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Abstract. We consider the optimal pricing problem for a model of the
rich media advertisement market, as well as other related applications.
In this market, there are multiple buyers (advertisers), and items (slots)
that are arranged in a line such as a banner on a website. Each buyer
desires a particular number of consecutive slots and has a per-unit-quality
value vi (dependent on the ad only) while each slot j has a quality qj
(dependent on the position only such as click-through rate in position
auctions). Hence, the valuation of the buyer i for item j is viqj . We want
to decide the allocations and the prices in order to maximize the total
revenue of the market maker.

A key difference from the traditional position auction is the adver-
tiser’s requirement of a fixed number of consecutive slots. Consecutive
slots may be needed for a large size rich media ad. We study three ma-
jor pricing mechanisms, the Bayesian pricing model, the maximum rev-
enue market equilibrium model and an envy-free solution model. Under
the Bayesian model, we design a polynomial time computable truthful
mechanism which is optimum in revenue. For the market equilibrium
paradigm, we find a polynomial time algorithm to obtain the maximum
revenue market equilibrium solution. In envy-free settings, an optimal
solution is presented when the buyers have the same demand for the
number of consecutive slots. We conduct a simulation that compares the
revenues from the above schemes and gives convincing results.
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1 Introduction

Ever since the pioneering studies on pricing protocols for sponsored search adver-
tisement, especially with the generalized second price auction (GSP), by Edel-
man, Ostrovsky, and Schwarz [9], as well as Varian [16], market making mech-
anisms have attracted much attention from the research community in under-
standing their effectiveness for the revenue maximization task facing platforms
providing Internet advertisement services. In the traditional advertisement set-
ting, advertisers negotiate ad presentations and prices with website publishers
directly. An automated pricing mechanism simplifies this process by creating
a bidding game for the buyers of advertisement space over an IT platform. It
creates a complete competition environment for the price discovery process. Ac-
companying the explosion of the online advertisement business, there is a need
to have a complete picture on what pricing methods to use in practical terms
for both advertisers and Ad space providers.

In addition to search advertisements, display advertisements have been widely
used in webpage advertisements. They have a rich format of displays such as text
ads and rich media ads. Unlike sponsored search, there is a lack of systematic
studies on its working mechanisms for decision makings. The market maker
faces a combinatorial problem of whether to assign a large space to one large
rich media ad or multiple small text ads, as well as how to decide on the prices
charged to them. We present a study of the allocation and pricing mechanisms
for displaying slots in this environment where some buyers would like to have
one slot and others may want several consecutive slots in a display panel. In
addition to webpage ads, another motivation of our study is TV advertising
where inventories of a commercial break are usually divided into slots of a few
seconds each, and slots have various qualities measuring their expected number
of viewers and the corresponding attractiveness.

We discuss three types of mechanisms and consider the revenue maximization
problem under these mechanisms, and compare their effectiveness in revenue
maximization under a dynamic setting where buyers may change their bids to
improve their utilities. Our results make an important step toward the under-
standing of the advantages and disadvantages of their uses in practice. Assume
the ad supplier divides the ad space into small enough slots (pieces) such that
each advertiser is interested in a position with a fixed number of consecutive
pieces. In modelling values to the advertisers, we modify the position auction
model from the sponsored search market [9,16] where each ad slot is measured
by the Click Through Rates (CTR), with users’ interest expressed by a click on
an ad. Since display advertising is usually sold on a per impression (CPM) basis
instead of a per click basis (CTR), the quality factor of an ad slot stands for
the expected impression it will brings in unit of time. Unlike in the traditional
position auctions, people may have varying demands (need different spaces to
display their ads) in a rich media ad auction for the market maker to decide on
slot allocations and their prices.

We will lay out the the specific system parameters and present our results in
the following subsections.
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1.1 Our Modeling Approach

We have a set of buyers (advertisers) and a set of items to be sold (the ad slots on
a web page). We address the challenge of computing prices that satisfy certain
desirable properties. Next we describe the elements of the model in more detail.

• Items. Our model considers the geometric organization of ad slots, which
commonly has the slots arranged in some sequence (typically, from top to
bottom in the right-hand side of a web page). The slots are of variable qual-
ity. In the study of sponsored search auctions, a standard assumption is that
the quality (corresponding to click-through rate) is highest at the beginning
of the sequence and then monotonically decreases. Here we consider a gen-
eralization where the quality may go down and up, subject to a limit on the
total number of local maxima (which we call peaks), corresponding to focal
points on the web page. As we will show later, without this limit the revenue
maximization problem is NP-hard.

