
SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 328–343

A BOUND ON THE PRECISION REQUIRED TO ESTIMATE A
BOOLEAN PERCEPTRON FROM ITS AVERAGE

SATISFYING ASSIGNMENT∗

PAUL W. GOLDBERG†

Abstract. A Boolean perceptron is a linear threshold function over the discrete Boolean domain
{0, 1}n. That is, it maps any binary vector to 0 or 1, depending on whether the vector’s components
satisfy some linear inequality. In 1961, Chow showed that any Boolean perceptron is determined by
the average or “center of gravity” of its “true” vectors (those that are mapped to 1), together with
the total number of true vectors. Moreover, these quantities distinguish the function from any other
Boolean function, not just from other Boolean perceptrons.

In this paper we go further, by identifying a lower bound on the Euclidean distance between
the average satisfying assignment of a Boolean perceptron and the average satisfying assignment
of a Boolean function that disagrees with that Boolean perceptron on a fraction ε of the input
vectors. The distance between the two means is shown to be at least (ε/n)O(log(n/ε) log(1/ε)). This
is motivated by the statistical question of whether an empirical estimate of this average allows us to
recover a good approximation to the perceptron. Our result provides a mildly superpolynomial upper
bound on the growth rate of the sample size required to learn Boolean perceptrons in the “restricted
focus of attention” setting. In the process we also find some interesting geometrical properties of the
vertices of the unit hypercube.

Key words. Boolean functions, threshold functions, geometry, inductive learning

AMS subject classifications. 68Q15, 68Q32, 52C07, 52C35

DOI. 10.1137/S0895480103426765

1. Introduction. A Boolean perceptron is a linear threshold function over the
domain of 0/1-vectors. (Subsequently we usually just say “perceptron” and omit the
adjective “Boolean.”) Thus it is specified by a weight vector w of n real numbers
and a real-valued threshold t, and it maps a binary vector x to the output value 1,
provided that w.x ≥ t; otherwise it maps x to 0.

In this paper we consider the problem of estimating a perceptron from an approx-
imate value of the mean, or “center of gravity” of its satisfying assignments. Chow [9]
originally showed that any Boolean perceptron is identified by the exact value of the
average of its satisfying assignments, along with the number of satisfying assignments,
in the sense that there are no other Boolean functions of any kind for which the aver-
age and number of satisfying assignments is the same. The question of the extent to
which an approximation to the average determines the perceptron is equivalent to the
problem of learning Boolean perceptrons in the “restricted focus of attention” setting,
described below.

The Chow parameters of a Boolean function are the coordinates of the vector
sum of the satisfying vectors, together with the number of satisfying vectors. Subject
to a uniform distribution over Boolean vectors, these are essentially equivalent to
the conditional probabilities that the ith component of x is equal to 1, conditioned

∗Received by the editors April 30, 2003; accepted for publication (in revised form) March 20, 2005;
published electronically April 21, 2006. This work was supported by EPSRC grant GR/R86188/01,
and in part by the IST Programme of the European Community, under the PASCAL Network of
Excellence, IST-2002-506778. This publication reflects only the author’s views. A preliminary version
of this paper was presented at the 2001 COLT conference.

http://www.siam.org/journals/sidma/20-2/42676.html
†Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK (pwg@dcs.

warwick.ac.uk, http://www.dcs.warwick.ac.uk/∼pwg/).

328

ESTIMATING A BOOLEAN PERCEPTRON 329

on x being a satisfying assignment. Letting y denote the output value and x =
((x)1, . . . , (x)n), these are the probabilities Pr((x)i = 1 | y = 1), for i = 1, . . . , n,
together with the value Pr(y = 1).1 Chow’s result says that these values uniquely
define the function, provided that it is a Boolean perceptron. (Bruck [8] shows, more
generally, that a threshold function G over a set of monomials is characterized by the
spectral coefficients of G that correspond to those monomials.) Hence a weights-based
parametrization (w, t) should in principle be derivable from the Chow parameters;
there will be some amount of freedom for (w, t) to vary while preserving the functional
behavior on binary inputs.

In this paper we show that additive approximations of the Chow parameters de-
termine the approximate behavior of the function, to within a mildly superpolynomial
factor. That is in contrast to the situation for the weights-based parametrization of
a perceptron, for which a tiny perturbation of some parameter may result in a large
change to the set of points that are mapped to output value 1. In this sense the Chow
parameters, as a description of a Boolean perceptron, are a more robust parametriza-
tion.

1.1. Background and previous results. Chow’s paper gave rise to subse-
quent work that addressed the algorithmic problem of recovering a weights-based
parametrization of a perceptron from its Chow parameters. This problem and related
ones were later reconsidered in the computational learning theory literature, notably
work on probably approximately correct (PAC)-learning in the so-called “restricted
focus of attention” setting.

Earlier work that followed from [9] includes an algorithm by Kaszerman [16] for
recovering a linear threshold function from its Chow parameters. The algorithm is
iterative and somewhat related to the perceptron algorithm [19]; it does not have
a good bound on the number of iterations and assumes that exact values of the
parameters are given. A paper of Winder [20] compares seven functions (four of which
were proposed in previous papers) for rescaling Chow parameters to obtain weights
for a linear-threshold function. None of these functions has perfect performance, and
it is uncertain that any function exists from individual Chow parameters to good
weights—it may be necessary to deal with them collectively rather than individually.
A further paper by Winder [21] investigates the class of Boolean functions that are
uniquely defined by their Chow parameters, and shows among other things that it lies
properly between the class of linear threshold functions and the class of monotonic
functions.

The problem of learning a function f means reconstructing it (exactly or approx-
imately) from a limited collection of observations of its input vectors x and associated
values f(x). There is much known about learning Boolean perceptrons in various set-
tings, for example irrelevant attributes [17], classification noise [6], and learning from
a source of “helpful” examples [2]. Special cases include monomials, decision lists
[18, 12], and Boolean threshold functions. Further work on this topic occurs in the
more general context of perceptrons over the real as opposed to the Boolean domain.
An example is that they may be PAC-learned in a time polynomial in the dimension
n and the PAC parameters ε and δ, using the Vapnik–Chervonenkis (VC) dimension
theory [7]. Chapter 24 of [1] and references therein are a good introduction to results

1If the coordinates of the sum of all satisfying vectors are rescaled down by the number of
satisfying vectors, one obtains the average satisfying assignment, whose coordinates are the proba-
bilities Pr((x)i = 1 | y = 1). The Chow parameters are recovered by multiplying this average by
2n · Pr(y = 1).

