DAG-width: Cops and Robbers on Directed Graphs

Paul Hunter
Humboldt-University, Berlin

Joint work with
Dietmar Berwanger, Anuj Dawar and Stephan Kreutzer

GAMES Workshop, 2005
Motivation

- Tree-width introduced by Robertson and Seymour
 - Tree decompositions provide for recursive algorithms
 - Bounding tree-width gives polynomial time execution
- Directed tree-width by Johnson, Robertson, Seymour and Thomas
 - Not an obvious extension of tree-width
 - Complicated definition does not lend itself to algorithms

Aim

Find a natural extension of tree-width to directed graphs that is algorithmically useful.
Motivation

- Tree-width introduced by Robertson and Seymour
 - Tree decompositions provide for recursive algorithms
 - Bounding tree-width gives polynomial time execution
- Directed tree-width by Johnson, Robertson, Seymour and Thomas
 - Not an obvious extension of tree-width
 - Complicated definition does not lend itself to algorithms

Aim

Find a natural extension of tree-width to directed graphs that is algorithmically useful.
Motivation

- Tree-width introduced by Robertson and Seymour
 - Tree decompositions provide for recursive algorithms
 - Bounding tree-width gives polynomial time execution
- Directed tree-width by Johnson, Robertson, Seymour and Thomas
 - Not an obvious extension of tree-width
 - Complicated definition does not lend itself to algorithms

Aim

Find a natural extension of tree-width to directed graphs that is algorithmically useful.
Motivation

- Tree-width introduced by Robertson and Seymour
 - Tree decompositions provide for recursive algorithms
 - Bounding tree-width gives polynomial time execution
- Directed tree-width by Johnson, Robertson, Seymour and Thomas
 - Not an obvious extension of tree-width
 - Complicated definition does not lend itself to algorithms

Aim

Find a natural extension of tree-width to directed graphs that is algorithmically useful.
Motivation

- Tree-width introduced by Robertson and Seymour
 - Tree decompositions provide for recursive algorithms
 - Bounding tree-width gives polynomial time execution
- Directed tree-width by Johnson, Robertson, Seymour and Thomas
 - Not an obvious extension of tree-width
 - Complicated definition does not lend itself to algorithms

Aim

Find a natural extension of tree-width to directed graphs that is algorithmically useful.
Overview

- Review tree-width
- Cops and robber game
- DAG-decompositions and DAG-width
- An algorithm for parity games
- Further work
Recall...

The tree-width of a graph measures its similarity to a tree.

A graph has tree-width $\leq k$ if it can be covered by sub-graphs of size $\leq (k + 1)$ in a tree-like fashion.
Recall...

The tree-width of a graph measures its similarity to a tree.

A graph has \textit{tree-width} \(\leq k \) if it can be covered by sub-graphs of size \(\leq (k + 1) \) in a tree-like fashion.
Recall...

The tree-width of a graph measures its similarity to a tree.

A graph has tree-width \(\leq k \) if it can be covered by sub-graphs of size \(\leq (k + 1) \) in a tree-like fashion.
Tree-width

A **tree decomposition** of a graph G is a tuple $(\mathcal{T}, (X_t)_{t \in V(\mathcal{T})})$ such that:

- \mathcal{T} is a tree
- X_t cover $V(G)$
- For every edge $(u, v) \in E(G)$, there is a $t \in V(\mathcal{T})$ with $\{u, v\} \subseteq X_t$
- For every t' on the path from t to t'', $X_t \cap X_{t''} \subseteq X_{t'}$

The width of a tree decomposition is $\max_{t \in V(\mathcal{T})}|X_t| - 1$.

The tree-width of a graph is the minimal width of all its tree decompositions.

Tree-width can be characterised by a **cops and robber** game.
A tree decomposition of a graph G is a tuple $(\mathcal{T}, (X_t)_{t \in V(\mathcal{T})})$ such that:

- \mathcal{T} is a tree
- X_t cover $V(G)$
- For every edge $(u, v) \in E(G)$, there is a $t \in V(\mathcal{T})$ with $\{u, v\} \subseteq X_t$
- For every t' on the path from t to t'', $X_t \cap X_{t''} \subseteq X_{t'}$

The width of a tree decomposition is $\max_{t \in V(\mathcal{T})} |X_t| - 1$.

