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Abstract. Tree-width is a well-known metric on undirected graphs tne@a-
sures how tree-like a graph is and gives a notion of graphrdposition that
proves useful in algorithm development. Tree-width is ebterised by a game
known as the cops-and-robber game where a number of cops ahasber on
the graph. We consider the natural adaptation of this gardie¢oted graphs and
show that monotone strategies in the game yield a measuheawiissociated
notion of graph decomposition that can be seen to describvecluse a directed
graph is to a directed acyclic grapbaG). This promises to be useful in devel-
oping algorithms on directed graphs. In particular, we stiwat the problem of
determining the winner of a parity game is solvable in potyira time on graphs
of boundedDAG-width. We also consider the relationship betwesys-width
and other measures of such as entanglement and directedslitithe One conse-
guence we obtain is that certain NP-complete problems ssitlamiltonicity and
disjoint paths are polynomial-time computable on graphsonindeAG-width.

1 Introduction

The groundbreaking work of Robertson and Seymour in theiplgminor project has
focused much attention on tree-decompositions of graptissasociated measures of
graph connectivity such as tree-width [13]. Aside from theferest in graph structure
theory, these notions have also proved very useful in theldpment of algorithms.
The tree-width of a graph is a measure of how tree-like thplgig and it is found that
small tree-width allows for graph decompositions alongalhiecursive algorithms can
work. Many problems that are intractable in general can heedaefficiently on graphs
of bounded tree-width. These include such classical NPpbet® problems as finding
a Hamiltonian cycle in a graph or detecting if a graph is theelourable. Indeed, a
general result of Courcelle [4] shows that any property @éfie in monadic second-
order logic is solvable in linear time on graphs of fixed tvadth.

The idea of designing algorithms that work on tree-decortipos of the input has
been generalised from graphs to other kinds of structurssally the tree-width of a
structure is defined as that of the underlying connectivatyGaifman) graph. For in-
stance, the tree-width of a directed graph is simply thahefuindirected graph we get
by forgetting the direction of edges, a process which lead®ine loss of information.
This loss may be significant if the algorithmic problems we iaterested in are inher-
ently directed. A good example is the problem of detectingitanian cycles. While
we know that this can be solved easily on graphs with smadhiviglth, there are also



directed graphs with very simple connectivity structuréclithave large tree-width. A
directed acyclic graptD@aG) is a particularly simple structure, but we lose sight o$thi
when we erase the direction on the edges and find the undguyidirected graph to
be dense. Several proposals have been made (see [12, §,&hieH extend notions of
tree-decompositions and tree-width to directed graphpaltticular, Johnson et al. [8]
introduce the notion oflirected tree-widtlwhere directed acyclic graphs have width 0
and they show that Hamiltonicity can be solved for graphsafriled directed tree-
width in polynomial time. However, the definition and chdeaisations of this measure
are somewhat unwieldy and they have not, so far, resulte@nyrfurther developments
in algorithms.

We are especially interested in one particular problem oectiéd graphs, that of
determining the winner of parity game This is an infinite two-player game played
on a directed graph where the nodes are labelled by prigrifiee players take turns
pushing a token along edges of the graph. The winner is datedby the parity of the
least priority occurring infinitely often in this infinite @y. Parity games have proved
useful in the development of model-checking algorithmsduisethe verification of
concurrent systems. The modatalculus, introduced in [10], is a widely used logic for
the specification of such systems, encompassing a varietpdél and temporal logics.
The problem of determining, given a systednand a formulay of the p-calculus,
whether or not4 satisfiesy can be turned into a parity game (see [6]). The exact
complexity of solving parity games is an open problem thatreaeived a large amount
of attention. It is known [9] that the problem is in NPco-NP and no polynomial
time algorithm is known. It follows from the general resuit@ourcelle [4] that there
is a polynomial time algorithm that solves parity games oapbs of bounded tree-
width. Obdrzalek [11] exhibited a particular such algfom. He points out that the
algorithm would not give good bounds, for instance, on deeéacyclic graphs even
though solving the games on such graphs is easy. He asksewlledine is a structural
property of directed graphs that would allow a fast algonitbn both bounded tree-
width structures and ODAGS.

In this paper, we give just such a generalisation. We inttedunew measure of the
connectivity of graphs that we cablaG-width?. It is intermediate between tree-width
and directed tree-width, in that for any graghthe directed tree-width @ is no greater
than itsDAG-width which, in turn, is no greater than its tree-width. Shthe class of
structures obaG-width k£ + 1 or less includes all structures of tree-widttand more
(in particular,DAGs of arbitrarily high tree-width all haveaG-width 1).

The notion ofbAG-width can be understood as a simple adaptation of the game
of cops and robbefwhich characterises tree-width) to directed graphs. Tameayis
played by two-players, one of whom controls a setofops attempting to catch a
robber controlled by the other player. The cop player canevaw set of cops to any
nodes on the graph, while the robber can move along any patieigraph as long as
there is no cop currently on the path. Such games have beamsiely studied (see [15,
5,7,1,2)]). Itis known [15] that the cop player has a winnitrgtegy on an undirected
graphg usingk + 1 cops if, and only if,G has tree-width:. We consider the natural

4 We understand that Obdrzalek has defined a similar measangaper to appear at SODA06.
We have not yet had an opportunity to see that paper.



adaptation of this game to directed graphs, by constraitiingobber to move along
directed paths. We show that the class of directed grapheavthere is a monotone (in
a sense we make precise) strategy#farops to win is characterised by its width in a
decomposition that is a generalisation of tree-decomipositWe are then able to show
that the problem of determining the winner of a parity gamsoilsable in polynomial
time on the class of graphs bAG-width &, for any fixedk.

In Section 2, we introduce some notation. Section 3 intreduke cops and robber
game pAG-decompositions andaG-width and shows the equivalence between the ex-
istence of monotone winning strategies amas-width. Also in Section 3 we discuss
some algorithmic aspects bAG-width. Section 4 proves the existence of a polynomial
time algorithm for solving parity games on such graphs, aecti8n 5 relate ®AG-
width to other measures of graph connectivity. All proofs axthe appendix.

2 Preliminaries

We first fix some notation used throughout the paper. All gsapded are finite, directed
and simple unless otherwise stated.

We writew for the set of finite ordinals, i.e. natural numbers. For gveE w, we
write [n] for the set{1,...,n}. For every selV and everyk € w, we write [V]* for
the set of allk-element subsets df, that is,[V]* := {{z1,...,2x} C V : 2; # z;
whenever # j}. We write[V]=<* for the set of allX C V with | X| < k.

Let G be a directed graph. We wriiéY for the set of its vertices anBY for the set
of its edges. Let’ C V9 be a set of vertices. We writg”)¢ for the sub-graph induced
by V. Further,E°P denotes the set of edges that results from reversing thes énl@s
i.e. B = {(w,v) : (v,w) € E}. The graphig°® is defined to bgV, E°P).

The block graphof a graphg is the graph(H, I) where H is the set of strongly
connected components@fand there is an edde, v) € I if there is an edge ig from
a node inu to a node irv.

A tree-decomposition of a graghis a labelled treé7 , (X;),cy ) whereX,; C V9
for each vertex ¢ V7, for each edgdu,v) € FEY there is at € V7 such that
{u,v} C X;, and for eachy € V9, the set{t € V7 : v € X;} forms a connected
subtree of7. The width of a tree-decomposition is the cardinality of the larg&st
minus one. The tree-width @f is the smallesk such thaig has a tree-decomposition
of width k.

LetD := (D, A) be a directed, acyclic grapb4G). The partial order<p (or < 4)
on D is the reflexive, transitive closure &f. A root of a setX C D is a=<p-minimal
element ofX, that is,r € X is a root of X if there is noy € X such thaty <p r.
Analogously, deaf of X C D is a=<p-maximal element.

3 Games, Strategies and Decompositions

This section contains the graph theoretical part of thiepapfe defineAG-width and
its relation to graph searching games. As mentioned in ttiedaction, the notion of
tree-width has a natural characterisation in terms of a eopsrobber game. Directed



tree-width has also been characterised in terms of such g#hebut these games
appear to be less intuitive. In this paper, we consider ttaégsttforward extension of
the cops and robber game from undirected graphs to directgzhg. We show that
these games give a characterisation of the graph conrngatieasure that we calaG-
width and introduce in Section 3.2. We comment on algorithptbperties in Section
3.3.

3.1 Cops and Robber Games

The Game. The Cops and Robber game on a digraph is a game wheogs try to

catch a robber who may run along paths in the digraph. Whédedbber is confined
to moving along paths in the graph, the cops may move to artgxet any time. A
formal definition follows.

Definition 3.1 (Cops and Robber GameJiven a graply := (V, E), thek-cops and
robber game ong is played between two players, tieep and therobber player, as
follows:

— At the beginning, the cop player choos&s < [V]<F, and the robber player
chooses a vertex of V' \ Xy, giving position( X, 7).

— From position(X;, r;), the cop player chooseX;,; € [V]<F, and the robber
player chooses a vertex,; of V' \ X, such that there is a path fromto r;;
which does not pass through a vertexXin N X, 1. If no such vertex exists then
the robber player loses.

A playin the game is a (finite or infinite) sequence= (X, 79)(X1,71) ... of posi-
tions such that the transition fro(X;, r;) to (X1, 7-+1) is a valid move by the rules
above and such that the play is finite if, and onlyrif, € X,, for the final position
(Xn,rn). Aplay is winning for the robber player if it is infinite.

Definition 3.2 (Game-width) The game-width gG) of G is the least such that the
cop player has a strategy to win thecops and robber game ¢h

Variants of the game where the robber moves first or only opecaa be moved at
a time or the cops are lifted and placed in separate moveslaguivalent in that the
game-width of a graph does not depend on the variant.

