
DAG-width and Parity Games

Paul Hunter
Humboldt University, Berlin

Joint work with
Dietmar Berwanger, Anuj Dawar and Stephan Kreutzer

STACS, February 2006

Paul Hunter (HU-Berlin) DAG-width STACS 2006 1 / 16

Motivation

Tree-width introduced by Robertson and Seymour

Tree decompositions provide for recursive
algorithms

Bounding tree-width gives polynomial time
execution

c©Madlantern Art

Problem

Tree-width ignores direction

Paul Hunter (HU-Berlin) DAG-width STACS 2006 2 / 16

Motivation

Tree-width introduced by Robertson and Seymour

Tree decompositions provide for recursive
algorithms

Bounding tree-width gives polynomial time
execution

c©Madlantern Art

Problem

Tree-width ignores direction

Paul Hunter (HU-Berlin) DAG-width STACS 2006 2 / 16

Motivation

Tree-width introduced by Robertson and Seymour

Tree decompositions provide for recursive
algorithms

Bounding tree-width gives polynomial time
execution

c©Madlantern Art

Problem

Tree-width ignores direction

Paul Hunter (HU-Berlin) DAG-width STACS 2006 2 / 16

Motivation

Directed tree-width by Johnson, Robertson, Seymour and Thomas

Not an obvious extension of tree-width

Complicated definition does not lend itself to algorithms

Aim

Find a natural extension of tree-width to directed graphs that is
algorithmically useful.

Paul Hunter (HU-Berlin) DAG-width STACS 2006 3 / 16

Motivation

Directed tree-width by Johnson, Robertson, Seymour and Thomas

Not an obvious extension of tree-width

Complicated definition does not lend itself to algorithms

Aim

Find a natural extension of tree-width to directed graphs that is
algorithmically useful.

Paul Hunter (HU-Berlin) DAG-width STACS 2006 3 / 16

Motivation

Directed tree-width by Johnson, Robertson, Seymour and Thomas

Not an obvious extension of tree-width

Complicated definition does not lend itself to algorithms

Aim

Find a natural extension of tree-width to directed graphs that is
algorithmically useful.

Paul Hunter (HU-Berlin) DAG-width STACS 2006 3 / 16

Overview

Review tree-width

Cops and robber game

DAG-decompositions and DAG-width

An algorithm for parity games

Further work

Paul Hunter (HU-Berlin) DAG-width STACS 2006 4 / 16

Tree-width

The tree-width of a graph measures its similarity to a tree.

A graph has tree-width ≤ k if it can be covered by sub-graphs of size
≤ (k + 1) in a tree-like fashion.

Tree-width can be characterised by a cops and robber game.

Paul Hunter (HU-Berlin) DAG-width STACS 2006 5 / 16

Tree-width

The tree-width of a graph measures its similarity to a tree.

A graph has tree-width ≤ k if it can be covered by sub-graphs of size
≤ (k + 1) in a tree-like fashion.

Tree-width can be characterised by a cops and robber game.

Paul Hunter (HU-Berlin) DAG-width STACS 2006 5 / 16

Tree-width

The tree-width of a graph measures its similarity to a tree.

A graph has tree-width ≤ k if it can be covered by sub-graphs of size
≤ (k + 1) in a tree-like fashion.

Tree-width can be characterised by a cops and robber game.

Paul Hunter (HU-Berlin) DAG-width STACS 2006 5 / 16

Tree-width

The tree-width of a graph measures its similarity to a tree.

A graph has tree-width ≤ k if it can be covered by sub-graphs of size
≤ (k + 1) in a tree-like fashion.

Tree-width can be characterised by a cops and robber game.