The tree-width of a graph is the minimal width of all its tree decompositions.

Tree-width can be characterised by a cops and robber game.
A tree decomposition of a graph G is a tuple $(T, (X_t)_{t \in V(T)})$ such that:

- T is a tree
- X_t cover $V(G)$
- For every edge $(u, v) \in E(G)$, there is a $t \in V(T)$ with $\{u, v\} \subseteq X_t$
- For every t' on the path from t to t'', $X_t \cap X_{t''} \subseteq X_{t'}$

The width of a tree decomposition is $\max_{t \in V(T)} |X_t| - 1$.

The **tree-width** of a graph is the minimal width of all its tree decompositions.

Tree-width can be characterised by a cops and robber game.
A tree decomposition of a graph \(\mathcal{G} \) is a tuple \((\mathcal{T}, (X_t)_{t \in V(\mathcal{T})}) \) such that:

- \(\mathcal{T} \) is a tree
- \(X_t \) cover \(V(\mathcal{G}) \)
- For every edge \((u, v) \in E(\mathcal{G}) \), there is a \(t \in V(\mathcal{T}) \) with \(\{u, v\} \subseteq X_t \)
- For every \(t' \) on the path from \(t \) to \(t'' \), \(X_t \cap X_{t''} \subseteq X_{t'} \)

The width of a tree decomposition is \(\max_{t \in V(\mathcal{T})} |X_t| - 1 \).

The tree-width of a graph is the minimal width of all its tree decompositions.

Tree-width can be characterised by a cops and robber game.
Cops and robber game

Theorem (Seymour and Thomas 1993)

\[G \text{ has tree-width } k \text{ if, and only if } k + 1 \text{ cops have a winning strategy} \]

Question

What about directed graphs?

Paul Hunter (HU-Berlin)

DAG-width

GAMES 2005
Cops and robber game

Theorem (Seymour and Thomas 1993)

G has tree-width k if, and only if $k + 1$ cops have a winning strategy.
Cops and robber game

Theorem (Seymour and Thomas 1993)

G has tree-width k if, and only if $k + 1$ cops have a winning strategy.

Question:

What about directed graphs?

Paul Hunter (HU-Berlin)
Cops and robber game

Theorem (Seymour and Thomas 1993)

G has tree-width k if, and only if $k+1$ cops have a winning strategy.

Question
What about directed graphs?

Paul Hunter (HU-Berlin)
Cops and robber game

Theorem (Seymour and Thomas 1993)

G has tree-width k if, and only if $k + 1$ cops have a winning strategy.

Question

What about directed graphs?
Theorem (Seymour and Thomas 1993)

A graph G has tree-width k if, and only if $k+1$ cops have a winning strategy.

Question: What about directed graphs?
Theorem (Seymour and Thomas 1993) \[G \text{ has tree-width } k \text{ if, and only if } k + 1 \text{ cops have a winning strategy} \]

Question: What about directed graphs?
Theorem (Seymour and Thomas 1993)

G has tree-width k if, and only if $k+1$ cops have a winning strategy.

Question

What about directed graphs?
Cops and robber game

Theorem (Seymour and Thomas 1993)

G has tree-width k if, and only if $k + 1$ cops have a winning strategy.

What about directed graphs?
Cops and robber game

Theorem (Seymour and Thomas 1993)

G has tree-width k if, and only if $k + 1$ cops have a winning strategy.

Question

What about directed graphs?
Cops and robber game

Theorem (Seymour and Thomas 1993)

G has tree-width $\leq k$ if, and only if $k + 1$ cops have a winning strategy.

Question

What about directed graphs?
Theorem (Seymour and Thomas 1993)

G has tree-width $\leq k$ if, and only if $k + 1$ cops have a winning strategy.

Question

What about directed graphs?
Directed cops and robbers
Observations

Let game-width(G) be the minimal number of cops required to catch a robber on G.