Lemma 3.3. For every finite, non-empty, directed gragtthe game-width g¢g) is at
least one and g¢¢) = 1 if, and only if,G is acyclic.

Proof. We have no requirement that the robber moves, so as longrasistane vertex,
the robber can defeat zero cops by remaining on that veftgxslacyclic then one cop
can catch the robber by playing to the robber’s current pesiEventually the robber
will not be able to move and the cop will capture him. ConvigtsEG has a cycle then
the robber can defeat one cop by forever staying in the cycle. O

Games similar to the one defined above have been used to gie daaracterisa-
tions of concepts like undirected tree-width [15] and aleddirected tree-width of [8].
Directed tree-width is invariant under reversing the edgfea graph. As we see be-
low, this is not true of the game-width we have defined. Oneption are graphs of
game-widthl, i.e. acyclic graphs.



Proposition 3.4. gw(G) = 1 if, and only if gWG°?) = 1.

Proof. If G has a cycldv, v1,...,v,) thenG° also has a cyclev,, v,—1, ..., v0),
and vice-versa. Hence, by Lemma 3.3,(GW+ 1 iff G has a cycle, ifiG°P has a cycle,
iff gw (G°P) £ 1. O

Proposition 3.5. For any j, k with 2 < 5 < k, there exists a grapﬁ’kj such that
gw(7/) = j and gw(Z;/)®) = k.

Proof. Let T,j' be a binary branching tree of height(i.e. 2* — 1 vertices) where
every vertexv has a “forward-edgé’to each of its descendants, i.e. the forward edges
form the transitive closure of the original tree-edges, atidack-edge” to ity nearest
ancestors. To show g}/) = j, first we see thaj cops have a winning strategy by
initially playing on the root then following the robber dowin a leap-frogging manner,
whichever subtree he plays in. To defgat 1 cops, robber chooses any leaf. Whenever
a cop moves to that leaf, a simple counting argument showshbee must be at least
one unoccupied ancestor with at least one clear path to dédafv. Robber then plays
to that ancestor and along that path to the leaf.

For (7,7)°P, k cops suffice to chase the robber down from the root. To défeat

cops, the robber plays the strategy that defg¢atsl cops inT,j. O

As always when dealing with games we are less interested imgéesplay in the
game as in strategies that allow a player to win every plakiéngame. Winning strate-
gies for the cop player play a crucial role throughout thipgraWe therefore give a
precise definition of this notion.

Definition 3.6. Let G := (V, E) be a directed graph.

(i) A (k-cop) strategyfor the cop player is a functiogi from [V]<F x V to [V]<F.
Aplay (Xo,79), (X1,71), ... is consistentwith a strategyf if X;11 = f(Xi, ;)
for all i. The strategyf is called awinning strategyif every play consistent with
f is winning for the cop player.

(ii) A strategy for the cop player isop-monotond in playing the strategy, no vertex
is visited twice by cops. That is, {Xo, 7o), (X1,71) . .. is a play consistent with
the strategy, then for evefy< i < nandv € X; \ X;11,v ¢ X, forall j > i.

(i) A strategy for the cop player imbber-monotond in playing the strategy, the set
of vertices reachable by the robber is non-increasing.

Lemma 3.7. If the cop player has a cop-monotone or robber-monotone wqstrat-
egy then it also has a winning strategy that is both, cop- afdber-monotone.

Proof. Suppose the cop player has a robber-monotone winninggyrated let Xy, ro), (X1,71) . . .
be a play consistent with that strategy. From this we cons&risequence which can be

used to define a cop-monotone strategy in the obvious way&eX; O X;., and

letv € X; \ X;+1. Asv € X, robber is unable to reachwhen the cops are oN;.

5 To aid description of strategies, we prefer to viéw as a directed binary branching tree
with some additional structure, there is no actual diffeesbetween edges, forward-edges and
back-edges



As the strategy is robber-monotone, robber is unable tchreat any further stage, in
particular, he cannot reachwhen the cops are o, (i.e. not onv). Thus no cop
needs to revisit in order to prevent robber from reaching if robber can reach, then
he must have reached a vertex which he could not when the cepsamnX;, 1, con-
tradicting the robber-monotonicity of the strategy. Thuesean remove from all X;,
j > i. Proceeding in this way results in a sequefg, o), (X1,71), . . .. The strategy
which takeg X, ;) to X, is cop-monotone for this play. Repeating this for all plays
(i.e. every choice for robber) results in a cop-monotoretsgy. Hence, whenever the
cop player has a robber-monotone winning strategy it als@ltp-monotone strategy.
We show next that any cop-monotone winning strategy for the mlayer is ac-
tually robber-monotone also. This proves the lemma. Supplos cop player has a
cop-monotone winning strategy. LeXy, 7o), (X1,71) . . . be a play consistent with the
strategy, and?y, R4, ..., R, be the corresponding robber space, i.e. the set of vertices
reachable for the robber. By the definition of the game, weasmume the strategy al-
ternates placing and removing (possibly no) cops. Cleagynly need to consider the
action of removing the cops, i.e. the case wh&geD X, 1, as adding cops can only
reduce the robber space. ket X; \ X;11. Asv ¢ X forall j > 4, robber is unable
to reachv otherwise robber could play toand sit there indefinitely — contradicting the
fact that cop player is playing a winning strategy. Thus ti#er is unable to reach any
of the vertices inX; \ X;;; and is therefore unable to reach any new vertices. Hence
R; O R;11, so the strategy is robber-monotone. O

From this lemma we can definer@onotone winning stratedy the obvious way.

3.2 DAG-Decompositions andAG-Width

In this section we define the notion bAG-width which measures how close a given
graph is to being acyclic. We present a decomposition otthegraphs that is some-
what similar in style to tree-decompositions of undireategphs. We show then that a
graph ha®AG-width & if, and only if, the cop player has a monotone winning strateg
in the k-cops and robber game played on that graph. We conclude avitle properties
enjoyed byDAG-width.

Definition 3.8. Let G := (V, E) be a graph. A setV C V guardsa setV’ C V if
whenever there is an edge, v) € E such that, € V' andv ¢ V' thenv € .

Definition 3.9 (DAG-decomposition)Let G := (V, E) be a directed graph. AAG-
decompositionis a tuple® = (D, (X4)4cyo) Such that

(D1) Dis abAG.

(D2) Uyeyo Xa=V.

(D3) Foralld <p d <p d’, XqN X4 C Xg.

(D4) For arootd, X is guarded by.

(D5) Forall(d,d') € EP, X4 N Xq guards¥y \ Xq, whereXy := {J <, g Xar.

The width of ® is defined asnax{|X,| : d € VP}. The bAG-width of a graph is
defined as the minimal width of any of iG-decompositions.



The main result of this section is an equivalence betweenohooe strategies for
the cop player andAG-decompositions.

Theorem 3.10. For any graphg there is aDAG-decomposition of; of width & if, and
only if, the cop player has a monotone winning strategy inkttoeps and robber game
ong.

To prove this, we first need some observations about guarding

Lemma 3.11.

() If Xo guardsY, and X; guardsY;, thenX, U X guardsY, U Y;.
(ii)y If X guardsY andZ D X, thenZ guardsY .
(iii) If X guardsY thenX U Z guardsY \ Z

Proof.

(i) Supposdv,w) € B9, v € YoUY; andw ¢ Yy UY;. Letv € Y;, thenw € X,
asX; guardsy;. Hencew € Xy U X7, andXy U X; guardsY, U Y7.
(ii) Supposgv,w) € E9, v € Y andw ¢ Y. As X guardsY,w € X.AsZ D X,
w € Z. ThereforeZ guardsy'.
(iii) Suppose(v,w) € E9, v e Y\ Zandw ¢ Y\ Z. Thusw ¢ Y orw € Z. For the
first casew € X asX guardsY. Hencew € X U Z.

O

We now turn to the proof of Theorem 3.10. Suppose the cop ple®a monotone
winning strategyf in thek-cops and robber game on a graphVe can assume that the
first move defined by is to place no cops. We can also assumg, ia{cop-)monotone,
that cops are only ever placed on vertices that are reachgitkee robber. That is,

J(X,r) € X UReachy x(r). 1)

To prove the theorem we first capture theops and robber game ghby a sim-
pler, token-moving game. This game is played on a grEptG), whereV 7+(9) .=
[V9]=kx V9 andE'7+(9) consists of all pair$(X, r), (X', r’)) suchthat’ € Reacly (xnx)(r).
Thatis,((X,r), (X',r")) is an edge if going froniX, r) to (X', ') is a legal move in
the k-cops and robber game. Tlecops and robber game can then be seen as a game
which the robber player moves a token arouig(G), along edges nominated by the
cop player. A slight variant of this game (in which the twoyses alternately move the
token on a larger graph) is used in Theorem 3.26.

