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Abstract. Congestion games are a well-studied model for resource shar-
ing among uncoordinated selfish agents. Usually, one assumes that the
resources in a congestion game do not have any preferences over the
players that can allocate them. In typical load balancing applications,
however, different jobs can have different priorities, and jobs with higher
priorities get, for example, larger shares of the processor time. We intro-
duce a model in which each resource can assign priorities to the players
and players with higher priorities can displace players with lower priori-
ties. Our model does not only extend standard congestion games, but it
can also be seen as a model of two-sided markets with ties. We prove that
singleton congestion games with priorities are potential games, and we
show that every player-specific singleton congestion game with priorities
possesses a pure Nash equilibrium that can be found in polynomial time.
Finally, we extend our results to matroid congestion games, in which the
strategy space of each player consists of the bases of a matroid over the
resources.

1 Introduction

In a congestion game, there is a set of players who compete for a set of resources.
Each player has to select a subset of resources that she wishes to allocate. The
delay of a resource depends on the number of players allocating that resource,
and every player is interested in allocating a subset of resources with small total
delay. Congestion games are a well-studied model for resource sharing among
uncoordinated selfish agents. They are widely used to model routing, network
design, and load balancing [4, 5, 11, 3]. One appealing property of congestion
games is that they are potential games [21]. In particular, this implies that
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every congestion game possesses a pure Nash equilibrium and that myopic player
eventually reach a Nash equilibrium by iteratively playing better responses.

One drawback of the standard model of congestion games is that resources do
not have any preferences over the players. In typical load balancing applications,
however, different jobs have different priorities, and depending on the policy,
jobs with a low priority are stopped or slowed down when jobs with higher
priorities are present. We introduce congestion games with priorities to model
the scenario in which a job can prevent jobs with lower priorities from being
processed. In our model, each resource can partition the set of players into classes
of different priorities. As long as a resource is only allocated by players with the
same priority, these players incur a delay depending on the congestion, as in
standard congestion games. But if players with different priorities allocate a
resource, only players with the highest priority incur a delay depending on the
number of players with this priority, and players with lower priorities incur an
infinite delay. Intuitively, they are displaced by the players with the highest
priority. This model is applicable if every player controls a stream of jobs rather
than only a single one. In the latter case, it might be more reasonable to assume
that jobs with lower priorities incur a large but finite delay.

Motivated by the application of congestion games to load balancing, we
mainly consider congestion games in which each player has to choose exactly
one resource to allocate, namely one server on which her job is to be processed.
Such singleton congestion games or congestion games on parallel links have been
studied extensively in the literature [4, 8, 9, 14]. Moreover, we show that single-
ton congestion games with priorities are potential games, implying that unco-
ordinated players who iteratively play better responses eventually reach a pure
Nash equilibrium. If all resources have the same priorities, then we even obtain
polynomial-time convergence to a Nash equilibrium. Milchtaich [19] introduces
player-specific congestion games as an extended class of congestion games in
which every player can have her own delay function for every resource. Milchtaich
shows that player-specific singleton congestion games are not potential games
anymore but that they possess pure Nash equilibria that can be computed in
polynomial time. We show that also in player-specific singleton congestion games
with priorities pure Nash equilibria exist that can be computed efficiently.

Interestingly, our model of player-specific congestion games with priorities
does not only extend congestion games but also the well-known model of two-
sided markets. This model was introduced by Gale and Shapley [10] to model
markets on which different kinds of agents are matched to another, for example
men and women, students and colleges [10], interns and hospitals [22], and firms
and workers. Using the same terms as for congestion games, we say that the goal
of a two-sided market is to match players and resources (or markets). In contrast
to congestion games, each resource can only be matched to one player. With each
pair of player and resource a payoff is associated, and players are interested in
maximizing their payoffs. Hence, the payoffs implicitly define a preference list
over the resources for each player. Additionally, each resource has a preference
list over the players that is independent of the profits. Every player can propose to



one resource and if several players propose to a resource, only the most preferred
player is assigned to that resource and receives the corresponding payoff. This
way, every set of proposals corresponds to a bipartite matching between players
and resources. A matching is stable if no player can be assigned to a resource
from which she receives a higher payoff than from her current resource given
the current proposals of the other players. Gale and Shapley [10] show that
stable matchings always exist and can be found in polynomial time. Since the
seminal work of Gale and Shapley there has been a significant amount of work in
studying two-sided markets. See for example, the book by Knuth [17], the book
by Gusfield and Irving [12], or the book by Roth and Sotomayor [23].