330 PAUL W. GOLDBERG

on learning Boolean perceptrons.
Restricted focus of attention (RFA) learning was introduced and developed in the

papers [3, 4, 5]. The k-RFA setting (where k is a positive integer) allows an algorithm
to see only a subset of size k of the input attributes of any training example. The usual
assumption has been that the distribution of input vectors x is known to be a product
distribution (with no other information given about it). Clearly, 1-RFA learning (in
which only one input attribute of each example is visible) is a very restrictive setting,
making positive results of particular interest. In [13] we studied in detail the problem
of learning linear-threshold functions over the real domain in the 1-RFA setting, so
that each example of input/output behavior of the target function has only a single
input component value, together with the binary value of the output, revealed to the
learning algorithm. We showed that the input distribution (in [13], not necessarily
a product distribution) needs to be at least partly known, and that the sample size
required for learning depends sensitively on the input distribution. We identified
measures of “well-behavedness” of the input distribution and gave sample size bounds
in terms of these measures.

This paper addresses the topic of 1-RFA learning of perceptrons where the input
distribution is uniform over V , the vertices of the unit hypercube. From [5] we have
that a random sample of 1-RFA data is equivalent, in terms of the information it
conveys, to approximations of the conditional probabilities Pr(y = 1 | (x)i = b), for
b ∈ {0, 1} (where (x)i denotes the ith component of x), together with the probability
Pr(y = 1), and these approximations have additive error inversely proportional to
the sample size. The coordinates of the average satisfying assignment are related as
follows:

Pr((x)i = 1 | y = 1) =
Pr((x)i = 1)

Pr(y = 1)
Pr(y = 1 | (x)i = 1)

=
1

2 Pr(y = 1)
Pr(y = 1 | (x)i = 1).

Provided that Pr(y = 1) is not too small, we obtain good estimates of the coordinates
of the average satisfying assignment from estimates of probabilities Pr(y = 1 | (x)i =
1) (and vice versa). Our analysis handles low values of Pr(y = 1) as a special case.

The reason why the uniform distribution on V (for which bounds of [13] are in-
applicable) is of particular interest is that it is the most natural and widely studied
input distribution from the perspective of computational learning theory. The ques-
tion of whether this learning problem is solvable with polynomial time or sample size
was previously discussed in [10] and [13] and is currently known to be solvable under
the restriction that weights are polynomially bounded. Birkendorf et al. [5] suggest
the following rule: for 1 ≤ i ≤ n and b ∈ {0, 1}, let pib be the observed conditional
probability Pr(y = 1 | (x)i = b) and let p = Pr(y = 1). Then take x to be a posi-
tive instance if 1

n

∑n
i=1 p

i
(x)i

> p; otherwise label x as negative. It is left as an open
problem whether the rule is valid.

We show here that, given a perceptron F and any Boolean function that dis-
agrees with F on at least a fraction ε of input vectors, their average satisfying
assignments must differ by (ε/n)O(log(n/ε) log(1/ε) in the L2 metric. The computa-
tional learning-theoretic result that follows is a mildly superpolynomial bound (of
the order of log(δ−1)(n/ε)O(log(n/ε) log(1/ε))) on the asymptotic growth rate of sample
size requirement for PAC-learning a perceptron from 1-RFA data. This is a purely
“information-theoretic” result; we do not have any algorithm whose runtime has an
asymptotic growth rate that improves substantially on a brute-force approach.

ESTIMATING A BOOLEAN PERCEPTRON 331

1.2. Notation and terminology. Let V be the input domain, i.e., the vertices
of the unit hypercube, or 0/1-vectors. By a vertex we mean a member of V , i.e., a
0/1-vector of length n.

F will denote a Boolean perceptron, typically the “target function,” and G will
denote a Boolean function (not necessarily a Boolean perceptron), for example an
estimate of F returned by an algorithm. The positive (respectively, negative) examples
of a function are those that are mapped to 1 (respectively, 0). Let pos(F), neg(F),
pos(G), neg(G) denote the positive and negative examples of F and G. (So pos(F) =
{F−1(1)}, etc.) F and G divide V into four subsets defined as follows:

V00 = neg(F) ∩ neg(G), V01 = neg(F) ∩ pos(G),

V10 = pos(F) ∩ neg(G), V11 = pos(F) ∩ pos(G).

For R ⊆ R
n, let m(R) be the number of elements of V that lie in R. Let a(R) be the

vector sum of elements of V ∩R. Let μ(R) denote the (unweighted) average of members
of V that lie in the region R, so that μ(R) = a(R)/m(R), well-defined provided that
m(R) > 0. The region of disagreement of F and G is V01∪V10; thus the disagreement
rate between F and G, over the uniform distribution on V , is (m(V01) +m(V10))/2

n.
Throughout, logarithms are to the base 2.
When we refer to subspaces, or spanning, or dimension, we mean in the affine

sense, so that a “subspace” does not necessarily contain the origin, and the spanning
set of S ⊆ R, denoted Span(S), is the set of points that are expressible as the sum of
one member of the spanning set plus a weighted sum of differences between pairs of
points in S. A line means a 1-dimensional affine subspace.

We adopt the following usage of alphabetic symbols throughout the paper, which
extends to variants embellished with primes or subscripts:

1. H denotes a hyperplane in R
n (an affine subspace with dimension n− 1).

2. A denotes an affine subspace with possibly lower dimension.
3. S denotes a finite set of points in R

n.
4. A point in R

n or an n-dimensional vector will be denoted by a lowercase
boldface letter such as x, and (x)i denotes the ith entry or component of x.
v is used to denote an element of V .

For x = ((x)1, . . . , (x)n) let ‖x‖ denote the Euclidean norm of x, i.e., (
∑n

i=1((x)i)
2)1/2.

Let dE(x, Z) denote the Euclidean distance between x ∈ R
n and the closest point to

x in Z ⊆ R
n.

2. Geometric results. In this section we give various geometric results about
the vertices of the unit hypercube, which we use in section 3 to deduce the bound on
sample size requirement in the inductive learning context described in the last section.
We start with an informal summary of the results of this section:

1. Lemma 1 gives a simple upper bound on the number of elements of V con-
tained in a linear subspace, in terms of the dimension of that subspace.

2. Theorem 2 shows that if a hyperplane contains a large number of elements of
V , then the coefficients of that hyperplane have a large common denominator.
(A lower bound on the common denominator is given in terms of the number
of elements of V contained by the hyperplane.)

3. Theorem 3 uses Theorem 2 to show that any hyperplane that “narrowly
misses” a large fraction of V can be perturbed slightly so that it actually
contains all those vertices. The resulting hyperplane no longer “narrowly
misses” any other vertices. More precisely, if a hyperplane comes within

332 PAUL W. GOLDBERG

distance O((1/α)(n log(n/α))log(n/α)) of a fraction α of the 2n vertices, then
all those α · 2n vertices lie on the perturbed hyperplane.