- directed tree-width(G) ≤ game-width(G) ≤ tree-width(G)
- game-width(G) = 1 iff G is a DAG
- game-width of directed union is maximum width of components
- game-width is not preserved under edge reversal

Problem

Find a decomposition that corresponds to game-width
Observations

Let game-width(G) be the minimal number of cops required to catch a robber on G.

- directed tree-width(G) \leq game-width(G) \leq tree-width(G)
- game-width(G) = 1 iff G is a DAG
- game-width of directed union is maximum width of components
- game-width is not preserved under edge reversal

Problem

Find a decomposition that corresponds to game-width
Observations

Let game-width(G) be the minimal number of cops required to catch a robber on G.

- directed tree-width(G) \leq game-width(G) \leq tree-width(G)
- game-width(G) = 1 iff G is a DAG
- game-width of directed union is maximum width of components
- game-width is not preserved under edge reversal

Problem

Find a decomposition that corresponds to game-width
Observations

Let $\text{game-width}(G)$ be the minimal number of cops required to catch a robber on G.

- directed tree-width(G) \leq game-width(G) \leq tree-width(G)
- game-width(G) = 1 iff G is a DAG
- game-width of directed union is maximum width of components
- game-width is not preserved under edge reversal

Problem

Find a decomposition that corresponds to game-width
Observations

Let game-width(G) be the minimal number of cops required to catch a robber on G.

- directed tree-width(G) \leq game-width(G) \leq tree-width(G)
- game-width(G) = 1 iff G is a DAG
- game-width of directed union is maximum width of components
- game-width is not preserved under edge reversal

Problem

Find a decomposition that corresponds to game-width
Another observation...

In a tree decomposition, an edge only leaves a subtree through its connection with the rest of the tree.
The DAG-width of a directed graph measures its similarity to a DAG.

A graph has **DAG-width** \(\leq k \) if it can be covered by subsets of size \(\leq k \) in a DAG-like fashion such that an edge only leaves a sub-DAG through its (root’s) connection with the rest of the DAG.
DAG-width

The DAG-width of a directed graph measures its similarity to a DAG.

A graph has **DAG-width** \(\leq k \) if it can be covered by **subsets** of size \(\leq k \) in a DAG-like fashion such that an edge only leaves a sub-DAG through its (root’s) connection with the rest of the DAG.
DAG-width

The DAG-width of a directed graph measures its similarity to a DAG.

A graph has **DAG-width** \(\leq k \) if it can be covered by **subsets** of size \(\leq k \) in a DAG-like fashion such that an edge only leaves a sub-DAG through its (root’s) connection with the rest of the DAG.
The DAG-width of a directed graph measures its similarity to a DAG.

A graph has **DAG-width** \(\leq k \) if it can be covered by **subsets** of size \(\leq k \) in a DAG-like fashion such that an edge only leaves a sub-DAG through its (root’s) connection with the rest of the DAG.

![Diagram of DAG-width concept]
DAG-width

The DAG-width of a directed graph measures its similarity to a DAG.

A graph has **DAG-width** $\leq k$ if it can be covered by **subsets** of size $\leq k$ in a DAG-like fashion such that an edge only leaves a sub-DAG through its (root’s) connection with the rest of the DAG.
Guarding

Definition

If \mathcal{G} is a directed graph, $W, X \subseteq V(\mathcal{G})$, we say X guards W if every edge which leaves W ends in X.
Guarding

Definition

If \mathcal{G} is a directed graph, $W, X \subseteq V(\mathcal{G})$, we say X guards W if every edge which leaves W ends in X.

[Diagram showing a directed graph with sets W and X, and edges leaving W to X.]
A **DAG-decomposition** of a directed graph \mathcal{G} is a tuple $(\mathcal{D}, (X_d)_{d \in V(\mathcal{D})})$ such that:

- \mathcal{D} is a DAG
- X_d cover $V(\mathcal{G})$
- For every d' on the path from d to d'' ($d \preceq_D d' \preceq_D d''$), $X_d \cap X_{d''} \subseteq X_{d'}$
- For every $(c, d) \in E(\mathcal{D})$, $X_c \cap X_d$ guards $\left(\bigcup_{d \preceq_D d'} X_{d'} \right) \setminus X_c$. If d is a root of \mathcal{D}, we replace X_c with \emptyset.