In the same way as it is in many situations not realistic to assume that in
congestion games the resources have no preferences over the players, it is in two-
sided markets often unrealistic to assume that the preference lists of the resources
are strict. Our model of player-specific congestion games with priorities can also
be seen as a model of two-sided markets with ties in which several players can be
assigned to one resource. If different players propose to a resource, only the most
preferred ones are assigned to that resource. If the most preferred player is not
unique, several players share the payoff of the market. Such two-sided markets
correspond to our model of congestion games with priorities, except that play-
ers are now interested in maximizing their payoffs instead of minimizing their
delays, which does not affect our results for congestion games with priorities.
Two-sided markets with ties have been extensively studied in the literature [12,
15]. In these models, ties are somehow broken, i. e., despite ties in the preference
lists, every resource can be assigned to at most one player. Hence, these models
differ significantly from our model. One application of our model are markets
into which different companies can invest. As long as the investing companies
are of comparable size, they share the payoff of the market, but large companies
can utilize their market power to eliminate smaller companies completely from
the market. Player-specific congestion games and two-sided markets are the spe-
cial cases of our model in which all players have the same priority or distinct
priorities, respectively. In the following, we use the terms two-sided markets with
ties and player-specific congestion games with priorities interchangeably.

We also consider a special case of correlated two-sided markets with ties in
which the payoffs of the players and the preference lists of the resources are
correlated. In this model, every resource prefers to be assigned to players who
receive the highest payoff when assigned to it. We show that this special case is a
potential game. Variants of correlated two-sided markets without ties have been
studied in the context of content distribution in networks and distributed caching
problems [7, 11, 20]. These markets have also been considered for discovering
stable geometric configurations with applications in VLSI design [13]. Our result
implies that variants of the uniform distributed caching games with bandwidth
constraints (defined by Mirrokni et. al [20, 7]) are potential games.

Additionally, we consider player-specific congestion games with priorities in
which the strategy space of each player consists of the bases of a matroid over
the resources. For this case, we show that pure Nash equilibria exist that can



be computed in polynomial time, extending a result for player-specific conges-
tion games without priorities [2]. These games can also be seen as many-to-one
two-sided markets with ties. Many-to-one two-sided markets are well studied
in the economics literature [6, 16, 18]. Kelso and Crawford [16] show that if the
preference list of every player satisfies a certain substitutability property, then
stable matchings exist. Kojima and Ünver [18] prove that in this case, from
every matching there exists a polynomially long better response sequence to a
stable matching. This substitutability property is satisfied if the strategy spaces
of the players are matroids. The crucial difference between our model of many-
to-one markets with ties and the models considered in the economics literature
is that in those models, every player specifies a ranking on the power set of the
resources. This ranking is fixed and does not depend on the current matching.
In our model with ties, however, players do not have fixed rankings but rankings
that depend on the current matching.

2 Preliminaries

In this section, we define the problems and notations used throughout the paper.
Congestion Games. A congestion game Γ is a tuple (N ,R, (Σi)i∈N , (dr)r∈R)
where N = {1, . . . , n} denotes the set of players, R the set of resources, Σi ⊆ 2R

the strategy space of player i, and dr : N → N a delay function associated with
resource r. By m we denote |R|, and we denote by S = (S1, . . . , Sn) the state
of the game where player i plays strategy Si ∈ Σi. For a state S, we define the
congestion nr(S) on resource r by nr(S) = |{i | r ∈ Si}|, that is, nr(S) is the
number of players sharing resource r in state S. Every player i acts selfishly and
wishes to play a strategy Si ∈ Σi that minimizes her individual delay, which is
defined as

