
DAG-Width and Parity Games

Dietmar Berwanger1, Anuj Dawar2, Paul Hunter3, and Stephan Kreutzer3

1 LaBRI, Université de Bordeaux 1,dwb@labri.fr
2 University of Cambridge Computer Laboratory,anuj.dawar@cl.cam.ac.uk

3 Logic and Discrete Systems, Institute for Computer Science, Humboldt-University Berlin,
{hunter,kreutzer}@informatik.hu-berlin.de

Abstract. Tree-width is a well-known metric on undirected graphs thatmeasures
how tree-like a graph is and gives a notion of graph decomposition that proves
useful in algorithm development. Tree-width is characterised by a game known as
the cops-and-robber game where a number of cops chase a robber on the graph.
We consider the natural adaptation of this game to directed graphs and show that
monotone strategies in the game yield a measure with an associated notion of
graph decomposition that can be seen to describe how close a directed graph is
to a directed acyclic graph (DAG). This promises to be useful in developing algo-
rithms on directed graphs. In particular, we show that the problem of determining
the winner of a parity game is solvable in polynomial time on graphs of bounded
DAG-width. We also consider the relationship betweenDAG-width and other mea-
sures such as entanglement and directed tree-width. One consequence we obtain
is that certain NP-complete problems such as Hamiltonicityand disjoint paths are
polynomial-time computable on graphs of boundedDAG-width.

1 Introduction

The groundbreaking work of Robertson and Seymour in their graph minor project has
focused much attention on tree-decompositions of graphs and associated measures of
graph connectivity such as tree-width [13]. Aside from their interest in graph structure
theory, these notions have also proved very useful in the development of algorithms.
The tree-width of a graph is a measure of how tree-like the graph is, and it is found that
small tree-width allows for graph decompositions along which recursive algorithms can
work. Many problems that are intractable in general can be solved efficiently on graphs
of bounded tree-width. These include such classical NP-complete problems as finding
a Hamiltonian cycle in a graph or detecting if a graph is three-colourable. Indeed, a
general result of Courcelle [4] shows that any property definable in monadic second-
order logic is solvable in linear time on graphs of fixed tree-width.

The idea of designing algorithms that work on tree-decompositions of the input has
been generalised from graphs to other kinds of structures. Usually the tree-width of a
structure is defined as that of the underlying connectivity (or Gaifman) graph. For in-
stance, the tree-width of a directed graph is simply that of the undirected graph we get
by forgetting the direction of edges, a process which leads to some loss of information.
This loss may be significant if the algorithmic problems we are interested in are inher-
ently directed. A good example is the problem of detecting Hamiltonian cycles. While
we know that this can be solved easily on graphs with small tree-width, there are also

directed graphs with very simple connectivity structure which have large tree-width. A
directed acyclic graph (DAG) is a particularly simple structure, but we lose sight of this
when we erase the direction on the edges and find the underlying undirected graph to
be dense. Several proposals have been made (see [12, 8, 2, 14]) which extend notions of
tree-decompositions and tree-width to directed graphs. Inparticular, Johnson et al. [8]
introduce the notion ofdirected tree-widthwhere directed acyclic graphs have width 0
and they show that Hamiltonicity can be solved for graphs of bounded directed tree-
width in polynomial time. However, the definition and characterisations of this measure
are somewhat unwieldy and they have not, so far, resulted in many further developments
in algorithms.

We are especially interested in one particular problem on directed graphs, that of
determining the winner of aparity game. This is an infinite two-player game played
on a directed graph where the nodes are labelled by priorities. The players take turns
pushing a token along edges of the graph. The winner is determined by the parity of the
least priority occurring infinitely often in this infinite play. Parity games have proved
useful in the development of model-checking algorithms used in the verification of
concurrent systems. The modalµ-calculus, introduced in [10], is a widely used logic for
the specification of such systems, encompassing a variety ofmodal and temporal logics.
The problem of determining, given a systemA and a formulaϕ of the µ-calculus,
whether or notA satisfiesϕ can be turned into a parity game (see [6]). The exact
complexity of solving parity games is an open problem that has received a large amount
of attention. It is known [9] that the problem is in NP∩ co-NP and no polynomial time
algorithm is known. Obdržàlek [11] showed that for eachk there is a polynomial time
algorithm that solves parity games on graphs of tree-width at mostk. He points out that
the algorithm would not give good bounds, for instance, on directed acyclic graphs even
though solving the games on such graphs is easy. He asks whether there is a structural
property of directed graphs that would allow a fast algorithm on both bounded tree-
width structures and onDAGs.