Let D be the subgraph dff;,(G) obtained by restrictindl (G) to nodes from which
the cop player wins playing and to edge$(X, r), (X’,’)) such thatX’ = f(X,r),
i.e. edges which are consistent withAs f is a winning strategy for the cop playé?,
is an acyclic subgraph df (G). We call this thestrategyDAG defined byf. Note that
the nodes o are positions in the cops and robber game. Hence the funttiowell
defined for alld € VP. We claim thatd := (D, (X4)4ev ), WhereX, = f(d) for
alld € VP, is abAG-decomposition of; of width < k. To support our claim, we first
observe the following simple facts. Fér= (X, r) € VP,



Reachy x (r) € U f(d') € X UReacly x(r). (2)

d=<pd’

The first inequality follows from the fact thgt is a winning strategy for the cop
player — at position{.X, ) every vertex reachable by the robli@&eacly x (r)) will
be occupied by a cop at some point in the future. The secorpialigy follows from
repeated application of Equation 1. Further,dot (X,r) € VP,

Reacly\ x (r) = Reacly\ (xnsx,r)(r)- 3)

As XNf(X,r) C X,Reacly x(r) € Reachxns(x,))(r). The converse follows from
the fact thatf is a robber-monotone strategy.
The two equations together imply fdr= (X, r):

(U F@))\ X =Reacky (xnfx.m)(r). 4)

d=pd’

We now show tha® is indeed abAG-decomposition of width< k. As observed
above,D is aDAG as otherwisg’ would not be a winning strategy for the cop player.
For (D2), if there was @ € V' \ |,y » Xq, then, as we assumefinitially placed
no cops, the robber could defeaby playing tov and staying there indefinitely. Hence
Ugevr Xa = V. (D3) follows immediately from the monotonicity of the wiimg
strategyf. Towards establishing (D4), let = (X, r) be a root ofD. As we assumed
the first move off is to place no copsX must bez. By Equation 4,

Xo=( | f(d)) = Reach(r),

d=pd’

and is therefore guarded twy. Finally, to show (D5), supposel,d’) € EP. If d' =
(X',r") thenX,; = f(d) = X'. So by Equation 4,

Xo\Xa=( |J f(@")\ X" = Reacly xnscem ().

d'<pd"

Therefore X, N Xqo = X' N f(X',r") guardsXy \ X. It follows that® is aDAG-
decomposition. To see th& has width< k, note thatmax{|X,| : d € VP} =
max{|f(d)| :d € VP} <k.

Conversely, letD, (X4),cv o) be aDAG-decomposition of widthk. A strategy for
k cops can then be defined as:

(1) Let the robber choose a vertexc V. From (D2), there existd, € VP such that
v € Xg,. Letd be a root ofD which lies abovel,.

(2) Place cops 0X .

(3) From (D5) and Lemma 3.11(ii){; guards¥; \ X,. Therefore, the robber can only
move to vertices ity \ X4. Suppose the robber movesdboe X,. Letd' be a
child of d which lies abovel”.

(4) Remove cops oX; \ X4 (leaving cops on¥y; N X)



(5) As X, N X4 guardsXy \ X4, the robber can only move to verticesy — that
is, the robber must remain in the sobe rooted atd’.
(6) Return to step 2 with’ asd.

As D is aDAG, at some point the robber player will not be able to move sitigc\ X,
is empty whent is a leaf). Hence this is a winning strategy focops. To show that it
is monotone, observe that (D3) ensures that at no point doep eeturn to a vacated
vertex. This concludes the proof of Theorem 3.10. a0

The remainder of this section looks at some propertiessaFdecompositions mo-
tivated by similar results for tree-width and tree deconitpmss. First we make two
useful observations.

Lemma 3.12. Let (D, (X4)4ev» ) be aDAG-decomposition. For alid, d’) € EP,
Xd’ \Xd = Xd/ \ (Xd N Xd’)-

Proof. As XyN Xy C Xg, Xar \ Xa C Xy \ (XaNXg). Conversely, supposec Xy .
We will show thatr € X4 N Xy, orz ¢ X,. Letz € Xy ford <p d”, and suppose
r€ Xg.Thenasi <p d <pd’,z € XgyN Xy C Xg.Hencexr € XyN Xg. Thus
Xy \Xd D Xy \ (Xd N Xd/). [l

Lemma 3.13.Let® = (D, (X4)q4cvr) be aDAG-decomposition of a graph. For
W C VY9, Dy := (D, (XqNW)geyo) is aDAG-decomposition of i) 9.

Proof. Clearly (D1), (D2), and (D3) still hold foP|y . For (D4) and (D5), we observe
that if X guardsY in G, thenX N W guardsy N W in (W)9. Forifv € Y N W,
we W\ Y and(v,w) € EY, thenw € X (asX guardsY), hencew € X N W. (D4)
and (D5) then follow immediately from the respective coiutlis for®. O

For algorithmic purposes, it is often useful to have a norfoah for decomposi-
tions. The following is similar to one for tree-decompasits as presented in [3].

Definition 3.14. A DAG-decompositioD, (X4)4cy o) is niceif

(N1) D has a unique root.

(N2) Everyd € VP has at most two successors.

(N3) If dy, d, are two successors @f, thenX,, = X4, = X4,.

(N4) If d; is the unique successor df, then| X, AX,4,| < 1, whereA is the sym-
metric set difference operatodB = (A\ B)U (B \ A)).

We show next that every graph witthG-width k& has a nice decomposition with
width k. For this, we transform aAaG-decomposition into one which is nice that has
the same width. First we formalise the transformations veg asd show that executing
them (possibly subject to some constraints) does not @@ay of the properties of a
DAG-decomposition.

Lemma 3.15 (Unique root) Let (D, (X4)4cy o) be aDAG-decomposition of width,
and letd,, da, . .. d,,, be the roots oD. The decompositio(D’, (X)) ;.\ o) where



(i) VP = VPU{r}
(iy E?" := EPU{(r,d;):1<i<m} ,
(i) X! :=@,andX/, = X, forallotherd € V.

is a DAG-decomposition of width.

Fig. 1. Forming a unique root

Proof. As we have only added edges fram¢ VP, D’ is acyclic. (D2) is trivially
satisfied as we have only added a nodd. fp: d’ <p: d”, then eithed = r in which
caseX, N X}, = @ C X/, ord € VP, in which casex/, N X/, C X/, follows
from the fact thatD, (X4)4ep) is aDAG-decomposition. This establishes (D3). (D4) is
again trivially satisfied, ast/ = V9. Finally, for (r,d;) € EP', X/ n Xy =9
guards¥y, = &} \ X/. Otherwise(d,d’) € E” and (D5) follows from the fact that
(D, (Xa)aep) is aDAG-decomposition. A$X.| = 0, (D', (X)) 4ey») has widthk.
Figure 1 gives a visual representation of the construction. O

Definition 3.16 (Splitting). Let ® := (D, (X4)q4ev o) be aDAG-decomposition, and
supposely € VP hasm > 1 successord;,ds, ..., d,,. The decompositio®’ :=
(D', (X})4eyo) Obtained from® by splitting dy is defined as

() VP =VPU{d,d.},
(iy E?" = (E?\{(do,di):1<i<m})U
{(d07 d/l)’ (dO’ dT)? (dl7 dl)} U
{(dr,d;) : 2 <i<m}and
(i) X, =Xgforallde VP andX) =X = Xg,.

Figure 2 gives a visual representation of this transforomati

Lemma3.17.Let® = (D, (X4)q4cyvr) be aDAG-decomposition of a graply of
width &, and supposé, € VP hasm > 1 successorsl,ds,...,d,. Then®’ :=
(D', (X})4eyo) obtained from® by splittingd, is a DAG-decomposition off of width
k.

10



Fig. 2. Splitting atdo

Proof. First we observe that ag, is the unique predecessor é@f andd,., for any
d € VP such thatl <p d; ord <p d,, it must be the case thdt<p dy. Thus, for all
deVP,
Y= U Xe= U Xe =2,
d=prd’ d=<pd’
since if X4, or X, is included in the union on the left, then soXg,, and so neither
Xg4, nor X, contribute to the overall union.
Also, foralli suchthat < i < m, X4,NX,4, guards¥y, \ X4,, so by Lemma 3.11(ii),

Xa, quards¥y, \ X, (5)

It is easily seen that the edges added do not create any cgdé¥ is a DAG.
Further,J,cy o X}, = Ugey» Xa = V9. To prove the connectivity condition (D3),
letd,d’,d" € VP, be such thatl <p d' <p d”. If d = d or d’ then trivially
X, nX/), C X/}, sosuppose <p d' <p d”. We consider four cases:

— If none ofd,d’,d" is d; ord,, thend,d’,d” € D, and (D3) follows from the fact
that® is aDAG-decomposition.

— If disd; ord, then since all descendantsdére inV P, andd, € VP is the unique
predecessor af, we obtain the following chain of nodes ™. dy <p d’ <p d”.
SOX& N X(/i,, =Xg, NXgr C Xy = Xé,.

— If d” is d; or d,. then from the comments at the start of the prabokp d' <p dp.
ThUS,Xt/i N Xé// =XgNXg C Xy = Xé/.

— Finally, if d’ is d; or d, then by the same reasoning as the previous two cases,
d=pdy=<pd. SOX(Ii n X(Ii// =XgN X4 C Xdo = X(Ii/

Thus, in all casesX/ N X/, C X/, showing (D3). (D4) follows from the fact that
every root ofD’ is a root of D too. So@ guards¥,; = X7. Finally, to show (D5), let
(d,d') € EP'. We consider three cases:

11



—d € VP (i.e.d # d;,d.). If d = d; ord,, thenX/, = X,,. Otherwise(d, d’) €
EP.In both casesX/, N X/, guardsY}, \ X},.

— d' =d; (sod = dy). HereX), = X4, U Xy,, S0X), \ X}, = Xy, \ Xq,. Hence, by
Equation 5X4, = X/ N X}, guardsYy, \ Xq4, = X, \ X.

— d' =d, (sod = dp). HereX), = Xq,UUy<;<,,, Xa,, and sat’, \ X}, = (U Xy,) \
Xa, = U(Xy, \ X4,), Where the unions are taken oviefor 2 < i < m. From
Lemma 3.11(i) and Equation X, N X, = X4, guardsd J,,,, (X4, \ Xa,) =
X\ X

As X} = X = Xg4,, max{|X}| : d € V?'} = max{|Xy| : d € VP} = k. So
(D', (X)) gero) has widthk. O

By thedecomposition resulting from splittingm — 1 timeswe mean the decomposition
resulting from splittingd, and then recursively splitting the successor with mora tha
one successor until no such successor existarplete splibf © is the decomposition
D’ obtained by recursively splitting every node with more th&a children.