• Buyers. A buyer (advertiser) may want to purchase multiple slots, so as
to display a larger ad. Note that such slots should be consecutive in the
sequence. Thus, each buyer i has a fixed demand di, which is the number of
slots she needs for her ad. Two important aspects of this are
� sharp multi-unit demand, referring to the fact that buyer i should be
allocated di items, or none at all; there is no point in allocating any
fewer

� consecutiveness of the allocated items, in the pre-existing sequence of
items.

These constraints give rise to a new and interesting combinatorial pricing
problem.

• Valuations. We assume that each buyer i has a parameter vi representing
the value she assigns to a slot of unit quality. Valuations for multiple slots
are additive, so that a buyer with demand di would value a block of di slots
to be their total quality, multiplied by vi. This valuation model has been
considered by Edelman et al. [9] and Varian [16] in their seminal work for
keywords advertising.

Pricing Mechanisms. Given the valuations and demands from the buyers,
the market maker decides on a price vector for all slots and an allocation of
slots to buyers, as an output of the market. The question is one of which output
the market maker should choose to achieve certain objectives. We consider two
approaches:

• Truthful Mechanism whereby the buyers report their demands (publicly
known) and values (private) to the market maker; then prices are set in such
a way as to ensure that the buyers have the incentive to report their true
valuations. We give a revenue-maximizing approach (i.e., maximizing the
total price paid), within this framework.

• Competitive Equilibrium whereby we prescribe certain constraints on the
prices so as to guarantee certain well-known notions of fairness and envy-
freeness.
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• Envy-Free Solution whereby we prescribe certain constraints on the prices
and allocations so as to achieve envy-freeness, as explained below.

The mechanisms we exhibit are computationally efficient. We also performed
experiments to compare the revenues obtained from these three mechanisms.

1.2 Related Works

The theoretical study of position auctions (of a single slot) under the generalized
second price auction was initiated in [9,16]. There has been a series of studies
of position auctions in deterministic settings [12]. Our consideration of position
auctions in the Bayesian setting fits in the general one dimensional auction design
framework. Our study considers continuous distributions on buyers’ values. For
discrete distributions, [4] presents an optimal mechanism for budget constrained
buyers without demand constraints in multi-parameter settings and very recently
they also give a general reduction from revenue to welfare maximization in [5];
for buyers with both budget constraints and demand constraints, 2-approximate
mechanisms [1] and 4-approximate mechanisms [3] exist in the literature.

There are extensive studies on multi-unit demand in economics, see for ex-
ample [2,6,10]. In an earlier paper [7] we considered sharp multi-unit demand,
where a buyer with demand d should be allocated d items or none at all, but
with no further combinatorial constraint, such as the consecutiveness constraint
that we consider here. The sharp demand setting is in contrast with a “re-
laxed” multi-unit demand (i.e., one can buy a subset of at most d items), where
it is well known that the set of competitive equilibrium prices is non-empty
and forms a distributive lattice [11,15]. This immediately implies the existence
of an equilibrium with maximum possible prices; hence, revenue is maximized.
Demange, Gale, and Sotomayor [8] proposed a combinatorial dynamics which
always converges to a revenue maximizing (or minimizing) equilibrium for unit
demand; their algorithm can be easily generalized to relaxed multi-unit demand.
A strongly related work to our consecutive settings is the work of Rothkopf et
al. [14], where the authors presented a dynamic programming approach to com-
pute the maximum social welfare of consecutive settings when all the qualities
are the same. Hence, our dynamic programming approach for general qualities
in Bayesian settings is a non-trivial generalization of their settings.

1.3 Organization

This paper is organized as follows. In Section 2 we describe the details of our rich
media ads model and the related solution concepts. In Section 3, we study the
problem under the Bayesian model and provide a Bayesian Incentive Compatible
auction with optimal expected revenue for the special case of the single peak
in quality values of advertisement positions. Then in Section 4, we extend the
optimal auction to the case with limited peaks/valleys and show that it is NP-
hard to maximize revenue without this limit. Next, in Section 5, we turn to the
full information setting and propose an algorithm to compute the competitive
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equilibrium with maximum revenue. In Section 6, NP-hardness of envy-freeness
for consecutive multi-unit demand buyers is shown. We also design a polynomial
time solution for the special case where all advertisers demand the same number
of ad slots. For simulations, we refer readers to read the full version of the paper.

