and C for the column player. The pure strategies for the
row player are his rows and the pure strategies of the column player are her
columns. If the row player plays row i and the column player plays column j,
the payoff for the row player is Rij , and Cij for the column player. For the
row player a mixed strategy is a probability distribution x over the rows, and
a mixed strategy for the column player is a probability distribution y over the
columns, where x and y are column vectors and (x,y) is a mixed strategy profile.
The payoffs resulting from these mixed strategies x and y are xTRy for the row
player and xTCy for the column player.

A Nash equilibrium is a pair of mixed strategies (x∗,y∗) where neither player
can get a higher payoff by playing another strategy assuming the other player
does not change his strategy. Because of the linearity of a mixed strategy, the
largest gain can be achieved by defecting to a pure strategy. Let ei be the vector
with a 1 at the ith position and a 0 at every other position. Thus a Nash
equilibrium (x∗,y∗) satisfies

∀i = 1 · · ·n eTi Ry∗ ≤ (x∗)TRy∗ and (x∗)TCei ≤ (x∗)TCy∗

We assume that the payoffs of R and C are between 0 and 1, which can be
achieved by rescaling. An ε-approximate Nash equilibrium (or, ε-Nash equilib-
rium) is a strategy pair (x∗,y∗) such that each player can gain at most ε by
unilaterally deviating to a different strategy. Thus, it is (x∗,y∗) satisfying

∀i = 1 · · ·n eTi Ry∗ ≤ (x∗)TRy∗ + ε and (x∗)TCei ≤ (x∗)TCy∗ + ε

We say that the regret of a player is the difference between his payoff and the
payoff of his best response.
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The support of a mixed strategy x, denoted by Supp(x), is the set of pure
strategies that are played with non-zero probability by x.

The communication model: Each player p ∈ {r, c} has an algorithm Ap whose
initial input data is p’s n×n payoffmatrix. Communication proceeds in a number
of rounds, where in each round, each player may send a single bit of information
to the other player. During each round, each player may also carry out a polyno-
mial (in n) amount of computation. (One could alternatively omit the restriction
to polynomial computation. Our lower bounds on communication requirement
do not depend on computational limits.) At the end, each player p outputs a
mixed strategy xp. We aim to design (pairs of) algorithms (Ar,Ac) that output
ε-Nash strategy profiles (xr ,xc), and are economical with the number of rounds
of communication.

Notice that given Θ(n2) rounds of communication, we can apply any cen-
tralised algorithm A by getting (say) the row player to pass additive approxi-
mations of all his payoffs to the column player, who applies A and passes to the
row player the mixed strategy obtained by A for the row player. (The quality of
the ε-Nash equilibrium is proportional to the quality of of the additive approxi-
mations used.) For this reason we focus on algorithms with many fewer rounds,
and we obtain results for logarithmic or polylogarithmic (in n) rounds.

We also consider a restriction to one-way communication, where one player
may send but not receive information.

1.2 Related Work

Algorithms for Approximate Equilibria. In recent years a number of al-
gorithms have been developed that compute (in polynomial time) ε-Nash equi-
libria for various values of ε. This is not a complete overview of all existing
algorithms. The algorithm with the best approximation that is known, gives a
0.3393-approximate Nash equilibrium [17]. However, here we mainly use ideas
from certain earlier algorithms.

DMP-algorithm: The DMP-algorithm [7] works as follows to achieve a 0.5-
approximate Nash equilibrium. The algorithm picks a arbitrary row for the row
player, say row i. Let j ∈ argmaxj′ Cij′ . Let k ∈ argmaxk′ Rk′j . So j is a pure-
strategy best response for the column player to row i and k is a best response
strategy for the row player to column j. The strategy pair (x∗,y∗) will now be
x∗ = 1

2ei +
1
2ek and y∗ = ej. With this strategy pair the row player plays a

best response with probability 1
2 to a pure strategy of the column player and the

column player has a pure strategy that is with probability 1
2 a best response.

The DMP-algorithm is well-adapted to the limited-communication setting.
Suppose the row player uses i = 1 as his initial choice of row. The column player
needs to tell the row player his value of j, a communication of O(log n) bits. No
further communication is needed. Notice moreover that the communication is
all one-way; the row player does not need to tell the column player anything.
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Subsequent algorithms for computing ε-Nash equilibria cannot so easily be
adapted to a limited-communication setting, but we can use some of the ideas
they develop, to obtain values of ε below 1

2 in this setting.