4. Theorem 4 uses Theorem 3 to derive a lower bound on the distance between
μ(V01) and μ(V10) (the means of the two regions of disagreement between two
Boolean functions, one of which is a perceptron) in terms of their disagreement
rate m(V01 ∪ V10)/2

n.
Lemma 1. Any affine subspace A of R

n of dimension d contains at most 2d

elements of the vertices of the unit hypercube.
Proof. The proof proceeds by induction on d. The lemma clearly holds for d = 0,

when A consists of a single point.
Suppose d > 0. Assume that A contains at least two elements of V (if not, we

are done). For v1,v2 ∈ V ∩ A, suppose that v1 and v2 differ in the ith component,
so that (v1)i 	= (v2)i.

Divide V into two subcubes V ′ and V ′′, where V ′ is elements v ∈ V such that
(v)i = 0, and V ′′ is elements v ∈ V with (v)i = 1. By construction, A ∩ V ′ 	= ∅ and
A ∩ V ′′ 	= ∅.

Since A intersects V ′, we have that A∩ Span(V ′′) is a proper subspace of A, and
similarly, A ∩ Span(V ′) is a proper subspace of A. The inductive hypothesis tells us
that each of these subspaces contains at most 2d−1 elements of V , for a total of at
most 2d elements of V , as required.

Observation 1. Let S ⊆ V , |S| = α · 2n (where 0 ≤ α ≤ 1). Let d = n −
�log(1/α)�− 1. Then, given any subset of size d of the n components, there exist two
distinct elements of S that agree on all those d components.

Proof. At most 2d elements of V can be distinguished from each other via their
values on a set of d coordinates. We assumed that |S| = α · 2n. Since d = n −
�log(1/α)� − 1, we can deduce that α > 2d−n, and hence |S| > 2d. By the pigeonhole
principle, two distinct elements of S agree on the d coordinates.

Theorem 2. Let H be a hyperplane in R
n, and suppose that H contains a

fraction α of the vertices of the unit hypercube and that H is spanned by the vertices
that it contains. Suppose that H is described as the set of points {x : w.x = t}, with
parameters (w, t) rescaled so that ‖w‖ = 1. Then all the components of w are integer
multiples of some quantity at least as large as

(√
n(1 + �log(1/α)�)!n(1+�log(1/α)�)

)−1

.

Proof. We construct a linear system that must be satisfied by the weights
{(w)i : 1 ≤ i ≤ n} such that when we solve it (invert a matrix), elements of
the inverted matrix have a large common denominator. Initially the system will be
satisfied by the (w)i values when they are rescaled so that their maximum (in absolute
value) is equal to 1. Afterwards we will rescale so that ‖w‖ = 1.

Let x1 ∈ arg maxi(|(w)i|). The first linear equality is (w)x1
= 1. This does the

job of rescaling the (w)i values such that their maximum (in absolute value) is 1.
Let d = n − �log(1/α)� − 1, as in Observation 1. For v ∈ V , (v)i, the ith

component of v, is equal to 0 or 1. We identify a subset of the component indices
{x2, . . . , xd} ⊆ {1, . . . , n} together with 2(d− 1) vertices {v2,v

′
2, . . . ,vd,v

′
d} ⊆ H ∩V

such that

(vj)xj − (v′
j)xj = 1 for 2 ≤ j ≤ d,

(vj)xi = (v′
j)xi

for 2 ≤ j ≤ d, 1 ≤ i ≤ d, j 	= i.

ESTIMATING A BOOLEAN PERCEPTRON 333

For v, v′ ∈ H ∩ V , w satisfies (v − v′).w = 0. The next d − 1 linear equalities
are (vj − v′

j).w = 0 for 2 ≤ j ≤ d. These linear constraints on w are independent of
each other, since for the subset {x2, . . . , xd} ⊂ {1, . . . , n}, the linear constraint (vj −
v′
j).w = 0 has coefficient 1 on the xjth component of w and 0 on the other components

in Ld. We continue by demonstrating how to find a suitable set {v2,v
′
2, . . . ,vd,v

′
d}.

Let

R1 = {1, . . . , n} \ {x1},
L1 = {x1}.

Choose v2,v
′
2 ∈ H ∩ V such that

{v2,v
′
2} ∈ arg max

{v,v′}⊆H∩V ;v 	=v′;(v)�=(v′)� for �∈L1

(
|{i ∈ R1 : (v)i = (v′)i}|

)
.

Thus v2 and v′
2 are chosen to be two distinct vertices in H ∩V , which have minimum

Hamming distance from each other, subject to the requirement that they agree on
component x1.

Since v2 	= v′
2, there exists x2 ∈ R1 such that (v2)x2 	= (v′

2)x2 . We may assume
that (v2)x2

= 1 and (v′
2)x2

= 0. Let

R2 = {i ∈ R1 : (v2)i = (v′
2)i},

L2 = {x1, x2}.

R2 is a maximal subset of R1 such that two distinct vertices agree on coordinates
indexed by R2 and L1. By Observation 1, |R2| ≥ n− �log(1/α)� − 2.

Generally, for j > 2, construct xj ∈ Rj−1, Rj ⊆ Rj−1\{xj}, and Lj = Lj−1∪{xj}
as follows. Choose vj ,v

′
j ∈ H ∩ V such that

{vj ,v
′
j} ∈ arg max

{v,v′}⊆H∩V ;v 	=v′;(v)�=(v′)� for �∈Lj−1

(
|{i ∈ Rj−1 : (v)i = (v′)i}|

)
.

Thus vj and v′
j are chosen to be two distinct vertices in H ∩ V that have minimum

Hamming distance over coordinates indexed by Rj−1, subject to the constraint that
they agree on coordinates indexed by Lj−1.

We claim that there exists xj ∈ Rj−1 such that (vj)xj 	= (v′
j)xj .

Suppose that the claim is false. Then (vj)i = (v′
j)i for all i ∈ Rj−1, and (vj)� =

(v′
j)� for all � ∈ Lj−1 (and note that for � ∈ Lj−1, � 	∈ Rj−1). This contradicts the

choice of {vj−1,v
′
j−1} as a pair of vertices that have minimum Hamming distance on

coordinates indexed by Rj−2 (which contains Rj−1) while also agreeing on coordinates
indexed by Lj−2. Note that

1. vj−1 and v′
j−1 agree on coordinates indexed by Lj−2. They agree on |Rj−1|

elements of Rj−2.
2. vj and v′

j agree on coordinates indexed by Lj−1 = Lj−2 ∪ {xj−1}, where
xj−1 ∈ Rj−2. They also agree on all elements of Rj−1 ⊆ Rj−2.