2 Preliminaries

In our model, a rich media advertisement instance consists of n advertisers and
m advertising slots. Each slot j ∈ {1, . . . ,m} is associated with a number qj
which can be viewed as the quality or the desirability of the slot. Each advertiser
(or buyer) i wants to display her own ad that occupies di consecutive slots on
the webpage. In addition, each buyer has a private number vi representing her
valuation and thus, the i-th buyer’s value for item j is vij = viqj .

Throughout this thesis, we will often say that slot j is assigned to a buyer set
B to denote that j is assigned to some buyer in B. We will call the set of all slots
assigned to B the allocation to B. In addition, a buyer will be called a winner
if he succeeds in displaying his ad and a loser otherwise. We use the standard
notation [s] to denote the set of integers from 1 to s, i.e. [s] = {1, 2, . . . , s}. We
sometimes use

∑
i instead of

∑
i∈[n] to denote the summation over all buyers

and
∑

j instead of
∑

j∈[m] for items, and the terms Ev and Ev−i are short for
Ev∈V and Ev−i∈V−i .

The vector of all the buyers’ values is denoted by v or sometimes (vi; v−i)
where v−i is the joint bids of all bidders other than i. We represent a feasible
assignment by a vector x = (xij)i,j , where xij ∈ {0, 1} and xij = 1 denotes item
j is assigned to buyer i. Thus we have

∑
i xij ≤ 1 for every item j. Given a fixed

assignment x, we use ti to denote the quality of items that buyer i is assigned,
precisely, ti =

∑
j qjxij . In general, when x is a function of buyers’ bids v, we

define ti to be a function of v such that ti(v) =
∑

j qjxij(v).
When we say that slot qualities have a single peak, we mean that there exists

a peak slot k such that for any slot j < k on the left side of k, qj ≥ qj−1 and for
any slot j > k on the right side of k, qj ≥ qj+1.

2.1 Bayesian Mechanism Design

Following the work of [13], we assume that all buyers’ values are distributed
independently according to publicly known bounded distributions. The distri-
bution of each buyer i is represented by a Cumulative Distribution Function
(CDF) Fi and a Probability Density Function (PDF) fi. In addition, we assume
that the concave closure or convex closure or integration of those functions can
be computed efficiently.

An auction M = (x,p) consists of an allocation function x and a payment
function p. x specifies the allocation of items to buyers and p = (pi)i specifies
the buyers’ payments, where both x and p are functions of the reported valua-
tions v. Our objective is to maximize the expected revenue of the mechanism is
Rev(M) = Ev [

∑
i pi(v)] under Bayesian incentive compatible mechanisms.
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Definition 1. A mechanism M is called Bayesian Incentive Compatible (BIC)
iff the following inequalities hold for all i, vi, v

′
i.

Ev−i [viti(v)− pi(v)] ≥ Ev−i [viti(v
′
i; v−i)− pi(v

′
i; v−i)] (1)

Besides, we say M is Incentive Compatible if M satisfies a stronger condition
that viti(v)− pi(v) ≥ viti(v

′
i; v−i)− pi(v

′
i; v−i), for all v, i, v′i,

To put it in words, in a BIC mechanism, no player can improve her expected
utility (expectation taken over other players’ bids) by misreporting her value.
An IC mechanism satisfies the stronger requirement that no matter what the
other players declare, no player has incentives to deviate.

2.2 Competitive Equilibrium and Envy-free Solution

In Section 5, we study the revenue maximizing competitive equilibrium and envy-
free solution in the full information setting instead of the Bayesian setting. An
outcome of the market is a pair (X ,p), where X specifies an allocation of items
to buyers and p specifies prices paid. Given an outcome (X,p), recall vij = viqj ,
let ui(X,p) denote the utility of i.

Definition 2. A tuple (X,p) is a consecutive envy-free pricing solution if every
buyer is consecutive envy-free, where a buyer i is consecutive envy-free if the
following conditions are satisfied:

• if Xi �= ∅, then (i) Xi is di consecutive items. ui(X,p) =
∑

j∈Xi

(vij −pj) ≥ 0,

and (ii) for any other subset of consecutive items T with |T | = di, ui(X,p) =∑

j∈Xi

(vij − pj) ≥
∑

j∈T

(vij − pj);

• if Xi = ∅ (i.e., i wins nothing), then, for any subset of consecutive items T
with |T | = di,

∑

j∈T

(vij − pj) ≤ 0.