∑
r∈Si

dr(nr(S)). We call a state S a Nash equilibrium if, given the
strategies of the others players, no player can decrease her delay by changing her
strategy. Rosenthal [21] shows that every congestion game possesses at least one
pure Nash equilibrium by considering the potential function φ : Σ1×· · ·×Σn → N
with φ(S) =

∑
r∈R

∑nr(S)
i=1 dr(i). A congestion game is called singleton if each

strategy space Σi consists only of sets with cardinality one. The current state S
of a singleton congestion game can be written as S = (r1, . . . , rn), meaning that
player i currently allocates resource ri.
Player-Specific Congestion Games. Player-specific congestion games are
congestion games in which every player i has her own delay function di

r : N → N
for each resource r. The delay of player i is then computed with respect to the
functions di

r.
Player-Specific Congestion Games with Priorities. We define this model
to be a generalization of player-specific congestion games in which each resource
r assigns a priority or rank rkr(i) to every player i. For a state S, let rkr(S) =
maxi:r∈Si

rkr(i). We say that player i allocates resource r if r ∈ Si, and we
say that player i is assigned to resource r if r ∈ Si and rkr(i) = rkr(S). We
define n∗r(S) to be the number of players that are assigned to resource r, that
is, the number of players i with r ∈ Si and rkr(i) = rkr(S). The delay that



an assigned player i incurs on r is di
r(n

∗
r(S)). Players who allocate a resource

r but are not assigned to it incur an infinite delay on resource r. Congestion
games with priorities but without player-specific delay functions are defined in
the same way, except that instead of player-specific delay functions di

r there is
only one delay function dr for each resource r. We say that the priorities are
consistent if the priorities assigned to the players by different resources coincide.

Two-sided Markets. A two-sided market consists of two disjoint sets N =
{1, . . . , n} and R with |R| = m. We use the terms players and agents to denote
elements fromN , and we use the terms resources and markets to denote elements
from R. In a two-sided market, every player can be matched to one resource,
and every resource can be matched to one player. We assume that with every
pair (i, r) ∈ N ×R, a payoff pi,r is associated and that player i receives payoff
pi,r if she is matched to resource r. Hence, the payoffs describe implicitly for
each player a preference list over the resource. Additionally, we assume that
every resource has a strict preference list over the players, which is independent
of the payoffs. Each player i ∈ N can propose to a resource ri ∈ R. Given a
state S = (r1, . . . , rn), each resource r ∈ R is matched to the winner of r, which
is the player whom r ranks highest among all players i ∈ N with r = ri. If i
is the winner of r, she gets a payoff of pi,r. If a player proposes to a resource
won by another player, she receives no payoff at all. We say that S is a stable
matching if none of the players can unilaterally increase her payoff by changing
her proposal given the proposals of the other players. That is, for each player i
who is assigned to a resource ri, each resource r from which she receives a higher
payoff than from ri is matched to a player whom r prefers over i.

Two-sided Markets with Ties. We define a two-sided market with ties to
be a two-sided market in which the preference lists of the resources can have
ties. Given a vector of proposals S = (r1, . . . , rn), we say that a player i ∈ N is
matched to resource r ∈ R if r = ri and if there is no player j ∈ N such that
r = rj and j is strictly preferred to i by r. For a resource r, we denote by nr(S)
the number of players proposing to r and by n∗r(S) the number of players that
are matched to r. We assume that every player i has a non-increasing payoff
function pi

r : N → N for every resource r. A player i who is matched to resource
r receives a payoff of pi

r(n
∗
r(S)). Also for two-sided markets with ties, we call a

state S a stable matching if none of the players can increase her payoff given the
proposals of the other players.