3. From the above two points, amongst pairs of vertices v and v′ that agree on
Lj−2, vj and v′

j agree on more elements of Rj−2 than do vj−1 and v′
j−1.

Hence there exists xj ∈ Rj−1 such that (vj)xj 	= (v′
j)xj , and we can assume (vj)xj = 1

and (v′
j)xj = 0. Let

Rj = {i ∈ Rj−1 : (vj)i = (v′
j)i},

Lj = Lj−1 ∪ {xj}.

334 PAUL W. GOLDBERG

Rj is a maximal subset of Rj−1 (where |Rj−1| ≥ n− �log(1/α)� − (j − 1)) such that
vj agrees with v′

j on coordinates indexed by Rj (and the j − 1 coordinates indexed
by Lj−1). By Observation 1, |Rj | ≥ n− �log(1/α)� − j.

Recall that d = n − �log(1/α)� − 1, as in Observation 1. Since |Rj | ≥ n −
�log(1/α)� − j, the above construction can be carried out for 2 ≤ j ≤ d.

By our assumption that Span(H∩V) = H, there exists a set {vd+1,v
′
d+1 . . . ,vn,v

′
n}

⊂ H ∩ V such that each pair of vertices {vj ,v
′
j} for d + 1 ≤ j ≤ n imposes on w a

new linear constraint (vj − v′
j).w = 0 that is linearly independent of the others.

Let M be a matrix whose first row is all zero apart from the x1th entry, which
contains the value 1. The jth row (for 2 ≤ j ≤ n) is the components of (vj −v′

j). We
have M.w = r, where r is all zero apart from (r)1 = 1. Now rearrange the columns
of M in the order x1, . . . , xn (where {xd+1, . . . , xn} = {1, . . . , n} \ {x1, . . . , xd}), and
let r = (1, 0, . . . , 0)T . We have constructed a linear system M.wP = r, where wP is
a permutation of w and

1. M is an invertible n× n matrix with entries in {0, 1,−1};
2. the d × d submatrix of M comprising the first d rows and columns is the

identity matrix;
3. r = (1, 0, . . . , 0)T .

Hence wP = M−1r. The (i, j)th entry of M−1 is given by det(Mi,j)/det(M),
where det(M) denotes the determinant of matrix M , and Mi,j is the submatrix of M
obtained by removing column i and row j. We will upper-bound the determinant of
M .

Construct M ′ by adding (respectively, subtracting) row j (for 1 ≤ j ≤ d) to row
j′ (for d + 1 ≤ j′ ≤ n) whenever the jth entry of row j′ is equal to −1 (respectively,
1). M ′ = (m)ij satisfies

mij = 0 for d + 1 ≤ i ≤ n, 1 ≤ j ≤ d,
−n ≤ mij ≤ n for d + 1 ≤ i ≤ n, d + 1 ≤ j ≤ n.

Here det(M ′) = det(M), the first d rows and columns of M ′ is still the identity matrix,
and so from the features of M ′ noted above, det(M ′) is equal to det(M ′′), where M ′′

is the (n− d) × (n− d) submatrix of M ′ in the bottom right-hand corner of M ′.
Now observe that the determinant of any i× i matrix with entries in {−n,−(n−

1), . . . , n−1, n} is upper bounded2 by i!ni, so that |det(M)| ≤ (n−d)!nn−d. Accord-
ingly, entries of M−1 (and consequently, components of w) must be integer multiples
of a quantity greater than or equal to

(
(n− d)!nn−d

)−1

=
(
(1 + �log(1/α)�)!n(1+�log(1/α)�)

)−1

,

and so components of w are also integer multiples of this quantity.
The maximum absolute value of a component of w (or wP) is 1, so 1 ≤ ‖w‖ ≤

√
n.

Rescaling w to get ‖w‖ = 1, we find that the components of w are integer multiples
of a quantity at least as large as the above, divided by

√
n. That is,

(√
n(1 + �log(1/α)�)!n(1+�log(1/α)�)

)−1

,

as in the statement of the theorem.

2There is not a substantially better upper bound on the determinant of this matrix that uses
the fact that the matrix is over integers with absolute value at most n; from Hadamard [14], the
determinant of a i × i matrix over {1,−1} may be as high as ii/2. This becomes ni.ii/2 when the
entries 1 and −1 are replaced with n and −n, respectively.

ESTIMATING A BOOLEAN PERCEPTRON 335

We use Theorem 2 to prove the following.
Theorem 3. Given any hyperplane in R

n whose β-neighborhood contains a subset
S of vertices of the unit hypercube, where |S| = α · 2n, there exists a hyperplane which
contains all elements of S, provided that

0 ≤ β ≤
(
(2/α) · n(5+�log(n/α)�) · (2 + �log(n/α)�)!

)−1

.

Proof. Let H = {x : w.x = t}, where by rescaling we can assume ‖w‖ = 1.
Assume that the β-neighborhood of H contains S. Then for v ∈ S, we have w.v ∈
[t− β, t + β].

Define a new weight vector w′ derived from w by taking each weight in w and
rounding it off to the nearest integer multiple of β (rounding down in the event of a
tie). Then we claim that scalar products w′.v can take at most n + 2 distinct values
for v ∈ S. To see this, note that for v ∈ S,

1. w′.v < w.v + nβ/2 ≤ t + β + nβ/2,
2. w′.v ≥ w.v − nβ/2 ≥ t− β − nβ/2,
3. w′.v is an integer multiple of β for v ∈ V .

Items 1 and 2 show that w′.v lies in a semiopen interval of length β(n+ 2), and with
3 there are only at most (n + 2) possible values in the interval. Let T be the set of
these n + 2 values.

Let t′ be the member of T which maximizes the number of vertices v ∈ S satisfying
w′.v = t′. Then there are at least α · 2n/(n+ 2) vertices v ∈ S that satisfy w′.v = t′.
Let

A1 = Span({v ∈ S : w′.v = t′}),
H1 = {x ∈ R

n : w′.x = t′}.

Note that |A1 ∩ V | ≥ α · 2n/(n + 2), and hence by Lemma 1,

dim(A1) ≥ n− log(1/α) − log(n + 2).(1)

We next show that for all v ∈ S,

dE(v, H1) ≤ 2nβ.(2)

Note that ‖w′ − w‖ ≤
√
nβ/2. ‖w‖ = 1, and since the Euclidean norm is a metric,

‖w′‖ ∈ [1 −
√
nβ/2, 1 +

√
nβ/2].