In this paper, we give just such a generalisation. We introduce a new measure of the
connectivity of graphs that we callDAG-width4. It is intermediate between tree-width
and directed tree-width, in that for any graphG, the directed tree-width ofG is no greater
than itsDAG-width which, in turn, is no greater than its tree-width. Thus, the class of
structures ofDAG-width k + 1 or less includes all structures of tree-widthk and more
(in particular,DAGs of arbitrarily high tree-width all haveDAG-width 1).

The notion ofDAG-width can be understood as a simple adaptation of the game
of cops and robber(which characterises tree-width) to directed graphs. The game is
played by two players, one of whom controls a set ofk cops attempting to catch a
robber controlled by the other player. The cop player can move any set of cops to any
nodes on the graph, while the robber can move along any path inthe graph as long as
there is no cop currently on the path. Such games have been extensively studied (see [15,
5, 7, 1, 2]). It is known [15] that the cop player has a winning strategy on an undirected
graphG usingk + 1 cops if, and only if,G has tree-widthk. We consider the natural
adaptation of this game to directed graphs, by constrainingthe robber to move along

4 We understand that Obdržàlek has defined a similar measurein a paper to appear at SODA’06.
We have not yet had an opportunity to see that paper.

2

directed paths. We show that the class of directed graphs where there is a monotone (in
a sense we make precise) strategy fork cops to win is characterised by its width in a
decomposition that is a generalisation of tree-decompositions. We are then able to show
that the problem of determining the winner of a parity game issolvable in polynomial
time on the class of graphs ofDAG-width k, for any fixedk.

In Section 2, we introduce some notation. Section 3 introduces the cops and robber
game,DAG-decompositions andDAG-width and shows the equivalence between the ex-
istence of monotone winning strategies andDAG-width. Also in Section 3 we discuss
some algorithmic aspects ofDAG-width. Section 4 relatesDAG-width to other mea-
sures of graph connectivity, and Section 5 demonstrates a polynomial time algorithm
for solving parity games on graphs with boundedDAG-width. All proofs appear in the
full version of the paper, available on the authors’ homepages.

2 Preliminaries

We first fix some notation used throughout the paper. All graphs used are finite, directed
and simple unless otherwise stated.

We writeω for the set of finite ordinals, i.e. natural numbers. For every n ∈ ω, we
write [n] for the set{1, . . . , n}. For every setV and everyk ∈ ω, we write [V]k for
the set of allk-element subsets ofV , that is,[V]k := {{x1, . . . , xk} ⊆ V : xi 6= xj

wheneveri 6= j}. We write[V]≤k for the set of allX ⊆ V with |X | ≤ k.
LetG be a directed graph. We writeV G for the set of its vertices andEG for the set of

its edges.Eop denotes the set of edges that results from reversing the edges inE ⊆ EG ,
i.e.Eop = {(w, v) : (v, w) ∈ E}. The graphGop is defined to be(V G , (EG)op).

A tree-decomposition of a graphG is a labelled tree(T , (Xt)t∈V T) whereXt ⊆ V G

for each vertext ∈ V T , for each edge(u, v) ∈ EG there is at ∈ V T such that
{u, v} ⊆ Xt, and for eachv ∈ V G , the set{t ∈ V T : v ∈ Xt} forms a connected
subtree ofT . The width of a tree-decomposition is the cardinality of the largestXt

minus one. The tree-width ofG is the smallestk such thatG has a tree-decomposition
of width k.

Let D := (D, A) be a directed, acyclic graph (DAG). The partial order�D (or �A)
on D is the reflexive, transitive closure ofA. A root of a setX ⊆ D is a�D-minimal
element ofX , that is,r ∈ X is a root ofX if there is noy ∈ X such thaty �D r.
Analogously, aleaf of X ⊆ D is a�D-maximal element.

3 Games, Strategies and Decompositions

This section contains the graph theoretical part of this paper. We defineDAG-width and
its relation to graph searching games. As mentioned in the introduction, the notion of
tree-width has a natural characterisation in terms of a copsand robber game. Directed
tree-width has also been characterised in terms of such games [8], but these games ap-
pear to be less intuitive. In this paper, we consider the straightforward extension of the
cops and robber game to directed graphs. We show that these games give a characterisa-
tion of the graph connectivity measure that we callDAG-width and introduce in Section
3.2. We comment on algorithmic properties in Section 3.3.

3

3.1 Cops and Robber Games

The Game. The Cops and Robber game on a digraph is a game wherek cops try to
catch a robber who may run along paths in the digraph. While the robber is confined
to moving along paths in the graph, the cops may move to any vertex at any time. A
formal definition follows.