Definition 3.18 (Adding). Let ® = (D, (X4)4cyr) be aDAG-decomposition of a
graphg. If (do,d;) € EP and X C V9 the decomposition resulting from adding
X to (do, d1) is the decompositiofD’, (X)) ;o\ » ) Where

() V2 =VPU{dx}
(i) B = (EP\{(do,d1)}) U{(do,dx), (dx,d1)}
(i) X, = X,andforalld e V7, X} = X,.

See Figure 3 for a visual interpretation.

() ()
) ()
() ()

Fig. 3. Adding X to (do, d1)

Lemma 3.19. Let® = (D, (X4)4cv o) be aDAG-decomposition of a grap of width
kandlet®’ := (D', (X)) e o) be the decomposition resulting from addilgC V9
to (do, d1). If either
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(I) Xg, N Xy, C€CXC Xy, 0r
(i) Xq, N Xq, € X C Xy,

then®’ is a DAG-decomposition off of width k.

Proof. We observe that for all € VP, if d <p/ dx, then asdy € V7 is the unique
predecessor afy, d <p dy, and ifdx <p/ d, thenasi; € VP is the unique successor
of dx, d; =p d. This implies, for alld € VP

Xp=|J Xo= U Xo =2,
d=prd’ d=<pd’

since if X} is inluded in the union on the left, then boly, and X, are, and so in
either case of the lemma,,, = X does not contribute to the overall union.

Further, Xy, N X4, guards¥y, \ Xg4, = X4, \ (X4, N X4, ) from Lemma 3.12.

We now show tha®’ satisfies the properties (D1) to (D5). It is easily seen That
is aDAG and|J, ey X = X U Uyey» Xa = V9. Also, if d is a root of D', thend
is a root of D. Hencew guardst; = &. This shows (D1), (D2), and (D4). Towards
establishing condition (D3), suppode=<p: d =p d". If d = d ord" = d” then
trivially X, N X/, C X/}, so suppos€ <p d' <ps d”. We consider four cases:

— Ifnone ofd, d’, d" is dx thend, d’, andd” are all inV'?, so (D3) follows from the
fact that® is aDAG-decomposition.

— Supposel = dx. From the observations made at the start of the proof, wehget t
following chain of nodesi: dy <p di <p d’ <p d”.Soif X C X, ,i.e. we are
in case(i) of the lemma, theX, N X/, = X N X4 C Xg,NXgr C Xg = X)),
by condition (D3) of®. If X C X,,,thenX /N X/, = XNX4 C Xy, N Xgr C
Xo = X,

— The other cases are similar.df = dx then we obtainl <p d’ <p dy <p di. SO
if X C Xy, thenX{i ﬂX(/i,, =XgNXCXgNXy, CXg = thi" If X C Xy,
thenX{i N X¢Ii” =XgNXCXgNXy CXg = Xé,.

— Finally, assume’ = dx. Thend <p dy <p d; =p d”’. HenceX,; N Xy C Xy,
andXyN Xg» C Xa,. ThUSXI/i n X&,, =XgNXgy CXg,NXy, CTX = Xz/i"

Finally, towards (D5), letd, d’) € EP'. We consider three cases:

—dx ¢{d,d'},i.e.(d,d") € EP.In this case, (D5) follows from the fact th&tis a
DAG-decomposition.

— Now supposel = dx (sod’ = di). If X4, N X4, € X C X4, i.€. we are in case
(7) of the lemma, then

Xdl \ (Xdo n Xdl) 2 Xdl \X 2 Xdl \XdO'
Further, by Lemma 3.12Y,;, \ (X4, N X4,) = X4, \ Xa,- ThereforeX,, \ X =
Xa, \ X4,- As D is aDAG-decomposition Xy, N X4, guards¥y, \ X4,. and as

Xa, N Xa, € XN Xy, Lemma 3.11(ii) implies thak'; N X = X N X4, guards
Xdl \Xdo = Xél \X(/i

13



Otherwise we are in caggi) and we haveX;, N Xy, € X C X,,. LetZ =
X\ (Xa,NXg, ). We know(X 4,NXy4, ) guards¥y, \ (X4,NXg4, ) fromLemma 3.12.
Hence, from Lemma 3.11(iiiX; N X = X = (X4, N X4,) U Z guards

(Xdl\(Xdodel))\Z = Xdl\((XdoﬂXdl)UZ) = Xdl\X = Xél\Xé/

— Finally, suppos@’ = dx (sod = dp). Here we claim¥y \ X = Xy, \ Xq,. If
X C X, thenXéX \Xéo = (X U Xdl) \ X, = (X\Xdo) U (Xdl \Xdo) =
Xdl \Xdo- If X - Xdl, then sinceiX =<pr di, Xd/x = Xél = Xdl- Now X DO
X, N Xa,, S0 by Lemma 3.11(ii)X7, = X guardsty, \ X4, = X, \ X}, -

Note that since¥ C X4, or X4, max{|X/| : d € V?'} = max{|Xy4| : d € VP} = k.
So(D', (X)) ey») has widthk. O

If X1,Xs,...,X, is a sequence of subsets 6f, the decomposition resulting from
adding X;, X», ..., X, to (do,d1) is the decomposition resulting from addifg to
(do, d1) and then recursively adding; 1 to (dx,, d1).

We can now describe how to transformaG-decomposition into one which is nice
with the same width.

Theorem 3.20. If G has aDAG-decomposition of width, it has a nicebAG-decomposition
of width k.

Proof. Let® = (D, (Xq)dep) be aDAG-decomposition of widtlk. We carry out each
of the following steps and res@t to be the resulting decomposition.

1. We apply Lemma 3.15 to obtain a decomposition with a uniqaot, therefore
satisfying (N1).

2. We apply a complete split gB to obtain aDAG-decomposition such that every
node has at most two successors, anrbthifis two successods andds, thenX,; =
X4, = X4, This establishes (N2) and (N3).

3. To satisfy (N4), we require two stages. First, for e&éh d;) € EP with X, #
X4, we addX,, N Xy, to (dy, d;) to obtain abAG-decomposition such that for
every(d,d’) € ET', X, is either a subset or a super-sefaf.

4. Secondly, for eactd, d’) € EP with | Xy| — | Xa| = m > 1 (or | Xu| — | Xa| =
m > 1), let Xg = X4, X1,...,X,, = Xg be a strictly decreasing (increas-
ing) sequence of subsets. Such a sequence exists becahegeg\ious step we
finished with abAG-decomposition such thaX; C X4 or Xy O Xy . Add
X1,Xo,...,Xm-1 to (d,d’). At this point we have a decomposition which sat-
isfies (N1) to (N4), and is therefore nice.

Finally, from Lemmas 3.15, 3.17, and 3.19, at each step we AaxG-decomposition
of width k. O

Tree-width on undirected graphs also have a useful chaisatien in terms of bal-
anced separators. We are able to obtain one direction of ilasicharacterisation for
DAG-width by showing that graphs of smalhG-width admit small balancedirected

separators
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Definition 3.21. LetG := (V, E) be adigraph an®# C V be a set of nodes. directed
separator of sizé; for W is a setX with | X| < k such that¥ \ X can be partitioned
into W1, W, € W with W\ X = WiUW,, Wi N W2 = @, 2|W| < [W;| < 2|W|,
i = 1,2, and there is no path from a notlé, to a node in; in G \ X.

A graphgG has thedirectedk-separator propertyf every setC V9 has a directed
separator of widtlt:.

Note that directed separators are a direct generalisatistandard separator, as the
two notions coincide on undirected graphs.

Theorem 3.22. Every graph oDAG-width at mosk has the directe@-separator prop-
erty.

Using Lemma 3.13, the proof of this theorem follows alongdhee lines as for the
case of undirected graphs.

Finally, we show that th@AG-width of graphs is closed under directed unions,
which is considered (see [8]) as an important property ofagaaable decomposition
of directed graphs.

Definition 3.23. Let G and’H be (disjoint) directed graphs. Thiirected unionof G
and™, denoted; UH is defined as:

GUH = (VIUVH ESUE™ U (VI x V).
A partial directed unionof G and is a graph(V9 u V* EY U E™ U E) where
ECVIxVH,
Theorem 3.24.If G and’H are digraphs, then
DAG-width(GU H) = max{DAG-width(G), DAG-width(F)}.

Proof. (<) Let (Dg, (X4)4cyre) and (D, (Ya)gey o) be DAG-decompositions of
G andH respectively. Le® = (D, (X4),cyr6 U(Ya)geyorn ), WhereD is the DAG
obtained by putting an edge from every leaf®§ to every root ofDy,. Then® is
DAG-decomposition fog UH.

(>) Conversely, ifD is aDAG-decomposition of UH, then by Lemma 3.1®)|y¢
is a DAG-decomposition of; and® |y~ is a DAG-decomposition of{, both of width
less than or equal to the width @f. (]

Note that this result extends to partial directed unionselt w

3.3 Algorithmic Aspects of BoundeddbAG-Width

We now consider algorithmic applications DAG-width as well as the complexity of
deciding thebAG-width of a graph and computing an optimal decompositiore fidi-
lowing is a direct consequence of the similar result for trth.

Theorem 3.25. Given a digraphg and a natural numbetk;, deciding if theDAG-width
of G is at mostk is NP-complete.

15



However, for any fixed, it is possible, in polynomial time, to decide if a graph has
DAG-width at mostk and to compute @AG-decomposition of this width if it has. We
give an algorithm for this that is based on computing monetwimning strategies in
thek-cops and robber game.

Theorem 3.26. Let G be a directed graph and lét < w. There is a polynomial time
algorithm for deciding if the cop player has a monotone wigstrategy in thé-cops
and robber game og and for computing such a strategy.

Proof. Given a graphg and the numbek of available cops we represent thecops
and robbers game as a simple, alternating, token-movinggéhe game is played on
afinite, bi-partite graph, or arer®,(G) = (V,UV4, E) which is defined as follows. Let
Wy = [V]SF x VandW, = ([V]SF x [V]SF x V).

