
Digraph Measures: Kelly Decompositions, Games, and
Orderings

Paul Hunter and Stephan Kreutzer

Logic and Discrete Systems, Institute for Computer Science, Humboldt-University Berlin,
{hunter,kreutzer}@informatik.hu-berlin.de

Abstract. We consider various well-known, equivalent complexity measures for
graphs such as elimination orderings, k-trees and cops and robber games and
study their natural translations to digraphs. We show that on digraphs all these
measures are also equivalent and induce a natural connectivity measure. We intro-
duce a decomposition for digraphs and an associated width, Kelly-width, which is
equivalent to the aforementioned measure. We demonstrate its usefulness by ex-
hibiting a number of potential applications including polynomial-time algorithms
for NP-complete problems on graphs of bounded Kelly-width, and complexity
analysis of asymmetric matrix factorization. Finally, we compare the new width
to other known decompositions of digraphs.

1 Introduction

An important and active field of algorithm theory is to identify natural classes of struc-
tures or graphs which are algorithmically well-behaved, i.e. on which efficient solutions
to otherwise NP-complete problems can be found. A particularly rich source of tractable
cases comes from graph structure theory in the form of graph decompositions and asso-
ciated measures of structural complexity such as tree-width or rank-width. For instance,
Courcelle’s celebrated theorem [8] shows that every property of undirected graphs that
can be formulated in monadic second-order logic can be decided in linear time on any
class of graphs of bounded tree-width. This result immediately implies linear time al-
gorithms for a huge class of problems on such graphs. Since then, hundreds of papers
have been published describing efficient algorithms for graph problems on classes of
graphs of bounded tree-width. (See e.g. [5] and references therein.) Similarly, efficient
algorithms can sometimes be found for planar graphs [13, 2] or more general classes of
graphs, for instance classes of graphs of bounded local tree-width [14], or graph classes
excluding a minor (see e.g. [10] and references therein). Another interesting example
are classes of graphs of bounded clique- or rank-width [9, 22, 21].

All the examples mentioned above are defined by imposing restrictions on the un-
derlying undirected graph structure. However, there are many applications where the

Part of this work was done while the authors visited the Isaac Newton Institute in Cambridge
as part of the program on Logic and Algorithms.

input structures – networks, state transition systems, dependency graphs as in database
theory, or the arenas of combinatorial games such as parity games – are more naturally
modelled as directed rather than undirected graphs. In these cases, the notion of tree-
width is unsatisfactory as it does not take the direction of edges into account. This infor-
mation loss may be crucial, as demonstrated by the problem of finding a Hamiltonian
cycle in a digraph: an acyclic orientation of a grid has very high tree- or clique-width,
but the Hamiltonian cycle problem on the digraph is trivial.

As a consequence, several authors have tried to generalise notions like tree- or path-
width from undirected to directed graphs (See e.g. [23, 18, 3, 26, 20, 4]). In [18], John-
son, Robertson, Seymour, and Thomas concentrate on the connectivity aspect of tree-
width, generalising this to strong connectivity in the directed case, to define directed
tree-width. In the same paper, the authors give an algorithmic application of directed
tree-width by showing that a number of NP-complete problems such as Hamiltonicity
or the k-disjoint paths problems become tractable on graphs of small directed tree-
width. Berwanger, Dawar, Hunter and Kreutzer [4] and, independently, Obdrz̆álek [20]
introduce the notion of DAG-width. DAG-width is a slightly weaker notion than directed
tree-width, in the sense that more graphs have small directed tree-width than small DAG-
width, but it has a cleaner characterisation in terms of cops and robber games and gives
more control over the graph, as the guarding condition used is stricter. In [4], this has
been used to show that the winner of a parity game – a form of combinatorial games
played on digraphs – can be decided in polynomial time provided the game graph has
bounded DAG-width. The analogous question remains open for graphs of bounded di-
rected tree-width.

Both directed tree-decompositions and DAG-decompositions provide a natural and
interesting connectivity measure for directed graphs. Both, however, also suffer from
some difficulties. As Adler shows [1], directed tree-decompositions are not closed un-
der even mild forms of directed minors, the corresponding games are neither cop- nor
robber monotone, and there is no precise characterisation of directed tree-width by these
games (only up to a constant factor). Although this is not really a problem for algo-
rithmic applications, it suggests that the notion of directed tree-width may not be as
well-behaved as undirected tree-width. Furthermore, being a measure based on strong
connectivity makes it difficult to develop algorithms outside of those provided in [18].
DAG-decompositions, on the other hand, suffer from the fact that the best upper bound
for the size of DAG-decompositions of graphs of width k known so far is O(nk). This
is a significant problem, as the space consumption of algorithms is often more prob-
lematic than running time. Hence, it is not known whether deciding that a digraph has
DAG-width at most k is in NP, contrary to the authors’ claims. (It is NP-hard. This
follows easily from the NP-completeness of the corresponding question for tree-width.)

Whereas for undirected graphs it is widely accepted that tree-width is the “right” no-
tion, the problems described above suggest that more research is needed to decide what
the “right” notion for digraphs is – if there is any. A natural way to search for practical
generalisations of undirected tree-width is to look at useful equivalent characterisations
of it and translate them to digraphs.