Definition 3.1 (Cops and Robber Game). Given a graphG := (V, E), thek-cops and
robber game onG is played between two players, thecop and therobber player, as
follows:

– At the beginning, the cop player choosesX0 ∈ [V]≤k, and the robber player
chooses a vertexr0 of V \ X0, giving position(X0, r0).

– From position(Xi, ri), the cop player choosesXi+1 ∈ [V]≤k, and the robber
player chooses a vertexri+1 of V \ Xi+1 such that there is a path fromri to ri+1

which does not pass through a vertex inXi ∩ Xi+1. If no such vertex exists then
the robber player loses.

A play in the game is a (finite or infinite) sequenceπ := (X0, r0)(X1, r1) . . . of posi-
tions such that the transition from(Xi, ri) to (Xi+1, rr+1) is a valid move by the rules
above and such that the play is finite if, and only if,rn ∈ Xn for the final position
(Xn, rn). A play is winning for the robber player if it is infinite.

As always when dealing with games we are less interested in a single play in the
game as in strategies that allow a player to win every play in the game. Winning strate-
gies for the cop player play a crucial role throughout this paper. We therefore give a
precise definition of this notion.

Definition 3.2. Let G := (V, E) be a directed graph. A(k-cop) strategyfor the cop
player is a functionf from [V]≤k × V to [V]≤k. A play (X0, r0), (X1, r1), . . . is con-
sistentwith a strategyf if Xi+1 = f(Xi, ri) for all i. The strategyf is called awinning
strategy, if every play consistent withf is winning for the cop player.

Definition 3.3 (Game-width). Thegame-width gw(G) of G is the leastk such that the
cop player has a strategy to win thek-cops and robber game onG.

Variants of the game where the robber moves first or only one cop can be moved at
a time or the cops are lifted and placed in separate moves are all equivalent in that the
game-width of a graph does not depend on the variant.

Lemma 3.4. For every finite, non-empty, directed graphG the game-width gw(G) is at
least one and gw(G) = 1 if, and only if,G is acyclic.

Games similar to the one defined above have been used to give game characterisa-
tions of concepts like undirected tree-width [15] and also the directed tree-width of [8].
Directed tree-width is invariant under reversing the edgesof a graph. As we see be-
low, this is not true of the game-width we have defined. One exception are graphs of
game-width1, i.e. acyclic graphs.

Proposition 3.5. gw(G) = 1 if, and only if gw(Gop) = 1.

4

Proposition 3.6. For any j, k with 2 ≤ j ≤ k, there exists a graphT j
k such that

gw(T j
k) = j and gw((T j

k)op) = k.

In the sequel we consider a restriction of the cop player to monotone strategies.

Definition 3.7 (Monotone strategy).

(i) A strategy for the cop player iscop-monotoneif in playing the strategy, no vertex
is visited twice by cops. That is, if(X0, r0), (X1, r1) . . . is a play consistent with
the strategy, then for every0 ≤ i < n andv ∈ Xi \ Xi+1, v /∈ Xj for all j > i.

(ii) A strategy for the cop player isrobber-monotoneif in playing the strategy, the set
of vertices reachable by the robber is non-increasing.

Lemma 3.8. If the cop player has a cop-monotone or robber-monotone winning strat-
egy then it also has a winning strategy that is both, cop- and robber-monotone.

From this lemma we can define amonotone winning strategyin the obvious way.

3.2 DAG-Decompositions andDAG-Width

In this section we define the notion ofDAG-width which measures how close a given
graph is to being acyclic. We present a decomposition of directed graphs that is some-
what similar in style to tree-decompositions of undirectedgraphs. We show then that a
graph hasDAG-width k if, and only if, the cop player has a monotone winning strategy
in thek-cops and robber game played on that graph. We conclude with some properties
enjoyed byDAG-width.

Definition 3.9. Let G := (V, E) be a graph. A setW ⊆ V guardsa setV ′ ⊆ V if
whenever there is an edge(u, v) ∈ E such thatu ∈ V ′ andv 6∈ V ′ thenv ∈ W .

Definition 3.10 (DAG-decomposition). Let G := (V, E) be a directed graph. ADAG-
decompositionis a tupleD = (D, (Xd)d∈V D) such that

(D1) D is aDAG.
(D2)

⋃

d∈V D Xd = V .
(D3) For alld �D d′ �D d′′, Xd ∩ Xd′′ ⊆ Xd′ .
(D4) For a rootd, Xd is guarded by∅.
(D5) For all(d, d′) ∈ ED, Xd ∩ Xd′ guardsXd′ \ Xd , whereXd′ :=

⋃

d′�Dd′′ Xd′′ .

The width ofD is defined asmax{|Xd| : d ∈ V D}. The DAG-width of a graph is
defined as the minimal width of any of itsDAG-decompositions.