The width of a DAG-decomposition is $\max_{d \in V(\mathcal{D})} |X_d|$. The DAG-width of a directed graph is the minimal width of all its DAG-decompositions.
A DAG-decomposition of a directed graph G is a tuple $(D, (X_d)_{d \in V(D)})$ such that:

- D is a DAG
- X_d cover $V(G)$
- For every d' on the path from d to d'' ($d \preceq_D d' \preceq_D d''$), $X_d \cap X_{d''} \subseteq X_{d'}$
- For every $(c, d) \in E(D)$, $X_c \cap X_d$ guards $\left(\bigcup_{d \preceq_D d'} X_{d'} \right) \setminus X_c$. If d is a root of D, we replace X_c with \emptyset.

The **width** of a DAG-decomposition is $\max_{d \in V(D)} |X_d|$.

The DAG-width of a directed graph is the minimal width of all its DAG-decompositions.
DAG-decompositions and DAG-width

A DAG-decomposition of a directed graph \(\mathcal{G} \) is a tuple \((\mathcal{D}, (X_d)_{d \in V(\mathcal{D})}) \) such that:

- \(\mathcal{D} \) is a DAG
- \(X_d \) cover \(V(\mathcal{G}) \)
- For every \(d' \) on the path from \(d \) to \(d'' \) (\(d \trianglelefteq \mathcal{D} d' \trianglelefteq \mathcal{D} d'' \)), \(X_d \cap X_{d''} \subseteq X_{d'} \)
- For every \((c, d) \in E(\mathcal{D}) \), \(X_c \cap X_d \) guards \(\left(\bigcup_{d \trianglelefteq \mathcal{D} d'} X_{d'} \right) \setminus X_c \). If \(d \) is a root of \(\mathcal{D} \), we replace \(X_c \) with \(\emptyset \).

The width of a DAG-decomposition is \(\max_{d \in V(\mathcal{D})} |X_d| \).

The DAG-width of a directed graph is the minimal width of all its DAG-decompositions.
Theorem

G has DAG-width k if and only if k cops have a monotone winning strategy on G.

A monotone strategy is one where every vertex is visited by a cop at most once.

Theorem (Complexity Issues)

- For fixed k, deciding if G has DAG-width $\leq k$ is in Ptime.
- Given G and k, deciding if G has DAG-width $\leq k$ is NP-complete.
Results

Theorem

\(G \) has DAG-width \(k \) if and only if \(k \) cops have a monotone winning strategy on \(G \)

A monotone strategy is one where every vertex is visited by a cop at most once.

Theorem (Complexity Issues)

- For fixed \(k \), deciding if \(G \) has DAG-width \(\leq k \) is in \(PTIME \)
- Given \(G \) and \(k \), deciding if \(G \) has DAG-width \(\leq k \) is NP-complete
More results...

- Results from game-width carry over to DAG-width
 - $\text{dtw}(G) \leq \text{game-width}(G) \leq \text{DAG-width}(G) \leq \text{tw}(G)$
 - Directed unions
- $\text{DAG-width}(G) \leq \text{entanglement}(G) + 1$
- $\text{DAG-width}(G) \leq \text{directed path-width}(G)$

Theorem

Parity games on graphs of bounded DAG-width can be decided in polynomial time
More results...

- Results from game-width carry over to DAG-width
 - $\text{dtw}(G) \leq \text{game-width}(G) \leq \text{DAG-width}(G) \leq \text{tw}(G)$
 - Directed unions
- $\text{DAG-width}(G) \leq \text{entanglement}(G) + 1$
- $\text{DAG-width}(G) \leq \text{directed path-width}(G)$

Theorem

Parity games on graphs of bounded DAG-width can be decided in polynomial time
More results...