In this paper we consider three characterisations of tree-width: partial k-trees, elimi-
nation orders and a graph searching game in which an invisible robber attempts to avoid

2

capture by a number of cops, subject to the restriction that he may only move if a cop is
about to occupy his position. Partial k-trees are the historical forerunner of tree-width
and are therefore associated with graph structure theory [25], elimination orders have
found application in the analysis of symmetric matrix factorization, such as Cholesky
decomposition [19], and graph searching problems have recently been used to explore
and generate robust measures of graph complexity (see e.g. [11, 15]). We generalise
all of these to directed graphs, resulting in partial k-DAGs, directed elimination order-
ings, and an inert robber game on digraphs. We show that all of these generalisations
are equivalent on digraphs and are also equivalent to the width-measure associated to
a new kind of decomposition we introduce. As the game is reminiscent of capturing
hideout-based outlaws, we propose the name Kelly-decompositions, after the infamous
Australian bushranger Ned Kelly. The fact that all these notions are equivalent on di-
graphs as they are on undirected graphs suggests that this might be a robust measure of
complexity/connectivity of digraphs.

In addition to being equivalent to the natural generalisations of the above char-
acterisations, we believe that Kelly-decompositions have many advantages over DAG-
decompositions and directed tree-decompositions. Unlike the former, the size of these
decompositions can be made linear in the size of the graph it decomposes. On the other
hand, their structure and strict guarding condition make them suitable for constructing
dynamic programming algorithms which can lead to polynomial-time algorithms for
NP-complete problems on graphs of bounded Kelly-width. We also show how they are
applicable to asymmetric matrix factorization by relating them to the elimination DAGs
of [16].

The paper is organised as follows. In Section 3 we formally define elimination order-
ings, inert robber games, and partial k-DAGs and show the equivalence of the associated
width measures. In Section 4, we introduce Kelly-decompositions and Kelly-width. In
Section 5, we present applications: Algorithms for Hamiltonian cycle, weighted disjoint
paths and parity games that all run in polynomial time on graphs of bounded Kelly-
width, and details of the connection between Kelly-decompositions and asymmetric
matrix factorization. Finally, we compare our new width measure to other known mea-
sures on digraphs, in particular to directed tree-width and DAG-width.

2 Preliminaries

We use standard graph theory notation. See e.g. [12]. Let G be a digraph. We write V (G)
for its set of vertices and E(G) for its edge set. For X ⊆ V (G) we write G[X] for the
subgraph of G induced by X and G \X for G[V (G)\X]. If X := {v} is a singleton set,
we simply write G \ v. Finally, we sometimes write G[v1, . . . , vk] for G[{v1, . . . , vk}].
For every v ∈ V (G) and X ⊆ V (G) such that v 6∈ X we write ReachG\X (v) for the
set of vertices in V (G) \ X reachable from v by a directed walk in G \ X . If G is a
directed, acyclic graph (DAG), we write �G for the reflexive, transitive closure of the
edge relation.

3

3 Elimination Orderings, Inert Robber Games, and Partial
k-DAGs

In this section we formally define directed elimination orderings, inert robber games,
and partial k-DAGs and show that the associated width-measures of digraphs are equiv-
alent.

Our first definition extends the idea of vertex elimination to digraphs. Vertex elim-
ination is the process of removing vertices from a graph but adding edges to preserve
reachability. The complexity measure we are interested in is the maximum out-degree
of eliminated vertices.

Definition 3.1 (Directed elimination ordering). Let G be a digraph. An (directed) elim-
ination ordering C is a linear ordering on V (G). Given an elimination ordering C :=
(v0, v1, . . . , vn−1) of G, we define: GC

0 := G; and GC

i+1 is obtained from GC

i by deleting
vi and adding new edges (if necessary) (u, v) if (u, vi), (vi, v) ∈ E(GC

i) and u 6= v.
GC

i is the directed elimination graph at step i according to C. The width of an elimina-
tion ordering is the maximum over all i of the out-degree of vi in GC

i . For convenience
we also define the support of vi with respect to C as supp

C
(vi) := {vj : (vi, vj) ∈

E(GC

i)}. Note that the width of an elimination ordering C is the maximum cardinality
of all supports.

Immediately from the definitions, we have this simple lemma relating the support
of an element in an elimination ordering to the set of vertices reachable from that node.

Lemma 3.2. Let C be a directed elimination ordering of a graph G and let v ∈ V (G).
Let R := {u : v C u}. Then supp

C
(v) = {u : v C u and there is v′ ∈ ReachG\R(v)

such that (v′, u) ∈ E(G)}.

We proceed with defining inert robber games on digraphs. Intuitively, a robber oc-
cupies some vertex of a graph G. A given number of cops attempt to capture this robber
by occupying the same vertex as the robber. The robber evades capture by being able to
run from his position along any directed path which does not pass through a cop. Any
number of cops can move anywhere on the graph but they do so by removing them-
selves completely from the graph and then announcing where they are moving. It is
during this transition that the robber moves. In the inert robber game, the robber may
only move if a cop is about to land on his current position, however he is not visible to
the cops and he knows the cops’ strategy in advance. More formally,

Definition 3.3 (Inert robber game). The (k-cop) inert robber game on a digraph G is
the set of all plays, where a play is a sequence

(X0, R0), (X1, R1), . . . (Xn, Rn),

such that (X0, R0) = (∅, V (G)) and for all i: Xi, Ri ⊆ V (G); |Xi| ≤ k; and

Ri+1 =

(

Ri ∪
⋃

v∈Ri∩Xi+1

ReachG\(Xi∩Xi+1)(v)

)

\ Xi+1.