The main result of this section is an equivalence between monotone strategies for
the cop player andDAG-decompositions.

Theorem 3.11. For any graphG there is aDAG-decomposition ofG of widthk if, and
only if, the cop player has a monotone winning strategy in thek-cops and robber game
onG.

For algorithmic purposes, it is often useful to have a normalform for decomposi-
tions. The following is similar to one for tree-decompositions as presented in [3].

5

Definition 3.12. A DAG-decomposition(D, (Xd)d∈V D) is nice if

(N1) D has a unique root.
(N2) Everyd ∈ V D has at most two successors.
(N3) If d1, d2 are two successors ofd0, thenXd0

= Xd1
= Xd2

.
(N4) If d1 is the unique successor ofd0, then|Xd0

∆Xd1
| ≤ 1, where∆ is the sym-

metric set difference operator (A∆B = (A \ B) ∪ (B \ A)).

Nice decompositions can be seen as corresponding to strategies where we place
or remove only one cop at a time. It should therefore not be surprising that we can
transform anyDAG-decomposition into one which is nice.

Theorem 3.13. If G has aDAG-decomposition of widthk, it has a niceDAG-decomposition
of widthk.

Tree-width on undirected graphs also has a useful characterisation in terms of bal-
anced separators. We are able to obtain one direction of a similar characterisation for
DAG-width by showing that graphs of smallDAG-width admit small balanceddirected
separators. The definition and proofs can be found in the full version. Wealso show
that theDAG-width of graphs is closed under directed unions, which is considered (see
[8]) an important property of a reasonable decomposition ofdirected graphs.

3.3 Algorithmic Aspects of BoundedDAG-Width

We now consider algorithmic applications ofDAG-width as well as the complexity of
deciding theDAG-width of a graph and computing an optimal decomposition. The fol-
lowing is a direct consequence of the similar result for tree-width.

Theorem 3.14. Given a digraphG and a natural numberk, deciding if theDAG-width
of G is at mostk is NP-complete.

However, for any fixedk, it is possible, in polynomial time, to decide if a graph has
DAG-width at mostk and to compute aDAG-decomposition of this width if it has. We
give an algorithm for this that is based on computing monotone winning strategies in
thek-cops and robber game.

Theorem 3.15. Let G be a directed graph and letk < ω. There is a polynomial time
algorithm for deciding if the cop player has a monotone winning strategy in thek-cops
and robber game onG and for computing such a strategy.

Note also that the translation of strategies into decompositions is computationally
easy, i.e. can be done in polynomial time. Since winning strategies can be computed in
polynomial time in the size of the graph, we get the following.

Proposition 3.16. Given a graphG of DAG-width k, a DAG-decomposition ofG of
widthk can be computed in timeO(|G|O(k)).

6

Algorithms on graphs of boundedDAG-width. As the directed tree-width of a graph is
bounded above by a constant factor of itsDAG-width (see Proposition 4.1), any graph
property that can be decided in polynomial time on classes ofgraphs of bounded di-
rected tree-width can be decided on classes of graphs of boundedDAG-width also. This
implies that properties such as Hamiltonicity that are known to be polynomial time
on graphs of bounded directed tree-width [8] can be solved efficiently on graphs of
boundedDAG-width too. We give a nontrivial application ofDAG-width in Section 5
where we show that parity games can be solved on graphs of bounded DAG-width,
something which is not known for directed tree-width.

As for the relation to undirected tree-width, it is clear that not all graph properties
that can be decided in polynomial time on graphs of bounded tree-width can also be
decided efficiently on graphs of boundedDAG-width. For instance, the 3-colourability
problem is known to be decidable in polynomial time on graphsof bounded tree-width.
However, the problem does not depend on the direction of edges. So if the problem
was solvable in polynomial time on graphs of boundedDAG-width then for every given
graph we could simply direct the edges so that it becomes acyclic, i.e. of DAG-width 1,
and solve the problem then. This shows that 3-colourabilityis not solvable efficiently
on graphs of boundedDAG-width unless PTIME = NP. It also implies that Courcelle’s
theorem does fail forDAG-width, as 3-colourability is easily seen to beMSO-definable.

The obvious question that arises is whether one can define a suitable notion of “di-
rected problem” and then show that everyMSO-definable “directed” graph problem can
be decided efficiently on graphs of boundedDAG-width. This is part of ongoing work.