An algorithm of Bosse et al. [1]: The algorithm presented in [1] can be seen
as a modification of the DMP-algorithm and achieves a 0.38197-approximate
Nash equilibrium. Instead of a player playing a pure strategy with some positive
probability, the algorithm starts with the row player allocating some probability
to the row-player strategy x belonging to the Nash equilibrium of the zero-sum
game (R − C,C − R). In solving the zero-sum game efficiently we apply the
connection of zero-sum games with linear programming [15,5,11]. If the (mixed)
strategy profile (x,y) that is a Nash equilibrium of (R−C,C−R) gives a 0.38197-
approximate Nash equilibrium for (R,C), this solution is used. Otherwise, the
column player plays a best response ej to x and the row player plays a mixture
of x and ei, where ei is a best response to the strategy ej of the column player.
([1] goes on to improve the worst-case performance to a 0.36395-approximate
Nash equilibrium.)

Notice that this algorithm cannot be adapted in a straightforward way to our
communication-bounded setup, since it requires a computation using knowledge
of both matrices.

Communication Complexity. The “classical” setting of communication com-
plexity is based on the model introduced by Yao in [18]. We will follow the repre-
sentation in [12]. We have two agents1, one holding an input x ∈ {0, 1}n and the
other holding an input y ∈ {0, 1}n. The objective is to compute f(x,y) ∈ {0, 1},
a joint function of their inputs. The computation of f(x,y) is done via a com-
munication protocol P . During the execution of the protocol, the agents send
messages to each other. While the protocol has not terminated, the protocol
specifies what message the sender should send next, based on the input of the
protocol and the communication so far. If the protocol terminates, it will output
the value f(x,y). A communication protocol P computes f if for every input
pair (x,y) ∈ {0, 1}n × {0, 1}n, it terminates with the value f(x,y) as output.

The communication complexity of a communication protocol P for computing
f(x,y) is the number of bits sent during the execution of P , which we denote by
CC(P , f,x,y). The communication complexity of a protocol P for a function f
is defined as the worst case communication complexity over all possible inputs
for (x,y) ∈ {0, 1}n × {0, 1}n, which we denote by CC(P , f):

CC(P , f) = max
(x,y)∈{0,1}n×{0,1}n

CC(P , f,x,y)

The communication complexity of a function f is the minimum over all possible
protocols:

CC(f) = min
P

CC(P , f)

1 We use agents instead of players to avoid confusion, the communication does not
have to be between the players of the game.
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Existing Results on Communication Complexity of Nash Equilibria.
There are a few results concerning the communication complexity of Nash equi-
libria. In [4] it is shown that a lower bound on the communication complexity for
2-player games of finding a pure Nash equilibrium is Ω(n2), where n is the num-
ber of pure strategies for each player. They also show a simple algorithm that
finds a pure Nash equilibrium (if it exists) in O(n2). They do not extend their
analysis to mixed Nash equilibria; their method is about finding out whether
there exists a pure Nash equilibrium, in contrast with the existence of a mixed
Nash equilibrium, which is guaranteed [14].

In [9] the communication complexity of uncoupled equilibrium procedures is
studied. They show that for reaching a pure Nash equilibrium, reaching a pure
Nash equilibrium in a Bayesian setting and for reaching a mixed Nash equilib-
rium, a lower bound on the communication complexity is Ω(2s), where s is the
number of players. To show that reaching this equilibrium is not just due to the
complexity of the input, they also show that you can reach a correlated equilib-
rium in a polynomial number of steps. The methods they use cannot be extended
to analysing the communication complexity of ε-approximate Nash equilibria.
For pure Nash equilibria, their analysis is based on games that might not have a
Nash equilibrium and for mixed strategy Nash equilibrium the analysis is based
on equilibria that require a large description. Approximate Nash equilibria al-
ways exist and can have small descriptions, so the developed techniques do not
work for ε-approximate Nash equilibria.

1.3 Overview of Our Results

For general n × n games we show the following bounds on the approximate
Nash equilibrium if we fix the amount of communication allowed. We start by
considering a version where no communication is allowed. Theorem 1 gives a
simple way to find a 3

4 -Nash equilibrium, in this setting. Theorem 3 identifies
a contrasting lower bound of slightly more than 1

2 . For one-way communication
we exhibit (Theorem 2) a lower bound of 0.5− o( 1√

n
). The DMP-algorithm can

be implemented as a algorithm with one-way communication and gives a 0.5-
approximate Nash equilibrium. Therefore the constant 1

2 in the lower bound of
Theorem 2 is tight, in this context. In Section 3 we show how to compute a
0.438-Nash equilibrium using polylogarithmic communication.