Paul Hunter (HU-Berlin) DAG-width STACS 2006 5 / 16

Cops and robber game

Paul Hunter (HU-Berlin) DAG-width STACS 2006 6 / 16

Cops and robber game

k Cops

Paul Hunter (HU-Berlin) DAG-width STACS 2006 6 / 16

Cops and robber game

k Cops Robber

Paul Hunter (HU-Berlin) DAG-width STACS 2006 6 / 16

Cops and robber game

Players: Cop and robber

Positions: (r ,C), where r ∈ V and
C ⊆ V with |C | ≤ k

Initial position: (r0, ∅), where r0 ∈ V

is chosen by the robber

Round of a play: (r ,C) → (r ′,C ′)
Cops choose C ′, then robber chooses
r ′ such that there is a path from r to
r ′ in G \ (C ∩ C ′).

Winning Conditions: Cops win if
position (r ,C) with r ∈ C is reached;
otherwise the robber wins.

Paul Hunter (HU-Berlin) DAG-width STACS 2006 6 / 16

Cops and robber game

Players: Cop and robber

Positions: (r ,C), where r ∈ V and
C ⊆ V with |C | ≤ k

Initial position: (r0, ∅), where r0 ∈ V

is chosen by the robber

Round of a play: (r ,C) → (r ′,C ′)
Cops choose C ′, then robber chooses
r ′ such that there is a path from r to
r ′ in G \ (C ∩ C ′).

Winning Conditions: Cops win if
position (r ,C) with r ∈ C is reached;
otherwise the robber wins.

Paul Hunter (HU-Berlin) DAG-width STACS 2006 6 / 16

Cops and robber game

Players: Cop and robber

Positions: (r ,C), where r ∈ V and
C ⊆ V with |C | ≤ k

Initial position: (r0, ∅), where r0 ∈ V

is chosen by the robber

Round of a play: (r ,C) → (r ′,C ′)
Cops choose C ′, then robber chooses
r ′ such that there is a path from r to
r ′ in G \ (C ∩ C ′).

Winning Conditions: Cops win if
position (r ,C) with r ∈ C is reached;
otherwise the robber wins.

Paul Hunter (HU-Berlin) DAG-width STACS 2006 6 / 16

Cops and robber game

Players: Cop and robber

Positions: (r ,C), where r ∈ V and
C ⊆ V with |C | ≤ k

Initial position: (r0, ∅), where r0 ∈ V

is chosen by the robber

Round of a play: (r ,C) → (r ′,C ′)
Cops choose C ′, then robber chooses
r ′ such that there is a path from r to
r ′ in G \ (C ∩ C ′).

Winning Conditions: Cops win if
position (r ,C) with r ∈ C is reached;
otherwise the robber wins.

Paul Hunter (HU-Berlin) DAG-width STACS 2006 6 / 16

Cops and robber game

Players: Cop and robber

Positions: (r ,C), where r ∈ V and
C ⊆ V with |C | ≤ k

Initial position: (r0, ∅), where r0 ∈ V

is chosen by the robber

Round of a play: (r ,C) → (r ′,C ′)
Cops choose C ′, then robber chooses
r ′ such that there is a path from r to
r ′ in G \ (C ∩ C ′).

Winning Conditions: Cops win if
position (r ,C) with r ∈ C is reached;
otherwise the robber wins.

Paul Hunter (HU-Berlin) DAG-width STACS 2006 6 / 16

Cops and robber game

Players: Cop and robber

Positions: (r ,C), where r ∈ V and
C ⊆ V with |C | ≤ k

Initial position: (r0, ∅), where r0 ∈ V

is chosen by the robber

Round of a play: (r ,C) → (r ′,C ′)
Cops choose C ′, then robber chooses
r ′ such that there is a path from r to
r ′ in G \ (C ∩ C ′).

Winning Conditions: Cops win if
position (r ,C) with r ∈ C is reached;
otherwise the robber wins.