- Results from game-width carry over to DAG-width
 - $\text{dtw}(G) \leq \text{game-width}(G) \leq \text{DAG-width}(G) \leq \text{tw}(G)$
 - Directed unions
- $\text{DAG-width}(G) \leq \text{entanglement}(G) + 1$
- $\text{DAG-width}(G) \leq \text{directed path-width}(G)$

Theorem

Parity games on graphs of bounded DAG-width can be decided in polynomial time
Parity games algorithm

Similar to Obdržálek’s algorithm for bounded tree-width

1. An edge (or node) of a tree decomposition separates the graph
2. Positional strategies can then be represented as functions from the interface to itself (border)
3. Compute borders in a bottom-up manner
Parity games algorithm

Similar to Obdržálek’s algorithm for bounded tree-width

1. An edge (or node) of a tree decomposition separates the graph
2. Positional strategies can then be represented as functions from the interface to itself (border)
3. Compute borders in a bottom-up manner
Parity games algorithm

Similar to Obdržálek’s algorithm for bounded tree-width

1. An edge (or node) of a tree decomposition separates the graph
2. Positional strategies can then be represented as functions from the interface to itself (border)
3. Compute borders in a bottom-up manner
Parity games algorithm

Similar to Obdržálek’s algorithm for bounded tree-width

1. An edge (or node) of a tree decomposition separates the graph
2. Positional strategies can then be represented as functions from the interface to itself (border)
3. Compute borders in a bottom-up manner
Extension to DAG-decompositions

- Interface covers edges **leaving** sub-DAG
- Problem 1: Handling edges entering sub-DAG
 - Solution: Use functions from sub-DAG to interface (frontier)
- Problem 2: Adding vertices to frontiers
Extension to DAG-decompositions

- Interface covers edges **leaving** sub-DAG
- Problem 1: Handling edges entering sub-DAG
 - Solution: Use functions from sub-DAG to interface (frontier)
- Problem 2: Adding vertices to frontiers
Extension to DAG-decompositions

- Interface covers edges leaving sub-DAG
- **Problem 1:** Handling edges entering sub-DAG
 - Solution: Use functions from sub-DAG to interface (frontier)
- **Problem 2:** Adding vertices to frontiers
Extension to DAG-decompositions

- Interface covers edges leaving sub-DAG
- Problem 1: Handling edges entering sub-DAG
 - Solution: Use functions from sub-DAG to interface (frontier)
- Problem 2: Adding vertices to frontiers
Extension to DAG-decompositions

- Interface covers edges leaving sub-DAG
- Problem 1: Handling edges entering sub-DAG
 - Solution: Use functions from sub-DAG to interface (frontier)
- Problem 2: Adding vertices to frontiers
Conclusions and further work

- Introduced a natural extension of tree-width to directed graphs.
- Provided a polynomial-time algorithm for parity games on graphs of bounded DAG-width – subsuming results on bounded tree-width and entanglement.

- Are monotone strategies sufficient?
- Generalisation of havens, brambles, minors, separators?
- Generalisation of Courcelle’s theorem?
Conclusions and further work

- Introduced a natural extension of tree-width to directed graphs.
- Provided a polynomial-time algorithm for parity games on graphs of bounded DAG-width – subsuming results on bounded tree-width and entanglement.

- Are monotone strategies sufficient?
 - Generalisation of havens, brambles, minors, separators?
 - Generalisation of Courcelle’s theorem?
Conclusions and further work

- Introduced a natural extension of tree-width to directed graphs.
- Provided a polynomial-time algorithm for parity games on graphs of bounded DAG-width – subsuming results on bounded tree-width and entanglement.

- Are monotone strategies sufficient?
- Generalisation of havens, brambles, minors, separators?
- Generalisation of Courcelle’s theorem?
Conclusions and further work

- Introduced a natural extension of tree-width to directed graphs.
- Provided a polynomial-time algorithm for parity games on graphs of bounded DAG-width – subsuming results on bounded tree-width and entanglement.

- Are monotone strategies sufficient?
- Generalisation of havens, brambles, minors, separators?
- Generalisation of Courcelle’s theorem?