(i) Vo:=Wr,

(II) V= WQU{U()}, and

(iii) From each nodé X, r) € W, there is an edge to every notl¥,, X5, 7') € Wy
such that = ', X = X;, and the set of nodes reachable fronm G \ X;
contains the set of nodes reachable from G \ (X1 N X3).
Further, from a nodéX, X»,7) € W there is an edge to a nod&’, r) € Wy,
if X = X5, r ¢ X and there is a path fromto ' in G \ (X1 N X5).
Finally, there is an edge from, to every nod€o, r) € W5, wherer € V.

Note thatH(G) can be constructed in polynomial time.

The game starts with a token at the nadePlayer0 moves the token whenever it
is on a node irly, and Playen moves the token whenever it is on a nodé/in The
token may only be moved along an out-edge, on a path of lendfta player cannot
move he loses. If the game lasts forever, Playains. Computing which player wins
is thus an example of alternating reachability and is tloeee€iecidable in polynomial
time (with respect to the size of the arena).

It is easy to see that Play@rwins this simple game if, and only if the cop player
wins thek-cops and robber game following a (robber-)monotone gjyatss the arena
‘H(G) is polynomial in the size of the input, and we can compute tiener of the
simpler game in polynomial time, the theorem follows.

O

Note also that the translation of strategies into decontiposiis computationally
easy, i.e. can be done in polynomial time. Since winningatiias can be computed in
polynomial time in the size of the graph, we get the following

Proposition 3.27. Given a graphG of DAG-width &, a DAG-decomposition ofj of
width & can be computed in tim@ (|G| O *).

Algorithms on graphs of boundeAc-width. As the directed tree-width of a graph is
bounded above by a constant factor ofbiss-width (see Proposition 5.3), any graph
property that can be decided in polynomial time on classegabhs of bounded di-
rected tree-width can be decided on classes of graphs ofledoaG-width also. This
implies that properties such as Hamiltonicity that are kneavbe polynomial time on
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graphs of bounded directed tree-width can be solved eftigien graphs of bounded
DAG-width too. We give a nontrivial application afaG-width in Section 4 where we
show that parity games can be solved on graphs of boubdeedwidth, something
which is not known for directed tree-width.

As for the relation to undirected tree-width, it is cleartthat all graph properties
that can be decided in polynomial time on graphs of boundssghtridth can also be
decided efficiently on graphs of boundedc-width. For instance, the 3-colourability
problem is known to be decidable in polynomial time on graptisounded tree-width.
However, the problem does not depend on the direction of edge if the problem
was solvable in polynomial time on graphs of boundead-width then for every given
undirected graph we could simple direct the edges so thacbmmes acyclic, i.e. of
DAG-width 1, and solve the problem then. This shows that 3-colourglislihot solvable
efficiently on graphs of boundemhG-width unless PIME = NP. It also implies that
Courcelle’s theorem does fail faaG-width, as 3-colourability is easily seen to be
MSO-definable.

The obvious question that arises is whether one can definigableunotion of “di-
rected problem” and then show that ever80-definable “directed” graph problem can
be decided efficiently on graphs of boundwds-width. This is part of ongoing work.

4 Parity Games on Graphs of BoundeAG-Width

A parity gameP is a tuple(V, V;, E, £2) where(V, E) is a directed grapt, C V and
2.V — wisafunction assigning a priority to each node. There is 88 t&f generality
in assuming that the range 6f is contained inn] wheren = |V| and we will make
this assumption from now on.

Intuitively, two players called Odd and Even play a parityngeby pushing a token
along the edges of the graph with Even playing when the tokamia vertex i/
and Odd playing otherwise. Formally, a play of the gafés an infinite sequence
m = (v; | i € w) such that(v;,v;41) € E for all i. We sayr is winning for Even if
liminf;_,, £2(v;) is even andr is winning for Odd otherwise.

A strategyis a mapf : V<% — V such that for any sequen¢e, - - - v;) € V<%,
(vi, f(vo---v;)) € E. Aplaym = (v; | i € w) is consistent with Even playing
if wheneverv, € Vy, viy1 = f(vo---v;). Similarly, = is consistent with Odd play-
ing f if wheneverv; ¢ Vo, viz1 = f(vo---v;). A strategyf is winning for Even if
every play consistent with Even playirfgis winning for Even. A strategy immemory-
lessif wheneveruy - - - u; andvy - - - v; are two sequences W< with u, = v;, then
fluo---w;) = f(vo---v;). Itis known that parity games are determined, i.e. for any
game and starting position, either Even or Odd has a winriagegly and indeed, a
memoryless one. However, we do not assume in our constnuttit the strategies we
consider are memoryless

The following ordering onn] is useful in evaluating competing strategies. For pri-
oritiesi, j € [n] we sayi C j if either

(i) iis odd andj is even, or
(i) ¢ andj are both odd and < j, or
(iif) 7 andj are both even and < i.
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Intuitively, ¢ C j if the priority i is “better” for player Odd tharj.

We are interested in the problem of determining, given atypgame and starting
node, which player has a winning strategy. The complexitthisf problem in general
remains a major open question, as explained in Section 1.aWedstrate that parity
games are solvable on arenas of bourmlegtwidth by an algorithm similar in spirit to
that of Obdrzalek [11]. That algorithm relies on the fdwttin a tree-decomposition, a
set ofk nodes guards all entries and exits to the part of the grapwhigland thus all
cycles must pass through this set. In the casemf@decomposition, while the small
set guards all exits from the subgraph below it, there mayrberdimited number of
edges going into this subgraph. This is the main challenafeotlr algorithm addresses,
and is specifically solved in Lemmas 4.1, 4.2 and 4.3.

For a parity gamé = (V. V;, E, £2) considertU C V and a setV that guardd/.
Fix a pair of strategieg andg. For anyv € U, there is exactly one play = (v; : i € w)
that is consistent with Even playingand Odd playing. Let 7’ be the maximal initial
segment ofr that is contained iV. Theoutcomeof the pair of strategie§f, g) (givenU
andv) is defined as follows.

winEven ifr’ = w andr is winning for Even;
outy ,(U,v) :== ¢ winOdd  if 7’ = = andn is winning for Odd;
(Vig1,p) 7 =vg---v; andp = min{N2(v;) | 0 < j <i+ 1}.

That is to say that, if the play that results from Even playfrend Odd playing leads
to a cycle contained entirely withi&, then the outcome simply records which player
wins the game. However, if the winner is not determined elytiwithin U, the outcome
records the vertex in W in which the play emerges froti and the lowest priority
that is seen in the play starting inv and ending inv, including the end points.

By construction, if out , (U, v) = (w, p) thenw € W. More generally, for any set
W C V, define the set of potential outcomeslin, written pot-outi?), to be the set
{winEvenwinOdd} U {(w,p) : w € W andp € [n]}. We define a partial ordet on
pot-ou{W) which orders potential outcomes according to how good thejax player
Odd. Itis the least partial order satisfying the followiranditions:

(i) winOdd < o for all outcomes;
(i) o <winEven for all outcomes;
(i) (w,p) < (w,p)if pCp forallw e W.

In particular,(w, p) and(w’, p’) are incomparable iy # w’. The idea is that iff andg’
are strategies such that gy(U, v) <out; ., (U, v) then player Odd is better off playing
strategyg rather thary’ in response to Even playing accordingfto

A single outcome is the result of fixing the strategies playgtoth players in the
sub-game induced by a set of vertidésIf we fix the strategy of player Even to ke
but consider all possible strategies that Odd may play, webcder these strategies ac-
cording to their outcome. If one strategy achieves outcormed anothes’ with o <0/,
there is no reason for Odd to consider the latter strategys,TWe define resulf{U, v)
to be the set of outcomes that are achieved by the best samtbgt Odd may follow,
in response to Even playing accordingftoMore formally, result(U, v) is the set of
<-minimal elements in the sdb : 0 = outy (U, v) for someg}. Thus, result(U, v)
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is an anti-chain in the partial ordépot-ou{W), <), wherelV is a set of guards fav'.
We write pot-re§iV) for the set ofpotential resultsn 1. To be precise, pot-réd/) is
the set of all anti-chains in the partial ordgot-ou{iW), <). By definition of the order
<, if either of winEven or winOdd is in the set resy([t/, v), then it is the sole element
of the set. Also, for eacty € W, there is at most onesuch thatw, p) € resulty (U, v)
so the number of distinct values that reg(ilf, v) can take is at mogtU| + 1)1 + 2
(in fact, (d + 1)I"I, whered is the number of different priorities ifV). This is the
cardinality of the set pot-rég’).

We also abuse notation and extend the ordeto the set pot-ré¢$1”) pointwise.
That s, forr, s € pot-regWW) we writer < s if, for eacho € s, there is an’ € r with
o' < o. With this definition, the ordex on pot-re¢lV) admits greatest lower bounds.
Indeed, the greatest lower bound s of r ands can be obtained by taking the set<of
minimal elements in the set of outcomes s. One further piece of notation we use is
that we write Re, v) for the set{result; (U, v) : f is a strategy.

Suppose now tha? = (V,Vp, E, 2) is a parity game and we are giverDaG
decomposition{D, (X4)4cy o) of (V, E) of width & that is nice in the sense of Defini-
tion 3.14. For eackd € VP, we write V; for the setX; \ X,. The key to the algorithm
is that we construct the set of results Rég v) for eachv € V. SinceV; is guarded
by X4, | Xa| < k and|Vy| < n, the number of distinct values of resy(Vy, v) as f
ranges over all possible strategies is at nfast 1)* + 2.

We define the following, which is our key data structure:

Frontiefd) = {(v,r) : v € V; andr = result;(Vy, v) for some strategy }.