Paul Hunter (HU-Berlin) DAG-width STACS 2006 6 / 16

Cops and robber game

Players: Cop and robber

Positions: (r ,C), where r ∈ V and
C ⊆ V with |C | ≤ k

Initial position: (r0, ∅), where r0 ∈ V

is chosen by the robber

Round of a play: (r ,C) → (r ′,C ′)
Cops choose C ′, then robber chooses
r ′ such that there is a path from r to
r ′ in G \ (C ∩ C ′).

Winning Conditions: Cops win if
position (r ,C) with r ∈ C is reached;
otherwise the robber wins.

Paul Hunter (HU-Berlin) DAG-width STACS 2006 6 / 16

Cops and robber game

Players: Cop and robber

Positions: (r ,C), where r ∈ V and
C ⊆ V with |C | ≤ k

Initial position: (r0, ∅), where r0 ∈ V

is chosen by the robber

Round of a play: (r ,C) → (r ′,C ′)
Cops choose C ′, then robber chooses
r ′ such that there is a path from r to
r ′ in G \ (C ∩ C ′).

Winning Conditions: Cops win if
position (r ,C) with r ∈ C is reached;
otherwise the robber wins.

Paul Hunter (HU-Berlin) DAG-width STACS 2006 6 / 16

Cops and robber game

Players: Cop and robber

Positions: (r ,C), where r ∈ V and
C ⊆ V with |C | ≤ k

Initial position: (r0, ∅), where r0 ∈ V

is chosen by the robber

Round of a play: (r ,C) → (r ′,C ′)
Cops choose C ′, then robber chooses
r ′ such that there is a path from r to
r ′ in G \ (C ∩ C ′).

Winning Conditions: Cops win if
position (r ,C) with r ∈ C is reached;
otherwise the robber wins.

Paul Hunter (HU-Berlin) DAG-width STACS 2006 6 / 16

Cops and robber game

Players: Cop and robber

Positions: (r ,C), where r ∈ V and
C ⊆ V with |C | ≤ k

Initial position: (r0, ∅), where r0 ∈ V

is chosen by the robber

Round of a play: (r ,C) → (r ′,C ′)
Cops choose C ′, then robber chooses
r ′ such that there is a path from r to
r ′ in G \ (C ∩ C ′).

Winning Conditions: Cops win if
position (r ,C) with r ∈ C is reached;
otherwise the robber wins.

Paul Hunter (HU-Berlin) DAG-width STACS 2006 6 / 16

Cops and robber game

Players: Cop and robber

Positions: (r ,C), where r ∈ V and
C ⊆ V with |C | ≤ k

Initial position: (r0, ∅), where r0 ∈ V

is chosen by the robber

Round of a play: (r ,C) → (r ′,C ′)
Cops choose C ′, then robber chooses
r ′ such that there is a path from r to
r ′ in G \ (C ∩ C ′).

Winning Conditions: Cops win if
position (r ,C) with r ∈ C is reached;
otherwise the robber wins.

Paul Hunter (HU-Berlin) DAG-width STACS 2006 6 / 16

Cops and robber game

Players: Cop and robber

Positions: (r ,C), where r ∈ V and
C ⊆ V with |C | ≤ k

Initial position: (r0, ∅), where r0 ∈ V

is chosen by the robber

Round of a play: (r ,C) → (r ′,C ′)
Cops choose C ′, then robber chooses
r ′ such that there is a path from r to
r ′ in G \ (C ∩ C ′).

Winning Conditions: Cops win if
position (r ,C) with r ∈ C is reached;
otherwise the robber wins.

Paul Hunter (HU-Berlin) DAG-width STACS 2006 6 / 16

Cops and robber game

Players: Cop and robber

Positions: (r ,C), where r ∈ V and
C ⊆ V with |C | ≤ k

Initial position: (r0, ∅), where r0 ∈ V

is chosen by the robber

Round of a play: (r ,C) → (r ′,C ′)
Cops choose C ′, then robber chooses
r ′ such that there is a path from r to
r ′ in G \ (C ∩ C ′).