4

Intuitively, the Xi represent the cop locations, and the Ri represent the set of potential
robber locations (also known as contaminated vertices). The sequence X0, X1, . . . is the
strategy for the cops. Note that given a strategy we can reconstruct the play. A strategy
X0, X1, . . . , Xn is winning if Rn = ∅ in the associated play. Finally, a strategy is
monotone if Ri ⊇ Ri+1 for all i in the associated play.

The last characterisation we consider is a generalisation of partial k-trees, called
partial k-DAGs. The class of k-trees can be viewed as a class of graphs generated by
a generalisation of how one might construct a tree. In the same way, k-DAGs are a
class of digraphs generated by a generalisation of how one might construct a DAG in a
top-down manner.

Definition 3.4 (Partial graph). Given two digraphsG and H, we say H is a partial graph
of G if V (H) = V (G) and E(H) ⊆ E(G), i.e. G is a spanning subgraph of H.

Definition 3.5 ((Partial) k-DAG). The class of k-DAGs is defined recursively as fol-
lows:

– A k-clique (that is, a complete digraph with k vertices) is a k-DAG.
– A k-DAG with n + 1 vertices can be constructed from a k-DAG H with n vertices

by adding a vertex v and edges satisfying the following:
• At most k edges from v to H
• If X is the set of endpoints of the edges added in the previous subcondition, an

edge from u ∈ V (H) to v if (u, w) ∈ E(H) for all w ∈ X \ {u}. Note that if
X = ∅, this condition is true for all u ∈ V (H).

A partial k-DAG is a partial graph of a k-DAG.

The second condition on the edges provides a method to add as many edges as possible
going to the new vertex without introducing cycles. Note that this definition generalises
k-trees, for if the vertices (X) adjacent to the new vertex (v) form a clique, we will add
edges back from X to v, effectively creating undirected edges between v and X (and
possibly some additional edges from H \X to v). Note that a partial 0-DAG is a DAG.

Our main result of this section is that the three measures introduced are equivalent
on digraphs.

Theorem 3.6. Let G be a digraph. The following are equivalent:

1. G has a directed elimination ordering of width ≤ k.
2. k + 1 cops have a monotone winning strategy to capture an inert robber.
3. G is a partial k-DAG.

Proof. 1 ⇒ 3: Let C = (v0, v1, . . . , vn−1) be a directed elimination ordering of G
of width k. For ease of notation, define Xi := supp

C
(vi). Let K0 be a k-clique on

the vertices {vn−k, vn−k+1, . . . , vn−1}, and let Kj (j ≥ 1) be the k-DAG formed by
adding vn−k−j to Kj−1, and edges from vn−k−j to Xn−k−j (together with the other
edges added from Kj−1 to vn−k−j in the definition of k-DAGs.) We claim that for all
0 ≤ j ≤ n − k, GC

n−k−j is a partial graph of Kj . The result then follows by taking
j = n−k. We prove our claim by induction on j. For the base case (j = 0) the result is

5

trivial as Kj is a complete graph. Now assume the result is true for j ≥ 0, and consider
the graph GC

n−k−j−1. For simplicity let i = n− k − j − 1. By the definition of directed
elimination ordering, for every edge (u, v) in GC

i either:

(a) vi /∈ {u, v},
(b) u = vi, or
(c) v = vi.

In the first case, (u, v) ∈ E(GC

i+1) and therefore in E(Kj) ⊆ E(Kj+1) by the induction
hypothesis. For the second case, (u, v) is added during the construction of Kj+1. For
the final case, for any w ∈ Xi, (vi, w) is an edge of GC

i , so (u, w) is an edge of GC

i+1

(for u 6= w), and therefore of Kj by the induction hypothesis. Thus (u, vi) is added
during the construction of Kj+1, and E(GC

i) ⊆ E(Kj+1) as required.
3 ⇒ 2 : Let G be a partial k-DAG. Suppose G is a partial graph of the k-DAG, K,

formed from a k-clique, on the vertices Xk := {v1, v2, . . . , vk}, and then by adding the
vertices vk+1, vk+2, . . . , vn (predecessors to Xk+1, Xk+2, . . . Xn respectively) in that
order. Note that for all i, |Xi| ≤ k. We claim that the sequence:

∅, Xk, Xk+1, Xk+1 ∪ {vk+1}, Xk+2, . . . , Xn, Xn ∪ {vn}

is a monotone winning strategy for k + 1 cops. Let Ri = {vj : j > i}, then from
the definition of k-DAGs and the Xi, it is easy to see that the play associated with the
strategy is:

(∅, V (G)), (Xk , Rk), (Xk+1, Rk), (Xk+1∪{vk+1}, Rk+1), . . . , (Xn, Rn−1), (Xn∪{vn}, ∅).