Correlated Two-sided Markets with Ties. In correlated two-sided markets
with ties, the preferences of players and resources are correlated. We assume
that also the preference lists of the resources are chosen according to the payoffs
that are associated with the pairs from N × R. That is, a player i ∈ N is
preferred over a player j ∈ N by resource r ∈ R if and only if pi,r > pj,r.
Due to this construction, if two players i and j are both matched to a resource
r, then the payoffs pi,r and pj,r must be the same. We denote this payoff by
pr(S), and we assume that it is split among the players that are matched to r.
The payoff that a player receives who is matched to r is specified by a function
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Fig. 1. For games on the upper level, equilibria can be computed in polynomial time,
games on the mid-level are potential games, and games on the lower level converge in
a polynomial number of rounds.

qr(pr(S), n∗r(S)) with qr(pr(S), 1) = pr(S) that is non-increasing in the number
of players matched to r.
Player-Specific Matroid Congestion Games with Priorities. In a player-
specific matroid congestion game with priorities, each strategy space Σi must
be the set of bases of a matroid over the set of resources. A set system (R, I)
with I ⊆ 2R is said to be a matroid if X ∈ I implies Y ∈ I for all Y ⊆ X and
if for every X, Y ∈ I with |Y | < |X| there exists an x ∈ X with Y ∪ {x} ∈ I. A
basis of a matroid (R, I) is a set X ∈ I with maximum cardinality. Every basis
of a matroid has the same cardinality which is called the rank of the matroid.
For a matroid congestion game Γ , we denote by rk(Γ ) the maximal rank of one
of the strategy spaces of the players. Examples of matroid congestion games are
singleton games and games in which the resources are the edges of a graph and
every player has to allocate a spanning tree. Again, these games can also be
seen as an extension of two-sided markets in which each player can propose to
a subset of resources instead of only one, so-called many-to-one markets, and in
which the preference lists of the resources can have ties.

Figure 1 shows a summary of our results and the models we consider.

3 Singleton Congestion Games with Priorities

In this section, we consider singleton congestion games with priorities but with-
out player-specific delay functions. For games with consistent priorities, we show
that the better response dynamics reaches a Nash equilibrium after a polynomial
number of rounds. We use the term round to denote a sequence of activations
of players in which every player gets at least once the chance to improve. For
example, our result implies that a polynomial (expected) number of better re-
sponses suffices if players are activated in a round-robin fashion or uniformly at
random. We also prove that games in which different resources can assign dif-



ferent priorities to the players are potential games. We leave open the question
whether they converge in a polynomial number of rounds.

Theorem 1. In singleton congestion games with consistent priorities, the bet-
ter response dynamics reaches a Nash equilibrium after a polynomial number of
rounds.

Proof. Ieong et al. [14] prove that in singleton congestion games every sequence
of better responses terminates in a Nash equilibrium after a polynomial number
of steps. Since the players with the highest priority are not affected by the other
players, the result by Ieong et al. shows that after a polynomial number of
rounds, none of them has an incentive to change her strategy anymore. From
that point on, the strategies of these players are fixed and we can again apply
the result by Ieong et al. to the players with the second highest priority. After
a polynomially number of rounds, also none of them has an incentive to change
her strategy anymore. After that, the argument can be applied to the players
with the third highest priority and so on. ut

Next we consider congestion games in which different resources can assign
different priorities to the players.

Theorem 2. Singleton congestion games with priorities are potential games.

Proof. We set D = (N ∪ {∞}) × N and for elements x = (x1, x2) ∈ D and
y = (y1, y2) ∈ D we denote by “<” the lexicographic order on D in which the
first component is to be minimized and the second component is to be maxi-
mized, i. e., we define x < y if and only if x1 < y1 or if x1 = y1 and x2 > y2.
We construct a potential function Φ : Σ1 × · · · × Σn → Dn that maps every
state S = (r1, . . . , rn) to a vector of values from D. In state S, every resource
r ∈ R contributes nr(S) values to the vector Φ(S) and Φ(S) is obtained by
sorting all values contributed by the resources in non-decreasing order accord-
ing to the lexicographic order defined above. Resource r contributes the values
(dr(1), rkr(S)), . . . , (dr(n∗r(S)), rkr(S)) to the vector Φ(S) and nr(S) − n∗r(S)
times the value (∞, 0). We claim that if state S′ is obtained from S by letting
one player play a better response, then Φ(S′) is lexicographically smaller than
Φ(S), i. e., there is a k with Φj(S) = Φj(S′) for all j < k and Φk(S′) < Φk(S).

