
DAG-Width and Parity Games

Dietmar Berwanger1, Anuj Dawar2, Paul Hunter3, and Stephan Kreutzer3

1 LaBRI, Université de Bordeaux 1,dwb@labri.fr
2 University of Cambridge Computer Laboratory,anuj.dawar@cl.cam.ac.uk

3 Logic and Discrete Systems, Institute for Computer Science, Humboldt-University Berlin,
{hunter,kreutzer}@informatik.hu-berlin.de

Abstract. Tree-width is a well-known metric on undirected graphs thatmea-
sures how tree-like a graph is and gives a notion of graph decomposition that
proves useful in algorithm development. Tree-width is characterised by a game
known as the cops-and-robber game where a number of cops chase a robber on
the graph. We consider the natural adaptation of this game todirected graphs and
show that monotone strategies in the game yield a measure with an associated
notion of graph decomposition that can be seen to describe how close a directed
graph is to a directed acyclic graph (DAG). This promises to be useful in devel-
oping algorithms on directed graphs. In particular, we showthat the problem of
determining the winner of a parity game is solvable in polynomial time on graphs
of boundedDAG-width. We also consider the relationship betweenDAG-width
and other measures of such as entanglement and directed tree-width. One conse-
quence we obtain is that certain NP-complete problems such as Hamiltonicity and
disjoint paths are polynomial-time computable on graphs ofboundedDAG-width.

1 Introduction

The groundbreaking work of Robertson and Seymour in their graph minor project has
focused much attention on tree-decompositions of graphs and associated measures of
graph connectivity such as tree-width [13]. Aside from their interest in graph structure
theory, these notions have also proved very useful in the development of algorithms.
The tree-width of a graph is a measure of how tree-like the graph is, and it is found that
small tree-width allows for graph decompositions along which recursive algorithms can
work. Many problems that are intractable in general can be solved efficiently on graphs
of bounded tree-width. These include such classical NP-complete problems as finding
a Hamiltonian cycle in a graph or detecting if a graph is three-colourable. Indeed, a
general result of Courcelle [4] shows that any property definable in monadic second-
order logic is solvable in linear time on graphs of fixed tree-width.

The idea of designing algorithms that work on tree-decompositions of the input has
been generalised from graphs to other kinds of structures. Usually the tree-width of a
structure is defined as that of the underlying connectivity (or Gaifman) graph. For in-
stance, the tree-width of a directed graph is simply that of the undirected graph we get
by forgetting the direction of edges, a process which leads to some loss of information.
This loss may be significant if the algorithmic problems we are interested in are inher-
ently directed. A good example is the problem of detecting Hamiltonian cycles. While
we know that this can be solved easily on graphs with small tree-width, there are also

directed graphs with very simple connectivity structure which have large tree-width. A
directed acyclic graph (DAG) is a particularly simple structure, but we lose sight of this
when we erase the direction on the edges and find the underlying undirected graph to
be dense. Several proposals have been made (see [12, 8, 2, 14]) which extend notions of
tree-decompositions and tree-width to directed graphs. Inparticular, Johnson et al. [8]
introduce the notion ofdirected tree-widthwhere directed acyclic graphs have width 0
and they show that Hamiltonicity can be solved for graphs of bounded directed tree-
width in polynomial time. However, the definition and characterisations of this measure
are somewhat unwieldy and they have not, so far, resulted in many further developments
in algorithms.

We are especially interested in one particular problem on directed graphs, that of
determining the winner of aparity game. This is an infinite two-player game played
on a directed graph where the nodes are labelled by priorities. The players take turns
pushing a token along edges of the graph. The winner is determined by the parity of the
least priority occurring infinitely often in this infinite play. Parity games have proved
useful in the development of model-checking algorithms used in the verification of
concurrent systems. The modalµ-calculus, introduced in [10], is a widely used logic for
the specification of such systems, encompassing a variety ofmodal and temporal logics.
The problem of determining, given a systemA and a formulaϕ of the µ-calculus,
whether or notA satisfiesϕ can be turned into a parity game (see [6]). The exact
complexity of solving parity games is an open problem that has received a large amount
of attention. It is known [9] that the problem is in NP∩ co-NP and no polynomial
time algorithm is known. It follows from the general result of Courcelle [4] that there
is a polynomial time algorithm that solves parity games on graphs of bounded tree-
width. Obdržàlek [11] exhibited a particular such algorithm. He points out that the
algorithm would not give good bounds, for instance, on directed acyclic graphs even
though solving the games on such graphs is easy. He asks whether there is a structural
property of directed graphs that would allow a fast algorithm on both bounded tree-
width structures and onDAGs.

In this paper, we give just such a generalisation. We introduce a new measure of the
connectivity of graphs that we callDAG-width4. It is intermediate between tree-width
and directed tree-width, in that for any graphG, the directed tree-width ofG is no greater
than itsDAG-width which, in turn, is no greater than its tree-width. Thus, the class of
structures ofDAG-width k + 1 or less includes all structures of tree-widthk and more
(in particular,DAGs of arbitrarily high tree-width all haveDAG-width 1).

The notion ofDAG-width can be understood as a simple adaptation of the game
of cops and robber(which characterises tree-width) to directed graphs. The game is
played by two-players, one of whom controls a set ofk cops attempting to catch a
robber controlled by the other player. The cop player can move any set of cops to any
nodes on the graph, while the robber can move along any path inthe graph as long as
there is no cop currently on the path. Such games have been extensively studied (see [15,
5, 7, 1, 2]). It is known [15] that the cop player has a winning strategy on an undirected
graphG usingk + 1 cops if, and only if,G has tree-widthk. We consider the natural

4 We understand that Obdržàlek has defined a similar measurein a paper to appear at SODA’06.
We have not yet had an opportunity to see that paper.

2

adaptation of this game to directed graphs, by constrainingthe robber to move along
directed paths. We show that the class of directed graphs where there is a monotone (in
a sense we make precise) strategy fork cops to win is characterised by its width in a
decomposition that is a generalisation of tree-decompositions. We are then able to show
that the problem of determining the winner of a parity game issolvable in polynomial
time on the class of graphs ofDAG-width k, for any fixedk.

In Section 2, we introduce some notation. Section 3 introduces the cops and robber
game,DAG-decompositions andDAG-width and shows the equivalence between the ex-
istence of monotone winning strategies andDAG-width. Also in Section 3 we discuss
some algorithmic aspects ofDAG-width. Section 4 proves the existence of a polynomial
time algorithm for solving parity games on such graphs, and Section 5 relatesDAG-
width to other measures of graph connectivity. All proofs are in the appendix.

2 Preliminaries

We first fix some notation used throughout the paper. All graphs used are finite, directed
and simple unless otherwise stated.

We writeω for the set of finite ordinals, i.e. natural numbers. For every n ∈ ω, we
write [n] for the set{1, . . . , n}. For every setV and everyk ∈ ω, we write [V]k for
the set of allk-element subsets ofV , that is,[V]k := {{x1, . . . , xk} ⊆ V : xi 6= xj

wheneveri 6= j}. We write[V]≤k for the set of allX ⊆ V with |X | ≤ k.
Let G be a directed graph. We writeV G for the set of its vertices andEG for the set

of its edges. LetV ⊆ V G be a set of vertices. We write〈V 〉G for the sub-graph induced
by V . Further,Eop denotes the set of edges that results from reversing the edges in E,
i.e.Eop = {(w, v) : (v, w) ∈ E}. The graphGop is defined to be(V, Eop).

The block graphof a graphG is the graph(H, I) whereH is the set of strongly
connected components ofG and there is an edge(u, v) ∈ I if there is an edge inG from
a node inu to a node inv.

A tree-decomposition of a graphG is a labelled tree(T , (Xt)t∈V T) whereXt ⊆ V G

for each vertext ∈ V T , for each edge(u, v) ∈ EG there is at ∈ V T such that
{u, v} ⊆ Xt, and for eachv ∈ V G , the set{t ∈ V T : v ∈ Xt} forms a connected
subtree ofT . The width of a tree-decomposition is the cardinality of the largestXt

minus one. The tree-width ofG is the smallestk such thatG has a tree-decomposition
of width k.

LetD := (D, A) be a directed, acyclic graph (DAG). The partial order�D (or�A)
on D is the reflexive, transitive closure ofA. A root of a setX ⊆ D is a�D-minimal
element ofX , that is,r ∈ X is a root ofX if there is noy ∈ X such thaty �D r.
Analogously, aleaf of X ⊆ D is a�D-maximal element.

3 Games, Strategies and Decompositions

This section contains the graph theoretical part of this paper. We defineDAG-width and
its relation to graph searching games. As mentioned in the introduction, the notion of
tree-width has a natural characterisation in terms of a copsand robber game. Directed

3

tree-width has also been characterised in terms of such games [8], but these games
appear to be less intuitive. In this paper, we consider the straightforward extension of
the cops and robber game from undirected graphs to directed graphs. We show that
these games give a characterisation of the graph connectivity measure that we callDAG-
width and introduce in Section 3.2. We comment on algorithmic properties in Section
3.3.

3.1 Cops and Robber Games

The Game. The Cops and Robber game on a digraph is a game wherek cops try to
catch a robber who may run along paths in the digraph. While the robber is confined
to moving along paths in the graph, the cops may move to any vertex at any time. A
formal definition follows.

Definition 3.1 (Cops and Robber Game). Given a graphG := (V, E), thek-cops and
robber game onG is played between two players, thecop and therobber player, as
follows:

– At the beginning, the cop player choosesX0 ∈ [V]≤k, and the robber player
chooses a vertexr0 of V \X0, giving position(X0, r0).

– From position(Xi, ri), the cop player choosesXi+1 ∈ [V]≤k, and the robber
player chooses a vertexri+1 of V \Xi+1 such that there is a path fromri to ri+1

which does not pass through a vertex inXi ∩ Xi+1. If no such vertex exists then
the robber player loses.

A play in the game is a (finite or infinite) sequenceπ := (X0, r0)(X1, r1) . . . of posi-
tions such that the transition from(Xi, ri) to (Xi+1, rr+1) is a valid move by the rules
above and such that the play is finite if, and only if,rn ∈ Xn for the final position
(Xn, rn). A play is winning for the robber player if it is infinite.

Definition 3.2 (Game-width). Thegame-width gw(G) of G is the leastk such that the
cop player has a strategy to win thek-cops and robber game onG.

Variants of the game where the robber moves first or only one cop can be moved at
a time or the cops are lifted and placed in separate moves are all equivalent in that the
game-width of a graph does not depend on the variant.

Lemma 3.3. For every finite, non-empty, directed graphG the game-width gw(G) is at
least one and gw(G) = 1 if, and only if,G is acyclic.