As Ri ⊇ Ri+1 for all i, the strategy is monotone and winning as required.
2 ⇒ 1 : Suppose k + 1 cops have a robber-monotone winning strategy. Order the

vertices in terms of the point at which they are first occupied by a cop (we assume
only one cop is placed at a time) and then reverse this order, so that vj appears later
than vi if and only if vj was first occupied by a cop before vi was. Call this ordering
C. We claim C has width ≤ k. If this were not the case, there must exist vi such that
|supp

C
(vi)| ≥ k+1. The inert robber can then defeat the strategy of the cops by starting

on vi. At the point when a cop first occupies vi there are at most k cops on supp
C

(vi)
so there exists vj ∈ supp

C
(vi) which is not currently occupied. Furthermore, no cop

is on any vertex which appears earlier than vi in C, so the robber is able to reach vj .
However, as j > i, vj has been occupied by a cop in the past and was therefore not
available as a robber position – contradicting the robber-monotonicity of the strategy.
�

It follows from this theorem that the minimal width over all directed elimination
orderings of G and the minimal number of cops required to capture an inert robber (less
one) coincide, and this class of digraphs is characterised by partial k-DAGs. This leads
to the following definition:

Definition 3.7 (Elimination width). Let G be a digraph. The (directed) elimination
width of G is the minimal width over all directed elimination orderings of G.

6

4 Decompositions

With a robust measure for digraph complexity defined, we now turn to the problem of
finding a closely related digraph decomposition. The decomposition we introduce is
a partition of the vertices, arranged as a directed acyclic graph, together with sets of
vertices which guard against paths in the graph that do not respect this arrangement.
We have an additional restriction to avoid trivial decompositions – vertices in the guard
sets must appear either to the left or earlier in the decomposition. More precisely,

Definition 4.1 (Guarding). Let G be a digraph. We say W ⊆ V (G) guards X ⊆ V (G)
if W ∩ X = ∅ and for all (u, v) ∈ E(G) with u ∈ X , we have v ∈ X ∪ W .

Definition 4.2 (Kelly-decomposition and Kelly-width). A Kelly-decomposition of a di-
graph G is a triple D := (D, (Bt)t∈V (D), (Wt)t∈V (D)) so that

– D is a DAG and (Bt)t∈V (D) partitions V (G),
– for all t ∈ V (D), Wt ⊆ V (G) guards B↓

t :=
⋃

t′�Dt Bt′ , and
– for all s ∈ V (D) there is a linear order on its children t1, . . . , tp so that for all

1 ≤ i ≤ p, Wti
⊆ Bs ∪ Ws ∪

⋃

j<i B
↓
tj

. Similarly, there is a linear order on the
roots such that Wri

⊆
⋃

j<i B
↓
rj

.

The width of D is max{|Bt ∪ Wt| : t ∈ V (D)}. The Kelly-width of G is the minimal
width of any of its Kelly-decompositions.

Our main result of this section is that Kelly-decompositions do in fact correspond
with the complexity measure defined at the end of the previous section.

Theorem 4.3. G has directed elimination width ≤ k if, and only if, G has Kelly-width
≤ k + 1.

Proof. Let G be a digraph. It is easily seen that a left-most DFS search through a right-
most spanning tree of a Kelly-decomposition of width k+1 defines a monotone strategy
for k + 1 cops. Right-most spanning tree here means a spanning tree of the underlying
DAG constructed by a right-most DFS. By right-most (left-most) DFS, we mean a depth
first search which always chooses the largest (smallest) child according to the ordering
on the children. Hence, the Kelly-width is at least the monotone inert cop width and
hence at least one more than the elimination width.

For the converse, let C be a directed elimination ordering on G of width k. Let
v1 C . . .C vn be an enumeration of the vertices of G ordered by C. For convenience we
associate each vertex vi with its index i. In particular, we write Gt := G[1, . . . , t] for
the induced subgraph G[v1, . . . , vt].

Define a (D, (Bt)t∈V (D), (Wt)t∈V (D)) as follows. V (D) := V (G). For all t ∈
V (D) let Bt := {t} and Wt := supp

C
(t). Towards defining the edge relation, let

t ∈ V (D) be a node. Let C1, . . . , Cp be the strongly connected components of Gt \ t.
Let t1, . . . , tp be the C-maximal elements of C1, . . . , Cp, resp. We put an edge (t, ti)
between t and ti if ti is reachable from t in Gt and there is no tj with ti C tj C t such
that tj is reachable from t in Gt and ti is reachable from tj in Gt \ t.

7

We claim that (D, (Bt)t∈V (D), (Wt)t∈V (D)) is a Kelly decomposition of width ≤
k+1. Clearly, D is a DAG, as all the edges in E(D) are oriented following the ordering
C. Further, the width of the decomposition is clearly one more than the width of C.
Towards establishing the guarding property, we first show the following claim.

Claim. For all t ∈ V (D), ReachGt
(t) = B↓

t .

We first show by induction on t that ReachGt
(t) ⊆ B↓

t . For t = 1 there is nothing
to show. Suppose the claim has been proved for all i < t. Let v ∈ ReachGt

(t). Let
C1, . . . , Cm be the strongly connected components of Gt \ t. W.l.o.g. we assume that
v ∈ C1. Let s be the C-maximal element of C and let t′ be the C-maximal element
such that

– t′ is the C-maximal element of some Ci

– there is a directed path from t to t′ in Gt

– there is a directed path from t′ to s in Gt \ t.

By construction, there is an edge (t, t′) ∈ E(D). If t′ = v, or in fact if t′ is the C-
maximal element of C, then there is nothing more to show. Otherwise, if t′ and v are
not in the same strongly connected component of Gt \ t, then s, and hence v, must be
reachable from t′ in G[1, . . . , t′]. For, by construction, s is reachable from t′ in Gt\t and
t′ is the C-maximal element reachable from t in Gt and from which s can be reached in
Gt \ t. Thus, if s was not reachable from t′ in G[1, . . . , t′] then the only path from t′ to s
in Gt \t must involve an element wCt such that t′Cw, contradicting the maximality of
t′. Hence, v is reachable from t′ in G[1, . . . , t′] and therefore, by induction hypothesis,
v ∈ B↓

t′ ⊆ B↓
t .