Note that in the definitions of result’, v) and Frontied), f and g range overmll
strategies and not just memoryless ones. The bound on thberwhpossible values
of result(V,, v) guarantees thgErontiefd)| < n((n + 1)* + 2). We aim to show
how Frontiefd) can be constructed from the set of frontiers of the successat in
polynomial time. There are four cases to consider.

Case 1:d has two successors andes. In this case Xy = X., = X, by the
definition of a nice decomposition. Thug; = V., U V.,. Moreover, each of the three
setsVy, V., andV,, is guarded byX, so, in particular, there is no path from a vertex in
Ve, \ Ve, into V., \ V., (or vice versa) except througti;. We claim that Frontidel) =
Frontief(e;) U Frontie(ez).

To see this, suppose first that, ) € Frontiele;) (the case of Fronti¢es) is
symmetrical) and in particular = result(V;,,v). Now, if o € r there is ag such
thato = outy 4(Ve,,v). If o is winEven or winOdd it is clear that = out; ,(U, v)
foranyU > V., and in particulan = out ,(Vy,v). If o = (w,p) then the playr
determined by strategigsandg starting atv first leaves the sét,, atw. Sincew €
X., = X, it also leaves the séf; at this point and therefore again= out; ,(Vy, v).
We conclude that the set of available outcomes is the saméhanefore the set of
<-minimal outcomes is the same. Thatis= result;(Vy, v) and therefordv,r) €
Frontiel(d).

In the other direction, suppoge,r) € Frontiefd) and thatv € V., (again the
case when € V., is symmetrical). Letf be such that = result;(Vy, v). Suppose
o = outs 4(Vy,v) for some strategy and letw be the play starting at determined
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by f andg. We claim thato = out; 4(V¢,,v). If this is not the case, then the first
occurrence inr of a node not i/, must be contained i#r;. However, since any such
node must be inX,, which is disjoint fromV/;, this is impossible. Thus, once again
out ,(Vy,v) = outy ,(Ve,,v) and therefore = resulty (V, , v).

Note, in particular, that the above argumentimplies thatfe V., UV,,, resul (V,,,v) =
result(Ve,, v).

Case 2d has one successeandX,; = X.. Inthis case, Fronti¢d) = Frontiefe).

Case 3:d has one successerand X; \ X. = {u}. Then, by (D3)u ¢ V.. Also,
by definition ofV;, u &€ V;. We conclude that; = V.. Moreover, sinceX, guardsl,
(by Lemma 3.11(ii)), there is no path from any elementpto u except through¥..
Thus, if (w,p) € result(Vy,v) for somev and f, it must be the case that € X..
Hence, Fronti€il) = Frontiefe).

Case 4:d has one successerand X, \ X; = {u}. This is the critical case. Here
Va = V. U {u} and in order to construct Frontigh we must determine the results of
all plays beginning at.

Consider the set of verticasin X; such that(u,v) € EY. These fall into two
categories. Eithes € X, orv € V,. Letxq,...,x, enumerate the first category and
letvy, ..., v, enumerate the second. L@t= {(z;, min{2(z;), 2(u)}) : 1 <i < s}.
This is the set of outcomes obtained if play in the parity ganoeeeds directly from
to an element of ;. Note that as no two outcomes(@hare comparable with respect to
g, O € pot-regX,). We write O for {{o} : 0 € O} ThatisO is the set of singleton
results obtained fron®. For eachv; we know, from Frontigfe), the set Red/, v;).
For each result € RegV,,v;), we write modr) for the set of outcomes defined by
modifyingr as follows. First, ifr contains an outcom:, p), we replace it by winEven
if min{p, 2(u)} is even and winOdd if itis odd. Secondly, for any pair, p) € r where
w # u, we replace it with(w, min{p, 2(u)}). Finally, we take the set ofl-minimal
elements from the resulting set. This is njod Note that mo@-) € pot-reX,). The
intuition is that modresult; (Ve, v;)) defines the set of best possible outcomes for player
Odd, if starting atu, the play goes ta; and from that point on, player Even plays
according to strategy. For eachl < i < m, let M; = {mod(r) : r € RegV,,v;)}.

We now wish to use the sets of result, O andO to construct the Ré¥;, v). We
need to distinguish between the cases when V; (i.e. player Even plays from in
the parity game) and € V' \ V; (i.e. player Odd plays).

The simpler case is whane 1}.

Lemma4.1. If u € V, then Refly, u) = J, M; U O.

Proof. Let f be a strategy. If (u) = z;, then result(Vy, ) € O. The other possibility
is that f(u) = v;. In this case, it is clear that resp(V, v) = mod(resulty (Ve, v;))
and this result is inM;. For the converse, it = {(z;,p)} € O, itis clear that
r = result(Vy,u) for any strategyf with f(u) = z,. Now, letr € M; with r =
modresult (Ve, v;)), thenr = result (V;, u) wheref’ is the strategy that moves from
u to v; and then follows the strategyfrom that point on. O

The case when ¢ V), is somewhat trickier. To explain how we can obtain Rgsu)
in this case, we formulate the following lemma.
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Lemma 4.2. If u ¢ Vj, thenr € RegVy, ) if, and only if, there is a function on the
set[m] with c(i) € M; such that = O M ], ,,,) c(2).

Proof.

= Letr € RegVy, u), i.e. there is a strategfysuch that- = result;(V, v). We define
the functionc by c(¢?) = modresult;(Ve, v;)). Since player Odd can move to any
of thev;, it is clear that~ < ¢(¢) for eachi. Odd can also move to any of the
and therefore: < O. Furthermore, for each outcomec r, there is & such that
o = outy 4(Vy,u). Eitherg(u) = v;, in which caser € ¢(i) by construction, or
g(u) = z; ando € O. Together this establish€s [ ], c(i) < 7.

< Letc be a choice function witla(i) = mod(result, (V,v;)) for eachi. Let f be a
strategy that agrees witfy on all paths beginning with the two verticesv;. Then,
itis clear that resuft(Vy, u) = O N[, c(d).

d

Lemma 4.2 suggests constructing Résu) by considering all possible choice
functionsc. However, as each séf; may have as many 4s + 1)* + 2 elements, there
arem(n+1)"+2 possibilities forc and our algorithm would be exponential. We consider
an alternative way of constructing R&%, u). Recall that Red/;, ) C pot-re§X,)
and the latter set has at mgst+ 1) +2 elements. We check, for eache pot-re$X,),
in polynomial time, whether there is a choice functioas in Lemma 4.2 that yields
In particular, we take the following alternative charaistation of Re§V, u).

Lemma 4.3. If u € V;, thenr € RegVy, u) if, and only if, there is a seb C [m] with
|D| < |r| and a functiond on D with d(i) € M, such that

(i) »=0n[l,cpd(); and
(iiy foreachi € D thereis anr; € M; withr < r;.

Proof.

= Assumer € RegV,,u) and letc be the choice function given by Lemma 4.2. For
eacho € r, if o ¢ O select one € [m] such thab € c(i). Let D be the collection
of indicesi selected. By constructionD| < |r|. Now, we definel(i) = ¢(i) for
alli € D andletr; = ¢(i) fori ¢ D.

< GivenD, d and the collection of; as specified, we define the choice functidny

N [d@)ieD
C(Z) o {Ti ) Q/ D
Now, since by hypothesis < r; andr = O M [, d(i), it is easily seen that
7 =00 ];gpm (@)
O

Now, anyr € pot-re§X,) has at mosk elements. Thus, to check whether suctran
is in RegVy, u) we cycle through all set® C [m] with k or fewer elements (and there
areO(n*) such sets) and for each one consider all candidate funeti@fsvhich there
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areO(n*")). Having found al which givesr = O 1 [1p d(i), we then need to find a
suitabler; in eachi € [m] \ D. For this we must, at worst, go through all elements of
all the setsM; and compare them ta This can be done in tim@(n*+1).

We have now obtained the set REg, «). One barrier remains to completing the
construction of Fronti€rl). Elements(v, r) of Frontiee) may have outcomes in
of the form (u, p). Sincew is not in X4, these must be resolved by combining them
with results from Red/;, u). To be precise, let € RegV,,v) for somev € V, and
s € RegVy, u). Define the combined resulfr, s) as follows:

— if r does not contain an outcome of the fofm p), thenc(r, s) = r;
— otherwise,r contains a pai(u, p). Let s’ be obtained froms by replacing every

pair (w, q) by (w, min{p, ¢}). c(r,s) = rns’.

Intuitively, if » = result;(V.,v) ands = result (Vy,u) thenc(r, s) is the set of<-
minimal outcomes that can be obtained if player Even plagsraing to f starting at
v until the nodev is encountered and then switches to stratggy

Lemma 4.4. For anyv € V,,
RegVy,v) = {c(r,s) : r € RegV.,v) ands € RegVy, u)}.

Proof. Itis clear that, for any strateg¥, resulty (Vy, v) = c(resulty(Ve,v), resulty (Vy, u)).
Thus, ReéV,, v) is included in the set on the right hand side. For the conystgmose
first thatr = result;(V,,v) is such that no outcome of the forfn, p) is in r. This
means that when player Even plays according,tthere is no strategy that Odd can
play which will lead to the vertex. Thus result(Ve, v) = result(Vy, v) = ¢(r, s) for
all s. Now, letr = result, (V,,v) include an outcoméu, p) ands = result, (Vy, u).
Let f be the strategy which followg, for the path fronw to « and follows f> onceu
has been reached. Itis easily checked that re@dlt v) = c(r, s). O

We now obtain Fronti€rl) = {(v,r) : r € RegVy,v)}.

Theorem 4.5. For eachk, there is a polynomiap and an algorithm running in time
O(p(n)) which determines the winner of parity games on all graphb mitG-width at
mostk.