Proof. We have no requirement that the robber moves, so as long as there is one vertex,
the robber can defeat zero cops by remaining on that vertex. If G is acyclic then one cop
can catch the robber by playing to the robber’s current position. Eventually the robber
will not be able to move and the cop will capture him. Conversely, if G has a cycle then
the robber can defeat one cop by forever staying in the cycle. �

Games similar to the one defined above have been used to give game characterisa-
tions of concepts like undirected tree-width [15] and also the directed tree-width of [8].
Directed tree-width is invariant under reversing the edgesof a graph. As we see be-
low, this is not true of the game-width we have defined. One exception are graphs of
game-width1, i.e. acyclic graphs.

4

Proposition 3.4. gw(G) = 1 if, and only if gw(Gop) = 1.

Proof. If G has a cycle(v0, v1, . . . , vn) thenGop also has a cycle:(vn, vn−1, . . . , v0),
and vice-versa. Hence, by Lemma 3.3, gw(G) 6= 1 iff G has a cycle, iffGop has a cycle,
iff gw(Gop) 6= 1. �

Proposition 3.5. For any j, k with 2 ≤ j ≤ k, there exists a graphT j
k such that

gw(T j
k) = j and gw((T j

k)op) = k.

Proof. Let T j
k be a binary branching tree of heightk (i.e. 2k − 1 vertices) where

every vertexv has a “forward-edge”5 to each of its descendants, i.e. the forward edges
form the transitive closure of the original tree-edges, anda “back-edge” to itsj nearest
ancestors. To show gw(T j

k) = j, first we see thatj cops have a winning strategy by
initially playing on the root then following the robber down, in a leap-frogging manner,
whichever subtree he plays in. To defeatj−1 cops, robber chooses any leaf. Whenever
a cop moves to that leaf, a simple counting argument shows that there must be at least
one unoccupied ancestor with at least one clear path to a leafbelow. Robber then plays
to that ancestor and along that path to the leaf.

For (T j
k)op, k cops suffice to chase the robber down from the root. To defeatk − 1

cops, the robber plays the strategy that defeatsj − 1 cops inT j
k . �

As always when dealing with games we are less interested in a single play in the
game as in strategies that allow a player to win every play in the game. Winning strate-
gies for the cop player play a crucial role throughout this paper. We therefore give a
precise definition of this notion.

Definition 3.6. Let G := (V, E) be a directed graph.

(i) A (k-cop) strategyfor the cop player is a functionf from [V]≤k × V to [V]≤k.
A play (X0, r0), (X1, r1), . . . is consistentwith a strategyf if Xi+1 = f(Xi, ri)
for all i. The strategyf is called awinning strategy, if every play consistent with
f is winning for the cop player.

(ii) A strategy for the cop player iscop-monotoneif in playing the strategy, no vertex
is visited twice by cops. That is, if(X0, r0), (X1, r1) . . . is a play consistent with
the strategy, then for every0 ≤ i < n andv ∈ Xi \Xi+1, v /∈ Xj for all j > i.

(iii) A strategy for the cop player isrobber-monotoneif in playing the strategy, the set
of vertices reachable by the robber is non-increasing.

Lemma 3.7. If the cop player has a cop-monotone or robber-monotone winning strat-
egy then it also has a winning strategy that is both, cop- and robber-monotone.

Proof. Suppose the cop player has a robber-monotonewinning strategy, and let(X0, r0), (X1, r1) . . .
be a play consistent with that strategy. From this we construct a sequence which can be
used to define a cop-monotone strategy in the obvious way. SupposeXi ⊇ Xi+1 and
let v ∈ Xi \ Xi+1. As v ∈ Xi, robber is unable to reachv when the cops are onXi.

5 To aid description of strategies, we prefer to viewT j

k as a directed binary branching tree
with some additional structure, there is no actual difference between edges, forward-edges and
back-edges

5

As the strategy is robber-monotone, robber is unable to reach v at any further stage, in
particular, he cannot reachv when the cops are onXi+1 (i.e. not onv). Thus no cop
needs to revisitv in order to prevent robber from reachingv – if robber can reachv, then
he must have reached a vertex which he could not when the cops were onXi+1, con-
tradicting the robber-monotonicity of the strategy. Thus we can removev from all Xj ,
j > i. Proceeding in this way results in a sequence(X0, r0), (X

′
1, r1), The strategy

which takes(X ′
i, ri) to X ′

i+1 is cop-monotone for this play. Repeating this for all plays
(i.e. every choice for robber) results in a cop-monotone strategy. Hence, whenever the
cop player has a robber-monotone winning strategy it also has a cop-monotone strategy.

We show next that any cop-monotone winning strategy for the cop player is ac-
tually robber-monotone also. This proves the lemma. Suppose the cop player has a
cop-monotone winning strategy. Let(X0, r0), (X1, r1) . . . be a play consistent with the
strategy, andR0, R1, . . . , Rn be the corresponding robber space, i.e. the set of vertices
reachable for the robber. By the definition of the game, we canassume the strategy al-
ternates placing and removing (possibly no) cops. Clearly we only need to consider the
action of removing the cops, i.e. the case whereXi ⊇ Xi+1, as adding cops can only
reduce the robber space. Letv ∈ Xi \Xi+1. As v /∈ Xj for all j > i, robber is unable
to reachv otherwise robber could play tov and sit there indefinitely – contradicting the
fact that cop player is playing a winning strategy. Thus the robber is unable to reach any
of the vertices inXi \ Xi+i and is therefore unable to reach any new vertices. Hence
Ri ⊇ Ri+1, so the strategy is robber-monotone. �

From this lemma we can define amonotone winning strategyin the obvious way.

3.2 DAG-Decompositions andDAG-Width

In this section we define the notion ofDAG-width which measures how close a given
graph is to being acyclic. We present a decomposition of directed graphs that is some-
what similar in style to tree-decompositions of undirectedgraphs. We show then that a
graph hasDAG-width k if, and only if, the cop player has a monotone winning strategy
in thek-cops and robber game played on that graph. We conclude with some properties
enjoyed byDAG-width.

Definition 3.8. Let G := (V, E) be a graph. A setW ⊆ V guardsa setV ′ ⊆ V if
whenever there is an edge(u, v) ∈ E such thatu ∈ V ′ andv 6∈ V ′ thenv ∈W .

Definition 3.9 (DAG-decomposition). Let G := (V, E) be a directed graph. ADAG-
decompositionis a tupleD = (D, (Xd)d∈V D) such that

(D1) D is aDAG.
(D2)

⋃

d∈V D Xd = V .
(D3) For alld �D d′ �D d′′, Xd ∩Xd′′ ⊆ Xd′ .
(D4) For a rootd, Xd is guarded by∅.
(D5) For all(d, d′) ∈ ED, Xd ∩Xd′ guardsXd′ \Xd , whereXd′ :=

⋃

d′�Dd′′ Xd′′ .

The width ofD is defined asmax{|Xd| : d ∈ V D}. The DAG-width of a graph is
defined as the minimal width of any of itsDAG-decompositions.

6

The main result of this section is an equivalence between monotone strategies for
the cop player andDAG-decompositions.

Theorem 3.10. For any graphG there is aDAG-decomposition ofG of widthk if, and
only if, the cop player has a monotone winning strategy in thek-cops and robber game
onG.

To prove this, we first need some observations about guarding.

Lemma 3.11.

(i) If X0 guardsY0 andX1 guardsY1, thenX0 ∪X1 guardsY0 ∪ Y1.
(ii) If X guardsY andZ ⊇ X , thenZ guardsY .
(iii) If X guardsY thenX ∪ Z guardsY \ Z

Proof.

(i) Suppose(v, w) ∈ EG , v ∈ Y0 ∪ Y1 andw /∈ Y0 ∪ Y1. Let v ∈ Yi, thenw ∈ Xi,
asXi guardsYi. Hencew ∈ X0 ∪X1, andX0 ∪X1 guardsY0 ∪ Y1.

(ii) Suppose(v, w) ∈ EG , v ∈ Y andw /∈ Y . As X guardsY , w ∈ X . As Z ⊇ X ,
w ∈ Z. Therefore,Z guardsY .

(iii) Suppose(v, w) ∈ EG , v ∈ Y \Z andw /∈ Y \Z. Thusw /∈ Y or w ∈ Z. For the
first case,w ∈ X asX guardsY . Hencew ∈ X ∪ Z.

�

We now turn to the proof of Theorem 3.10. Suppose the cop player has a monotone
winning strategyf in thek-cops and robber game on a graphG. We can assume that the
first move defined byf is to place no cops. We can also assume, asf is (cop-)monotone,
that cops are only ever placed on vertices that are reachableby the robber. That is,

f(X, r) ⊆ X ∪ ReachG\X(r). (1)

To prove the theorem we first capture thek-cops and robber game onG by a sim-
pler, token-moving game. This game is played on a graphΠk(G), whereV Πk(G) :=
[V G]≤k×V G andEΠk(G) consists of all pairs

(

(X, r), (X ′, r′)
)

such thatr′ ∈ ReachG\(X∩X′)(r).
That is,

(

(X, r), (X ′, r′)
)

is an edge if going from(X, r) to (X ′, r′) is a legal move in
thek-cops and robber game. Thek-cops and robber game can then be seen as a game
which the robber player moves a token aroundΠk(G), along edges nominated by the
cop player. A slight variant of this game (in which the two players alternately move the
token on a larger graph) is used in Theorem 3.26.

LetD be the subgraph ofΠk(G) obtained by restrictingΠk(G) to nodes from which
the cop player wins playingf and to edges

(

(X, r), (X ′, r′)
)

such thatX ′ = f(X, r),
i.e. edges which are consistent withf . As f is a winning strategy for the cop player,D
is an acyclic subgraph ofΠk(G). We call this thestrategyDAG defined byf . Note that
the nodes ofD are positions in the cops and robber game. Hence the functionf is well
defined for alld ∈ V D. We claim thatD := (D, (Xd)d∈V D), whereXd = f(d) for
all d ∈ V D, is aDAG-decomposition ofG of width≤ k. To support our claim, we first
observe the following simple facts. Ford = (X, r) ∈ V D,

7

ReachG\X(r) ⊆
⋃

d�Dd′

f(d′) ⊆ X ∪ ReachG\X(r). (2)

The first inequality follows from the fact thatf is a winning strategy for the cop
player – at position(X, r) every vertex reachable by the robber(ReachG\X(r)) will
be occupied by a cop at some point in the future. The second inequality follows from
repeated application of Equation 1. Further, ford = (X, r) ∈ V D,

ReachG\X(r) = ReachG\(X∩f(X,r))(r). (3)

AsX∩f(X, r) ⊆ X , ReachG\X(r) ⊆ Reach(X∩f(X,r))(r). The converse follows from
the fact thatf is a robber-monotone strategy.