2 Computing Approximate Nash Equilibria with No
Communication

The simplest version of our model is one where there is no communication be-
tween the players.2 That means that for each player p ∈ {r, c}, we must find a

2 This is to some extent inspired by earlier work of the first author [8] that studied
an approach to pattern classification in which the set of observations of each class
must be processed by an algorithm that proceeds independently of the corresponding
algorithms that receive members of the other classes.
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function fp from p’s payoff matrix to a mixed strategy, such that for all pairs of
matrices (R,C), we have that (fr(R), fc(C)) is an ε-Nash equilibrium.

Theorem 1. It is possible to guarantee a 3
4 -approximate Nash equilibrium, with

no communication between the players.

Proof. Each player allocates probability 1
2 to his first pure strategy, and 1

2 to
his best response to the other player’s first pure strategy. In detail, let i ∈
argmaxi′ Ri′1 and let j ∈ argmaxj′ C1j′ . The approximate Nash equilibrium
will be x∗ = 1

2e1 +
1
2ei and y∗ = 1

2e1 +
1
2ej .

Let i′ be a best pure strategy response of the row player to y∗. Then his
incentive to deviate is

(12Ri′1 +
1
2Ri′j)− (14R11 +

1
4R1j +

1
4Ri1 +

1
4Rij)

≤ (14Ri′1 +
1
2Ri′j)− (14R11 +

1
4R1j +

1
4Rij) ≤ 1

4Ri′1 +
1
2Ri′j ≤ 1

4 + 1
2 = 3

4

where the first inequality holds because i was a best response to column 1 (so
Ri1 ≥ Ri′1) and the next inequalities hold because payoffs lie in [0, 1]. The same
kind of argument holds for the column player. This proves the theorem. '(

The following result gives a lower bound of 1
2 ; in fact it provides a stronger result

saying that 1
2 is a lower bound for any amount of one-way communication, where

one player (say, the row player) may send but not receive information about
payoffs. Since the DMP-algorithm uses one-way communication, our result shows
that it is optimal, in this context.

Theorem 2. With one-way communication, it is impossibly to guarantee to find
an ε-Nash equilibrium, for any constant ε < 1

2 .

Proof. We define a game G = (R,C), where R and C are payoff matrices with
dimensions

(n
k

)
× n, with k ≈

√
n. Consider the following set of column player

payoff matrices C1, . . . , Cn, where C" has a payoff of 1 for every entry in the $th
column and a 0 in every other place:

∀i, j : C"
ij = 1 if j = $; 0 otherwise

The row player has matrix R with
(n
k

)
rows, where a row consists of k 1’s and

(n− k) 0’s. Every row is a different combination, so the
(n
k

)
rows are all distinct

combinations of k 1’s in a row of length n.
Let Dr be the strategy of the row player, resulting from matrix R. Let Dc

"
be the strategy of the column player resulting from matrices R and C"; note
that with unlimited one-way communication we can assume that the row player
sends all of R to the column player.

We will show that for this class of games, one cannot do better than a
(12 − o( 1√

n
))-approximate Nash equilibrium. This implies for large values of n

approximately a 1
2 -approximate Nash equilibrium.

During the proof we will search for a lower bound of 1
2 − z, where the value

of z is to be determined.
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First observe that a best response for the column player having matrix C"

is e", the pure strategy of column $. It has payoff 1 and other columns have
payoff 0. So to reach a (12 − z)-approximate Nash equilibrium, Dc

" must allocate
a probability at least (12 + z) to column $.

The row player has one matrix R with all different combinations of k 1’s in a
row of length n. Now consider the columns of R. By construction each column
of R consists of k

n ·
(n
k

)
1’s and (1 − k

n ) ·
(n
k

)
0’s.

Dr assigns a probability to each row of R. Define an unnormalised probability
distribution Φ over the columns as follows. Φ assigns to each column j a value
Φ(j), which gives the probability that a 1 will be in this column given a row
sampled from Dr. This value Φ(j) will be at most 1, when every row that is
played with positive probability has a 1 in column j. Because every row contains
k 1’s, the sum of over all values will sum to k:

∑n
j=1 Φ(j) = k.