Finally, a simple induction on the height of the nodes in D establishes the converse.
a

It remains to show that for all s ∈ V (D) there is a linear ordering @ of the children
s satisfying the ordering condition required by the definition of Kelly-decompositions.
For children v 6= v′ of s define v @ v′ if v′ C v, i.e. @ is the inverse ordering of C.

Let t1, . . . , tm be the children of s ordered by @. We claim that for all i ∈ {1, . . . , m},

Wti
⊆ Bs ∪ Ws ∪

⋃

j<i

B↓
tj

.

We set Wi := Bs ∪ Ws ∪
⋃

j<i B
↓
tj

. Let v ∈ Wti
. If v ∈ Bs there is nothing to show.

If s C v then v ∈ Ws as ti C s is reachable from s and therefore Wti
∩ {s, . . . , n} =

supp
C

(ti)∩{s, . . . , n} ⊆ supp
C

(s)∩{s, . . . , n} = Ws ∩{s, . . . , n}. Finally, suppose
vCs. But then, v ∈ B↓

s and hence v ∈ B↓
tj

for some 1 ≤ j ≤ k. By definition of support
sets, v 6∈ B↓

ti
and ti C v. But then, v 6∈ B↓

tj
for all j A i, i.e. j C i, as then tj C v and by

construction, w C tj for all w ∈ B↓
tj

. Hence, v ∈ B↓
tl

for some tl B ti. This completes
the proof of the theorem. �

The proof of Theorem 4.3 is constructive in that given an elimination ordering of
width k it constructs a Kelly-decomposition of width k + 1, and conversely. In fact, the
proof establishes a slightly stronger statement.

8

Corollary 4.4. Every digraphG of Kelly-width k has a Kelly-decomposition (D, (Bt)t∈V (D), (Wt)t∈V (D))
of width k such that for all t ∈ V (D):

– |Bt| = 1,
– Wt is the minimal set which guards B↓

t , and
– every vertex v ∈ B↓

t is reachable in G \ Wt from the unique w ∈ Bt.

Further, if G is strongly connected, then D has only one root.

We call such a decomposition special.

5 Applications

5.1 Computing Kelly-decompositions

In this section we mention several algorithms for computing Kelly-width and Kelly-
decompositions. The proofs of Theorems 3.6 and 4.3 show that Kelly-decompositions
can easily (i.e. polynomial time) be constructed from directed elimination orderings or
monotone winning strategies, so we concern ourselves with the problem of finding any
of the equivalent characterisations.

In a recent paper [6] Bodlaender et al. study exact algorithms for computing the
(undirected) tree-width of a graph. Their algorithms are based on dynamic program-
ming to compute an elimination ordering of the graph. In the same paper, the authors
remark on actual experiments with these algorithms. Using some preprocessing tech-
niques, the dynamic programming approach seems to perform reasonably well (in par-
ticular for not too large instances). The algorithms translate easily to directed elimina-
tion orderings and can therefore be used to compute Kelly-width. Hence, we get the
following theorem.

Theorem 5.1. The Kelly-width of a graph with n vertices can be determined in time
O∗(2n) and space O∗(2n), or in time O∗(4n) and polynomial space.

Here, O∗(f(n)) means that polynomial factors are suppressed.
For a given k, the problem whether a digraph G has Kelly-width ≤ k is decided

in exponential time with the above algorithms. As the minimization problem is NP-
complete (it generalises the NP-complete problem of deciding the tree-width of an undi-
rected graph), we cannot expect polynomial time algorithms to exist. It seems plausible
though that, as in the case of DAG-width, studying strategies in the inert robber game
will lead to a polynomial time algorithm when k is fixed. This is part of ongoing re-
search.

5.2 Algorithms on graphs of small Kelly-width

In this section we present algorithmic applications of the decomposition introduced
above, including a general scheme that can be used to construct algorithms based on
Kelly-decompositions. We assume that a Kelly-decomposition (or even an elimination
ordering) has been provided or pre-computed. We give two example algorithms based

9

on this which run in polynomial time on graphs of bounded Kelly-width. The first is
an algorithm for the NP-complete optimization problem of computing disjoint paths of
minimal weight in weighted graphs. The second is an algorithm to compute the winner
of certain forms of combinatorial games. We conclude the section with remarks about
how these algorithms compare with similar algorithms previously presented in [18] and
[4].

Algorithms using Kelly-decompositions often follow a common pattern. Similar to
algorithms on graphs of small tree-width, the algorithms start with a special Kelly-
decomposition (D, (Bt)t∈V (D), (Wt)t∈V (D)) and then work bottom up to compute for
each node t ∈ V (D) a data set containing information on the set B↓

t :=
⋃

t′�t Bt. The
general pattern is therefore described by the following steps (after the special Kelly-
decomposition has been computed):

Leaves: Compute the data set for all leaves.
Combine: If t ∈ V (D) is an inner node with children t1, . . . , tp ordered by the ordering

guaranteed by the Kelly-decomposition (we observe that such an ordering can be
computed easily with a greedy algorithm), combine the data sets computed for
B↓

t1
, . . . ,B↓

tp
to a data set for the union

⋃

1≤i≤p B
↓
ti

.
Update: Update the data set computed in the previous step so that the new vertex u

with Bt = {u} is taken into account. Usually, the vertex u will have been part of at
least some guard sets Wti

. As u 6∈ Wt, it can now be used freely.
Expand: Finally, expand the data set to include guards in Wt \

⋃

i Wti
and also paths

etc. starting at u.