The two equations together imply ford = (X, r):

(

⋃

d�Dd′

f(d′)
)

\X = ReachG\(X∩f(X,r))(r). (4)

We now show thatD is indeed aDAG-decomposition of width≤ k. As observed
above,D is aDAG as otherwisef would not be a winning strategy for the cop player.
For (D2), if there was av ∈ V \

⋃

d∈V D Xd, then, as we assumedf initially placed
no cops, the robber could defeatf by playing tov and staying there indefinitely. Hence
⋃

d∈V D Xd = V . (D3) follows immediately from the monotonicity of the winning
strategyf . Towards establishing (D4), letd = (X, r) be a root ofD. As we assumed
the first move off is to place no cops,X must be∅. By Equation 4,

Xd =
(

⋃

d�Dd′

f(d′)
)

= ReachG(r),

and is therefore guarded by∅. Finally, to show (D5), suppose(d, d′) ∈ ED. If d′ =
(X ′, r′) thenXd = f(d) = X ′. So by Equation 4,

Xd′ \Xd =
(

⋃

d′�Dd′′

f(d′′)
)

\X ′ = ReachG\(X′∩f(X′,r′))(r
′).

Therefore,Xd ∩ Xd′ = X ′ ∩ f(X ′, r′) guardsXd′ \ Xd. It follows thatD is a DAG-
decomposition. To see thatD has width≤ k, note thatmax{|Xd| : d ∈ V D} =
max{|f(d)| : d ∈ V D} ≤ k.

Conversely, let(D, (Xd)d∈V D) be aDAG-decomposition of widthk. A strategy for
k cops can then be defined as:

(1) Let the robber choose a vertexv ∈ V . From (D2), there existsdv ∈ V D such that
v ∈ Xdv

. Let d be a root ofD which lies abovedv.
(2) Place cops onXd.
(3) From (D5) and Lemma 3.11(ii),Xd guardsXd \Xd. Therefore, the robber can only

move to vertices inXd \ Xd. Suppose the robber moves tov′ ∈ Xd′′ . Let d′ be a
child of d which lies aboved′′.

(4) Remove cops onXd \Xd′ (leaving cops onXd ∩Xd′)

8

(5) As Xd ∩Xd′ guardsXd′ \Xd, the robber can only move to vertices inXd′ – that
is, the robber must remain in the sub-DAG rooted atd′.

(6) Return to step 2 withd′ asd.

AsD is aDAG, at some point the robber player will not be able to move (sinceXd \Xd

is empty whend is a leaf). Hence this is a winning strategy fork cops. To show that it
is monotone, observe that (D3) ensures that at no point does acop return to a vacated
vertex. This concludes the proof of Theorem 3.10. ⊓⊔

The remainder of this section looks at some properties ofDAG-decompositions mo-
tivated by similar results for tree-width and tree decompositions. First we make two
useful observations.

Lemma 3.12. Let (D, (Xd)d∈V D) be aDAG-decomposition. For all(d, d′) ∈ ED,

Xd′ \Xd = Xd′ \ (Xd ∩Xd′).

Proof. As Xd∩Xd′ ⊆ Xd,Xd′ \Xd ⊆ Xd′ \(Xd∩Xd′). Conversely, supposex ∈ Xd′ .
We will show thatx ∈ Xd ∩Xd′ , or x /∈ Xd. Let x ∈ Xd′′ for d′ �D d′′, and suppose
x ∈ Xd. Then asd �D d′ �D d′′, x ∈ Xd ∩Xd′′ ⊆ Xd′ . Hencex ∈ Xd ∩Xd′ . Thus
Xd′ \Xd ⊇ Xd′ \ (Xd ∩Xd′). �

Lemma 3.13. Let D = (D, (Xd)d∈V D) be a DAG-decomposition of a graphG. For
W ⊆ V G , D|W := (D, (Xd ∩W)d∈V D) is a DAG-decomposition of〈W 〉G .

Proof. Clearly (D1), (D2), and (D3) still hold forD|W . For (D4) and (D5), we observe
that if X guardsY in G, thenX ∩W guardsY ∩W in 〈W 〉G . For if v ∈ Y ∩ W ,
w ∈ W \ Y and(v, w) ∈ EG , thenw ∈ X (asX guardsY), hencew ∈ X ∩W . (D4)
and (D5) then follow immediately from the respective conditions forD. �

For algorithmic purposes, it is often useful to have a normalform for decomposi-
tions. The following is similar to one for tree-decompositions as presented in [3].

Definition 3.14. A DAG-decomposition(D, (Xd)d∈V D) is nice if

(N1) D has a unique root.
(N2) Everyd ∈ V D has at most two successors.
(N3) If d1, d2 are two successors ofd0, thenXd0

= Xd1
= Xd2

.
(N4) If d1 is the unique successor ofd0, then|Xd0

∆Xd1
| ≤ 1, where∆ is the sym-

metric set difference operator (A∆B = (A \B) ∪ (B \A)).

We show next that every graph withDAG-width k has a nice decomposition with
width k. For this, we transform aDAG-decomposition into one which is nice that has
the same width. First we formalise the transformations we use, and show that executing
them (possibly subject to some constraints) does not violate any of the properties of a
DAG-decomposition.

Lemma 3.15 (Unique root). Let (D, (Xd)d∈V D) be aDAG-decomposition of widthk,
and letd1, d2, . . . dm be the roots ofD. The decomposition(D′, (X ′

d)d∈V D′) where

9

(i) V D′

:= V D∪̇{r}
(ii) ED′

:= ED ∪ {(r, di) : 1 ≤ i ≤ m}
(iii) X ′

r := ∅, andX ′
d = Xd for all otherd ∈ V D′

.

is a DAG-decomposition of widthk.

Xd1
Xdm

Xd1
Xdm

∅

Fig. 1. Forming a unique root

Proof. As we have only added edges fromr /∈ V D, D′ is acyclic. (D2) is trivially
satisfied as we have only added a node. Ifd �D′ d′ �D′ d′′, then eitherd = r in which
caseX ′

d ∩ X ′
d′′ = ∅ ⊆ X ′

d′ , or d ∈ V D, in which caseX ′
d ∩ X ′

d′′ ⊆ X ′
d′ follows

from the fact that(D, (Xd)d∈D) is aDAG-decomposition. This establishes (D3). (D4) is
again trivially satisfied, asX ′

r = V G . Finally, for (r, di) ∈ ED′

, X ′
r ∩ X ′

di
= ∅

guardsXdi
= X ′

di
\ X ′

r. Otherwise(d, d′) ∈ ED and (D5) follows from the fact that
(D, (Xd)d∈D) is aDAG-decomposition. As|X ′

r| = 0, (D′, (X ′
d)d∈V D′) has widthk.

Figure 1 gives a visual representation of the construction. �

Definition 3.16 (Splitting). Let D := (D, (Xd)d∈V D) be aDAG-decomposition, and
supposed0 ∈ V D hasm > 1 successorsd1, d2, . . . , dm. The decompositionD′ :=
(D′, (X ′

d)d∈V D′) obtained fromD by splittingd0 is defined as

(i) V D′

= V D∪̇{dl, dr},
(ii) ED′

= (ED \ {(d0, di) : 1 ≤ i ≤ m}) ∪
{(d0, dl), (d0, dr), (dl, d1)} ∪
{(dr, di) : 2 ≤ i ≤ m} and

(iii) X ′
d = Xd for all d ∈ V D andX ′

dl
= X ′

dr
= Xd0

.

Figure 2 gives a visual representation of this transformation.

Lemma 3.17. Let D = (D, (Xd)d∈V D) be a DAG-decomposition of a graphG of
width k, and supposed0 ∈ V D hasm > 1 successorsd1, d2, . . . , dm. ThenD

′ :=
(D′, (X ′

d)d∈V D′) obtained fromD by splittingd0 is aDAG-decomposition ofG of width
k.

10

Xd1

Xd0

Xd2
Xdm

Xd1

Xd0

Xd2
Xdm

Xdl
Xdr

Fig. 2. Splitting atd0

Proof. First we observe that asd0 is the unique predecessor ofdl and dr, for any
d ∈ V D such thatd ≺D′ dl or d ≺D′ dr, it must be the case thatd �D d0. Thus, for all
d ∈ V D,

X ′
d =

⋃

d�D′d′

X ′
d′ =

⋃

d�Dd′

Xd′ = Xd,

since ifXdl
or Xdr

is included in the union on the left, then so isXd0
, and so neither

Xdl
norXdr

contribute to the overall union.
Also, for alli such that1 ≤ i ≤ m, Xd0

∩Xdi
guardsXdi

\Xd0
, so by Lemma 3.11(ii),

Xd0
guardsXdi

\Xd0
. (5)

It is easily seen that the edges added do not create any cycles, soD′ is a DAG.
Further,

⋃

d∈V D′ X ′
d =

⋃

d∈V D Xd = V G . To prove the connectivity condition (D3),
let d, d′, d′′ ∈ V D′

, be such thatd �D′ d′ �D′ d′′. If d′ = d or d′′ then trivially
X ′

d ∩X ′
d′′ ⊆ X ′

d′ , so supposed ≺D′ d′ ≺D′ d′′. We consider four cases:

– If none ofd, d′, d′′ is dl or dr, thend, d′, d′′ ∈ D, and (D3) follows from the fact
thatD is aDAG-decomposition.

– If d is dl or dr then since all descendants ofd are inV D, andd0 ∈ V D is the unique
predecessor ofd, we obtain the following chain of nodes inD: d0 ≺D d′ ≺D d′′.
SoX ′

d ∩X ′
d′′ = Xd0

∩Xd′′ ⊆ Xd′ = X ′
d′ .

– If d′′ is dl or dr then from the comments at the start of the proof,d ≺D d′ �D d0.
Thus,X ′

d ∩X ′
d′′ = Xd ∩Xd0

⊆ Xd′ = X ′
d′ .

– Finally, if d′ is dl or dr then by the same reasoning as the previous two cases,
d �D d0 ≺D d′′. SoX ′

d ∩X ′
d′′ = Xd ∩Xd′′ ⊆ Xd0

= X ′
d′ .

Thus, in all cases,X ′
d ∩ X ′

d′′ ⊆ X ′
d′ , showing (D3). (D4) follows from the fact that

every root ofD′ is a root ofD too. So∅ guardsXd = X ′
d. Finally, to show (D5), let

(d, d′) ∈ ED′

. We consider three cases:

11

– d′ ∈ V D (i.e. d′ 6= dl, dr). If d = dl or dr, thenX ′
d = Xd0

. Otherwise(d, d′) ∈
ED. In both cases,X ′

d ∩X ′
d′ guardsX ′

d′ \X ′
d.

– d′ = dl (sod = d0). HereX ′
d′ = Xd0

∪ Xd1
, soX ′

d′ \X ′
d = Xd1

\Xd0
. Hence, by

Equation 5,Xd0
= X ′

d ∩X ′
d′ guardsXd1

\Xd0
= X ′

d′ \X ′
d.

– d′ = dr (sod = d0). HereX ′
d′ = Xd0

∪
⋃

2≤i≤m Xdi
, and soX ′

d′ \X ′
d = (

⋃

Xdi
)\

Xd0
=

⋃

(Xdi
\ Xd0

), where the unions are taken overi for 2 ≤ i ≤ m. From
Lemma 3.11(i) and Equation 5,X ′

d ∩X ′
d′ = Xd0

guards
⋃

2≤i≤m(Xdi
\Xd0

) =
X ′

d′ \X ′
d.