Winning Conditions: Cops win if
position (r ,C) with r ∈ C is reached;
otherwise the robber wins.

Paul Hunter (HU-Berlin) DAG-width STACS 2006 6 / 16

Cops and robber game

Players: Cop and robber

Positions: (r ,C), where r ∈ V and
C ⊆ V with |C | ≤ k

Initial position: (r0, ∅), where r0 ∈ V

is chosen by the robber

Round of a play: (r ,C) → (r ′,C ′)
Cops choose C ′, then robber chooses
r ′ such that there is a path from r to
r ′ in G \ (C ∩ C ′).

Winning Conditions: Cops win if
position (r ,C) with r ∈ C is reached;
otherwise the robber wins.

Paul Hunter (HU-Berlin) DAG-width STACS 2006 6 / 16

Cops and robber game

Players: Cop and robber

Positions: (r ,C), where r ∈ V and
C ⊆ V with |C | ≤ k

Initial position: (r0, ∅), where r0 ∈ V

is chosen by the robber

Round of a play: (r ,C) → (r ′,C ′)
Cops choose C ′, then robber chooses
r ′ such that there is a path from r to
r ′ in G \ (C ∩ C ′).

Winning Conditions: Cops win if
position (r ,C) with r ∈ C is reached;
otherwise the robber wins.

Paul Hunter (HU-Berlin) DAG-width STACS 2006 6 / 16

Cops, robbers and tree-width

Theorem (Seymour and Thomas 1993)

G has tree-width ≤ k if, and only if k + 1 cops have a winning strategy

Question

What about directed graphs?

Paul Hunter (HU-Berlin) DAG-width STACS 2006 7 / 16

Cops, robbers and tree-width

Theorem (Seymour and Thomas 1993)

G has tree-width ≤ k if, and only if k + 1 cops have a winning strategy

Question

What about directed graphs?

Paul Hunter (HU-Berlin) DAG-width STACS 2006 7 / 16

Directed cops and robbers

Problem

Find a decomposition that corresponds to this game

Paul Hunter (HU-Berlin) DAG-width STACS 2006 8 / 16

Directed cops and robbers

Problem

Find a decomposition that corresponds to this game

Paul Hunter (HU-Berlin) DAG-width STACS 2006 8 / 16

Directed cops and robbers

Problem

Find a decomposition that corresponds to this game

Paul Hunter (HU-Berlin) DAG-width STACS 2006 8 / 16

Directed cops and robbers

Problem

Find a decomposition that corresponds to this game

Paul Hunter (HU-Berlin) DAG-width STACS 2006 8 / 16

Directed cops and robbers

Problem

Find a decomposition that corresponds to this game

Paul Hunter (HU-Berlin) DAG-width STACS 2006 8 / 16

Directed cops and robbers

Problem

Find a decomposition that corresponds to this game

Paul Hunter (HU-Berlin) DAG-width STACS 2006 8 / 16

Directed cops and robbers

Problem

Find a decomposition that corresponds to this game

Paul Hunter (HU-Berlin) DAG-width STACS 2006 8 / 16

Directed cops and robbers

Problem

Find a decomposition that corresponds to this game

Paul Hunter (HU-Berlin) DAG-width STACS 2006 8 / 16

Directed cops and robbers

Problem

Find a decomposition that corresponds to this game

Paul Hunter (HU-Berlin) DAG-width STACS 2006 8 / 16

Directed cops and robbers

Problem

Find a decomposition that corresponds to this game

Paul Hunter (HU-Berlin) DAG-width STACS 2006 8 / 16

Directed cops and robbers

Problem

Find a decomposition that corresponds to this game

Paul Hunter (HU-Berlin) DAG-width STACS 2006 8 / 16

Directed cops and robbers

Problem

Find a decomposition that corresponds to this game

Paul Hunter (HU-Berlin) DAG-width STACS 2006 8 / 16

DAG-width

The DAG-width of a directed graph measures its similarity to a DAG.