Definition 3. (Competitive Equilibrium) We say an outcome of the market
(X,p) is a competitive equilibrium if it satisfies two conditions.

• (X,p) must be consecutive envy-free.
• The unsold items must be priced at zero.

We are interested in the revenue maximizing competitive equilibrium and
envy-free solutions.

3 Optimal Auction for the Single Peak Case

The goal of this section is to present our optimal auction for the single peak
case that serves as an elementary component in the general case later. En route,
several principal techniques are examined exhaustively to the extent that they
can be applied directly in the next section. By employing these techniques,
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we show that the optimal Bayesian Incentive Compatible auction can be repre-
sented by a simple Incentive Compatible one. Furthermore, this optimal auction
can be implemented efficiently. Let Ti(vi) = Ev−i [ti(v)], Pi(vi) = Ev−i [pi(v)]

and φi(vi) = vi − 1−Fi(vi)
fi(vi)

. From Myerson’ work [13], we obtain the following

three lemmas.

Lemma 1 (From [13]). A mechanism M = (x, p) is Bayesian Incentive Com-
patible if and only if:
a) Ti(x) is monotone non-decreasing for any agent i.
b) Pi(vi) = viTi(vi)−

∫ vi
vi

Ti(z)dz

Lemma 2 (From [13]). For any BIC mechanism M = (x, p), the expected
revenue Ev[

∑
i Pi(vi)] is equal to the virtual surplus Ev[

∑
i φi(vi)ti(v)].

We assume φi(t) is monotone increasing, i.e. the distribution is regular. Oth-
erwise, Myerson’s ironing technique can be utilized to make φi(t) monotone —
it is here that we invoke our assumption that we can efficiently compute the
convex closure of a continuous function and integration. The following lemma is
the direct result of Lemma 1 and 2.

Lemma 3. Suppose that x is the allocation function that maximizes
Ev[φi(vi)ti(v)] subject to the constraints that Ti(vi) is monotone non-decreasing
for any bidders’ profile v, any agent i is assigned either di consecutive slots or
nothing. Suppose also that

pi(v) = viti(v)−
∫ vi

vi

ti(v−i, si)dsi (2)

Then (x, p) represents an optimal mechanism for the rich media advertisement
problem in single-peak case.

We will use dynamic programming to maximize the virtual surplus in Lemma
2. Suppose all the buyers are sorted in a no-increasing order according to their
virtual values. We will need the following two useful lemmas. Lemma 4 states
that all the allocated slots are consecutive.

Lemma 4. There exists an optimal allocation x that maximizes
∑

i φi(vi)ti(v)
in the single peak case, and satisfies the following condition. For any unassigned
slot j, it must be that either ∀j′ > j, slot j′ is unassigned or ∀j′ < j, slot j′ is
unassigned.

Next, we prove that this consecutiveness even holds for all set [s] ⊆ [n].
That is, there exists an optimal allocation that always assigns the first s buyers
consecutively for all s ∈ [n]. For convenience, we say that a slot is “out of”
a set of buyers if the slot is not assigned to any buyers in that set. Then the
consecutiveness can be formalized in the following lemma.

Lemma 5. There exists an optimal allocation x in the single peak case, that
satisfies the following condition. For any slot j out of [s], it must be either
∀j′ > j, slot j′ is out of [s] or ∀j′ < j, slot j′ is out of [s].
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Since the optimal solution always assigns to [s] consecutively (Lemma 5), we
can boil the allocations to [s] down to an interval denoted by [l, r]. Let g[s, l, r]
denote the maximized value of our objective function

∑
i φi(vi)ti(v) when we

only consider first s buyers and the allocation of s is exactly the interval [l, r].
Then we have the following transition function.

g[s, l, r] = max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

g[s− 1, l, r]

g[s− 1, l, r − ds] + φs(vs)
∑r

j=r−ds+1 qj

g[s− 1, l+ ds, r] + φs(vs)
∑l+ds−1

j=l qj

(3)

Our summary statement is as follows.

Theorem 1. The mechanism that applies the allocation rule according to Dy-
namic Programming (3) and payment rule according to Equation (2) is an opti-
mal mechanism for the banner advertisement problem with single peak qualities.