Proof. By Proposition 3.27, there is a polynomial-time algorithmattwill produce a
DAG decomposition of the game graph of width This can be converted into a nice
decompositior{D’, (Xq) 4c1o ) in time at most quadratic (in the size of the decompo-
sition). Leta be the root ofD” and letX, = {z1,...,2;} wherel < k. Consider the
dagD formed by addind new elementsy, ..., a;_1 to D’ in a simple directed path
ending ina. Further, for eacti defineX,, to be the se{x1, ..., z;}. In particular, the
new rootay is labelled byz. It is easily seen that the new labelleac (D, (X4)4cy o)

still meets the definition of a nice decomposition. We thesthg above construction to
obtain Frontiefd) for eachd in D, starting from the leaves and working our way to the
root. Since the size dP is at most?* + k, the total time taken is bounded by a poly-
nomial. Now, for the rooty of D X, = V, = V. Thus, if (v,r) € Frontiefag) then

r C {winEvenwinOdd}. If winEven € r, this means that player Even has a strategy to
win the parity game beginning at vertexand if winEveng r, for any strategy played
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by player Even, Odd has a strategy to defeat it. We have thtesrdimed the winner of
the parity game starting at each vertex. O

5 Relation to other graph connectivity measures

As a structural measure for undirected graphs, the conéémeswidth is of unrivaled
robustness. On the realm of directed graphs, however, iisabe seems to be split
among several different concepts. In the sequel we compsgewidth with several
other connectivity measures for directed graphs, nameggtid tree-width introduced
by Johnson et al. [8], directed path-width [1], and entamgiet proposed by Berwanger
and Gradel [2].

Undirected tree-width. First we formalise the relationship betwebaG-width and
undirected tree-width alluded to in previous sections.

Recall that the tree-width of a directed gra@hs defined as the tree-width of the
undirected graph obtained froghby forgetting the orientation of the edges.

Proposition 5.1.

(i) If a directed graphg has tree-widthk, its DAG-width is at mosk + 1.
(i) There exists a family of directed graphs with arbitrarilyde tree-width an®AG-
width 1.

Proof. (i). SupposeT, (W;).cy7) is a tree decomposition &f of width k. Choose
somer € V7T and orient the edges @ away fromr. Thatis if {s,t} € E7 ands is
on the unique path fromto ¢ then changds, ¢t} to (s, t). Since7 is a tree every edge
has a unique orientation in this manner. ebe the resultin@AG. For alld € VP, set
X4 := W, wheret is the node off corresponding ta. We claim that{(D, (X4) ey o)
is aDAG-decomposition off of width k+1. (D1) and (D2) are trivial. (D3) follows from
the connectivity condition of tree decompositions. Theptation ensure® has one
root,r, soX, = V9 and (D4) follows. Finally we need to check (D5). This follofssm
a similar condition for tree decompositions. I(étd’) € ET and suppose € X\ X,.
Suppose also thdb, w) € EY andw ¢ Xy \ X4. We will show thatw € Xq N Xgr.
Sincev ¢ X4 andv € Xy, anyd” such that € X;» must satisfyd’ <p d’ by the
connectivity condition of tree decompositions. Asw) € EY, there existsl” € VP
such that{v, w} C Xg4v. Thusw € Xy. Asw ¢ Xy \ Xy, it follows thatw € X,.
By (D3),w € X4 also, asw € Xy. Thusw € X4z N X4 and (D5) holds.

(ii). For anyn, let K,, be the (undirected) complete graph witherticesv; , va, . . . v,,.
Orient the edges ok, such that(v;, v;) is an edge if and only if < j. The resulting
directed graph is acyclic and therefore Imas-width 1, but the underlying undirected
graph is complete and has tree-width- 1.

O

If G is an undirected graph then Ia be the directed graph obtained by replacing
each edgdu, v} in E9 with two edgesu, v) and (v, u).

Proposition 5.2. G has tree-widthk — 1 if, and only if? hasDAG-width k.
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Proof. It is easily seen that the-cops and robber game for undirected graphg;as
equivalent to thé-cops and robber game for directed graphsEnThe result follows
from the correspondence between the measures and exisiEnognotone winning
strategies. O

Directed tree-width.Aiming to reproduce the success of tree-decompositiontawa
ing divide-and-conquer algorithms, directed tree-widtlassociated to a tree-shaped
representation of the input graph. It was proved that thisasentation leads to effi-
cient algorithms for solving a particular class of NP-coetelproblems, including, e.g.,
Hamiltonicity, when directed tree-width is bounded. Unifimrately this generic method
does not cover many interesting problems. In particul&rgfficient solution of parity
games on bounded tree-width has failed so far to generalidieccted tree-width.

In terms of games, directed tree-width is characterisedrbgtaiction of the robber-
and-cops games faaG-width, in which the robber is only permitted to move to ver-
tices where there exists a directed cop-free path from hénded destination back
to the current position. In contrast to the case of undicktrge-width, for these games
cop-monotonicity and robber-monotonicity differ and ampnotone strategies are known
to not be sufficient.

On basis of the game characterisation, it is clear that entid tree-width of a
graph is a lower bound for it8saG-width. Conversely, theaG-width of a graph cannot
be bound in terms of its directed tree-width, as illustratette following proposition.

Proposition 5.3.

(i) If a graph hasbaG-width &, its directed tree-width is at mo8k + 1.
(i) There exists a family of graphs with arbitrarily largaG-width and directed tree-
width 1.

Proof. (i). If G hasbAG-width k thenk cops can win thé-cops and robber game on
G. Thusk cops can win the game in [8], and §odoes not have a (directed) haven of
sizek. Thereforej has a directed tree decomposition of width+ 1 [8].

(ii). Consider the family{(7,})°° : k& > 2} of graphs defined in Proposition 3.5.
Note that(Z,!)°" is a binary branching tree of heightwith back-edges from every
node to its ancestors. We have shown 1¥3t)°P has game-widttt, and it is clear that
the strategy described fércops is monotone, S@,!)° hasbAG-width k. On the other
hand, if we let7 be the directed tree obtained fraf#,!)°P by removing back-edges;
define for allt’ € V7 By := {t, s} wheret is the corresponding vertex {iT;})°° and
s is the predecessor ofand Xy ) = {s} forall (s',¢') € E7, itis easy to show that
(T, (B})yeyr,(Xe)eerpr) is a directed tree decomposition @ )°P of width 1. For
k > 2, (T;}))°Pis not acyclic and therefore has directed tree-width eydctl

O

An requirement of directed tree decompositions is that #rétpn consists of non-
empty sets. An interesting extension of directed tree deositions is one without
that condition, i.e. using pre-decompositions. The meaguhich we call the extended
directed tree-width) nicely generaliseaG-width without using games.
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Proposition 5.4. If a graph G hasDbAG-width & its extended directed tree-width is at
mostk — 1.

Proof. Let (D, (X4)aep) be aDAG-decomposition o of width k. From Lemma 3.15
we can assum® has a unique root. LT be a spanning tree dP. Let ¢q,1to,.. .,
be the sequence of nodes Bfvisited in a depth-first traversal &f, where a node
is only added after all its children have been. Starting fiom 1, we defineB;, :=
Xa; \ Uj<; Br,, whered, is the node ofD corresponding ta;. For (s,t) € ET we
setWi, ) = Xo N Xy wheres’,t" are the nodes oD corresponding te andt
respectively. It follows easily thdT, (B;);cy 7, (We)ecp7) iS a pre-decomposition of
G of width at mostk — 1. O

Directed path-width.Directed path-width was introduced by Thomas [16] as a gener
alisation of path-width to directed graphs. Formally, a&died path decomposition of a
directed graply is a sequenc®/,, W, ..., W,, such that

(P1) Ui, Wi = V9,
(P2) Ifi < ¢ <" thenW; N W;» C W,
(P3) For every edgéu, v) € EY there exist < j such that: € W; andv € W;.

The width of Wy, W, ..., W, ismax{|W;| : 1 <4 < n} — 1, and thedirected path-
width of G is the minimal width of all directed path decompositions.

It is worth noting that for undirected graphs, path-widthd#y generalises to tree-
width as a path decomposition is also a tree decompositimndifected graphs how-
ever, this is not the case. We next show that DAG-width doegigdise directed path-
width in this way.

Proposition 5.5.

(i) Ifagraphg has directed path-width, its DAG-width is at mosk + 1.
(i) There exists a family of graphs with arbitrarily large dited path-width an®AG-
width 2.

Proof. (i). Let Wy, Ws, ..., W, be a directed path decompositiongdbf width k. Let
D,, be the directed path with vertices. That is/P» = {d1,...,d,} and(d;,d;) €
EPifandonlyifj = i+1.SetX,, := W; foralld; € VP». We claim(D,,, (X4)acyon)
is a DAG-decomposition ofy of width k£ + 1. (D1) and (D4) are obvious. (D2) fol-
lows from (P1) and (D3) follows from (P2). To show (D5), for< i < n suppose
v € Xy, \ Xa, and(v,w) € EY9. From (P3) there exist < j’ such that € W
andw € Wy If i/ < i, then by (P2 € Xg,, contradicting the choice af. Thus
i<i' <jandw € Ay,,,. Ifw ¢ Xg,,, \ Xq, thenw € Xy, and thereforev € X,
by (P2). ThusX,4, N XdH»l guardstM \ Xd,.

(ii). Let 7y, be the (undirected) binary tree of height> 2. From Proposition 5.2,
(f; hasDAG-width 2. It is known that7;, has path-width exactly — 1, and it is straight-

forward to show tha(tf; must therefore have directed path-width exaéthy 1. Thus
the family {7}, : k > 2} satisfies the proposition.

i4+1

d
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In [1], Barat showed that directed path-width correspaotudghe number of cops
required to catch an invisible robber on a directed grapkhttuld therefore not be
surprising that our measure generalises directed pattirwid

Entanglement.The notion of entanglement measures the nesting depthexftda cy-
cles in a graph. In terms of robber-and-cop games, it is nbthby restricting the mo-
bility of both the robber and the cops so that in any roundctieplayer may send one
cop to the robber’s current position (or do nothing) while tbbber can only move to
a successor of his current residence.

