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Total search problems (in NP)

∀x∃yϕ(x , y)

in P
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Total search problems (in NP)

∀x∃yϕ(x , y)

Radon’s theorem, Tverberg’s theorem, colourful Carathéodory
theorem, Lagrange’s four-squares theorem, existence of solu-
tions to parity games, mean payoff games, discounted payoff
games, simple stochastic games, P-matrix linear complemen-
tarity problems, Banach’s fixpoint theorem

Existence of a stable configuration in a Hopfield network,
pure NE of congestion games
Existence of mixed Nash equilibria, Arrow-Debreu market
equilibra, envy-free partition of a line into connected pieces,
Hairy Ball theorem, Sperner’s Lemma, Brouwer’s fixpoint the-
orem, Kakutani’s fixpoint theorem, fundamental theorem of
arithmetic, Ramsey’s theorem

Tucker’s Lemma, Borsuk-Ulam theorem, Ham sandwich theo-
rem, spicy chicken theorem1, Smith’s theorem, Kneser-Lovász
theorem, existence of a second “room partitioning” in a trian-
gulated surface, Chévalley-Warning theorem
Goldbach’s conjecture, Legendre’s conjecture

1 this is a real theorem
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TFNP syntactic subclasses
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TFNP syntactic subclasses
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TFNP problems are “NP-intermediate”

not NP-hard unless NP=co-NP

(Megiddo & Papadimitriou ’91) (Proof: consider what happens
when you try to reduce SAT to (say) NASH, or indeed any other
“total” search problem)

� 2 reasons to study its computational complexity:

inherent interest of the problem, applicability of algorithms

potential to shed light on P versus NP.

TFNP: problems like NASH for which all instances have
easy-to-check solutions; not NP-complete.
Are there any other hard1 TFNP problems?

1seemingly hard
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Inefficient proofs of existence

We like computationally inefficient proofs of existence
Syntactic TFNP subclasses correspond to
non-(efficiently)-constructive existence proof principles.

General note: sometimes, some work needed to convert a theorem
into a computational total search problem

“Nash equilibrium computation belongs to PPAD” highlights the
existence principle used to proof existence. Completeness for
PPAD indicates you need to invoke that principle.
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Pretty Pictures and Diagrams (PPAD)

“Polynomial Parity Argument on
a Directed graph”, turns out to
capture Brouwer’s fixpoint
theorem (or at any rate,
approximate fixpoints)

PPAD-complete problem: apply this principle as generally as
possible...

Papadimitriou (1994): On the complexity of the parity argument and other
inefficient proofs of existence
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The END-OF-LINE problem

Boolean circuits Succ , Pred , n inputs and n outputs.
Directed graph G on {0, 1, 2, . . . , 2n − 1} — edge (u, v) is present
iff Succ(u) = v and Pred(v) = u.
Stipulate that 0 has an outgoing edge but no incoming edge.
Problem is to find any other degree-1 vertex.
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“Incentive direction” of players in some game

Alice

Bob

don’t spend

spend

don’t spend spend
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Nash equilibrium

We are reducing the search for NE to search for a
Brouwer fixpoint...

Brouwer’s fixpoint theorem

continuous functions from a compact domain to
itself, have fixpoints.

proof. construct approximate fixpoints (in a
computationally inefficient manner)
...in a way that reduces computation of approx
fixpoints to search on large graphs...

L.E.J. Brouwer
(1881-1966)
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“Incentive direction”, colour-coded

Alice

Bob

don’t spend

spend

don’t spend spend
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Now, pretend this triangle is high-dimension domain
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Search for “trichromatic triangles” at higher resolution...
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...converges to Brouwer fixpoint
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The corresponding graph
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The corresponding graph
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From PPAD to PPA

END OF LINE: most general problem that uses the end of line
principle in a directed graph.

PPA: undirected graph. Circuit C , n inputs, 2n outputs, edge
(v1, v2) is present iff v2 is one of the outputs of C on input v1 and
vice versa.

PPA contains PPAD, easy to reduce END OF LINE to above.

Really a modulo-2 counting argument. A much nicer complexity
class definition than PPAD. But PPAD happens to be the relevant
one for NASH etc.
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From PPAD to PPA

Understanding PPA-Completeness, Deng et al, 2016. Search for
fixpoint on a Mobius band, Klein bottle, projective plane
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2D TUCKER (Tucker’s Lemma in 2 dimensions)

find contact-point of z and −z ; PPA-complete

entries in {±1,±2} generated by circuit
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CONSENSUS-HALVING (Hobby-Rice theorem, 1965))

F. Simmons and F. Su: Consensus-halving via theorems of Borsuk-Ulam and
Tucker Mathematical Social Sciences (2003)
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basic structure of instances of CONSENSUS-HALVING
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representing a point in a 2-simplex
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The 2-simplex embeds a Möbius strip!
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Embed 2D TUCKER
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Open problem

Is that it? (Papadimitriou, a few years ago)

(apart from the classes shown in my more detailed diagram, and
classes formed from unions/intersections of all these)
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Open problem

Is that it? (Papadimitriou, a few years ago)

(apart from the classes shown in my more detailed diagram, and
classes formed from unions/intersections of all these)
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Open problem (more well-posed version)

class principle

PPP ∀f ∃x , y
(
f (x) = 0 ∨ (x ̸= y ∧ f (x) = f (y))

)
PPA ∀f ∃x

(
f (0) ̸= 0 ∨ f (f (x)) ̸= x ∨ f (x) = x

)
PLS ∀f , g∃x

(
g(f (x)) ≤ g(x)

)
PPAD ∀f , g∃x

(
(f (g(0)) ̸= 0 ∧ g(f (0)) = 0) ⇒

(x ̸= 0 ∧ (f (g(x)) ̸= x ∨ g(f (x)) ̸= x))
)

PPADS ∀f , g∃x
(
(f (g(0)) ̸= 0 ∧ g(f (0)) = 0) ⇒

(x ̸= 0 ∧ g(f (x)) ̸= x)
)

Any other fundamentally different theorems in the above logic?
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