4 Multiple Peaks Case

Suppose now that there are only h peaks (local maxima) in the qualities. Thus,
there are at most h − 1 valleys (local minima). Since h is a constant, we can
enumerate all the buyers occupying the valleys. After this enumeration, we can
divide the qualities into at most h consecutive pieces and each of them forms a
single-peak. Then using similar properties as those in Lemma 4 and 5, we can
obtain a larger size dynamic programming (still runs in polynomial time) similar
to dynamic programming (3) to solve the problem.

Theorem 2. There is a polynomial algorithm to compute revenue maximization
problem in Bayesian settings where the qualities of slots have a constant number
of peaks.

Now we consider the case without the constant peak assumption and prove
the following hardness result.

Theorem 3. (NP-Hardness) The revenue maximization problem for rich media
ads with arbitrary qualities is NP-hard.

5 Competitive Equilibrium

In this section, we study the revenue maximizing competitive equilibrium in the
full information setting. To simplify the following discussions, we sort all buyers
and items in non-increasing order of their values, i.e., v1 ≥ v2 ≥ · · · ≥ vn.

We say an allocation Y = (Y1, Y2, · · · , Yn) is efficient if Y maximizes the total
social welfare e.g.

∑
i

∑
j∈Yi

vij is maximized over all the possible allocations.
We call p = (p1, p2, · · · , pm) an equilibrium price if there exists an allocation X
such that (X ,p) is a competitive equilibrium. The following lemma is implicitly
stated in [11], for completeness, we give a proof below.
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Lemma 6. Let allocation Y be efficient, then for any equilibrium price p, (Y ,p)
is a competitive equilibrium.

By Lemma 6, to find a revenue maximizing competitive equilibrium, we can
first find an efficient allocation and then use linear programming to settle the
prices. We develop the following dynamic programming to find an efficient al-
location. We first only consider there is one peak in the quality order of items.
The case with constant peaks is similar to the above approaches, for general
peak case, as shown in above Theorem 3, finding one competitive equilibrium
is NP-hard if the competitive equilibrium exists, and determining existence of
competitive equilibrium is also NP-hard. This is because that considering the
instance in the proof of Theorem 3, it is not difficult to see the constructed
instance has an equilibrium if and only if 3 partition has a solution.

Recall that all the values are sorted in non-increasing order e.g. v1 ≥ v2 ≥
· · · ≥ vn. g[s, l, r] denotes the maximized value of social welfare when we only
consider first s buyers and the allocation of s is exactly the interval [l, r]. Then
we have the following transition function.

g[s, l, r] = max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

g[s− 1, l, r]

g[s− 1, l, r − ds] + vs
∑r

j=r−ds+1 qj

g[s− 1, l+ ds, r] + vs
∑l+ds−1

j=l qj

(4)

By tracking procedure 4, an efficient allocationdenotedbyX∗=(X∗
1 , X

∗
2 , · · · , X∗

n)
can be found. The price p∗ such that (X∗,p∗) is a revenue maximization competi-
tive equilibrium can be determined from the following linear programming. Let Ti

be any consecutive number of di slots, for all i ∈ [n].

max
∑

i∈[n]

∑

j∈X∗
i

pj

s.t. pj ≥ 0 ∀ j ∈ [m]

pj = 0 ∀ j /∈ ∪i∈[n]X
∗
i

∑

j∈X∗
i

(viqj − pj) ≥
∑

j′∈Ti

(viqj′ − pj′ ) ∀ i ∈ [n]

∑

j∈X∗
i

(viqj − pj) ≥ 0 ∀i ∈ [n]

Clearly there is only a polynomial number of constraints. The constraints in
the first line represent that all the prices are non negative (no positive transfers).
The constraint in the second line means unallocated items must be priced at zero
(market clearance condition). And the constraint in the third line contains two
aspects of information. First for all the losers e.g. loser k with Xk = ∅, the utility
that k gets from any consecutive number of dk is no more than zero, which makes
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all the losers envy-free. The second aspect is that the winners e.g. winner i with
Xi �= ∅ must receive a bundle with di consecutive slots maximizing its utility
over all di consecutive slots, which together with the constraint in the fourth line
(winner’s utilities are non negative) guarantees that all winners are envy-free.