We illustrate this pattern by presenting an algorithm for computing a Hamiltonian-
cycle of minimal weight in a weighted digraph. We explain below how this algorithm
extends to the much more general problem of finding disjoint paths of minimal weight.

Weighted Hamiltonian Cycle and Disjoint Paths. A weighted digraph is a pair
(G, ω) where G is a digraph and ω : V (G) → R is a weight function. The Kelly-width
of (G, ω) is the Kelly-width of G.

Theorem 5.2. For any k, given a weighted digraph (G, ω) and a Kelly-decomposition
(D, (Bt)t∈V (D), (Wt)t∈V (D)) of G of width ≤ k, there exists a polynomial time algo-
rithm which computes a Hamilton-cycle of (G, ω) of minimal weight or determines that
G is not Hamiltonian.

Here, the weight of a Hamilton-cycle is the sum of the weights of the edges occur-
ring on the cycle. To prove the theorem we first need some notation. Given a weighted
digraph (G, ω) ∈ C and tuple s := {(s1, t1), . . . , (sr, tr)} of pairs of vertices, an s-
linkage is a sequence P := (P1, . . . , Pr) of pairwise inner vertex disjoint paths so
that Pi links si to ti. The order of P is the order of G[

⋃

i Pi]. The weight of P is
the sum of the weights of edges in Pi. Now, let (G, ω) and s be given. For a set
U ⊆ V (G) and its guarding set W we write LINK(U, W) for the set of all tuples
((u1, v1), . . . , (ur, vr), l, w) such that

– r ≤ k, where k is the Kelly-width of G, ui ∈ U , vi ∈ W ,

10

– there are pairwise vertex disjoint paths P1, . . . , Pr in U ∪W with all inner vertices
in U so that Pi links ui to vi,

– the order of (P1, . . . , Pr) is l,
– w is the minimal weight of any such sequence of paths of order l.

For t ∈ V (D) let B↓
t :=

⋃

t′�t Bt′ and define LINK(t) as LINK(B↓
t , Wt). Now, begin-

ning from the leaves, we carry out the four steps described above and compute for each
node t ∈ V (D) the set LINK(t) bottom-up as follows.

Leaves: Clearly, for a leaf t, the set LINK(t) can be computed in constant time.

Now let t be an inner vertex and let t1, . . . , tp be the children of t ordered according to
the ordering guaranteed by the Kelly-decomposition. To compute LINK(t) we perform
three steps.

Combine: In the first step we combine the sets LINK(ti) to obtain LINK(
⋃

i B
↓
ti

,
⋃

i Wti
).

Let Bi :=
⋃

j≤i B
↓
tj

and Wi :=
⋃

j≤i Wtj
\Bi−1. We compute the sets LINK(Bi, Wi)

by induction on i. For i = 1, LINK(B1, W1) = LINK(t1). Let i > 1 and assume
that LINK(Bi−1, Wi−1) is given. Note that by definition of Kelly-decompositions,
there are no edges starting in Bi−1 and ending in B↓

ti
\ Bi−1. (Otherwise the head

of this edge must be in Wi−1 ∩ B↓
ti

, which contradicts condition (3) of Kelly-
decompositions.) Hence, any tuple s := ((u1, v1), . . . , (ur, vr)) containing a pair
(uj , vj) with uj ∈ Bi−1 \ B

↓
ti

and vj 6∈ Wt ∩ Wi−1 it can not have a s-linkage of
any order or weight. Also, for the same reason, if for all 1 ≤ i ≤ r, uj ∈ Bi−1,
then there is an s-linkage in LINK(Bi, Wi) of order l ∈ N and weight w ∈ R,
i.e. (s, l, w) ∈ LINK(Bi, Wi) if, and only if, (s, l, w) ∈ LINK(Bi−1, Wi−1).
It remains to take care of tuples s containing pairs (ui, vi) with ui ∈ B↓

ti
\ Bi−1.

To simplify the presentation, assume that s contains only one such pair and that
this is (u1, v1). Hence, ui ∈ Bi−1 for all i > 1. Now, there is an s-linkage in
LINK(Bi, Wi) only in two cases. One is, that the path linking u1 to v1 is entirely
contained in B↓

ti
\Bi−1 (and all other paths are in Bi−1 and therefore disjoint from

B↓
ti

). In this case, there must be l′ ≤ l and w′ ∈ R with ((u1, v1), l
′, w′) ∈ LINK(ti)

and ((u2, v2), . . . , (ur, vr), l − l′, w − w′) ∈ LINK(Bi−1, Wi−1).
The other case is that the path linking u1 to v1 has an inner vertex in Bi−1. But any
such path must have an initial segment in B↓

ti
and all other inner vertices in Bi. Fur-

thermore, the first inner vertex v not in B↓
ti

must be in Wti
. Hence, for s to have an

s-linkage of order l and weight w in LINK(Bi, Wi), there must be l′ < l and w′ ≤
w such that ((u1, v), l′, w′) ∈ LINK(ti) and ((v, v1), (u2, v2), . . . , (ur, vr), l −
l′, w − w′) ∈ LINK(Bi−1, Wi−1).
The running time for each induction step can be bounded by O((n2k+1 · (k!)2).
As the number of nodes in a special Kelly-decomposition is |V (G)| we perform in
total |V (G)| such induction steps. Hence, the overall time the algorithm spends in
the update step is O(n2k+2).