For v ∈ S, w′.v − t′ ∈ [−(n + 2)β, (n + 2)β]. Let (w′′, t′′) be (w′, t′) rescaled so
that ‖w′′‖ = 1. Then

w′′.v − t′′ ∈ [−(n + 2)β/(1 −
√
nβ/2), (n + 2)β/(1 −

√
nβ/2)]

⇒ w′′.v − t′′ ∈ [−2nβ, 2nβ] (since
√
nβ � 1)

⇒ w′′.v ∈ [t′′ − 2nβ, t′′ + 2nβ].

Since ‖w′′‖ = 1, v is within Euclidean distance 2nβ of H1. This establishes (2).
We want to show that dim(Span(S)) ≤ n − 1. We next find a hyperplane Hk

that contains A1 and other elements of S such that Span(Hk ∩ S) = Hk (allowing
Theorem 2 to apply to Hk) and such that we also obtain a bound on dE(v, Hk) for
v ∈ S.

336 PAUL W. GOLDBERG

We know that dim(A1) < n. If dim(A1) = n − 1, then set k = 1 and use
Hk = H1 = A1. Suppose that dim(A1) < n − 1. Then let A′

1 be a subspace of H1

such that dim(A′
1) = n− 2 and A1 ⊆ A′

1. Let v1 ∈ arg maxv∈S(dE(v, A′
1)).

Let H2 be the hyperplane Span(A′
1 ∪ {v1}). Then for all v ∈ S, using (2),

dE(v, H2) ≤ dE(v, H1) + dE(v1, H1) ≤ 4nβ.

Let A2 = Span(A1 ∪ {v1}). Since v1 	∈ A1 we have dim(A2) = dim(A1) + 1.
Generally, for j ≥ 1, if Aj ⊂ Hj , Aj 	= Hj , construct Aj+1 and Hj+1 from Aj

and Hj as follows. Choose A′
j of dimension n− 2 such that

Aj ⊆ A′
j ⊂ Hj .

Then choose

vj ∈ arg max
v∈S

(dE(v, A′
j)).

Then let Hj+1 = Span(A′
j ∪ {vj}) and Aj+1 = Span(Aj ∪ {xj}). Then for all v ∈ S,

dE(v, Hj+1) ≤ dE(v, Hj) + dE(vj , Hj) ≤ 2j+1nβ.

Aj+1 ⊆ Hj+1 and dim(Aj+1) = 1 + dim(Aj). The maximum value that j can
take is

k = n− dim(A1) ≤ log(1/α) + log(n + 2)(3)

(the inequality follows from (1)), at which point we obtain Ak = Hk with dim(Hk) =
n− 1. Hk satisfies

1. Hk = Span(Hk ∩ S),
2. dim(Hk) = n− 1,
3. |Hk ∩ S| ≥ α · 2n/(n + 2),
4. for all v ∈ S, dE(v, Hk) ≤ 2knβ ≤ (1/α)(n + 2)nβ, using (3).

Hence by properties 1–3 above and Theorem 2, Hk takes the form

Hk = {x : wk.x = tk},

where ‖wk‖ = 1 and entries of wk and tk are multiples of

E =

(√
n

(
1 +

⌊
log

(
n + 2

α

)⌋)
!n(1+�log((n+2)/α)�)

)−1

(the expression from Theorem 2 with α/(n + 2) plugged in for α).
wk.v is an integer multiple of E for all v ∈ V . Hence if tk −E < wk.v < tk +E,

then wk.v = tk.
From property 4 of Hk, for all v ∈ S, wk.v = tk, provided that we have

(1/α)(n + 2)nβ < E.

Equivalently,

β <

(
(1/α)(n + 2)n

√
n

(
1 +

⌊
log

(
n + 2

α

)⌋)
!n(1+�log((n+2)/α)�)

)−1

.

The expression for β given in the statement of this theorem satisfies the in-
equality.

ESTIMATING A BOOLEAN PERCEPTRON 337

Theorem 4. Let F be a Boolean perceptron and let G be a Boolean function
that disagrees with F on a fraction ε of the 2n elements of V . Assume also that
|V01| ≥ 1

4ε · 2n and |V10| ≥ 1
4ε · 2n. Then the Euclidean distance between μ(V01) and

μ(V10) is lower bounded by

(
(4/ε) · n(5+�log(2n/ε)�) · (2 + �log(2n/ε)�)!

)−4 log(1/ε)

,

which is (ε/n)O(log(n/ε) log(1/ε)).
Proof. If l is a line and S is a set of points, let l(S) denote the set of points

obtained by projecting elements of S onto their closest points on l.
Let HF denote a hyperplane defining F , and let l1 be a line normal to HF . We

may assume that HF does not contain any elements of V . Observe that members of
l1(V01) are separated from members of l1(V10) by the point of intersection of l1 and
HF (which itself is l1(HF)). Let

β =
(
(4/ε) · n(5+�log(2n/ε)�) · (2 + �log(2n/ε)�)!

)−1

(4)

(where we have plugged ε/2 for α into the expression for β in the statement of Theo-
rem 3). Our analysis uses a sequence of �log(1/ε)� cases.

Case 1. Suppose that at least a fraction β4 log(1/ε)−2 of elements of V01 ∪ V10

(i.e., at least (ε · 2n)β4 log(1/ε)−2 vertices altogether) have projections onto l1 that are
more than β distant from l1(HF). In this case we have

‖μ(V01) − μ(V10)‖ ≥ β · β4 log(1/ε)−2.

The alternative is that at least a fraction (1−β4 log(1/ε)−2) of elements of V01∪V10

(thus, at least (ε ·2n)(1−β4 log(1/ε)−2) points altogether) have projections onto l1 that
are less than β distant from l1(HF).

In this case we apply Theorem 3 to obtain a hyperplane A1 that contains all these
points, that is, at least a fraction 1−β4 log(1/ε)−2 of elements of V01∪V10. (Theorem 3
applies since ε(1−β4 log(1/ε)−2) plays the role of α, and ε(1−β4 log(1/ε)−2) > 1

2ε (thus,
with (4), the corresponding β-value is sufficiently small).)

Case 2. Let A′
2 = HF ∩ A1; since HF does not contain any elements of V , HF

does not contain A1. A′
2 ⊂ A1 separates V01 ∩ A1 from V10 ∩ A1. Let l2 ⊆ A1 be a

line normal to A′
2.

Now suppose that at least a fraction β4 log(1/ε)−4 of elements of V01 ∪ V10 lie in
A1 and have projections onto l2 that are more than β distant from l2(A

′
2). Then

‖μ(A1 ∩ V01) − μ(A1 ∩ V10)‖ ≥ β · β4 log(1/ε)−4.

|(V01 \ A1)|/|V01| ≤ εβ4 log(1/ε)−2/(ε/4), and since all vertices lie within
√
n of each

other, the distance ‖μ(V01) − μ(V01 \ A1)‖ is at most (4
√
n)β4 log(1/ε)−2. A similar

argument applies to V10. Hence we have

‖μ(V01) − μ(V10)‖ ≥ β · β4 log(1/ε)−4 − 2(4
√
n)β4 log(1/ε)−2

= β4 log(1/ε)−4(β − β28
√
n) ≥ β4 log(1/ε).