Theorem 4. Under the condition of a constant number of peaks in the qualities
of slots, there is a polynomial time algorithm to decide whether there exists a
competitive equilibrium or not and to compute a revenue maximizing revenue
market equilibrium if one does exist. If the number of peaks in the qualities of
the slots is unbounded, both the problems are NP-complete.

Proof. Clearly the above linear programming and procedure (4) run in polyno-
mial time. If the linear programming output a price p∗, then by its constraint
conditions, (X∗,p∗) must be a competitive equilibrium. On the other hand, if
there exist a competitive equilibrium (X,p) then by Lemma 6, (X∗,p) is a
competitive equilibrium, providing a feasible solution of above linear program-
ming. By the objective of the linear programming, we know it must be a revenue
maximizing one.

6 Consecutive Envy-freeness

We first prove a negative result on computing the revenue maximization problem
in general demand case. We show it is NP-hard even if all the qualities are the
same.

Theorem 5. The revenue maximization problem of consecutive envy-free buyers
is NP-hard even if all the qualities are the same.

Although the hardness in Theorem 5 indicates that finding the optimal rev-
enue for general demand in polynomial time is impossible , however, it doesn’t
rule out the very important case where the demand is uniform, e.g. di = d. We
assume slots are in a decreasing order from top to bottom, that is, q1 ≥ q2 ≥
· · · ≥ qm . The result is summarized as follows.

Theorem 6. There is a polynomial time algorithm to compute the consecutive
envy-free solution when all the buyers have the same demand and slots are or-
dered from top to bottom.

The proof of Theorem 6 is based on bundle envy-free solutions, in fact we will
prove the bundle envy-free solution is also a consecutive envy-free solution by
defining price of items properly. Thus, we need first give the result on bundle
envy-free solutions. Suppose d is the uniform demand for all the buyers. Let Ti

be the slot set allocated to buyer i, i = 1, 2, · · · , n. Let Pi be the total payment
of buyer i and pj be the price of slot j. Let ti denote the total qualities obtained
by buyer i, e.g. ti =

∑
j∈Ti

qj and αi = ivi − (i− 1)vi−1, ∀i ∈ [n].
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Theorem 7. The revenuemaximization problem of bundle envy-freeness is equiv-
alent to solving the following LP.

Maximize:
n∑

i=1

αiti

s.t. t1 ≥ t2 ≥ · · · ≥ tn

Ti ⊂ [m], Ti ∩ Tk = ∅ ∀i, k ∈ [n]

(5)

Through optimal bundle envy-free solution, we will modify such a solution to
consecutive envy-free solution and then prove the Theorem 6.

7 Conclusion and Discussion

The rich media pricing models for consecutive demand buyers in the context of
Bayesian truthfulness, competitive equilibrium and envy-free solution paradigm
are investigated in this paper. As a result, an optimal Bayesian incentive compat-
ible mechanism is proposed for various settings such as single peak and multiple
peaks. In addition, to incorporate fairness e.g. envy-freeness, we also present a
polynomial-time algorithm to decide whether or not there exists a competitive
equilibrium or and to compute a revenue maximized market equilibrium if one
does exist. For envy-free settings, though the revenue maximization of general
demand case is shown to be NP-hard, we still provide optimal solution of com-
mon demand case. Besides, our simulation shows a reasonable relationship of
revenues among these schemes plus a generalized GSP for rich media ads.

Even though our main motivation arises from the rich media advert pricing
problem, our models have other potential applications. For example TV ads can
also be modeled under our consecutive demand adverts where inventories of a
commercial break are usually divided into slots of fixed sizes, and slots have
various qualities measuring their expected number of viewers and corresponding
attractiveness. With an extra effort to explore the periodicity of TV ads, we can
extend our multiple peak model to one involved with cyclic multiple peaks. Be-
sides single consecutive demand where each buyer only have one demand choice,
the buyer may have more options to display his ads, for example select a large
picture or a small one to display them. Our dynamic programming algorithm
(3) can also be applied to this case (the transition function in each step selects
maximum value from 2k+1 possible values, where k is the number of choices of
the buyer).

Another reasonable extension of our model would be to add budget constraints
for buyers, i.e., each buyer cannot afford the payment more than his budget.
By relaxing the requirement of Bayesian incentive compatible (BIC) to one of
approximate BIC, this extension can be obtained by the recent milestone work
of Cai et al. [5]. It remains an open problem how to do it under the exact
BIC requirement. It would also be interesting to handle it under the market
equilibrium paradigm for our model.
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