In the next two steps we compute the set LINK(t). Let Bt = {u}. Note that Wp ⊆
Wt ∪ Bt and u 6∈ Wt. Further, if w ∈ Wt \ Wp then (u, w) ∈ E(G) and there is no

11

v ∈ Bp with (v, w) ∈ E(G). Now, consider a tuple s := ((u1, v1), . . . , (ur, vr)) with
ui ∈ B↓

t and vi ∈ Wt. Clearly, as u 6∈ Wt, vi 6= u for all i. There can only be an
s-linkage in B↓

t in one of the following cases.

Case 1: ui ∈ Bp and vi ∈ Wp \ {u} for all i.
Case 2: ui ∈ Bp for all i and there is at least one vi ∈ Wt \ Wp.
Case 3: ui = u for some i.

The first case concerns tuples which have already been considered in the Combine step
but now may have additional linkages containing u as an inner vertex. In this sense, we
are merely updating information for tuples we have already processed. Hence, this case
is dealt with in the Update step. The last two cases concern new tuples which have not
been considered before. These cases are dealt with in the Expand step.

Update: Let s := ((u1, v1), . . . , (ur, vr)) be a tuple satisfying Case 1. Clearly, if for
some l ∈ N and w ∈ R, (s, l, w) ∈ LINK(Bp, Wp) then there is an s-linkage of
order l and weight w and we add (s, l, w) to LINK(t). But there may be additional
s-linkages using u as inner vertex. If u 6∈ Wp, then there is no edge (v, u) ∈ E(G)
with v ∈ Bp. In this case u cannot occur as an inner vertex. If u ∈ Wp, then this
implies that |Wp| < k and therefore also r < k. It is easily seen, that there is an
s-linkage of order l and weight w if, and only if, for some 1 ≤ i ≤ r there is a
vertex u′ with (u, u′) ∈ E(G) and a linkage of order l and weight w for the tuple
s
′ := ((u1, v1), . . . , (ui−1, vi−1), (ui, u), (u′, vi−1), (ui+1, vi+1), . . . , (ur, vr)) ∈

LINK(Bp, Wp). Hence, we only have to check for all such tuples s
′ whether (s′, l, w) ∈

LINK(Bp, Wp). If this procedure produces more than one s-linkage of order l, for
some l, we only take the one of minimal weight. This completes the update step.

Expand: Let s := ((u1, v1), . . . , (ur, vr)) be a tuple satisfying Case 2. If, for some i,
vi ∈ Wt\Wp then this implies that there is no v′ ∈ Bp with (v′, vi) ∈ E(G). Hence,
every path linking ui and vi must have u as the last inner vertex and there must be
an edge (u, vi) ∈ E(G). It follows that for Case 2 we only have to consider tuples
s where there is exactly one vi ∈ Wt \ Wp and (u, vi) ∈ E(G). W.l.o.g. assume
v1 ∈ Wt \ Wp. Then, there is an s-linkage of order l and weight w if, and only
if, there is w′ ∈ R, a linkage of order l − 1 and weight w − w′ for the tuple
((u1, u), (u2, v2), . . . , (ur, vr)), and an edge (u, v1) ∈ E(G) with ω((u, v1)) = w′.
Again, if for some l this produces more than one s-linkage of order l we only add
the one of minimal weight to LINK(t).
Finally, let s be a tuple satisfying Case 3. W.l.o.g. assume that u = u1. With the
same reasoning as above, we can infer that there can only be an s-linkage if for
all i > 1, vi ∈ Wp \ {u}. For, if vi ∈ Wt \ Wp then the path from ui to vi must
have u as inner vertex, which is impossible. Hence, vi ∈ Wp \ {u} for all i > 1.
If v1 ∈ Wt \ Wp, then there must be an edge (u, v1) ∈ E(G). Thus, there is an
s-linkage of order l and weight w if, and only if, there is a linkage of order l − 2
and weight w−ω((u, v1)) for the tuples ((u2, v2), . . . , (ur, vr)) in LINK(Bp, Wp).
Finally, if v1 ∈ Wp then there is a s-linkage of order l and weight w if, and only
if, there is a vertex u′ ∈ Bp with (u, u′) ∈ E(G) and a linkage of order l − 1
and weight w − ω((u, u′)) for the tuple ((u′, v1), . . . , (ur, vr)) in LINK(Bp, Wp).

12

Again, if there is more than one such linkage of the same order l we only keep the
one of minimal weight.

An analysis of the algorithm shows that the Update and Expand steps can be imple-
mented to run in time O(n2k +1). Hence, as |V (D)| = |V (G)|, the overall running time
of the algorithm is O(n2k+2). This slightly improves the running time of the Hamilton-
cycle algorithm given in [18] for digraphs (without a weight function) of small directed
tree-width.

The algorithm introduced above can easily be extended to solve the following, more
general problem. The weighted w-linkage problem is the problem, given a weighted
digraph (G, ω), a tuple s := ((s1, t1), . . . , (sw, tw)), and a set M ⊆ {1, . . . , |V (G)|},
to compute for each l ∈ M an s-linkage of order l of minimal weight (among all
s-linkages of order l).