4 Relation to other graph connectivity measures

As a structural measure for undirected graphs, the concept of tree-width is of unrivalled
robustness. On the realm of directed graphs, however, its heritage seems to be split
among several different concepts. ComparingDAG-width with tree-width, it is easily
seen that every tree-decomposition of an undirected graphG is aDAG-decomposition of
the directed graph formed by replacing every edge by two edges, one in each direction.
Conversely, theDAG-width of the graph formed in this way is exactly its tree-width. On
the other hand a clique with an acyclic orientation providesan example of a digraph with
smallDAG-width but arbitrarily large tree-width. In the sequel we compareDAG-width
with other connectivity measures for digraphs, namely directed tree-width introduced
by Johnson et al. [8], and entanglement proposed by Berwanger and Grädel [2].

Directed tree-width.Aiming to reproduce the success of tree-decompositions in allow-
ing divide-and-conquer algorithms, directed tree-width is associated to a tree-shaped
representation of the input graph. It was proved that this representation leads to effi-
cient algorithms for solving a particular class of NP-complete problems, including, e.g.,
Hamiltonicity, when directed tree-width is bounded. Unfortunately this generic method
does not cover many interesting problems. In particular, the efficient solution of parity
games on bounded tree-width has failed so far to generalise to directed tree-width.

In terms of games, directed tree-width is characterised by arestriction of the cops-
and-robber game forDAG-width, in which the robber is only permitted to move to ver-
tices where there exists a directed cop-free path from his intended destination back to

7

his current position. On the basis of the game characterisation, it is clear that the di-
rected tree-width of a graph provides a lower bound for itsDAG-width. Conversely, the
DAG-width of a graph cannot be bounded in terms of its directed tree-width.

Proposition 4.1.

(i) If a graph hasDAG-widthk, its directed tree-width is at most3k + 1.
(ii) There are graphs with arbitrarily largeDAG-width and directed tree-width1.

Entanglement.The notion of entanglement measures the nesting depth of directed cy-
cles in a graph. In terms of cops-and-robber games, it is obtained by restricting the
mobility of both the robber and the cops so that in any round, the cop player may send
one cop to the robber’s current position (or do nothing) while the robber can only move
to a successor of his current residence.

Unlike the other graph widths considered here, entanglement is not associated to an
efficient tree-shaped graph representation. Nevertheless, it was shown that parity games
on arenas of bounded entanglement can be solved in polynomial time.

The following proposition shows that having boundedDAG-width is more general
than having bounded entanglement. On the other hand, the gapbetweenDAG-width and
entanglement can be at most logarithmic in the number of graph vertices.

Proposition 4.2.

(i) If a graph has entanglementk, its DAG-width is at mostk + 1.
(ii) There are graphs with arbitrarily large entanglement but with DAG-width 2.
(iii) If a graphG hasDAG-widthk, its entanglement is at most(k + 1) · log |V G |.

We conclude that, despite their conceptual affinity, directed tree-width, entangle-
ment, andDAG-width are rather different measures.

5 Parity Games on Graphs of BoundedDAG-Width

A parity gameP is a tuple(V, V0, E, Ω) where(V, E) is a directed graph,V0 ⊆ V and
Ω : V → ω is a function assigning a priority to each node. There is no loss of generality
in assuming that the range ofΩ is contained in[n] wheren = |V | and we will make
this assumption from now on.

Intuitively, two players called Odd and Even play a parity game by pushing a token
along the edges of the graph with Even playing when the token is on a vertex inV0

and Odd playing otherwise. Formally, a play of the gameP is an infinite sequence
π = (vi | i ∈ ω) such that(vi, vi+1) ∈ E for all i. We sayπ is winning for Even if
lim infi→∞ Ω(vi) is even andπ is winning for Odd otherwise.

A strategyis a mapf : V <ω → V such that for any sequence(v0 · · · vi) ∈ V <ω,
(vi, f(v0 · · · vi)) ∈ E. A play π = (vi | i ∈ ω) is consistent with Even playingf
if whenevervi ∈ V0, vi+1 = f(v0 · · · vi). Similarly, π is consistent with Odd play-
ing f if whenevervi 6∈ V0, vi+1 = f(v0 · · · vi). A strategyf is winning for Even if
every play consistent with Even playingf is winning for Even. A strategy ismemory-
lessif wheneveru0 · · ·ui andv0 · · · vj are two sequences inV <ω with ui = vj , then

8

f(u0 · · ·ui) = f(v0 · · · vj). It is known that parity games are determined, i.e. for any
game and starting position, either Even or Odd has a winning strategy and indeed, a
memoryless one. However, we do not assume in our construction that the strategies we
consider are memoryless.

The following ordering on[n] is useful in evaluating competing strategies. For pri-
oritiesi, j ∈ [n] we sayi ⊑ j if either

(i) i is odd andj is even, or
(ii) i andj are both odd andi ≤ j, or
(iii) i andj are both even andj ≤ i.