We define column m to be one with a lowest value of Φ: m ∈ argminj Φ(j).
Suppose the column player has payoff matrix Cm. Note that the sum over all
values Φ(j) is k and there are n columns. This means that Φ(m) is at most k

n .
This means that column m, which is played at least 1

2 + z of the time by the
column player, gives a payoff of 0 with a probability of at least 1− k

n .
We now consider the row player’s strategy Dr and construct an improved

response D∗ —that is supposed to be an improvement of at most 1
2 − z— as

follows. D∗ will differ from Dr in the following way. For every row i we see if
there is a 1 on the mth entry. If this is the case, we do not change anything. If
there is a 0 on the mth entry we do the following: look at the positions where
there is a 1 in row i. Of all the entries where there is a 1, we select the entry to
which the column player gives the lowest probability, say entry a. Now we move
all the probability allocated by Dr this row, to the row of R that instead has a
0 on entry a and a 1 on entry m, and is otherwise the same as i.

The probability on entry a is defined as the smallest of all the entries where
this row has a 1. We can bound the probability that was given to this entry
by the column player. A probability at least 1

2 + z is given to column m, so a
probability of 1

2 − z can be distributed over the remaining columns. The column
belonging to entry a has the smallest probability of at least k columns, so the
probability given to column a is at most 1/2−z

k .
The result of this construction of D∗ from Dr is that every row that is played

with positive probability by D∗ will have a 1 on the mth entry. There is a
probability at least (1− k

n ) that a row sampled from Dr did not have a 1 on the
mth entry. This means that the increase in payoff from replacing Dr with D∗ is
at least

(
1− k

n

)
·
(
1

2
+ z

)
−
(
1− k

n

)
· 1/2− z

k
=

(
1− k

n

)
·
(
1

2
+ z −

1
2 − z

k

)

We will show that this increase in payoff is close to 1
2 for well chosen k and z.

Assume that z is chosen such that z = (1/2)−z
k . Equivalently, z = 1/(2k + 2).
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This will make the difference in payoff between Dr and D∗ at least
(
1− k

n

)
·
(
1

2
+ z − z

)
=

1

2
− k

2n
.

So if the column player has a regret (as defined in Section 1.1) of ≤ 1
2 − z, the

row player has a regret of at least 1
2 − k

2n , and we put z = 1
2k+2 . We can use

these two observations to find the value of k such that the regrets are the same
for the row player and column player:

1
2 − k

2n = 1
2 − 1

2(k+1)
k
2n = 1

2(k+1)

k = 1
2 (
√
4n+ 1− 1) ∨ k = 1

2 (−
√
4n+ 1− 1)

Since k should be greater than 0, only the first solution is feasible. So we have

k = 1
2 (
√
4n+ 1 − 1) and z =

1
2 (

√
4n+1−1)
2n , which is o( 1√

n
). We have proven now

that for general games with one-way communication one cannot do better than
a (12 − o( 1√

n
))-approximate Nash equilibrium. '(

Theorem 3. It is impossible to guarantee a 0.501-Nash equilibrium, with no
communication between the players.

As we noted, the previous Theorem 2 already shows a lower bound of 1
2 in this

setting. Theorem 3 rules out the possibility that 1
2 is the correct answer, as it

was for one-way communication.

Proof. (sketch) For p ∈ {r, c}, let Ωp be the set of (mixed) strategies p may use
(the image of fp). Let cp be a distribution over [n] that minimises the maximum
variation distance dmax from cp to elements of Ωp; cp is called the centre strategy
for p, and p’s commitment (denoted τp) is 1− dmax. Thus τp ∈ [0, 1] and is high
when p must choose a strategy close to some cp.

The proof is by case analysis on the values τr and τc. If either value (say τc)
is ≥ 0.501, then c’s matrix C is chosen to be C" as in the proof of Theorem 2
where column $ receives low probability from cc. c’s high commitment prevents
c from deviating sufficiently far from cc to make a good enough response.

If either value (say τc) is ≤ 0.05 then c has 3 strategies s1, s2, s3 that are
all very far apart in variation distance. Design a matrix for r where row i is a
very good response to si but a poor response to sj ,= si. The row player has no
strategy that is sure to fall short of optimal by ≤ 0.501.