Assume that in state S player i plays a better response by changing her
allocation from resource ri to resource r′i. We compare the two vectors Φ(S)
and Φ(S′), and we show that the smallest element added to the potential vector
is smaller than the smallest element removed from the potential vector, show-
ing that the potential decreases lexicographically. Due to the strategy change
of player i, either the value (dri

(n∗ri
(S)), rkri

(S)) or the value (∞, 0) is re-
placed by the value (dr′

i
(n∗r′

i
(S′)), rkr′

i
(S′)). Since player i plays a better response,

dr′
i
(n∗r′

i
(S′)) < dri

(n∗ri
(S)) or dr′

i
(n∗r′

i
(S′)) < ∞, respectively, and hence the term

added to the potential is smaller than the term removed from the potential. In
the following we show that all values that are contained in Φ(S) but not in Φ(S′)



are larger than (dr′
i
(n∗r′

i
(S′)), rkr′

i
(S′)). Clearly, only terms for the resources ri

and r′i change and we can restrict our considerations to these two resources.
Let us consider resource ri first. If the rank of ri does not decrease by the

strategy change of player i or if no player allocates resource ri in state S′, then
only the term (dri

(n∗ri
(S)), rkri

(S)) or (∞, 0) is not contained in the vector Φ(S′)
anymore. All other terms contributed by resource ri do not change. If the rank
of resource ri is decreased by the strategy change of player i, then additionally
some terms (∞, 0) in the potential are replaced by other terms. Obviously, the
removed terms (∞, 0) are larger than (dr′

i
(n∗r′

i
(S′)), rkr′

i
(S′)).

Now we consider resource r′i. If the rank of r′i does not increase by the strat-
egy change of player i or if no player allocates r′i in state S, then only the term
(dr′

i
(n∗r′

i
(S′)), rkr′

i
(S′)) is added to the potential. All other terms contributed by

r′i do not change. If the rank of r′i is increased by the strategy change of player
i, then additionally the terms (dr′

i
(1), rkr′

i
(S)), . . . , (dr′

i
(n∗r′

i
(S)), rkr′

i
(S)) are re-

placed by n∗r′
i
(S) terms (∞, 0). In this case, n∗r′

i
(S′) = 1 and the smallest removed

term, (dr′
i
(1), rkr′

i
(S)), is larger than (dr′

i
(1), rkr′

i
(S′)) = (dr′

i
(n∗r′

i
(S′)), rkr′

i
(S′))

because rkr′
i
(S′) > rkr′

i
(S). ut

4 Player-Specific Singleton Congestion Games with
Priorities

In this section, we consider singleton congestion games with priorities and player-
specific delay functions and we show that these games always possess Nash equi-
libria. Our proof also yields an efficient algorithm for finding an equilibrium.

Theorem 3. Every player-specific singleton congestion game with priorities
possesses a pure Nash equilibrium that can be computed in polynomial time by
O(m2 · n3) strategy changes.

Proof. In order to compute an equilibrium, we compute a sequence of states
S0, . . . , Sk such that S0 is the state in which no player allocates a resource and
Sk is a state in which every player allocates a resource. Remember that we dis-
tinguish between allocating a resource and being assigned to it. Our construction
ensures the invariant that in each state Sa in this sequence, every player who al-
locates a resource has no incentive to change her strategy. Clearly, this invariant
is true for S0 and it implies that Sk is a pure Nash equilibrium.