A graph has DAG-width ≤ k if it can be covered by subsets of size ≤ k in
a DAG-like fashion such that an edge only leaves a sub-DAG through its
(root’s) connection with the rest of the DAG

Paul Hunter (HU-Berlin) DAG-width STACS 2006 9 / 16

DAG-width

The DAG-width of a directed graph measures its similarity to a DAG.

A graph has DAG-width ≤ k if it can be covered by subsets of size ≤ k in
a DAG-like fashion such that an edge only leaves a sub-DAG through its
(root’s) connection with the rest of the DAG

Paul Hunter (HU-Berlin) DAG-width STACS 2006 9 / 16

DAG-width

The DAG-width of a directed graph measures its similarity to a DAG.

A graph has DAG-width ≤ k if it can be covered by subsets of size ≤ k in
a DAG-like fashion such that an edge only leaves a sub-DAG through its
(root’s) connection with the rest of the DAG

Paul Hunter (HU-Berlin) DAG-width STACS 2006 9 / 16

DAG-width

The DAG-width of a directed graph measures its similarity to a DAG.

A graph has DAG-width ≤ k if it can be covered by subsets of size ≤ k in
a DAG-like fashion such that an edge only leaves a sub-DAG through its
(root’s) connection with the rest of the DAG

Paul Hunter (HU-Berlin) DAG-width STACS 2006 9 / 16

DAG-decompositions and DAG-width

A DAG-decomposition of a directed graph G is a tuple (D, (Xd)d∈V (D))
such that:

D is a DAG

Xd cover V (G)

For every d ′ on the path from d to d ′′ (d �D d ′ �D d ′′),
Xd ∩ Xd ′′ ⊆ Xd ′

For every (c , d) ∈ E (D), Xc ∩ Xd guards
(

⋃

d�Dd ′ Xd ′

)

\ Xc . If d is

a root of D, we replace Xc with ∅.

The width of a DAG-decomposition is maxd∈V (D) |Xd |.
The DAG-width of a directed graph is the minimal width of all its
DAG-decompositions.

Paul Hunter (HU-Berlin) DAG-width STACS 2006 10 / 16

Results

Theorem

G has DAG-width k if and only if k cops have a monotone winning

strategy on G

A monotone strategy is one where every vertex is visited by a cop at most
once.

Theorem (Complexity Issues)

For fixed k, deciding if G has DAG-width ≤ k is in Ptime

Given G and k, deciding if G has DAG-width ≤ k is NP-hard

Paul Hunter (HU-Berlin) DAG-width STACS 2006 11 / 16

Results

Theorem

G has DAG-width k if and only if k cops have a monotone winning

strategy on G

A monotone strategy is one where every vertex is visited by a cop at most
once.

Theorem (Complexity Issues)

For fixed k, deciding if G has DAG-width ≤ k is in Ptime

Given G and k, deciding if G has DAG-width ≤ k is NP-hard

Paul Hunter (HU-Berlin) DAG-width STACS 2006 11 / 16

More results...

dtw(G) ≤ DAG-width(G) ≤ tw(G)

DAG-width(G) = 1 iff G is acyclic

DAG-width is not preserved under edge reversal

Theorem

Parity games on graphs of bounded DAG-width can be decided in

polynomial time

Paul Hunter (HU-Berlin) DAG-width STACS 2006 12 / 16

More results...

dtw(G) ≤ DAG-width(G) ≤ tw(G)