Intuitively, i ⊑ j if the priority i is “better” for player Odd thanj.
We are interested in the problem of determining, given a parity game and starting

node, which player has a winning strategy. The complexity ofthis problem in general
remains a major open question, as explained in Section 1. We demonstrate that parity
games are solvable on arenas of boundedDAG-width by an algorithm similar in spirit to
that of Obdržàlek [11]. That algorithm relies on the fact that in a tree-decomposition, a
set ofk nodes guards all entries and exits to the part of the graph below it, and thus all
cycles must pass through this set. In the case of aDAG-decomposition, while the small
set guards all exits from the subgraph below it, there may be an unlimited number of
edges going into this subgraph. This is the main challenge that our algorithm addresses,
and is specifically solved in Lemmas 5.1, 5.2 and 5.3.

For a parity gameP = (V, V0, E, Ω) considerU ⊆ V and a setW that guardsU .
Fix a pair of strategiesf andg. For anyv ∈ U , there is exactly one playπ = (vi : i ∈ ω)
that is consistent with Even playingf and Odd playingg. Let π′ be the maximal initial
segment ofπ that is contained inU . Theoutcomeof the pair of strategies(f, g) (givenU
andv) is defined as follows.

outf,g(U, v) :=











winEven ifπ′ = π andπ is winning for Even;

winOdd if π′ = π andπ is winning for Odd;

(vi+1, p) if π′ = v0 · · · vi andp = min{Ω(vj) | 0 ≤ j ≤ i + 1}.

By construction, if outf,g(U, v) = (w, p) thenw ∈ W . More generally, for any set
W ⊆ V , define the set of potential outcomes inW , written pot-out(W), to be the set
{winEven, winOdd} ∪ {(w, p) : w ∈ W andp ∈ [n]}. We define a partial orderE on
pot-out(W) which orders potential outcomes according to how good they are for player
Odd. It is the least partial order satisfying the following conditions:

(i) winOddE o for all outcomeso;
(ii) o E winEven for all outcomeso;
(iii) (w, p) E (w, p′) if p ⊑ p′ for all w ∈ W .

In particular,(w, p) and(w′, p′) are incomparable ifw 6= w′. The idea is that ifg andg′

are strategies such that outf,g(U, v)Eoutf,g′(U, v) then player Odd is better off playing
strategyg rather thang′ in response to Even playing according tof .

A single outcome is the result of fixing the strategies playedby both players in the
sub-game induced by a set of verticesU . If we fix the strategy of player Even to bef

9

but consider all possible strategies that Odd may play, we can order these strategies ac-
cording to their outcome. If one strategy achieves outcomeo and anothero′ with oE o′,
there is no reason for Odd to consider the latter strategy. Thus, we define resultf (U, v)
to be the set of outcomes that are achieved by the best strategies that Odd may follow,
in response to Even playing according tof . More formally, resultf (U, v) is the set of
E-minimal elements in the set{o : o = outf,g(U, v) for someg}. Thus, resultf (U, v)
is an anti-chain in the partial order(pot-out(W), E), whereW is a set of guards forU .
We write pot-res(W) for the set ofpotential resultsin W . To be precise, pot-res(W) is
the set of all anti-chains in the partial order(pot-out(W), E). By definition of the order
E, if either of winEven or winOdd is in the set resultf (U, v), then it is the sole element
of the set. Also, for eachw ∈ W , there is at most onep such that(w, p) ∈ resultf (U, v)
so the number of distinct values that resultf (U, v) can take is at most(|U | + 1)|W | + 2
(in fact, (d + 1)|W |, whered is the number of different priorities inU). This is the
cardinality of the set pot-res(W).

We also abuse notation and extend the orderE to the set pot-res(W) pointwise.
That is, forr, s ∈ pot-res(W) we writer E s if, for eacho ∈ s, there is ano′ ∈ r with
o′ E o. With this definition, the orderE on pot-res(W) admits greatest lower bounds.
Indeed, the greatest lower boundr⊓ s of r ands can be obtained by taking the set ofE

minimal elements in the set of outcomesr ∪ s. One further piece of notation we use is
that we write Res(U, v) for the set{resultf (U, v) : f is a strategy}.

Suppose now thatP = (V, V0, E, Ω) is a parity game and we are given aDAG

decomposition(D, (Xd)d∈V D) of (V, E) of width k that is nice in the sense of Defini-
tion 3.12. For eachd ∈ V D, we writeVd for the setXd \ Xd. The key to the algorithm
is that we construct the set of results Res(Vd, v) for eachv ∈ Vd. SinceVd is guarded
by Xd, |Xd| ≤ k and |Vd| ≤ n, the number of distinct values of resultf (Vd, v) asf
ranges over all possible strategies is at most(n + 1)k + 2.