In state Sa we pick an arbitrary player i who is allocating no resource and we
let her play her best response. If in state Sa there is no resource to which i can be
assigned, then i can allocate an arbitrary resource without affecting the players
who are already allocating a resource and hence without affecting the invariant.
It remains to consider the case that after her best response, player i is assigned
to a resource r. If we leave the strategies of the other players unchanged, then
the invariant may not be true anymore after the strategy change of player i. The
invariant can, however, only be false for players who are assigned to resource



r in state Sa. We distinguish between two cases in order to describe how the
strategies of these players are modified in order to maintain the invariant.

First we consider the case that the rank of resource r does not change by the
strategy change of player i. If there is a player j who is assigned to resource r
in Sa and who can improve her strategy after i is also assigned to r, then we
change the strategy of j to the empty set, i. e., in state Sa+1 player j belongs
to the set of players who do not allocate any resource. Besides this, no further
modifications of the strategies are necessary because all other players are not
affected by the replacement of j by i on resource r. In the case that the rank
of resource r increases by the strategy change of player i, all players who are
assigned to resource r in state Sa are set to their empty strategy in Sa+1.

It only remains to show that the described process terminates after a polyno-
mial number of strategy changes in a stable state. We prove this by a potential
function that is the lexicographic order of two components. The most important
component is the sum of the ranks of the resources, i. e.,

∑
r∈R rkr(Sa), which

is to be maximized. Observe that this sum does not decrease in any of the two
aforementioned cases, and that it increases strictly in the second case. Thus we
need to show that after a polynomial number of consecutive occurrences of the
first case, the second case must occur. Therefore, we need a second and less im-
portant component in our potential function. In order to define this component,
we associate with every pair (i, r) ∈ N ×R for which i is assigned to r in Sa a
tolerance tola(i, r) that describes how many players (including i) can be assigned
to r without changing the property that r is an optimal strategy for i, i. e.,

min{max{b | in Sa, r is best resp. for i if i shares r with b− 1 players}, n} .

The second component of the potential function is the sum of the tolerances
of the assigned pairs in Sa, which is to be maximized. We denote the set of
assignments in state Sa by Ea ⊆ N ×R and define the potential function as

Φ(Sa) =

∑
r∈R

rkr(Sa),
∑

(i,r)∈Ea

tola(i, r)

 .

In every occurrence of the first case, the second component increases by at least
1. Since the values of the components are bounded from above by m · n and
m · n2 and bounded below from 0, the potential function implies that there can
be at most m2 · n3 strategy changes before an equilibrium is reached.

Let us remark that the potential function does not imply that the considered
games are potential games because it increases only if the strategy changes are
made according to the above described policy. ut

5 Correlated Two-Sided Markets with Ties

In this section, we analyze the better response dynamics for correlated two-sided
markets with ties and we show that these games are potential games.



Theorem 4. Correlated two-sided markets with ties are potential games.

Proof. We define a potential function Φ : Σ1×· · ·×Σn → Nn that is similar to the
one used in the proof of Theorem 2, and we show that it increases strictly with
every better response that is played. Again each resource r contributes nr(S)
values to the potential, namely the values qr(pr(S), 1), . . . , qr(pr(S), n∗r(S)) and
nr(S) − n∗r(S) times the value 0. In the potential vector Φ(S), all these values
are sorted in non-increasing order. A state S′ has a higher potential than a state
S if Φ(S′) is lexicographically larger than Φ(S), i. e., if there exists an index k
such that Φj(S) = Φj(S′) for all j < k and Φk(S) < Φk(S′).