As X ′
dl

= X ′
dr

= Xd0
, max{|X ′

d| : d ∈ V D′

} = max{|Xd| : d ∈ V D} = k. So
(D′, (X ′

d)d∈V D′) has widthk. �

By thedecomposition resulting from splittingd m−1 timeswe mean the decomposition
resulting from splittingd, and then recursively splitting the successor with more than
one successor until no such successor exists. Acomplete splitof D is the decomposition
D

′ obtained by recursively splitting every node with more thantwo children.

Definition 3.18 (Adding). Let D = (D, (Xd)d∈V D) be a DAG-decomposition of a
graphG. If (d0, d1) ∈ ED andX ⊆ V G the decomposition resulting from adding
X to (d0, d1) is the decomposition(D′, (X ′

d)d∈V D′) where

(i) V D′

= V D∪̇{dX}
(ii) ED′

= (ED \ {(d0, d1)}) ∪ {(d0, dX), (dX , d1)}
(iii) X ′

dX
= X , and for alld ∈ V D, X ′

d = Xd.

See Figure 3 for a visual interpretation.

Xd0

XX

Xd1
Xd1

Xd0

Fig. 3. AddingX to (d0, d1)

Lemma 3.19. LetD = (D, (Xd)d∈V D) be aDAG-decomposition of a graphG of width
k and letD′ := (D′, (X ′

d)d∈V D′) be the decomposition resulting from addingX ⊆ V G

to (d0, d1). If either

12

(i) Xd0
∩Xd1

⊆ X ⊆ Xd0
, or

(ii) Xd0
∩Xd1

⊆ X ⊆ Xd1
,

thenD
′ is a DAG-decomposition ofG of widthk.

Proof. We observe that for alld ∈ V D, if d ≺D′ dX , then asd0 ∈ V D is the unique
predecessor ofdX , d �D d0, and ifdX ≺D′ d, then asd1 ∈ V D is the unique successor
of dX , d1 �D d. This implies, for alld ∈ V D

X ′
d =

⋃

d�D′d′

X ′
d′ =

⋃

d�Dd′

Xd′ = Xd,

since ifX ′
dX

is inluded in the union on the left, then bothX ′
d0

andX ′
d1

are, and so in
either case of the lemmaX ′

dX
= X does not contribute to the overall union.

Further,Xd0
∩Xd1

guardsXd1
\Xd0

= Xd1
\ (Xd0

∩Xd1
) from Lemma 3.12.

We now show thatD′ satisfies the properties (D1) to (D5). It is easily seen thatD′

is aDAG and
⋃

d∈V D′ X ′
d = X ∪

⋃

d∈V D Xd = V G . Also, if d is a root ofD′, thend
is a root ofD. Hence∅ guardsXd = X ′

d. This shows (D1), (D2), and (D4). Towards
establishing condition (D3), supposed �D′ d′ �D′ d′′. If d′ = d or d′ = d′′ then
trivially X ′

d ∩X ′
d′′ ⊆ X ′

d′ , so supposed ≺D′ d′ ≺D′ d′′. We consider four cases:

– If none ofd, d′, d′′ is dX thend, d′, andd′′ are all inV D, so (D3) follows from the
fact thatD is aDAG-decomposition.

– Supposed = dX . From the observations made at the start of the proof, we get the
following chain of nodes inD: d0 ≺D d1 �D d′ ≺D d′′. So ifX ⊆ Xd0

, i.e. we are
in case(i) of the lemma, thenX ′

d ∩X ′
d′′ = X ∩Xd′′ ⊆ Xd0

∩Xd′′ ⊆ Xd′ = X ′
d′ ,

by condition (D3) ofD. If X ⊆ Xd1
, thenX ′

d ∩X ′
d′′ = X ∩Xd′′ ⊆ Xd1

∩Xd′′ ⊆
Xd′ = X ′

d′ .
– The other cases are similar. Ifd′′ = dX then we obtaind ≺D d′ �D d0 ≺D d1. So

if X ⊆ Xd0
, thenX ′

d ∩X ′
d′′ = Xd ∩X ⊆ Xd ∩Xd0

⊆ Xd′ = X ′
d′ . If X ⊆ Xd1

,
thenX ′

d ∩X ′
d′′ = Xd ∩X ⊆ Xd ∩Xd1

⊆ Xd′ = X ′
d′ .

– Finally, assumed′ = dX . Thend �D d0 ≺D d1 �D d′′. HenceXd ∩Xd′′ ⊆ Xd0

andXd ∩Xd′′ ⊆ Xd1
. ThusX ′

d ∩X ′
d′′ = Xd ∩Xd′′ ⊆ Xd0

∩Xd1
⊆ X = X ′

d′ .

Finally, towards (D5), let(d, d′) ∈ ED′

. We consider three cases:

– dX 6∈ {d, d′}, i.e.(d, d′) ∈ ED. In this case, (D5) follows from the fact thatD is a
DAG-decomposition.

– Now supposed = dX (sod′ = d1). If Xd0
∩Xd1

⊆ X ⊆ Xd0
, i.e. we are in case

(i) of the lemma, then

Xd1
\ (Xd0

∩Xd1
) ⊇ Xd1

\X ⊇ Xd1
\Xd0

.

Further, by Lemma 3.12,Xd1
\ (Xd0

∩Xd1
) = Xd1

\Xd0
. ThereforeXd1

\X =
Xd1
\ Xd0

. As D is a DAG-decomposition,Xd0
∩ Xd1

guardsXd1
\ Xd0

, and as
Xd0
∩Xd1

⊆ X ∩Xd1
, Lemma 3.11(ii) implies thatX ′

d ∩X ′
d1

= X ∩Xd1
guards

Xd1
\Xd0

= X ′
d1
\X ′

d.

13

Otherwise we are in case(ii) and we haveXd0
∩ Xd1

⊆ X ⊆ Xd1
. Let Z =

X\(Xd0
∩Xd1

). We know(Xd0
∩Xd1

) guardsXd1
\(Xd0

∩Xd1
) from Lemma 3.12.

Hence, from Lemma 3.11(iii)X ′
d ∩X ′

d1
= X = (Xd0

∩Xd1
) ∪ Z guards

(Xd1
\(Xd0

∩Xd1
))\Z = Xd1

\((Xd0
∩Xd1

)∪Z) = Xd1
\X = X ′

d1
\X ′

d′ .

– Finally, supposed′ = dX (sod = d0). Here we claimX ′
dX
\X ′

d0
= Xd1

\Xd0
. If

X ⊆ Xd0
, thenX ′

dX
\X ′

d0
= (X ∪ Xd1

) \ Xd0
= (X \Xd0

) ∪ (Xd1
\Xd0

) =
Xd1
\ Xd0

. If X ⊆ Xd1
, then sincedX �D′ d1, X ′

dX
= X ′

d1
= Xd1

. Now X ⊇
Xd0
∩Xd1

, so by Lemma 3.11(ii),X ′
d′ = X guardsXd1

\Xd0
= X ′

dX
\X ′

d0
.

Note that sinceX ⊆ Xd0
orXd1

, max{|X ′
d| : d ∈ V D′

} = max{|Xd| : d ∈ V D} = k.
So(D′, (X ′

d)d∈V D′) has widthk. �

If X1, X2, . . . , Xn is a sequence of subsets ofV G , the decomposition resulting from
addingX1, X2, . . . , Xn to (d0, d1) is the decomposition resulting from addingX1 to
(d0, d1) and then recursively addingXi+1 to (dXi

, d1).
We can now describe how to transform aDAG-decomposition into one which is nice

with the same width.

Theorem 3.20. If G has aDAG-decomposition of widthk, it has a niceDAG-decomposition
of widthk.

Proof. Let D = (D, (Xd)d∈D) be aDAG-decomposition of widthk. We carry out each
of the following steps and resetD to be the resulting decomposition.

1. We apply Lemma 3.15 to obtain a decomposition with a uniqueroot, therefore
satisfying (N1).

2. We apply a complete split onD to obtain aDAG-decomposition such that every
node has at most two successors, and ifd has two successorsd1 andd2, thenXd =
Xd1

= Xd2
. This establishes (N2) and (N3).

3. To satisfy (N4), we require two stages. First, for each(d0, d1) ∈ ED with Xd0
6=

Xd1
, we addXd0

∩ Xd1
to (d0, d1) to obtain aDAG-decomposition such that for

every(d, d′) ∈ ED′

, Xd is either a subset or a super-set ofXd′ .
4. Secondly, for each(d, d′) ∈ ED with |Xd| − |Xd′ | = m > 1 (or |Xd′ | − |Xd| =

m > 1), let X0 = Xd, X1, . . . , Xm = Xd′ be a strictly decreasing (increas-
ing) sequence of subsets. Such a sequence exists because at the previous step we
finished with aDAG-decomposition such thatXd ⊆ Xd′ or Xd ⊇ Xd′ . Add
X1, X2, . . . , Xm−1 to (d, d′). At this point we have a decomposition which sat-
isfies (N1) to (N4), and is therefore nice.

Finally, from Lemmas 3.15, 3.17, and 3.19, at each step we have aDAG-decomposition
of width k. �

Tree-width on undirected graphs also have a useful characterisation in terms of bal-
anced separators. We are able to obtain one direction of a similar characterisation for
DAG-width by showing that graphs of smallDAG-width admit small balanceddirected
separators.

14

Definition 3.21. LetG := (V, E) be a digraph andW ⊆ V be a set of nodes. Adirected
separator of sizek for W is a setX with |X | ≤ k such thatW \X can be partitioned
into W1, W2 ⊆ W with W \ X = W1∪̇W2, W1 ∩W2 = ∅, 1

3 |W | ≤ |Wi| ≤
2
3 |W |,

i = 1, 2, and there is no path from a nodeW2 to a node inW1 in G \X .
A graphG has thedirectedk-separator propertyif every set⊆ V G has a directed

separator of widthk.

Note that directed separators are a direct generalisation of standard separator, as the
two notions coincide on undirected graphs.

Theorem 3.22. Every graph ofDAG-width at mostk has the directedk-separator prop-
erty.

Using Lemma 3.13, the proof of this theorem follows along thesame lines as for the
case of undirected graphs.

Finally, we show that theDAG-width of graphs is closed under directed unions,
which is considered (see [8]) as an important property of a reasonable decomposition
of directed graphs.

Definition 3.23. Let G andH be (disjoint) directed graphs. Thedirected unionof G
andH, denotedG−→∪H is defined as:

G
−→
∪H :=

(

V G ∪ V H, EG ∪ EH ∪ (V G × V H)
)

.

A partial directed unionof G andH is a graph(V G ∪ V H, EG ∪ EH ∪ E) where
E ⊆ V G × V H.

Theorem 3.24. If G andH are digraphs, then

DAG-width(G
−→
∪H) = max{DAG-width(G), DAG-width(H)}.