DAG-width(G) = 1 iff G is acyclic

DAG-width is not preserved under edge reversal

Theorem

Parity games on graphs of bounded DAG-width can be decided in

polynomial time

Paul Hunter (HU-Berlin) DAG-width STACS 2006 12 / 16

Parity games

Players: Player 0 and Player 1

Arena: (V ,E ,V0,V1,Ω), where

(V ,E) is a directed graph

V0 and V1 partition V

Ω : V → N priority function

Players move a token around the graph for possibly infinitely many moves

Winner is determined by minimum priority seen infinitely often

1 0 2

3 1 1

Circles: nodes for Player 0
Boxes: nodes for Player 1

Paul Hunter (HU-Berlin) DAG-width STACS 2006 13 / 16

Parity games

Players: Player 0 and Player 1

Arena: (V ,E ,V0,V1,Ω), where

(V ,E) is a directed graph

V0 and V1 partition V

Ω : V → N priority function

Players move a token around the graph for possibly infinitely many moves

Winner is determined by minimum priority seen infinitely often

1 0 2

3 1 1

Circles: nodes for Player 0
Boxes: nodes for Player 1

Paul Hunter (HU-Berlin) DAG-width STACS 2006 13 / 16

Parity games

Players: Player 0 and Player 1

Arena: (V ,E ,V0,V1,Ω), where

(V ,E) is a directed graph

V0 and V1 partition V

Ω : V → N priority function

Players move a token around the graph for possibly infinitely many moves

Winner is determined by minimum priority seen infinitely often

1 0 2

3 1 1

Circles: nodes for Player 0
Boxes: nodes for Player 1

Paul Hunter (HU-Berlin) DAG-width STACS 2006 13 / 16

Parity games

Players: Player 0 and Player 1

Arena: (V ,E ,V0,V1,Ω), where

(V ,E) is a directed graph

V0 and V1 partition V

Ω : V → N priority function

Players move a token around the graph for possibly infinitely many moves

Winner is determined by minimum priority seen infinitely often

1 0 2

3 1 1

Circles: nodes for Player 0
Boxes: nodes for Player 1

Paul Hunter (HU-Berlin) DAG-width STACS 2006 13 / 16

Parity games

Players: Player 0 and Player 1

Arena: (V ,E ,V0,V1,Ω), where

(V ,E) is a directed graph

V0 and V1 partition V

Ω : V → N priority function

Players move a token around the graph for possibly infinitely many moves

Winner is determined by minimum priority seen infinitely often

1 0 2

3 1 1

Circles: nodes for Player 0
Boxes: nodes for Player 1

Paul Hunter (HU-Berlin) DAG-width STACS 2006 13 / 16

Parity games

Players: Player 0 and Player 1

Arena: (V ,E ,V0,V1,Ω), where

(V ,E) is a directed graph

V0 and V1 partition V

Ω : V → N priority function

Players move a token around the graph for possibly infinitely many moves

Winner is determined by minimum priority seen infinitely often

1 0 2

3 1 1

Circles: nodes for Player 0
Boxes: nodes for Player 1

Paul Hunter (HU-Berlin) DAG-width STACS 2006 13 / 16

Parity games

Players: Player 0 and Player 1

Arena: (V ,E ,V0,V1,Ω), where

(V ,E) is a directed graph

V0 and V1 partition V

Ω : V → N priority function

Players move a token around the graph for possibly infinitely many moves

Winner is determined by minimum priority seen infinitely often

1 0 2

3 1 1

Circles: nodes for Player 0
Boxes: nodes for Player 1

Paul Hunter (HU-Berlin) DAG-width STACS 2006 13 / 16

Parity games

Players: Player 0 and Player 1

Arena: (V ,E ,V0,V1,Ω), where

(V ,E) is a directed graph

V0 and V1 partition V

Ω : V → N priority function

Players move a token around the graph for possibly infinitely many moves

Winner is determined by minimum priority seen infinitely often

1 0 2

3 1 1

Circles: nodes for Player 0
Boxes: nodes for Player 1

Paul Hunter (HU-Berlin) DAG-width STACS 2006 13 / 16

Parity games

Players: Player 0 and Player 1

Arena: (V ,E ,V0,V1,Ω), where