If τr , τc ∈ [0.05, 0.501], assume τr ≥ τc, and design a matrix R such that r’s
commitment forces him to allocate nearly 0.05 of his probability to rows that
have zero payoff. The remaining rows S ⊂ [n] have payoff 1 against “most”
columns (w.r.t. measure cc). Each row in S is a good response to one of the
remaining columns, associated with that row alone, but gets payoff 0 against
others. The column player can be forced by matrix C to allocate probability
≥ 0.499 to one of those columns. r loses 0.05 due to having to allocate ≥ 0.05
to rows outside S, and a further ∼ 0.49 due to not knowing which row in S is
the best one to use, for a total regret > 0.501. '(
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3 A 0.438-Approximate Nash Equilibrium with Limited
Communication

This section provides a 0.438-approximate Nash equilibrium where the amount
of communication between the players is polylogarithmic in n. We present the
algorithm as an α-approximate Nash equilibrium first and then optimize α. At
various points the algorithm uses the operation of communicating a mixed strat-
egy (a probability distribution over [n]) from one player to the other; the details
of this operation are given in Section 3.1. The general idea is to send a sample of
size O(log n) from the distribution and argue that the corresponding empirical
distribution is a good enough estimate for our purposes.

First the row player finds a Nash equilibrium for the zero-sum game (R,−R)
and the column player computes a Nash equilibrium for the zero-sum game
(−C,C). Since both games are zero-sum, we know that the payoff values for
their Nash equilibria will be unique. Both players compare this payoff value
with α. We distinguish two cases, the Nash equilibrium of both players is lower
than α (Case 1) or at least one of the players has a value equal to or higher than
α for his Nash equilibrium (Case 2). With O(1) communication, the case that
holds can be identified.

Case 1:
Both players have a Nash equilibrium with value smaller than α. The row player
finds a strategy pair (x∗

r ,y
∗
r) and the column player a strategy pair (x∗

c ,y
∗
c ). The

row player communicates y∗
r to the column player (as described in Section 3.1)

and the column player sends x∗
c to the row player. They now play the game

with the strategy pair (x∗
c ,y

∗
r). Since y∗

r was a Nash equilibrium strategy in the
zero-sum game (R,−R) and the row player still plays with payoff matrix R, by
definition of a Nash equilibrium, the row player has no strategy that can give
him a payoff of α or higher. The row player has a best response with a value
of at most α, so his regret is also at most α. This leads to an α-approximate
Nash equilibrium for the row player. The strategy x∗

c was a Nash equilibrium
strategy in the zero-sum game (−C,C) and the column player still has payoff
matrix C. So we can use the same argument for the column player to argue that
when the row player has strategy x∗

c , the column player has a α-approximate
Nash equilibrium. This concludes Case 1.

Case 2:
If at least one of the players has a value of at least α for his zero-sum game, he
can get a payoff of at least α if he plays this strategy, regardless the strategy of
the other player. Assume w.l.o.g. that it is the row player who has a payoff of at
least α in his zero-sum game. He communicates this strategy x∗

r to the column
player (again, as described in Section 3.1). The column player identifies a pure
strategy best response ej to the strategy of the row player and communicates
this strategy to the row player (using logn bits).

At this point in the algorithm we have the strategy pair (x∗
r , ej). The col-

umn player has a best response strategy, so at this point his strategy is a 0-
approximate Nash equilibrium. The row player can guarantee a payoff of α.
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Let β ≤ 1 be the value of his best response to ej. So at this point the row player
has a β − α-approximate Nash equilibrium. We next deal with the possibility
that β − α > α.

At this stage the column player has a 0-approximate Nash equilibrium while
we are only looking for a α-approximate Nash equilibrium; meanwhile the row
player has a strategy that might not be good enough for a α-approximate Nash
equilibrium. To change this, we use a method used in [3] (Lemma 3.2), which
allows the row player to shift some of his probability to his best response to ej .
By shifting some of his probability, it could be that ej no longer is a best response
strategy for the column player. This is allowed, as long as the column player’s
regret while playing ej is at most α. Suppose the row player shifts 1

2α of his
probability to a best response strategy. The payoff the column player gets could
be 1

2α lower because of this move. The payoff of some other strategy could go as
much as 1

2α higher because of this shift. The strategy ej was a 0-approximate
Nash equilibrium, so by the shift of 1

2α of the row player’s probability, the regret
of the column player is at most 1

2α+
1
2α = α, which constitutes an α-approximate

Nash equilibrium, for the column player.
The row player is allowed to change the allocation of 1