Proof. (≤) Let (DG , (Xd)d∈V DG) and(DH, (Yd)d∈V DH) be DAG-decompositions of
G andH respectively. LetD = (D, (Xd)d∈V DG ∪̇(Yd)d∈V DH), whereD is theDAG

obtained by putting an edge from every leaf ofDG to every root ofDH. ThenD is
DAG-decomposition forG−→∪H.

(≥) Conversely, ifD is aDAG-decomposition ofG−→∪H, then by Lemma 3.13,D|V G

is a DAG-decomposition ofG andD|V H is a DAG-decomposition ofH, both of width
less than or equal to the width ofD. �

Note that this result extends to partial directed unions as well.

3.3 Algorithmic Aspects of BoundedDAG-Width

We now consider algorithmic applications ofDAG-width as well as the complexity of
deciding theDAG-width of a graph and computing an optimal decomposition. The fol-
lowing is a direct consequence of the similar result for treewidth.

Theorem 3.25. Given a digraphG and a natural numberk, deciding if theDAG-width
of G is at mostk is NP-complete.

15

However, for any fixedk, it is possible, in polynomial time, to decide if a graph has
DAG-width at mostk and to compute aDAG-decomposition of this width if it has. We
give an algorithm for this that is based on computing monotone winning strategies in
thek-cops and robber game.

Theorem 3.26. Let G be a directed graph and letk < ω. There is a polynomial time
algorithm for deciding if the cop player has a monotone winning strategy in thek-cops
and robber game onG and for computing such a strategy.

Proof. Given a graphG and the numberk of available cops we represent thek-cops
and robbers game as a simple, alternating, token-moving game. The game is played on
a finite, bi-partite graph, or arena,H(G) = (V0∪̇V1, E) which is defined as follows. Let
W1 := [V]≤k × V andW2 := ([V]≤k × [V]≤k × V).

(i) V0 := W1,
(ii) V1 := W2∪̇{v0}, and
(iii) From each node(X, r) ∈ W1 there is an edge to every node(X1, X2, r

′) ∈ W2

such thatr = r′, X = X1, and the set of nodes reachable fromr in G \ X1

contains the set of nodes reachable fromr in G \ (X1 ∩X2).
Further, from a node(X1, X2, r) ∈ W2 there is an edge to a node(X, r) ∈ W1,
if X = X2, r 6∈ X and there is a path fromr to r′ in G \ (X1 ∩X2).
Finally, there is an edge fromv0 to every node(∅, r) ∈W1, wherer ∈ V .

Note thatH(G) can be constructed in polynomial time.
The game starts with a token at the nodev0. Player0 moves the token whenever it

is on a node inV0, and Player1 moves the token whenever it is on a node inV1. The
token may only be moved along an out-edge, on a path of length1. If a player cannot
move he loses. If the game lasts forever, Player1 wins. Computing which player wins
is thus an example of alternating reachability and is therefore decidable in polynomial
time (with respect to the size of the arena).

It is easy to see that Player0 wins this simple game if, and only if the cop player
wins thek-cops and robber game following a (robber-)monotone strategy. As the arena
H(G) is polynomial in the size of the input, and we can compute the winner of the
simpler game in polynomial time, the theorem follows.

�

Note also that the translation of strategies into decompositions is computationally
easy, i.e. can be done in polynomial time. Since winning strategies can be computed in
polynomial time in the size of the graph, we get the following.

Proposition 3.27. Given a graphG of DAG-width k, a DAG-decomposition ofG of
widthk can be computed in timeO(|G|O(k)).

Algorithms on graphs of boundedDAG-width. As the directed tree-width of a graph is
bounded above by a constant factor of itsDAG-width (see Proposition 5.3), any graph
property that can be decided in polynomial time on classes ofgraphs of bounded di-
rected tree-width can be decided on classes of graphs of boundedDAG-width also. This
implies that properties such as Hamiltonicity that are known to be polynomial time on

16

graphs of bounded directed tree-width can be solved efficiently on graphs of bounded
DAG-width too. We give a nontrivial application ofDAG-width in Section 4 where we
show that parity games can be solved on graphs of boundedDAG-width, something
which is not known for directed tree-width.

As for the relation to undirected tree-width, it is clear that not all graph properties
that can be decided in polynomial time on graphs of bounded tree-width can also be
decided efficiently on graphs of boundedDAG-width. For instance, the 3-colourability
problem is known to be decidable in polynomial time on graphsof bounded tree-width.
However, the problem does not depend on the direction of edges. So if the problem
was solvable in polynomial time on graphs of boundedDAG-width then for every given
undirected graph we could simple direct the edges so that it becomes acyclic, i.e. of
DAG-width1, and solve the problem then. This shows that 3-colourability is not solvable
efficiently on graphs of boundedDAG-width unless PTIME = NP. It also implies that
Courcelle’s theorem does fail forDAG-width, as 3-colourability is easily seen to be
MSO-definable.

The obvious question that arises is whether one can define a suitable notion of “di-
rected problem” and then show that everyMSO-definable “directed” graph problem can
be decided efficiently on graphs of boundedDAG-width. This is part of ongoing work.

4 Parity Games on Graphs of BoundedDAG-Width

A parity gameP is a tuple(V, V0, E, Ω) where(V, E) is a directed graph,V0 ⊆ V and
Ω : V → ω is a function assigning a priority to each node. There is no loss of generality
in assuming that the range ofΩ is contained in[n] wheren = |V | and we will make
this assumption from now on.

Intuitively, two players called Odd and Even play a parity game by pushing a token
along the edges of the graph with Even playing when the token is on a vertex inV0

and Odd playing otherwise. Formally, a play of the gameP is an infinite sequence
π = (vi | i ∈ ω) such that(vi, vi+1) ∈ E for all i. We sayπ is winning for Even if
lim infi→∞ Ω(vi) is even andπ is winning for Odd otherwise.

A strategyis a mapf : V <ω → V such that for any sequence(v0 · · · vi) ∈ V <ω,
(vi, f(v0 · · · vi)) ∈ E. A play π = (vi | i ∈ ω) is consistent with Even playingf
if whenevervi ∈ V0, vi+1 = f(v0 · · · vi). Similarly, π is consistent with Odd play-
ing f if whenevervi 6∈ V0, vi+1 = f(v0 · · · vi). A strategyf is winning for Even if
every play consistent with Even playingf is winning for Even. A strategy ismemory-
lessif wheneveru0 · · ·ui andv0 · · · vj are two sequences inV <ω with ui = vj , then
f(u0 · · ·ui) = f(v0 · · · vj). It is known that parity games are determined, i.e. for any
game and starting position, either Even or Odd has a winning strategy and indeed, a
memoryless one. However, we do not assume in our construction that the strategies we
consider are memoryless

The following ordering on[n] is useful in evaluating competing strategies. For pri-
oritiesi, j ∈ [n] we sayi ⊑ j if either

(i) i is odd andj is even, or
(ii) i andj are both odd andi ≤ j, or
(iii) i andj are both even andj ≤ i.

17

Intuitively, i ⊑ j if the priority i is “better” for player Odd thanj.
We are interested in the problem of determining, given a parity game and starting

node, which player has a winning strategy. The complexity ofthis problem in general
remains a major open question, as explained in Section 1. We demonstrate that parity
games are solvable on arenas of boundedDAG-width by an algorithm similar in spirit to
that of Obdržàlek [11]. That algorithm relies on the fact that in a tree-decomposition, a
set ofk nodes guards all entries and exits to the part of the graph below it, and thus all
cycles must pass through this set. In the case of aDAG decomposition, while the small
set guards all exits from the subgraph below it, there may be an unlimited number of
edges going into this subgraph. This is the main challenge that our algorithm addresses,
and is specifically solved in Lemmas 4.1, 4.2 and 4.3.

For a parity gameP = (V, V0, E, Ω) considerU ⊆ V and a setW that guardsU .
Fix a pair of strategiesf andg. For anyv ∈ U , there is exactly one playπ = (vi : i ∈ ω)
that is consistent with Even playingf and Odd playingg. Let π′ be the maximal initial
segment ofπ that is contained inU . Theoutcomeof the pair of strategies(f, g) (givenU
andv) is defined as follows.

outf,g(U, v) :=











winEven ifπ′ = π andπ is winning for Even;

winOdd if π′ = π andπ is winning for Odd;

(vi+1, p) if π′ = v0 · · · vi andp = min{Ω(vj) | 0 ≤ j ≤ i + 1}.

That is to say that, if the play that results from Even playingf and Odd playingg leads
to a cycle contained entirely withinU , then the outcome simply records which player
wins the game. However, if the winner is not determined entirely within U , the outcome
records the vertexw in W in which the play emerges fromU and the lowest priority
that is seen in the playπ starting inv and ending inw, including the end points.

By construction, if outf,g(U, v) = (w, p) thenw ∈ W . More generally, for any set
W ⊆ V , define the set of potential outcomes inW , written pot-out(W), to be the set
{winEven, winOdd} ∪ {(w, p) : w ∈ W andp ∈ [n]}. We define a partial orderE on
pot-out(W) which orders potential outcomes according to how good they are for player
Odd. It is the least partial order satisfying the following conditions:

(i) winOddE o for all outcomeso;
(ii) o E winEven for all outcomeso;
(iii) (w, p) E (w, p′) if p ⊑ p′ for all w ∈W .

In particular,(w, p) and(w′, p′) are incomparable ifw 6= w′. The idea is that ifg andg′

are strategies such that outf,g(U, v)Eoutf,g′(U, v) then player Odd is better off playing
strategyg rather thang′ in response to Even playing according tof .

A single outcome is the result of fixing the strategies playedby both players in the
sub-game induced by a set of verticesU . If we fix the strategy of player Even to bef
but consider all possible strategies that Odd may play, we can order these strategies ac-
cording to their outcome. If one strategy achieves outcomeo and anothero′ with oE o′,
there is no reason for Odd to consider the latter strategy. Thus, we define resultf (U, v)
to be the set of outcomes that are achieved by the best strategies that Odd may follow,
in response to Even playing according tof . More formally, resultf (U, v) is the set of
E-minimal elements in the set{o : o = outf,g(U, v) for someg}. Thus, resultf (U, v)

18

is an anti-chain in the partial order(pot-out(W), E), whereW is a set of guards forU .
We write pot-res(W) for the set ofpotential resultsin W . To be precise, pot-res(W) is
the set of all anti-chains in the partial order(pot-out(W), E). By definition of the order
E, if either of winEven or winOdd is in the set resultf (U, v), then it is the sole element
of the set. Also, for eachw ∈W , there is at most onep such that(w, p) ∈ resultf (U, v)
so the number of distinct values that resultf (U, v) can take is at most(|U |+ 1)|W | + 2
(in fact, (d + 1)|W |, whered is the number of different priorities inU). This is the
cardinality of the set pot-res(W).

We also abuse notation and extend the orderE to the set pot-res(W) pointwise.
That is, forr, s ∈ pot-res(W) we writer E s if, for eacho ∈ s, there is ano′ ∈ r with
o′ E o. With this definition, the orderE on pot-res(W) admits greatest lower bounds.
Indeed, the greatest lower boundr⊓ s of r ands can be obtained by taking the set ofE

minimal elements in the set of outcomesr ∪ s. One further piece of notation we use is
that we write Res(U, v) for the set{resultf (U, v) : f is a strategy}.