We define the following, which is our key data structure: Frontier(d) = {(v, r) :
v ∈ Vd andr = resultf (Vd, v) for some strategyf}. Note that in the definitions of
resultf (U, v) and Frontier(d), f andg range overall strategies and not just memoryless
ones. The bound on the number of possible values of resultf (Vd, v) guarantees that
|Frontier(d)| ≤ n((n + 1)k + 2). We aim to show how Frontier(d) can be constructed
from the set of frontiers of the successors ofd in polynomial time. Whend is a leaf,
Vd = ∅ and thus Frontier(d) = ∅. There are four inductive cases to consider.

Case 1:d has two successorse1 ande2. In this case,Xd = Xe1
= Xe2

by (N2).
We claim that Frontier(d) = Frontier(e1) ∪ Frontier(e2).

Case 2:d has one successore andXd = Xe. In this case, Frontier(d) = Frontier(e).
Case 3:d has one successore andXd \ Xe = {u}. Then, by (D3),u 6∈ Ve. Also,

by definition ofVd, u 6∈ Vd. We conclude thatVd = Ve. Moreover, sinceXe guardsVe,
there is no path from any element ofVe to u except throughXe. Hence, Frontier(d) =
Frontier(e).

Case 4:d has one successore andXe \ Xd = {u}. This is the critical case. Here
Vd = Ve ∪ {u} and in order to construct Frontier(d) we must determine the results of
all plays beginning atu.

Consider the set of verticesv in Xd such that(u, v) ∈ EG . These fall into two
categories. Eitherv ∈ Xd or v ∈ Ve. Let x1, . . . , xs enumerate the first category and

10

let v1, . . . , vm enumerate the second. LetO = {(xi, min{Ω(xi), Ω(u)}) : 1 ≤ i ≤ s}.
This is the set of outcomes obtained if play in the parity gameproceeds directly fromu
to an element ofXd. Note that as no two outcomes inO are comparable with respect to
E, O ∈ pot-res(Xd). We writeO for {{o} : o ∈ O} That isO is the set of singleton
results obtained fromO. For eachvi we know, from Frontier(e), the set Res(Ve, vi).
For each resultr ∈ Res(Ve, vi), we write mod(r) for the set of outcomes defined by
modifyingr as follows. First, ifr contains an outcome(u, p), we replace it by winEven
if min{p, Ω(u)} is even and winOdd if it is odd. Secondly, for any pair(w, p) ∈ r where
w 6= u, we replace it with(w, min{p, Ω(u)}). Finally, we take the set ofE-minimal
elements from the resulting set. This is mod(r). Note that mod(r) ∈ pot-res(Xd). The
intuition is that mod(resultf (Ve, vi)) defines the set of best possible outcomes for player
Odd, if starting atu, the play goes tovi and from that point on, player Even plays
according to strategyf . For each1 ≤ i ≤ m, let Mi = {mod(r) : r ∈ Res(Ve, vi)}.

We now wish to use the sets of resultsMi, O andO to construct the Res(Vd, u). We
need to distinguish between the cases whenu ∈ V0 (i.e. player Even plays fromu in
the parity game) andu ∈ V \ V0 (i.e. player Odd plays).

The simpler case is whenu ∈ V0.

Lemma 5.1. If u ∈ V0, then Res(Vd, u) =
⋃

i Mi ∪ O.

The case whenu 6∈ V0 is somewhat trickier. To explain how we can obtain Res(Vd, u)
in this case, we formulate the following lemma.

Lemma 5.2. If u 6∈ V0, thenr ∈ Res(Vd, u) if, and only if, there is a functionc on the
set[m] with c(i) ∈ Mi such thatr = O ⊓

d
i∈[m] c(i).

Lemma 5.2 suggests constructing Res(Vd, u) by considering all possible choice
functionsc. However, as each setMi may have as many as(n+1)k +2 elements, there
arem(n+1)k+2 possibilities forc and our algorithm would be exponential. We consider
an alternative way of constructing Res(Vd, u). Recall that Res(Vd, u) ⊆ pot-res(Xd)
and the latter set has at most(n+1)k+2 elements. We check, for eachr ∈ pot-res(Xd),
in polynomial time, whether there is a choice functionc as in Lemma 5.2 that yieldsr.
In particular, we take the following alternative characterisation of Res(Vd, u).

Lemma 5.3. If u 6∈ V0, thenr ∈ Res(Vd, u) if, and only if, there is a setD ⊆ [m] with
|D| ≤ |r| and a functiond onD with d(i) ∈ Mi such that

(i) r = O ⊓
d

i∈D d(i); and
(ii) for eachi 6∈ D there is anri ∈ Mi with r E ri.