2α of his probability
with the worst payoff. Since we rearrange the worst part of the row player, the
remainder of his probability, 1 − 1

2α had already at least a payoff of α. The
probability is shifted to his best response with a value of β, with α ≤ β ≤ 1.
This leads to the following inequality:

(1− 1

2
α)α+

1

2
αβ ≥ β − α , 0 ≤ α ≤ β ≤ 1

The solutions to this inequality are

0 < α ≤ 1
2 (5−

√
17) α ≤ β ≤ α2−4α

α−2
1
2 (5 −

√
17) < α < 1 α ≤ β ≤ 1

α = 0 β = 0 α = 1 β = 1

where it holds that if α = 1
2 (5−

√
17) then f(α) = α2−4α

α−2 = 1 and for 0 ≤ α ≤ 1
this function is monotone increasing. This procedure will give an α-approximate
Nash equilibrium, so α should be as low as possible. Next to this it should also
hold for every β with α ≤ β ≤ 1. The lowest α such that this condition hold is
when f(α) = 1, thus α = 1

2 (5−
√
17) ≈ 0.438.

So if the row player rearranges 1
2 · 0.438 = 0.219 of his probability to his

best response row, both players have a strategy that guarantees them a 0.438-
approximate Nash equilibrium.

3.1 Communicating Mixed Strategies

We describe how to communicate an approximation of the mixed strategies that
are computed, using O(log2 n) bits. We ultimately obtain an ε of 0.438 + δ, for
any δ > 0.

We first look at the case where one of the players, assume w.l.o.g. the row
player, has a payoff higher than α in the Nash equilibrium of his zero-sum game
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(R,−R). The column player plays a pure best response to the strategy of the
row player, regardless of the support of the strategy of the row player. So we
mainly consider the row player.

The zero-sum game (R,−R) gives a strategy pair (x∗,y∗). Fix k = lnn
δ2 and

form a multiset A by sampling k times from the set of pure strategies of the row
player, independently at random according to the distribution x∗. Let x′ be the
mixed strategy for the row player with a probability of 1

k for every member of
A. We want the distribution x′ to have a payoff close to the payoff of x∗. This
corresponds to the following event:

φ = {((x′)TRy∗)− ((x∗)TRy∗) < −δ}

As noted in [13] the expression ((x′)TRy∗) is essentially a sum of k independent
random variables each of expected value ((x∗)TRy∗), where every random vari-
able has a value between 0 and 1. This means we can bound the probability that
φ does not hold, which we will call φc. When we apply a standard tail inequality
[10] to bound the probability of φc, we get:

Pr[φc] ≤ e−2kδ2

With k = lnn
δ2 , this gives Pr[φc] ≤ 1

n2 and Pr[φ] ≥ 1 − 1
n2 . If x′ does not give

payoffs close enough to x∗, we sample again.
The strategy x′ has a guaranteed payoff of 0.438+δ−δ = 0.438. This strategy

is communicated to the column player. The support of this strategy is logarith-
mic and all probabilities are rational (multiples of 1

k ). Communication of one
pure strategy has a communication complexity of O(log n). This will give a com-
munication complexity for x′ of O(log2 n).

The column player computes a pure strategy best response to x′ and com-
municates this strategy in O(log n) to the row player. The strategy of the row
player might not yet lead to a 0.438-approximate Nash equilibrium, his payoff
could be too low. As we have seen before, if the row player redistributes at
most 0.219 of his probability, he is guaranteed to have a strategy that leads to
a 0.438-approximate Nash equilibrium.

This change in strategy of the row player can decrease the payoff of the column
player by as much as 0.219 and increase another pure strategy by as much as
0.219. His strategy was a best response, a 0-approximate Nash equilibrium, and
the improvement to another pure strategy is maximal 0.219+0.219 = 0.438, this
leads to a 0.438-approximate Nash equilibrium.

In the alternative case, where both players have a low (< α) payoff in their
zero-sum games, the technique is essentially the same: each player samples k
times from the opposing distribution, checks that it limits his own payoff to at
most α+ δ, re-samples as necessary, and communicates the k-sample.

4 Conclusions

The general topic of the communication complexity of approximate Nash equilib-
rium, seems to be a rich source of research questions. [16] considers some related
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ones, including the communication required for approximate well-supported equi-
libria, as well as games of fixed size. It may be that future work should address
the issue of communication protocols where the players have an incentive to
report their information truthfully.
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