Suppose now thatP = (V, V0, E, Ω) is a parity game and we are given aDAG

decomposition(D, (Xd)d∈V D) of (V, E) of width k that is nice in the sense of Defini-
tion 3.14. For eachd ∈ V D, we writeVd for the setXd \Xd. The key to the algorithm
is that we construct the set of results Res(Vd, v) for eachv ∈ Vd. SinceVd is guarded
by Xd, |Xd| ≤ k and |Vd| ≤ n, the number of distinct values of resultf (Vd, v) asf
ranges over all possible strategies is at most(n + 1)k + 2.

We define the following, which is our key data structure:

Frontier(d) = {(v, r) : v ∈ Vd andr = resultf (Vd, v) for some strategyf}.

Note that in the definitions of resultf (U, v) and Frontier(d), f andg range overall
strategies and not just memoryless ones. The bound on the number of possible values
of resultf (Vd, v) guarantees that|Frontier(d)| ≤ n((n + 1)k + 2). We aim to show
how Frontier(d) can be constructed from the set of frontiers of the successors of d in
polynomial time. There are four cases to consider.

Case 1:d has two successorse1 ande2. In this case,Xd = Xe1
= Xe2

by the
definition of a nice decomposition. Thus,Vd = Ve1

∪ Ve2
. Moreover, each of the three

setsVd, Ve1
andVe2

is guarded byXd so, in particular, there is no path from a vertex in
Ve1
\Ve2

into Ve2
\Ve1

(or vice versa) except throughXd. We claim that Frontier(d) =
Frontier(e1) ∪ Frontier(e2).

To see this, suppose first that(v, r) ∈ Frontier(e1) (the case of Frontier(e2) is
symmetrical) and in particularr = resultf (Ve1

, v). Now, if o ∈ r there is ag such
that o = outf,g(Ve1

, v). If o is winEven or winOdd it is clear thato = outf,g(U, v)
for any U ⊃ Ve1

and in particularo = outf,g(Vd, v). If o = (w, p) then the playπ
determined by strategiesf andg starting atv first leaves the setVe1

at w. Sincew ∈
Xe1

= Xd it also leaves the setVd at this point and therefore againo = outf,g(Vd, v).
We conclude that the set of available outcomes is the same andtherefore the set of
E-minimal outcomes is the same. That is,r = resultf (Vd, v) and therefore(v, r) ∈
Frontier(d).

In the other direction, suppose(v, r) ∈ Frontier(d) and thatv ∈ Ve1
(again the

case whenv ∈ Ve2
is symmetrical). Letf be such thatr = resultf (Vd, v). Suppose

o = outf,g(Vd, v) for some strategyg and letπ be the play starting atv determined

19

by f and g. We claim thato = outf,g(Ve1
, v). If this is not the case, then the first

occurrence inπ of a node not inVe1
must be contained inVd. However, since any such

node must be inXd, which is disjoint fromVd, this is impossible. Thus, once again
outf,g(Vd, v) = outf,g(Ve1

, v) and thereforer = resultf (Ve1
, v).

Note, in particular, that the above argument implies that for v ∈ Ve1
∪Ve2

, resultf (Ve1
, v) =

resultf (Ve2
, v).

Case 2:d has one successore andXd = Xe. In this case, Frontier(d) = Frontier(e).
Case 3:d has one successore andXd \Xe = {u}. Then, by (D3),u 6∈ Ve. Also,

by definition ofVd, u 6∈ Vd. We conclude thatVd = Ve. Moreover, sinceXe guardsVe

(by Lemma 3.11(ii)), there is no path from any element ofVe to u except throughXe.
Thus, if (w, p) ∈ resultf (Vd, v) for somev andf , it must be the case thatw ∈ Xe.
Hence, Frontier(d) = Frontier(e).

Case 4:d has one successore andXe \Xd = {u}. This is the critical case. Here
Vd = Ve ∪ {u} and in order to construct Frontier(d) we must determine the results of
all plays beginning atu.

Consider the set of verticesv in Xd such that(u, v) ∈ EG . These fall into two
categories. Eitherv ∈ Xd or v ∈ Ve. Let x1, . . . , xs enumerate the first category and
let v1, . . . , vm enumerate the second. LetO = {(xi, min{Ω(xi), Ω(u)}) : 1 ≤ i ≤ s}.
This is the set of outcomes obtained if play in the parity gameproceeds directly fromu
to an element ofXd. Note that as no two outcomes inO are comparable with respect to
E, O ∈ pot-res(Xd). We writeO for {{o} : o ∈ O} That isO is the set of singleton
results obtained fromO. For eachvi we know, from Frontier(e), the set Res(Ve, vi).
For each resultr ∈ Res(Ve, vi), we write mod(r) for the set of outcomes defined by
modifyingr as follows. First, ifr contains an outcome(u, p), we replace it by winEven
if min{p, Ω(u)} is even and winOdd if it is odd. Secondly, for any pair(w, p) ∈ r where
w 6= u, we replace it with(w, min{p, Ω(u)}). Finally, we take the set ofE-minimal
elements from the resulting set. This is mod(r). Note that mod(r) ∈ pot-res(Xd). The
intuition is that mod(resultf (Ve, vi)) defines the set of best possible outcomes for player
Odd, if starting atu, the play goes tovi and from that point on, player Even plays
according to strategyf . For each1 ≤ i ≤ m, let Mi = {mod(r) : r ∈ Res(Ve, vi)}.

We now wish to use the sets of resultsMi, O andO to construct the Res(Vd, u). We
need to distinguish between the cases whenu ∈ V0 (i.e. player Even plays fromu in
the parity game) andu ∈ V \ V0 (i.e. player Odd plays).

The simpler case is whenu ∈ V0.

Lemma 4.1. If u ∈ V0, then Res(Vd, u) =
⋃

i Mi ∪ O.

Proof. Let f be a strategy. Iff(u) = xi, then resultf (Vd, u) ∈ O. The other possibility
is thatf(u) = vi. In this case, it is clear that resultf (Vd, u) = mod(resultf (Ve, vi))
and this result is inMi. For the converse, ifr = {(xi, p)} ∈ O, it is clear that
r = resultf (Vd, u) for any strategyf with f(u) = xi. Now, let r ∈ Mi with r =
mod(resultf (Ve, vi)), thenr = resultf ′(Vd, u) wheref ′ is the strategy that moves from
u to vi and then follows the strategyf from that point on. �

The case whenu 6∈ V0 is somewhat trickier. To explain how we can obtain Res(Vd, u)
in this case, we formulate the following lemma.

20

Lemma 4.2. If u 6∈ V0, thenr ∈ Res(Vd, u) if, and only if, there is a functionc on the
set[m] with c(i) ∈Mi such thatr = O ⊓

d
i∈[m] c(i).

Proof.

⇒ Let r ∈ Res(Vd, u), i.e. there is a strategyf such thatr = resultf (Vd, u). We define
the functionc by c(i) = mod(resultf (Ve, vi)). Since player Odd can move to any
of the vi, it is clear thatr E c(i) for eachi. Odd can also move to any of thexi

and thereforer E O. Furthermore, for each outcomeo ∈ r, there is ag such that
o = outf,g(Vd, u). Eitherg(u) = vi, in which caseo ∈ c(i) by construction, or
g(u) = xj ando ∈ O. Together this establishesO ⊓

d
i∈[m] c(i) E r.

⇐ Let c be a choice function withc(i) = mod(resultfi
(Ve, vi)) for eachi. Let f be a

strategy that agrees withfi on all paths beginning with the two verticesu, vi. Then,
it is clear that resultf (Vd, u) = O ⊓

d
[m] c(i).

�

Lemma 4.2 suggests constructing Res(Vd, u) by considering all possible choice
functionsc. However, as each setMi may have as many as(n+1)k +2 elements, there
arem(n+1)k+2 possibilities forc and our algorithm would be exponential. We consider
an alternative way of constructing Res(Vd, u). Recall that Res(Vd, u) ⊆ pot-res(Xd)
and the latter set has at most(n+1)k+2 elements. We check, for eachr ∈ pot-res(Xd),
in polynomial time, whether there is a choice functionc as in Lemma 4.2 that yieldsr.
In particular, we take the following alternative characterisation of Res(Vd, u).

Lemma 4.3. If u 6∈ V0, thenr ∈ Res(Vd, u) if, and only if, there is a setD ⊆ [m] with
|D| ≤ |r| and a functiond onD with d(i) ∈Mi such that

(i) r = O ⊓
d

i∈D d(i); and
(ii) for eachi 6∈ D there is anri ∈Mi with r E ri.

Proof.

⇒ Assumer ∈ Res(Vd, u) and letc be the choice function given by Lemma 4.2. For
eacho ∈ r, if o 6∈ O select onei ∈ [m] such thato ∈ c(i). Let D be the collection
of indicesi selected. By construction,|D| ≤ |r|. Now, we defined(i) = c(i) for
all i ∈ D and letri = c(i) for i 6∈ D.

⇐ GivenD, d and the collection ofri as specified, we define the choice functionc by

c(i) =

{

d(i) i ∈ D
ri i 6∈ D

Now, since by hypothesisr E ri andr = O ⊓
d

i∈D d(i), it is easily seen that
r = O ⊓

d
i∈[m] c(i).

�

Now, anyr ∈ pot-res(Xd) has at mostk elements. Thus, to check whether such anr
is in Res(Vd, u) we cycle through all setsD ⊆ [m] with k or fewer elements (and there
areO(nk) such sets) and for each one consider all candidate functionsd (of which there

21

areO(nk2

)). Having found ad which givesr = O ⊓
d

D d(i), we then need to find a
suitableri in eachi ∈ [m] \D. For this we must, at worst, go through all elements of
all the setsMi and compare them tor. This can be done in timeO(nk+1).

We have now obtained the set Res(Vd, u). One barrier remains to completing the
construction of Frontier(d). Elements(v, r) of Frontier(e) may have outcomes inr
of the form(u, p). Sinceu is not in Xd, these must be resolved by combining them
with results from Res(Vd, u). To be precise, letr ∈ Res(Ve, v) for somev ∈ Ve and
s ∈ Res(Vd, u). Define the combined resultc(r, s) as follows:

– if r does not contain an outcome of the form(u, p), thenc(r, s) = r;
– otherwise,r contains a pair(u, p). Let s′ be obtained froms by replacing every

pair (w, q) by (w, min{p, q}). c(r, s) = r ⊓ s′.

Intuitively, if r = resultf (Ve, v) ands = resultf ′(Vd, u) thenc(r, s) is the set ofE-
minimal outcomes that can be obtained if player Even plays according tof starting at
v until the nodeu is encountered and then switches to strategyf ′.