Now, anyr ∈ pot-res(Xd) has at mostk elements. Thus, to check whether such anr
is in Res(Vd, u) we cycle through all setsD ⊆ [m] with k or fewer elements (and there
areO(nk) such sets) and for each one consider all candidate functionsd (of which there
areO(nk2

)). Having found ad which givesr = O ⊓
d

D d(i), we then need to find a
suitableri in eachi ∈ [m] \ D. For this we must, at worst, go through all elements of
all the setsMi and compare them tor. This can be done in timeO(nk+1).

We have now obtained the set Res(Vd, u). One barrier remains to completing the
construction of Frontier(d). Elements(v, r) of Frontier(e) may have outcomes inr

11

of the form(u, p). Sinceu is not in Xd, these must be resolved by combining them
with results from Res(Vd, u). To be precise, letr ∈ Res(Ve, v) for somev ∈ Ve and
s ∈ Res(Vd, u). Define the combined resultc(r, s) as follows:

– if r does not contain an outcome of the form(u, p), thenc(r, s) = r;
– otherwise,r contains a pair(u, p). Let s′ be obtained froms by replacing every

pair (w, q) by (w, min{p, q}). c(r, s) = r ⊓ s′.

Intuitively, if r = resultf (Ve, v) ands = resultf ′(Vd, u) thenc(r, s) is the set ofE-
minimal outcomes that can be obtained if player Even plays according tof starting at
v until the nodeu is encountered and then switches to strategyf ′.

Lemma 5.4. For v ∈ Ve, Res(Vd, v) = {c(r, s) : r ∈ Res(Ve, v) ands ∈ Res(Vd, u)}.

We now obtain Frontier(d) = {(v, r) : r ∈ Res(Vd, v)}.

Theorem 5.5. For eachk, there is a polynomialp and an algorithm running in time
O(p(n)) which determines the winner of parity games on all graphs with DAG-width at
mostk.

References

1. J. BARÁT, Directed path-width and monotonicity in digraph searching. To appear inGraphs
and Combinatorics.

2. D. BERWANGER AND E. GRÄDEL, Entanglement – a measure for the complexity of directed
graphs with applications to logic and games, in LPAR, 2004, pp. 209–223.

3. H. L. BODLAENDER, Treewidth: Algorithmic techniques and results, in MFCS, 1997,
pp. 19–36.

4. B. COURCELLE, Graph rewriting: An algebraic and logic approach, in Handbook of Theo-
retical Computer Science, Volume B: Formal Models and Sematics (B), J. van Leeuwan, ed.,
1990, pp. 193–242.

5. N. D. DENDRIS, L. M. K IROUSIS, AND D. M. THILIKOS, Fugitive-search games on
graphs and related parameters, TCS, 172 (1997), pp. 233–254.

6. E. EMERSON, C. JUTLA , AND A. SISTLA, On model checking for theµ-calculus and its
fragments, TCS, 258 (2001), pp. 491–522.

7. G. GOTTLOB, N. LEONE, AND F. SCARCELLO, Robbers, marshals, and guards: Game
theoretic and logical characterizations of hypertree width, in PODS, 2001, pp. 195–201.

8. T. JOHNSON, N. ROBERTSON, P. D. SEYMOUR, AND R. THOMAS, Directed tree-width,
Journal of Combinatorial Theory, Series B, 82 (2001), pp. 138–154.

9. M. JURDZIŃSKI, Deciding the winner in parity games is in UP∩ co-UP, Information Pro-
cessing Letters, 68 (1998), pp. 119–124.

10. D. KOZEN, Results on the propositional mu-calculus, TCS, 27 (1983), pp. 333–354.
11. J. OBDRZ̆ÁLEK , Fast mu-calculus model checking when tree-width is bounded, in Proceed-

ings of 15th International Conference on Computer Aided Verification, vol. 2725 of LNCS,
Springer, 2003, pp. 80–92.

12. B. A. REED, Introducing directed tree width, in 6th Twente Workshop on Graphs and Com-
binatorial Optimization, vol. 3 of Electron. Notes Discrete Math, Elsevier, 1999.

13. N. ROBERTSON ANDP. SEYMOUR, Graph Minors. III. Planar tree-width, Journal of Com-
binatorial Theory, Series B, 36 (1984), pp. 49–63.

14. M. SAFARI, D-width: A more natural measure for directed tree width, in MFCS 2005,
vol. 3618 of LNCS, Springer, 2005, pp. 745–756.

15. P. SEYMOUR AND R. THOMAS, Graph searching, and a min-max theorem for tree-width,
Journal of Combinatorial Theory, Series B, 58 (1993), pp. 22–33.

12