(V ,E) is a directed graph

V0 and V1 partition V

Ω : V → N priority function

Players move a token around the graph for possibly infinitely many moves

Winner is determined by minimum priority seen infinitely often

1 0 2

3 1 1

Circles: nodes for Player 0
Boxes: nodes for Player 1

Paul Hunter (HU-Berlin) DAG-width STACS 2006 13 / 16

Parity game results

Polynomial-time equivalent to µ-calculus model checking

Decidable in NP ∩ co-NP

Decidability in Ptime an open problem

Paul Hunter (HU-Berlin) DAG-width STACS 2006 14 / 16

Parity games algorithm

1 Compute DAG-Decomposition

2 Use structure to succinctly
represent all plays in subgraphs

I resultf (U, v) is all possible outcomes
when Player 0 plays f from v in U

3 Compute resultf (U, v) bottom-up

Paul Hunter (HU-Berlin) DAG-width STACS 2006 15 / 16

Parity games algorithm

1 Compute DAG-Decomposition

2 Use structure to succinctly
represent all plays in subgraphs

I resultf (U, v) is all possible outcomes
when Player 0 plays f from v in U

3 Compute resultf (U, v) bottom-up

Paul Hunter (HU-Berlin) DAG-width STACS 2006 15 / 16

Parity games algorithm

1 Compute DAG-Decomposition

2 Use structure to succinctly
represent all plays in subgraphs

I resultf (U, v) is all possible outcomes
when Player 0 plays f from v in U

3 Compute resultf (U, v) bottom-up

Paul Hunter (HU-Berlin) DAG-width STACS 2006 15 / 16

Parity games algorithm

Major problem: Edges entering the
sub-DAG

Cannot “forget” vertices

Exponential number of strategies
generated

Solutions:

Consider functions from sub-DAG to
border

Compute feasible outcomes

Paul Hunter (HU-Berlin) DAG-width STACS 2006 15 / 16

Parity games algorithm

Major problem: Edges entering the
sub-DAG

Cannot “forget” vertices

Exponential number of strategies
generated

Solutions:

Consider functions from sub-DAG to
border

Compute feasible outcomes

Paul Hunter (HU-Berlin) DAG-width STACS 2006 15 / 16

Conclusions and further work

Introduced a natural extension of tree-width to directed graphs.

Provided a polynomial-time algorithm for parity games on graphs of
bounded DAG-width – subsuming other results such as bounded
tree-width.

Are monotone strategies sufficient?

Generalisation of havens, brambles, minors, separators?

Generalisation of Courcelle’s theorem?

Paul Hunter (HU-Berlin) DAG-width STACS 2006 16 / 16

Conclusions and further work

Introduced a natural extension of tree-width to directed graphs.

Provided a polynomial-time algorithm for parity games on graphs of
bounded DAG-width – subsuming other results such as bounded
tree-width.

Are monotone strategies sufficient?

Generalisation of havens, brambles, minors, separators?

Generalisation of Courcelle’s theorem?

Paul Hunter (HU-Berlin) DAG-width STACS 2006 16 / 16

Conclusions and further work

Introduced a natural extension of tree-width to directed graphs.

Provided a polynomial-time algorithm for parity games on graphs of
bounded DAG-width – subsuming other results such as bounded
tree-width.

Are monotone strategies sufficient?

Generalisation of havens, brambles, minors, separators?

Generalisation of Courcelle’s theorem?

Paul Hunter (HU-Berlin) DAG-width STACS 2006 16 / 16

Conclusions and further work

Introduced a natural extension of tree-width to directed graphs.

Provided a polynomial-time algorithm for parity games on graphs of
bounded DAG-width – subsuming other results such as bounded
tree-width.

Are monotone strategies sufficient?

Generalisation of havens, brambles, minors, separators?

Generalisation of Courcelle’s theorem?

Paul Hunter (HU-Berlin) DAG-width STACS 2006 16 / 16