Lemma 4.4. For anyv ∈ Ve,

Res(Vd, v) = {c(r, s) : r ∈ Res(Ve, v) ands ∈ Res(Vd, u)}.

Proof. It is clear that, for any strategyf , resultf (Vd, v) = c(resultf (Ve, v), resultf (Vd, u)).
Thus, Res(Vd, v) is included in the set on the right hand side. For the converse, suppose
first thatr = resultf (Ve, v) is such that no outcome of the form(u, p) is in r. This
means that when player Even plays according tof , there is no strategyg that Odd can
play which will lead to the vertexu. Thus resultf (Ve, v) = resultf (Vd, v) = c(r, s) for
all s. Now, letr = resultf1

(Ve, v) include an outcome(u, p) ands = resultf2
(Vd, u).

Let f be the strategy which followsf1 for the path fromv to u and followsf2 onceu
has been reached. It is easily checked that resultf (Vd, v) = c(r, s). �

We now obtain Frontier(d) = {(v, r) : r ∈ Res(Vd, v)}.

Theorem 4.5. For eachk, there is a polynomialp and an algorithm running in time
O(p(n)) which determines the winner of parity games on all graphs with DAG-width at
mostk.

Proof. By Proposition 3.27, there is a polynomial-time algorithm that will produce a
DAG decomposition of the game graph of widthk. This can be converted into a nice
decomposition(D′, (Xd)d∈V D′) in time at most quadratic (in the size of the decompo-
sition). Leta be the root ofD′ and letXa = {x1, . . . , xl} wherel ≤ k. Consider the
dagD formed by addingl new elementsa0, . . . , al−1 to D′ in a simple directed path
ending ina. Further, for eachi defineXai

to be the set{x1, . . . , xi}. In particular, the
new roota0 is labelled by∅. It is easily seen that the new labelledDAG (D, (Xd)d∈V D)
still meets the definition of a nice decomposition. We then use the above construction to
obtain Frontier(d) for eachd in D, starting from the leaves and working our way to the
root. Since the size ofD is at mostn2k + k, the total time taken is bounded by a poly-
nomial. Now, for the roota0 of D Xa = Va = V . Thus, if (v, r) ∈ Frontier(a0) then
r ⊆ {winEven, winOdd}. If winEven∈ r, this means that player Even has a strategy to
win the parity game beginning at vertexv, and if winEven6∈ r, for any strategy played

22

by player Even, Odd has a strategy to defeat it. We have thus determined the winner of
the parity game starting at each vertex. �

5 Relation to other graph connectivity measures

As a structural measure for undirected graphs, the concept of tree-width is of unrivaled
robustness. On the realm of directed graphs, however, its heritage seems to be split
among several different concepts. In the sequel we compareDAG-width with several
other connectivity measures for directed graphs, namely directed tree-width introduced
by Johnson et al. [8], directed path-width [1], and entanglement proposed by Berwanger
and Grädel [2].

Undirected tree-width.First we formalise the relationship betweenDAG-width and
undirected tree-width alluded to in previous sections.

Recall that the tree-width of a directed graphG is defined as the tree-width of the
undirected graph obtained fromG by forgetting the orientation of the edges.

Proposition 5.1.

(i) If a directed graphG has tree-widthk, its DAG-width is at mostk + 1.
(ii) There exists a family of directed graphs with arbitrarily large tree-width andDAG-

width1.

Proof. (i). Suppose(T , (Wt)t∈V T) is a tree decomposition ofG of width k. Choose
somer ∈ V T and orient the edges ofT away fromr. That is if{s, t} ∈ ET ands is
on the unique path fromr to t then change{s, t} to (s, t). SinceT is a tree every edge
has a unique orientation in this manner. LetD be the resultingDAG. For alld ∈ V D, set
Xd := Wt wheret is the node ofT corresponding tod. We claim that(D, (Xd)d∈V D)
is aDAG-decomposition ofG of widthk+1. (D1) and (D2) are trivial. (D3) follows from
the connectivity condition of tree decompositions. The orientation ensuresD has one
root,r, soXr = V G and (D4) follows. Finally we need to check (D5). This followsfrom
a similar condition for tree decompositions. Let(d, d′) ∈ ED and supposev ∈ Xd′\Xd.
Suppose also that(v, w) ∈ EG andw /∈ Xd′ \Xd. We will show thatw ∈ Xd ∩Xd′ .
Sincev /∈ Xd andv ∈ Xd′ , anyd′′ such thatv ∈ Xd′′ must satisfyd′ �D d′′ by the
connectivity condition of tree decompositions. As(v, w) ∈ EG , there existsd′′ ∈ V D

such that{v, w} ⊆ Xd′′ . Thusw ∈ Xd′ . As w /∈ Xd′ \ Xd, it follows thatw ∈ Xd.
By (D3),w ∈ Xd′ also, asw ∈ Xd′ . Thusw ∈ Xd ∩Xd′ and (D5) holds.

(ii). For anyn, letKn be the (undirected) complete graph withn verticesv1, v2, . . . vn.
Orient the edges ofKn such that(vi, vj) is an edge if and only ifi < j. The resulting
directed graph is acyclic and therefore hasDAG-width 1, but the underlying undirected
graph is complete and has tree-widthn− 1.

�

If G is an undirected graph then let
←→
G be the directed graph obtained by replacing

each edge{u, v} in EG with two edges(u, v) and(v, u).

Proposition 5.2. G has tree-widthk − 1 if, and only if
←→
G hasDAG-widthk.

23

Proof. It is easily seen that thek-cops and robber game for undirected graphs onG is
equivalent to thek-cops and robber game for directed graphs on

←→
G . The result follows

from the correspondence between the measures and existenceof monotone winning
strategies. �

Directed tree-width.Aiming to reproduce the success of tree-decompositions in allow-
ing divide-and-conquer algorithms, directed tree-width is associated to a tree-shaped
representation of the input graph. It was proved that this representation leads to effi-
cient algorithms for solving a particular class of NP-complete problems, including, e.g.,
Hamiltonicity, when directed tree-width is bounded. Unfortunately this generic method
does not cover many interesting problems. In particular, the efficient solution of parity
games on bounded tree-width has failed so far to generalise to directed tree-width.

In terms of games, directed tree-width is characterised by arestriction of the robber-
and-cops games forDAG-width, in which the robber is only permitted to move to ver-
tices where there exists a directed cop-free path from his intended destination back
to the current position. In contrast to the case of undirected tree-width, for these games
cop-monotonicityand robber-monotonicitydiffer and cop-monotonestrategies are known
to not be sufficient.

On basis of the game characterisation, it is clear that undirected tree-width of a
graph is a lower bound for itsDAG-width. Conversely, theDAG-width of a graph cannot
be bound in terms of its directed tree-width, as illustratedin the following proposition.

Proposition 5.3.

(i) If a graph hasDAG-widthk, its directed tree-width is at most3k + 1.
(ii) There exists a family of graphs with arbitrarily largeDAG-width and directed tree-

width1.

Proof. (i). If G hasDAG-width k thenk cops can win thek-cops and robber game on
G. Thusk cops can win the game in [8], and soG does not have a (directed) haven of
sizek. ThereforeG has a directed tree decomposition of width3k + 1 [8].

(ii). Consider the family{(T 1
k)op : k ≥ 2} of graphs defined in Proposition 3.5.

Note that(T 1
k)op is a binary branching tree of heightk with back-edges from every

node to its ancestors. We have shown that(T 1
k)op has game-widthk, and it is clear that

the strategy described fork cops is monotone, so(T 1
k)op hasDAG-width k. On the other

hand, if we letT be the directed tree obtained from(T 1
k)op by removing back-edges;

define for allt′ ∈ V T Bt′ := {t, s} wheret is the corresponding vertex in(T 1
k)op and

s is the predecessor oft; andX(s′,t′) = {s} for all (s′, t′) ∈ ET , it is easy to show that
(T , (B′

t)t′∈V T , (Xe)e∈ET) is a directed tree decomposition of(T 1
k)op of width 1. For

k ≥ 2, (T 1
k)op is not acyclic and therefore has directed tree-width exactly 1.

�

An requirement of directed tree decompositions is that the partition consists of non-
empty sets. An interesting extension of directed tree decompositions is one without
that condition, i.e. using pre-decompositions. The measure (which we call the extended
directed tree-width) nicely generalisesDAG-width without using games.

24

Proposition 5.4. If a graphG hasDAG-width k its extended directed tree-width is at
mostk − 1.

Proof. Let (D, (Xd)d∈D) be aDAG-decomposition ofG of width k. From Lemma 3.15
we can assumeD has a unique root. LetT be a spanning tree ofD. Let t1, t2, . . .,
be the sequence of nodes ofT visited in a depth-first traversal ofT , where a node
is only added after all its children have been. Starting fromi = 1, we defineBti

:=
Xdi
\

⋃

j<i Bti
, wheredi is the node ofD corresponding toti. For (s, t) ∈ ET we

set W(s,t) := Xs′ ∩ Xt′ wheres′, t′ are the nodes ofD corresponding tos and t
respectively. It follows easily that(T , (Bt)t∈V T , (We)e∈ET) is a pre-decomposition of
G of width at mostk − 1. �

Directed path-width.Directed path-width was introduced by Thomas [16] as a gener-
alisation of path-width to directed graphs. Formally, a directed path decomposition of a
directed graphG is a sequenceW1, W2, . . . , Wn such that

(P1)
⋃n

i=1 Wi = V G ,
(P2) If i < i′ < i′′ thenWi ∩Wi′′ ⊆Wi′ ,
(P3) For every edge(u, v) ∈ EG there existi ≤ j such thatu ∈ Wi andv ∈Wj .

The width ofW1, W2, . . . , Wn is max{|Wi| : 1 ≤ i ≤ n} − 1, and thedirected path-
widthof G is the minimal width of all directed path decompositions.

It is worth noting that for undirected graphs, path-width readily generalises to tree-
width as a path decomposition is also a tree decomposition. For directed graphs how-
ever, this is not the case. We next show that DAG-width does generalise directed path-
width in this way.

Proposition 5.5.

(i) If a graphG has directed path-widthk, its DAG-width is at mostk + 1.
(ii) There exists a family of graphs with arbitrarily large directed path-width andDAG-

width2.