Unlike the other graph widths considered here, entangléim@ot associated to an
efficient tree-shaped graph representation. Neverthéesss shown that parity games
on arenas of of bounded entanglement can be solved in polghtime. In fact, just
a bound on the minimal entanglement of a subgraph inducedpyaning strategy
rather than of the input arena is required.

The following proposition shows that having boundsds-width is more general
than having bounded entanglement. On the other hand, theegapeerpAac-width and
entanglement can be at most logarithmic in the number ofrgveptices.

Proposition 5.6.

(i) If a graph has entanglemeht its DAG-width is at mosk + 1.
(i) There are graphs with arbitrarily large entanglement butwbAG-width 2.
(iii) 1f a graphG hasbAG-width k, its entanglement is at mo&t + 1) - log [V9|.

Proof. (i). Let G be a graph of entanglemeht We trace a generic play of timnG-
width game withk + 1 cops ong alongside with an auxiliary entanglement game with
k cops on the same graph. Our aim is to transfer the moves obbieer from the first
to the second game and those of the cops vice versa, so thplaygeproceed, and
end, simultaneously. Basically, the moves of theops will just be copied to the first
game; on account of the robber’s ability in theG-width game to move along several
edges at a time, we employ an additional cop, catlealser who follows the itinerary
of the robber, but moving slowly, one edge per round. Theesfeach round in the
entanglement game will be associated to two half-roundseémaG-width game, one
for copying the cop’s move and another for posting the chaser

We keep a record of the following data at the beginning of andothe set of po-
sitions occupied by cops in the entanglement game [V]=*, the position; of the
robber in this game which coincides with the position of thaser in thebAG-width
game, and the positiosy of the robber in the@AG-with game. During the play;; will
always be on the trajectory of the robber in thwes-width game. Letr; be the simple
path fromr; to s; following this trajectory but avoiding cycles. We will maain the
invariant that beyond its first positian is cop-free.

At the beginning of a play, in theaG-game, the cop player chooses the empty set
Xy := @ and the robber chooses the initial positignIn the second phase of this first
round, the cop player then posts the chaSgr= {r} while the robber may moves to
some positionsy. Passing to the auxiliary entanglement game, we set theidlepaind
the robber toy. Thus, the plays are leftin the configuratidfis, }, so) and respectively

(@,7’0).
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Let (X;,r;) andX; U {r;}, s; be the starting configuration for roungand let; be
the (shortcut) link along the trajectory of the robber frojro s;. We assume that the
segment; avoidsX; from the second position onwards.

To decide on the next move of the cop player, we first look atethtanglement
game. There his winning strategy may indicate either

(i) donothing:X,;+; = X;, or
(i) posta fresh cop to the robber’s current positiéh: 1 = X; U {r;}, or
(iii) move the cop from vertex € X to the current positionX,; ;; = (X; \ z) U{r;}.

Notice that in thedbAG-game the position; is already guarded by the chaser. To transfer
the cop’s move from the entanglement game, we might hengetkki first phase in
the first two cases listed above. In the latter case, whendheneeds to be removed
from positionz, we choose the séfX; \ z) U {r;} for the cop player. Meanwhile, the
robber moves to some positigrthat he can reach from avoiding X;.,. Hence, by
our assumption, the (cycle-simplified) path frofnvia o; to s following the robber’s
trajectory will also avoidX; ;. In particular, it implies that the successorgfalong
this path is cop-free. We choose this successor as a new position for the the chaser.
Hence, in the second phase of the round, the chaser is rerfroved; and sent to to
r;+1. During this cop-move, the robber will prolong his trajegtto some positios; ;.
However notice that this prolongation does either not goughr; or it closes a cycle
which will be discarded so that the new segment; which linksr; 1 to s; 41 still
fulfills our invariant. Finally, we interpret the chaserlsaice as a move of the robber in
the entanglement game which thus assumes the new conf@yufati,,,r;41).

Thanks to our invariant, the robber can thus freely move énathtanglement game
as long as the robber in tlaG-width game was able to move. But since the cop player
has a winning strategy fdt cops this cannot go well forever. Hence, it must happen
that eventually the robber cannot prolong his trajectoylases. This shows th&t+ 1
cops have a winning strategy in tlmaG-width game ong, or equivalently that the
DAG-width of G is at mostk + 1.

(ii). Let Tkl be the full binary tree of depth with edges oriented downwards,
and IetTkT be the same tree with edges oriented upwards. Every nb@?’,j has a
doublev’ € 7', and vice versa. The gragh(2, k) is constructed by taking the union
Tkl U T,J, adding edges from each leaf to its double (in both dires)iosnd adding the
edges(u!, v') for each edgéu’, ') of 7,'. Itis easy to see that (2, k) DAG-width 2.

We claim that en(iG(2, k)) > k. To prove this we describe a strategy by which the
thief escapes againktdetectives. We call a path (2, k) freeif all nodes on the path
and all their doubles are unguarded by the detectives. Wéhsaya node iblockedif
both the node and its double are guarded. The thief movesdingao the following
strategyat a leafw', she selects an ancestof of w! from which there is a free path
to a leafv!. She goes to! by moving upwards throug‘l?f,j, stepping over ta:' and
moving downwards througﬁj. Finally she steps over to'.

With this strategy, the thief is never below a blocked noddedf has (including
itself) k£ + 1 ancestors inT,j, so there is always an ancestor with a free path to a leaf.
Thus, the thief can maintain this strategy and escape foreve
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(#i7). This follows from thek-separator property for graphs DAG-width &. In the
entanglement game on such a graph, a winning strategy farojh& can be described
as follows: choose a balanced separ&t@nd place a cop whenever the robber passes
through a vertex irs. Intuitively, we intend to cut the graph into two partitionsing
at mostk cops, so that the robber is trapped in either one of them. This produced
when all vertices it are occupied by cops. While waiting for this event, we appéy t
procedure recursively on the partition where the robberenily resides. Whenever he
moves to the other partition, we may remove any cop from tiggral one. In case the
robber again returns to the previous partition, on moreexeiri the separator will be
blocked, so that the robber is finally trapped in a partitiduing a play, these partitions
decrease up to size one, at which point the robber loses. O

We conclude that, despite their conceptual affinity, deddree-width, directed
path-width, entanglement, amdG-width are rather different measures. The following
inequalities summarise, up to constant factors, the resthiis section.

directed tree-widttG) < DAG-width(G) < tree-widtHG)
DAG-width(G) < directed path-widtfG)
ent(G)/log |[VY| < pAG-width(G) < entG).

Furthermore, for any inequality above there exist famiiégraphs for which the in-
equality (up to constant factors) is strict.

References

1. J. BARAT, Directed path-width and monotonicity in digraph searchifig appear irGraphs
and Combinatorics

2. D. BERWANGER AND E. GRADEL, Entanglement — a measure for the complexity of directed
graphs with applications to logic and gamés LPAR, 2004, pp. 209-223.

3. H. L. BODLAENDER, Treewidth: Algorithmic techniques and resulia MFCS, 1997,
pp. 19-36.

4. B. COURCELLE, Graph rewriting: An algebraic and logic approac Handbook of Theo-
retical Computer Science, Volume B: Formal Models and SeséB), J. van Leeuwan, ed.,
1990, pp. 193-242.

5. N. D. DENDRIS, L. M. KIROUSIS, AND D. M. THILIKOS, Fugitive-search games on
graphs and related parameter§CS, 172 (1997), pp. 233-254.

6. E. BMERSON, C. UTLA, AND A. SISTLA, On model checking for the-calculus and its
fragments TCS, 258 (2001), pp. 491-522.

7. G. GOTTLOB, N. LEONE, AND F. SCARCELLO, Robbers, marshals, and guards: Game
theoretic and logical characterizations of hypertree Wwjdh PODS, 2001, pp. 195-201.

8. T. JOHNSON, N. ROBERTSON P. D. SYMOUR, AND R. THOMAS, Directed tree-width
Journal of Combinatorial Theory, Series B, 82 (2001), p3-154.

9. M. JURDzINsSKI, Deciding the winner in parity games is in UPco-UP, Information Pro-
cessing Letters, 68 (1998), pp. 119-124.

10. D. KozkeN, Results on the propositional mu-calculTES, 27 (1983), pp. 333-354.

28



11

12.

13.

14.

15.

16.

J. BDRZALEK, Fast mu-calculus model checking when tree-width is bounide®roceed-
ings of 15th International Conference on Computer AidedflMation, vol. 2725 of LNCS,
Springer, 2003, pp. 80-92.

B. A. REED, Introducing directed tree widthn 6th Twente Workshop on Graphs and Com-
binatorial Optimization, vol. 3 of Electron. Notes Dis@étlath, Elsevier, 1999.

N. ROBERTSON ANDP. SEYMOUR, Graph Minors. Ill. Planar tree-widthJournal of Com-
binatorial Theory, Series B, 36 (1984), pp. 49-63.

M. SafFARI, D-width: A more natural measure for directed tree width MFCS 2005,
vol. 3618 of LNCS, Springer, 2005, pp. 745-756.

P. $YMOUR AND R. THOMAS, Graph searching, and a min-max theorem for tree-width
Journal of Combinatorial Theory, Series B, 58 (1993), pp-3&

R. THOMAS, Directed tree-width Slides from lecture at the Regional NSF-CBMS Confer-
ence, 2002. Available at http://www.math.gatech.edutthse/SLIDE/CBMS/dirtrsl.pdf.

29