Let S denote the current state and assume that there exists one player i ∈ N
who plays a better response, leading to state S′. We show that Φ(S′) is lex-
icographically larger than Φ(S). Assume that i changes her proposal from ri

to r′i. Since i plays a better response, she must be assigned to r′i in state S′.
That is, the value qr′

i
(pi,r′

i
, n∗r′

i
(S′)) is added to the potential. We show that only

smaller values are removed from the potential, implying that the potential must
lexicographically increase. If i is assigned to ri in state S, then only the value
qri

(pri
(S), n∗ri

(S)) is removed from the vector and maybe, if n∗ri
(S) = 1, some

0 values are replaced by larger values. Since player i plays a better response,
qri(pri(S), n∗ri

(S)) < qr′
i
(pi,r′

i
, n∗r′

i
(S′)). If n∗r′

i
(S′) = 1 and there are players as-

signed to r′i in state S, then also the values qr′
i
(pr′

i
(S), 1), . . . , qr′

i
(pr′

i
(S), n∗r′

i
(S))

are removed from the potential vector. In this case, player i displaces the pre-
viously assigned players from resource r′i, which implies qr′

i
(pi,r′

i
, n∗r′

i
(S′)) =

qr′
i
(pi,r′

i
, 1) > qr′

i
(pr′

i
(S), 1), as desired. ut

6 Extensions to Matroid Strategy Spaces

In this section, we study player-specific congestion games with priorities in which
each strategy space Σi consists of the bases of a matroid over the resources. For
this setting, we generalize the results that we obtained for the singleton case.
Due to space limitations, the proofs are omitted.

Theorem 5. In matroid congestion games with consistent priorities, the best
response dynamics reaches a Nash equilibrium after a polynomial number of
rounds.

For matroid congestion games, it is known that every sequence of best responses
reaches a Nash equilibrium after a polynomial number of steps [1]. Using this
result yields the theorem analogously to the proof of Theorem 1.

Theorem 6. Matroid congestion games with priorities are potential games with
respect to lazy better responses.

Given a state S, we denote a better response of a player i ∈ N from Si to S′i lazy
if it can be decomposed into a sequence of strategies Si = S0

i , S1
i , . . . , Sk

i = S′i
such that |Sj+1

i \ Sj
i | = 1 and the delay of player i in state Sj+1

i is strictly



smaller than her delay in state Sj
i for all j ∈ {0, . . . , k−1}. That is, a lazy better

response can be decomposed into a sequence of exchanges of single resources such
that each step strictly decreases the delay of the corresponding player. In [2],
it is observed that for matroid strategy spaces, there does always exist a best
response that is lazy. In particular, the best response that exchanges the least
number of resources is lazy, and in singleton games every better response is lazy.
Since lazy best responses can be decomposed into exchanges of single resources,
the same potential function as in the proof of Theorem 2 also works for the
matroid case. The restriction to lazy better responses in Theorem 6 is necessary.

Remark 7. The best response dynamics in matroid congestion games with pri-
orities can cycle.

Similar arguments as for Theorem 3 yield the following generalization.

Theorem 8. Every player-specific matroid congestion game Γ with priorities
possesses a pure Nash equilibrium that can be computed in polynomial time by
O(m2 · n3 · rk(Γ )) strategy changes.

Since lazy better responses can be decomposed into exchanges of single re-
sources, the potential function defined in the proof of Theorem 4 also works for
matroid strategy sets if players play only lazy better responses.

Theorem 9. Correlated two-sided matroid markets with ties are potential games
with respect to lazy better responses.

The restriction in Theorem 9 to lazy better responses is necessary.

Remark 10. The best response dynamics in correlated two-sided matroid mar-
kets with ties can cycle.
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18. F. Kojima and M. U. Ünver. Random paths to pairwise stability in many-to-many
matching problems: a study on market equilibration. Int. Journal of Game Theory,
2006.

19. I. Milchtaich. Congestion games with player-specific payoff functions. Games and
Economic Behavior, 13(1):111–124, 1996.

20. V. S. Mirrokni. Approximation Algorithms for Distributed and Selfish Agents. PhD
thesis, Massachusetts Institute of Technology, 2005.

21. R. W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. Int.
Journal of Game Theory, 2:65–67, 1973.

22. A. E. Roth. The evolution of the labor market for medical interns and residents:
A case study in game theory. Journal of Political Economy, 92:991–1016, 1984.

23. A. E. Roth and M. A. O. Sotomayor. Two-sided Matching: A study in game-
theoretic modeling and analysis. Cambridge University Press, 1990.