Proof. (i). Let W1, W2, . . . , Wn be a directed path decomposition ofG of width k. Let
Dn be the directed path withn vertices. That isV Dn = {d1, . . . , dn} and(di, dj) ∈
EDn if and only if j = i+1. SetXdi

:= Wi for all di ∈ V Dn . We claim(Dn, (Xd)d∈V Dn)
is a DAG-decomposition ofG of width k + 1. (D1) and (D4) are obvious. (D2) fol-
lows from (P1) and (D3) follows from (P2). To show (D5), for1 ≤ i < n suppose
v ∈ Xdi+1

\ Xdi
and(v, w) ∈ EG . From (P3) there existi′ ≤ j′ such thatv ∈ Wi′

andw ∈ Wj′ . If i′ ≤ i, then by (P2)v ∈ Xdi
, contradicting the choice ofv. Thus

i < i′ ≤ j′ andw ∈ Xdi+1
. If w /∈ Xdi+1

\Xdi
thenw ∈ Xdi

and thereforew ∈ Xdi+1

by (P2). ThusXdi
∩Xdi+1

guardsXdi+1
\Xdi

.
(ii). Let Tk be the (undirected) binary tree of heightk ≥ 2. From Proposition 5.2,

←→
Tk hasDAG-width 2. It is known thatTk has path-width exactlyk−1, and it is straight-
forward to show that

←→
Tk must therefore have directed path-width exactlyk − 1. Thus

the family{Tk : k ≥ 2} satisfies the proposition.
�

25

In [1], Barát showed that directed path-width correspondsto the number of cops
required to catch an invisible robber on a directed graph. Itshould therefore not be
surprising that our measure generalises directed path-width.

Entanglement.The notion of entanglement measures the nesting depth of directed cy-
cles in a graph. In terms of robber-and-cop games, it is obtained by restricting the mo-
bility of both the robber and the cops so that in any round, thecop player may send one
cop to the robber’s current position (or do nothing) while the robber can only move to
a successor of his current residence.

Unlike the other graph widths considered here, entanglement is not associated to an
efficient tree-shaped graph representation. Nevertheless, it was shown that parity games
on arenas of of bounded entanglement can be solved in polynomial time. In fact, just
a bound on the minimal entanglement of a subgraph induced by any winning strategy
rather than of the input arena is required.

The following proposition shows that having boundedDAG-width is more general
than having bounded entanglement. On the other hand, the gapbetweenDAG-width and
entanglement can be at most logarithmic in the number of graph vertices.

Proposition 5.6.

(i) If a graph has entanglementk, its DAG-width is at mostk + 1.
(ii) There are graphs with arbitrarily large entanglement but with DAG-width 2.
(iii) If a graphG hasDAG-widthk, its entanglement is at most(k + 1) · log |V G |.

Proof. (i). Let G be a graph of entanglementk. We trace a generic play of theDAG-
width game withk + 1 cops onG alongside with an auxiliary entanglement game with
k cops on the same graph. Our aim is to transfer the moves of the robber from the first
to the second game and those of the cops vice versa, so that theplays proceed, and
end, simultaneously. Basically, the moves of thek cops will just be copied to the first
game; on account of the robber’s ability in theDAG-width game to move along several
edges at a time, we employ an additional cop, calledchaser, who follows the itinerary
of the robber, but moving slowly, one edge per round. Therefore, each round in the
entanglement game will be associated to two half-rounds in theDAG-width game, one
for copying the cop’s move and another for posting the chaser.

We keep a record of the following data at the beginning of a round: the set of po-
sitions occupied by cops in the entanglement gameXi ⊆ [V]≤k, the positionri of the
robber in this game which coincides with the position of the chaser in theDAG-width
game, and the positionsi of the robber in theDAG-with game. During the play,ri will
always be on the trajectory of the robber in theDAG-width game. Letσi be the simple
path fromri to si following this trajectory but avoiding cycles. We will maintain the
invariant that beyond its first positionσi is cop-free.

At the beginning of a play, in theDAG-game, the cop player chooses the empty set
X0 := ∅ and the robber chooses the initial positionr0. In the second phase of this first
round, the cop player then posts the chaserX0 := {r0} while the robber may moves to
some positions0. Passing to the auxiliary entanglement game, we set the copsidle, and
the robber tor0. Thus, the plays are left in the configurations({r0}, s0) and respectively
(∅, r0).

26

Let (Xi, ri) andXi∪{ri}, si be the starting configuration for roundi, and letσi be
the (shortcut) link along the trajectory of the robber fromri to si. We assume that the
segmentσi avoidsXi from the second position onwards.

To decide on the next move of the cop player, we first look at theentanglement
game. There his winning strategy may indicate either

(i) do nothing:Xi+1 = Xi, or
(ii) post a fresh cop to the robber’s current position:Xi+1 = Xi ∪ {ri}, or
(iii) move the cop from vertexz ∈ Xi to the current position,Xi+1 = (Xi \ z)∪{ri}.

Notice that in theDAG-game the positionri is already guarded by the chaser. To transfer
the cop’s move from the entanglement game, we might hence skip the first phase in
the first two cases listed above. In the latter case, when the cop needs to be removed
from positionz, we choose the set(Xi \ z) ∪ {ri} for the cop player. Meanwhile, the
robber moves to some positions that he can reach fromsi avoidingXi+1. Hence, by
our assumption, the (cycle-simplified) path fromri via σi to s following the robber’s
trajectory will also avoidXi+1. In particular, it implies that the successor ofri along
this path is cop-free. We choose this successorri+1 as a new position for the the chaser.
Hence, in the second phase of the round, the chaser is removedfrom ri and sent to to
ri+1. During this cop-move, the robber will prolong his trajectory to some positionsi+1.
However notice that this prolongation does either not go throughri or it closes a cycle
which will be discarded so that the new segmentσi+1 which links ri+1 to si+1 still
fulfills our invariant. Finally, we interpret the chaser’s choice as a move of the robber in
the entanglement game which thus assumes the new configuration(Xi+1, ri+1).

Thanks to our invariant, the robber can thus freely move in the entanglement game
as long as the robber in theDAG-width game was able to move. But since the cop player
has a winning strategy fork cops this cannot go well forever. Hence, it must happen
that eventually the robber cannot prolong his trajectory and loses. This shows thatk+1
cops have a winning strategy in theDAG-width game onG, or equivalently that the
DAG-width of G is at mostk + 1.

(ii). Let T ↓
k be the full binary tree of depthk with edges oriented downwards,

and letT ↑
k be the same tree with edges oriented upwards. Every nodev↓ ∈ T ↓

k has a
doublev↑ ∈ T ↑

k , and vice versa. The graphG(2, k) is constructed by taking the union
T ↓

k ∪ T
↑

k , adding edges from each leaf to its double (in both directions), and adding the
edges(u↑, v↓) for each edge(u↑, v↑) of T ↑

k . It is easy to see thatG(2, k) DAG-width 2.
We claim that ent(G(2, k)) > k. To prove this we describe a strategy by which the

thief escapes againstk detectives. We call a path inG(2, k) free if all nodes on the path
and all their doubles are unguarded by the detectives. We saythat a node isblockedif
both the node and its double are guarded. The thief moves according to the following
strategy:at a leafw↑, she selects an ancestoru↓ of w↓ from which there is a free path
to a leafv↓. She goes tov↓ by moving upwards throughT ↑

k , stepping over tou↓ and
moving downwards throughT ↓

k . Finally she steps over tov↑.
With this strategy, the thief is never below a blocked node. Aleaf has (including

itself) k + 1 ancestors inT ↓
k , so there is always an ancestor with a free path to a leaf.

Thus, the thief can maintain this strategy and escape forever.

27

(iii). This follows from thek-separator property for graphs ofDAG-width k. In the
entanglement game on such a graph, a winning strategy for thecops can be described
as follows: choose a balanced separatorS and place a cop whenever the robber passes
through a vertex inS. Intuitively, we intend to cut the graph into two partitionsusing
at mostk cops, so that the robber is trapped in either one of them. The cut is produced
when all vertices inS are occupied by cops. While waiting for this event, we apply the
procedure recursively on the partition where the robber currently resides. Whenever he
moves to the other partition, we may remove any cop from the original one. In case the
robber again returns to the previous partition, on more vertex in the separator will be
blocked, so that the robber is finally trapped in a partition.During a play, these partitions
decrease up to size one, at which point the robber loses. �

We conclude that, despite their conceptual affinity, directed tree-width, directed
path-width, entanglement, andDAG-width are rather different measures. The following
inequalities summarise, up to constant factors, the resultof this section.

directed tree-width(G) ≤ DAG-width(G) ≤ tree-width(G)

DAG-width(G) ≤ directed path-width(G)

ent(G)/ log |V G | ≤ DAG-width(G) ≤ ent(G).

Furthermore, for any inequality above there exist familiesof graphs for which the in-
equality (up to constant factors) is strict.

References

1. J. BARÁT, Directed path-width and monotonicity in digraph searching. To appear inGraphs
and Combinatorics.

2. D. BERWANGER AND E. GRÄDEL, Entanglement – a measure for the complexity of directed
graphs with applications to logic and games, in LPAR, 2004, pp. 209–223.

3. H. L. BODLAENDER, Treewidth: Algorithmic techniques and results, in MFCS, 1997,
pp. 19–36.

4. B. COURCELLE, Graph rewriting: An algebraic and logic approach, in Handbook of Theo-
retical Computer Science, Volume B: Formal Models and Sematics (B), J. van Leeuwan, ed.,
1990, pp. 193–242.

5. N. D. DENDRIS, L. M. K IROUSIS, AND D. M. THILIKOS, Fugitive-search games on
graphs and related parameters, TCS, 172 (1997), pp. 233–254.

6. E. EMERSON, C. JUTLA , AND A. SISTLA, On model checking for theµ-calculus and its
fragments, TCS, 258 (2001), pp. 491–522.

7. G. GOTTLOB, N. LEONE, AND F. SCARCELLO, Robbers, marshals, and guards: Game
theoretic and logical characterizations of hypertree width, in PODS, 2001, pp. 195–201.

8. T. JOHNSON, N. ROBERTSON, P. D. SEYMOUR, AND R. THOMAS, Directed tree-width,
Journal of Combinatorial Theory, Series B, 82 (2001), pp. 138–154.

9. M. JURDZIŃSKI, Deciding the winner in parity games is in UP∩ co-UP, Information Pro-
cessing Letters, 68 (1998), pp. 119–124.

10. D. KOZEN, Results on the propositional mu-calculus, TCS, 27 (1983), pp. 333–354.

28

11. J. OBDRZ̆ÁLEK , Fast mu-calculus model checking when tree-width is bounded, in Proceed-
ings of 15th International Conference on Computer Aided Verification, vol. 2725 of LNCS,
Springer, 2003, pp. 80–92.

12. B. A. REED, Introducing directed tree width, in 6th Twente Workshop on Graphs and Com-
binatorial Optimization, vol. 3 of Electron. Notes Discrete Math, Elsevier, 1999.

13. N. ROBERTSON ANDP. SEYMOUR, Graph Minors. III. Planar tree-width, Journal of Com-
binatorial Theory, Series B, 36 (1984), pp. 49–63.

14. M. SAFARI, D-width: A more natural measure for directed tree width, in MFCS 2005,
vol. 3618 of LNCS, Springer, 2005, pp. 745–756.

15. P. SEYMOUR AND R. THOMAS, Graph searching, and a min-max theorem for tree-width,
Journal of Combinatorial Theory, Series B, 58 (1993), pp. 22–33.

16. R. THOMAS, Directed tree-width. Slides from lecture at the Regional NSF-CBMS Confer-
ence, 2002. Available at http://www.math.gatech.edu/ thomas/SLIDE/CBMS/dirtrsl.pdf.

29