It remains to cover the cases where a fraction less than β4 log(1/ε)−4 of the mem-
bers of V01 ∪ V10 have projections onto l2 that are more than β distant from l2(A

′
2).

Generally case j arises when a subspace Aj−1 of dimension n − (j − 1) has been

338 PAUL W. GOLDBERG

identified that contains at least a fraction 1 −
∑j−1

�=1 β
(4 log(1/ε)−2�) of the elements of

V01 ∪V10 (and we have not yet found a hyperplane separating enough of V01 from V10

with a sufficiently large margin).
Case j. Subspace Aj−1 with dim(Aj−1) = n− (j − 1) satisfies

|Aj−1 ∩ (V01 ∪ V10)|
|V01 ∪ V10|

≥ 1 −
j−1∑
�=1

β(4 log(1/ε)−2�).

Let A′
j = Aj−1 ∩HF and dim(A′

j) = n− j. Let lj ⊆ Aj−1 be a line normal to A′
j .

Suppose that at least a fraction β(4 log(1/ε)−2j) of elements of V01 ∪V10 lie in Aj−1

and have projections onto lj that are more than β distant from lj(A
′
j). Then

‖μ(Aj−1 ∩ V01) − μ(Aj−1 ∩ V10)‖ ≥ β · β(4 log(1/ε)−2j).

Note that

|(V01 ∪ V10) \Aj−1|
|V01 ∪ V10|

≤
j−1∑
�=1

β(4 log(1/ε)−2�).

Since β < 1
2 , this fraction is less than 2β(4 log(1/ε)−2(j−1)). Hence

‖μ(V01) − μ(V10)‖ ≥ β · β(4 log(1/ε)−2j) − (4
√
n)2β(4 log(1/ε)−2(j−1))

= β(4 log(1/ε)−2j)(β − 2β24
√
n)

≥ β4 log(1/ε).

If, alternatively, a fraction at least 1 − β(4 log(1/ε)−2j) of elements of V01 ∪ V10 have
projections onto lj at most β from lj(A

′
j), then we construct Aj of dimension n − j

that contains all these points.
Let Vj ⊆ (V01 ∪ V10) denote this set of points. Let Sj be a set of j − 1 vertices

such that dim(Span(Aj−1 ∪ Sj)) = n. The hyperplane Span(A′
j ∪ Sj) lies within

Euclidean distance β of elements of Vj , where |Vj | ≥ 1
2ε · 2n. (For j ≤ �log(ε−1)�,

the fraction of elements of V01 ∪ V10 that are in Vj is at least 1 − β(4 log(1/ε)−2j), so
that |Vj | ≥ 1

2ε.) Use Theorem 3 (and (4)) to obtain hyperplane Hj , which contains
Vj ∪ Sj . Let Aj = Hj ∩Aj−1. Hj cannot contain Aj−1 since Hj also contains Sj and
we have Span(Aj−1 ∪ Sj) = n. Hence dim(Aj) = n− j.

For j < �log(ε−1)�,

|Aj ∩ (V01 ∪ V10)|
|V01 ∪ V10|

=
|Vj |

|V01 ∪ V10|
≥ 1 − β4 log(1/ε)−2j > 1 −

j∑
�=1

β4 log(1/ε)−2� >
1

2
ε,

and thus for j < �log(ε−1)� we are ready for case j + 1.
By Lemma 1 the number of cases (and hence j) is indeed upper bounded by

�log(ε−1)�, since otherwise the subspace Aj does not have sufficient dimension to
hold a fraction 1

2ε of elements of V . Each of these cases provides a lower bound on

‖μ(V01) − μ(V10)‖ of β4 log(1/ε), which is

(
(4/ε) · n(5+�log(2n/ε)�) · (2 + �log(2n/ε)�)!

)−4 log(1/ε)

,

as in the statement of the theorem.

ESTIMATING A BOOLEAN PERCEPTRON 339

3. Statistical learning-theoretic consequences. For domain V = {0, 1}n let
U(V) denote the uniform distribution on V . For a Boolean function G having at
least one satisfying assignment, let YG,0 be the following Bernoulli random variable:
YG,0 = 1 if for v ∼ U(V) we have G(v) = 1. Recall that (v)i denotes the 0/1 value
of the ith component of v. For 1 ≤ i ≤ n let YG,i be the following Bernoulli random
variable: YG,i = 1 if for v ∼ U({u ∈ V : (u)i = 1}) we have G(v) = 1.

To learn a Boolean perceptron in the 1-RFA regime (over the uniform distribution
on V = {0, 1}n), a “target perceptron” F is selected by an adversary. A learning
algorithm may (in unit time) generate an observation (v, �), where v ∼ U(V) and
� = F (v). The algorithm has access to the value � and may select i ∈ {1, . . . , n}, so as
to observe the value (v)i. The remainder of v is not available to the algorithm. This
is equivalent to being given access to repeated observations of the random variables
YF,i above, for 0 ≤ i ≤ n. The objective is to output, with probability 1−δ, a function
G (the “hypothesis,” an estimate of F) such that G disagrees with F on a fraction at
most ε of elements of V . (An alternative formulation of RFA learning assumes that
the indices of the observed components of an input vector v are selected uniformly at
random. We noted in [13] that for 1-RFA learning this is equivalent, for the purpose
of obtaining polynomial bounds, to the assumption that the index is chosen by the
algorithm.)

We continue by using the results of section 2 to obtain a bound on the sample size
required to learn a Boolean perceptron in the 1-RFA setting. Thus we show how a
computationally unbounded (but with limited sample size) algorithm can select a good
hypothesis from the entire set of Boolean perceptrons, using sample size log(δ−1) ·
(n/ε)log(n/ε) log(1/ε), where δ is the probability that the hypothesis has error greater
than ε. For any Boolean function G let

pG,0 = Prv∼U(V)(G(v) = 1),
pG,i = Prv∼U(V)(G(v) = 1 | (v)i = 1).

For a Boolean function G define cost function cF (G) and empirical cost function
ĉF (G) as

cF (G) = max0≤i≤n(|pG,i − pF,i|),
ĉF (G) = max0≤i≤n(|pG,i − p̂F,i|),

where p̂F,i is defined in Figure 1. Note that cF (F) = 0.
Lemma 5. Let F be a Boolean perceptron that is satisfied by at least (ε/2) · 2n

input vectors. Let Boolean function G disagree with F on at least a fraction ε of
inputs. Then

cF (G) ≥
(

ε2

32
√
n

)(
(4/ε) · n(5+�log(2n/ε)�) · (2 + �log(2n/ε)�)!

)−4 log(1/ε)

.

Proof. We consider two cases. As in the proof of Theorem 4, let β = ((4/ε) ·
n(5+�log(2n/ε)�) · (2 + �log(2n/ε)�)!)−1.

Case 1. |pF,0 − pG,0| ≥ ε2

32
√
n
· β4 log(1/ε) (that is, there is a difference of at least

ε2

32
√
n
· β4 log(1/ε) between the probability that F (v) = 1 and the probability that

G(v) = 1). Then cF (G) ≥ ε2

32
√
n
· β4 log(1/ε), which implies the statement of the

lemma.

340 PAUL W. GOLDBERG

1. Draw a sample S0 of observations, where |S0| = Θ((1/ε) log(1/δ)).
2. Let p̂F,0 be the fraction of examples in S0 which satisfy F (we do not look

at any component of the input vectors).
3. If p̂F,0 < 3

4ε, then output G, where G(v) = 0 for all v ∈ {0, 1}n.
4. Else

(a) For 1 ≤ i ≤ n, draw a sample Si of observations, where |Si| =
(log(1/δ)(n/ε)O(log(n/ε) log(1/ε))). Look at the ith component of each
input v in Si.

(b) For 0 ≤ i ≤ n, let p̂F,i be the fraction of all examples with (v)i = 1 in
Si which are positive (satisfy F).

(c) For every satisfiable Boolean function G let pG,i = Pr(YG,i = 1) (for
0 ≤ i ≤ n).

(d) Let ĉ(G) = max0≤i≤n(|p̂F,i − pG,i|).
(e) Output a Boolean function from arg minG(ĉ(G)).

Fig. 1. Rule for selecting low-error perceptron.

Case 2. If |pF,0 − pG,0| < ε2

32
√
n
· β4 log(1/ε), then |V01| ≥ (ε/4) · 2n and |V10| ≥

(ε/4) · 2n. So Theorem 4 applies to F and G, and we have

‖μ(V01) − μ(V10)‖ ≥ β4 log(1/ε).

Let λ = |V10|/(|V10|+|V11|), λ′ = |V01|/(|V01|+|V11|). If |V10| ≥ |V01|, then λ ≥ λ′

and

λ− λ′ ≤ |V10| − |V01|
|V01| + |V11|

≤ |V10| − |V01|
|V01|

≤ (ε2/32
√
n)β4 log(1/ε)

ε/4
=

ε

8
√
n
β4 log(1/ε).

If |V01| ≥ |V10|, we have the same upper bound on λ′ − λ ≥ 0.

μ(pos(F)) = (1 − λ) · μ(V11) + λμ(V10),
μ(pos(G)) = (1 − λ′) · μ(V11) + λ′μ(V01)

= (1 − λ) · μ(V11) + λμ(V01) + (λ− λ′)(μ(V11) − μ(V01)).

Hence (note that λ ≥ ε
4):

‖μ(pos(F)) − μ(pos(G))‖ ≥ λ‖(μ(V10) − μ(V01))‖ − (λ− λ′)‖μ(V11) − μ(V01)‖
≥ ε

4‖μ(V10) − μ(V01)‖ − (λ− λ′)
√
n

≥ ε
4β

4 log(1/ε) − ε
8β

4 log(1/ε).

The statement of the lemma follows—there exists i ∈ {1, . . . , n} such that the ith
component of μ(pos(F)) differs from the ith component of μ(pos(G)) by at least the
above quantity divided by

√
n.

Theorem 6. Let F be an arbitrary Boolean perceptron, and suppose that we have
access to a source of observations of the form ((v)i, F (v)), where v ∼ U(V) and where
we may select the value of i ∈ {1, . . . , n} for each observation. Then (ignoring issues
of computational efficiency) it is possible to find, with probability 1 − δ, a Boolean
function G such that Prv∼U(V)(F (v) 	= G(v)) ≤ ε, and the number of observations
required is

log(1/δ) · (n/ε)O(log(n/ε) log(1/ε)).

ESTIMATING A BOOLEAN PERCEPTRON 341

Proof. We use the procedure illustrated in Figure 1. Note that symbols denoting
various quantities are introduced in Figure 1.

Choose N = |S0| to ensure that with probability 1− 1
2δ, if p̂F,0 < 3

4ε, then pF,0 ≤ ε.
As a result, the function G output in line 3, which has no satisfying assignments, has
error at most ε. We show as follows that N = O((1/ε) log(1/δ)) is large enough.

Recall Hoeffding’s inequality: Let Y1, . . . , YN be Bernoulli trials with probability
p of success. Let T = Y1 + · · · + YN denote the total number of successes. Then for
γ ∈ [0, 1],

Pr(|T − pN | > γN) ≤ 2e−2Nγ2

.

Set γ = 1
4ε to ensure that with high probability

|p̂F,0 − pF,0| <
1

4
ε.(5)

N = |S0| must then satisfy 2e−2N(ε/4)2 ≤ 1
2δ, which is satisfied by N = O(ε−1 log(δ−1)).

Equation (5) ensures that if p̂F,0 ≥ 3
4ε, then pF,0 ≥ 1

2ε. Thus line 3 of Figure 1
is (with probability 1 − 1

2δ) used only when pF,0 ≥ 1
2ε (and Lemma 5 is applicable).

As in the proofs of Theorem 4 and Lemma 5, let β = ((4/ε) · n(5+�log(2n/ε)�) · (2 +
�log(2n/ε)�)!)−1.

We choose the size of each Si large enough to ensure that with probability 1−δ/4
each Si contains at least N ′ examples (v, F (v)) with (v)i = 1, where N ′ is large
enough to ensure that

with probability 1− δ/4, for 1 ≤ i ≤ n, |p̂F,i− pF,i| <
(

ε2

64
√
n

)
β4 log(1/ε).(6)

The above can be ensured by taking a union bound if we have

for 1 ≤ i ≤ n, with probability 1 − δ/4n, |p̂F,i − pF,i| <
(

ε2

64
√
n

)
β4 log(1/ε).

By Hoeffding’s inequality it is sufficient for N ′ to satisfy 2 exp(−2N ′(ε2/64
√
n)β4 log(1/ε))

< δ/4n, which is satisfied by N ′ = O((n/ε2) log(n/δ)/β4 log(1/ε)).
Set |Si| = 4N ′. A standard Chernoff bound (see, for example, [1, p. 361]) tells us

that if T is the number of successes in N Bernoulli trials with probability p of success,

Pr

(
T <

1

2
Np

)
≤ exp

(
−Np

8

)
.

Here |Si| = 4N ′, and so the expected number of examples with (v)i = 1 is 2N ′ (since
Pr((v)i = 1) = 1

2), and the probability that we fail to obtain N ′ of these examples is

O(exp(−N ′(ε/2)/8)) = O(δ/n). For N ′ = O((n/ε2) log(n/δ)/β4 log(1/ε)) this failure
probability can be made as low as δ/4n, so that with probability at least 1 − 1

4δ, for
1 ≤ i ≤ n, Si contains at least N ′ examples with (v)i = 1.

Equation (6) implies

with probability 1 − δ/4, for all G, |ĉF (G) − cF (G)| <
(

ε2

64
√
n

)
β4 log(1/ε).

Then by Lemma 5 (and noting that cF (F) = 0), ĉF (F) < ĉF (G) for all Boolean
functions G that disagree with F on a fraction at least ε of inputs.

The total sample size is O(n ·N ′), which is O((n2/ε2) log(n/δ)/β), which is
log(1/δ) · (n/ε)O(log(n/ε) log(1/ε)).

342 PAUL W. GOLDBERG

3.1. Conclusions and open problems. The problem of PAC-learning a Bool-
ean perceptron from empirical estimates of its Chow parameters has been raised in
various papers in computational learning theory. We have so far just shown a bound
on the asymptotic growth rate of sample-size required (the problem of how to best
select the right hypothesis, given sufficient data, having not been addressed), and that
bound is still superpolynomial. We suspect that the true growth rate is polynomially
bounded as a function of n/ε.

Our results show that an algorithm can minimize over the set of all Boolean func-
tions; we do not have to restrict ourselves to Boolean perceptrons. This demonstrates
how the usage of a set of statistics, as opposed to empirical risk minimization, can
automatically avoid over-fitting. However, there is the possibility that there should
exist a better bound on the distance between the average satisfying assignment of two
functions if both, and not just one, of them are perceptrons.

There may be a practical advantage to minimizing over all Boolean functions, in
that if the minimization is being done by local search, it may reduce problems with
local optima. However, in principle one can just minimize over the set of all Boolean
perceptrons. The algorithm uses the values pG,i for Boolean functions G, and for
Boolean perceptrons computing these quantities exactly is 	P -hard since it is the 0/1
knapsack problem [11]. However, sufficiently good approximations to these quantities
could be found by generating a polynomial-size collection of inputs from U(V) and
using the empirical values.

Hȧstad [15] has shown that some Boolean perceptrons need weights of size around
2(n logn)/2−n to be represented exactly. For n = �log(ε−1)� (n being the dimension of
the domain), an approximation with error less than ε must be exact. This implies that
we may need to learn a weight of size more than polynomial in ε, in order to recover
a weights-based parametrization—weights may be as high as (1/ε)log log(1/ε). This
eliminates one natural-looking way of obtaining the desired polynomial growth rate
in ε−1 (namely, looking for a perceptron whose coefficients are polynomially bounded
as a function of the dimension and the quality of the approximation).

Acknowledgment. I would like to thank the referees for their corrections and
comments.

REFERENCES

[1] M. Anthony and P. L. Bartlett, Neural Network Learning: Theoretical Foundations, Cam-
bridge University Press, Cambridge, UK, 1999.

[2] M. Anthony, G. Brightwell, and J. Shawe-Taylor, On specifying Boolean functions by
labelled examples, Discrete Appl. Math., 61 (1995), pp. 1–25.

[3] S. Ben-David and E. Dichterman, Learning with restricted focus of attention, J. Comput.
System Sci., 56 (1998), pp. 277–298.

[4] S. Ben-David and E. Dichterman, Learnability with restricted focus of attention guarantees
noise-tolerance, in Proceedings of the 5th International Workshop on Algorithmic Learning
Theory, Lecture Notes in Comput. Sci. 872, Springer, New York, 1994, pp. 248–259.

[5] A. Birkendorf, E. Dichterman, J. Jackson, N. Klasner, and H. U. Simon, On restricted-
focus-of-attention learnability of Boolean functions, Machine Learning, 30 (1998), pp. 89–
123.

[6] A. Blum, A. Frieze, R. Kannan, and S. Vempala, A polynomial-time algorithm for learning
noisy linear threshold functions, Algorithmica, 22 (1998), pp. 35–52.

[7] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, Learnability and the
Vapnik–Chervonenkis dimension, J. ACM, 36 (1989), pp. 929–965.

[8] J. Bruck, Harmonic analysis of polynomial threshold functions, SIAM J. Discrete Math., 3
(1990), pp. 168–177.

[9] C. K. Chow, On the characterization of threshold functions, in Proceedings of the Sympo-

ESTIMATING A BOOLEAN PERCEPTRON 343

sium on Switching Circuit Theory and Logical Design, American Institute of Electrical
Engineers, 1961, pp. 34–38.

[10] E. Dichterman, Learning with Limited Visibility, CDAM Research Reports Series, LSE-
CDAM-98-01, London School of Economics, London, 1998.

[11] M. E. Dyer, A. M. Frieze, R. Kannan, A. Kapoor, L. Perkovic, and U. Vazirani, A
mildly exponential time algorithm for approximating the number of solutions to a multi-
dimensional knapsack problem, Combin. Probab. Comput., 2 (1993), pp. 271–284.

[12] T. Eiter, T. Ibaraki, and K. Makino, Decision Lists and Related Boolean Functions, Institut
Für Informatik JLU Giessen (IFIG) Research Reports 9804, Justus-Liebig Universitat,
Giessen, Germany, 1998.

[13] P. W. Goldberg, Learning fixed-dimension linear thresholds from fragmented data, Inform.
and Comput., 171 (2001), pp. 98–122.

[14] J. Hadamard, Résolution d’une question relative aux déterminants, Bull. Sci. Math., 2 (1893),
pp. 240–246.

[15] J. Håstad, On the size of weights for threshold gates, SIAM J. Discrete Math., 7 (1994),
pp. 484–492.

[16] P. Kaszerman, A geometric test-synthesis procedure for a threshold device, Inform. and Con-
trol, 6 (1963), pp. 381–398.

[17] N. Littlestone, Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm, Machine Learning, 2 (1988), pp. 285–318.

[18] R. L. Rivest, Learning decision lists, Machine Learning, 2 (1996), pp. 229–246.
[19] F. Rosenblatt, Principles of Neurodynamics, Spartan Books, New York, 1962.
[20] R. O. Winder, Threshold gate approximations based on Chow parameters, IEEE Trans. Com-

put., 18 (1969), pp. 372–375.
[21] R. O. Winder, Chow parameters in threshold logic, J. ACM, 18 (1971), pp. 265–289.