Theorem 5.3. For every w, k ∈ N, given a weighted digraph and a Kelly-decomposition
of width ≤ k, the weighted w-linkage problem can be solved in polynomial time.

Parity Games. Another example for an algorithm on graphs of bounded Kelly-width
is an algorithm for solving parity games on game arenas of small Kelly-width. Parity
games are a form of combinatorial games played on digraphs with many applications
in the area of verification. See [17] for a definition. It is well known that deciding the
winner of a parity game is in NP ∩ co-NP and it is a longstanding open problem if the
problem is in P. In [4], Berwanger et al. describe an algorithm for computing the winner
of a parity game of bounded DAG-width. This algorithm can be translated to arenas of
small Kelly-width and, in some sense, becomes more transparent.

Theorem 5.4. For any k, given an arenaA of a parity game and a Kelly-decomposition
of A of width ≤ k, the winning region of A can be computed in polynomial time.

To prove the theorem, we first need some preparation. For the rest of this section
fix a parity game A := (V, V0, E, Ω). We write V1 for V \ V0. W.l.o.g. we assume that
every vertex has a successor and that the maximal outdegree of any vertex in V is 2.
(If there is a vertex v with out-degree p > 2 replace the p edges by a directed binary
tree with root v and the successors of v as leaves. The new vertices belong to the same
player and have the same priority as v. Clearly, the two games are equivalent. Using
the inert robber game, it is straightforward to show that the graph resulting from this
modification has Kelly-width at most one more than the original graph.)

Let U ⊆ V be a set of vertices, W be the set guarding U and let v ∈ U be a
vertex. Clearly, any two strategies f, g for Player 0 and 1 determine a unique play π :=
v, v1, v2, . . . starting at v. Now, either the play is entirely contained in U or it leaves
U at some point. In this case, the first vertex not contained in U must be in W . For
any pair of strategies f for Player 0 and g for Player 1 define outf,g(U, v) as follows.
Let π be the play defined by f, g starting at v. We define outf,g(U, u) to be winEven,
if π is contained in U and Player 0 wins π, winOdd in case Player 1 wins π. If π is
not contained in U , then we define outf,g(U, u) as the pair (vi, p), where vi is the first
vertex of π outside of U reached in the play and p is the least priority of any vertex in
{v, v1, . . . , vi}.

13

We define a partial order @ on the set {(w, p) : p ∈ N and w ∈ V (G)} ∪
{winOdd, winEven} as follows. winOdd @ (w, p) @ winEven for all (w, p). Further,
(w, p) @ (w, p′) in one of the following cases: p is odd and p′ is even; p, p′ are both odd
and p < p′; p, p′ are both even and p′ < p. (w, p) and (w′, p′) are incomparable when-
ever w 6= w′. Intuitively, @ specifies how useful a pair (w, p) (or winOdd, winEven) is
for Player 1. Lower values are preferable over higher values.

outf,g(U, u) specifies the outcome of the play in U starting at u where the players
follow strategies f and g resp. The next step is to fix the strategy f for Player 0 but
let Player 1 choose his strategy. We define resultf (U, u) to be the set of @-minimal
elements of the set {outf,g(U, u) : g strategy of Player 1}. A set resultf (U, u) is the set
of best outcomes Player 1 can achieve against the strategy f played by Player 0.

Finally, we define RESULT(U, u) := {resultf (U, u) : f is a strategy for Player 0}.
This is the main data structure we use in the algorithm. Let (D, (Bt)t∈V (D), (Wt)t∈V (D))
be the given Kelly-decomposition of the arena (V, E) and let t ∈ V (D) be a node. If
u ∈ B↓

t , we write RESULT(t, u) for the set RESULT(B↓
t , u) and similarly resultf (t, u)

for resultf (B↓
t , u). Following the algorithm scheme outlined above, we now present the

four parts of the parity game algorithm.

Leaves: Clearly, for any leaf t ∈ V (D), the set RESULT(t) can be computed in constant
time.

Combine: Let t be an inner node with children t1, . . . , tp ordered according to the or-
dering guaranteed by the Kelly-decomposition. For 1 ≤ i ≤ p, let Bi :=

⋃

j≤i B
↓
ti

and let B := Bp =
⋃

1≤i≤p B
↓
ti

. We aim at computing the set RESULT(B, u) for
each u ∈ B. Recall that if i < j and u ∈ B↓

ti
then there is no path from u to

a vertex v ∈ B↓
tj

\ B↓
ti

that has no inner vertex in Wt. Hence, if u ∈ B↓
ti

then
RESULT(B, u) = RESULT(Bi, u). We compute for each i ≤ p and u ∈ Bi the set
RESULT(Bi, u) by induction on i. For i = 1, RESULT(B1, u) = RESULT(t1, u).
Let i > 1 and let u ∈ Bi \ Bi−1.
Intuitively, to compute RESULT(Bi, u), we have to do the following. Let r =
resultf (ti, u) ∈ RESULT(ti, u) be a result against a strategy f for Player 0. The
result set r gives us the set of vertices v ∈ Wti

to which Player 1 can force
the play against f and also the best priority he can achieve in doing so. Now, if
v ∈ Wti

∩ Bi−1 is a guard contained in Bi−1 then once the play has reached v it
can never come back to Bi \ Bi−1 and continues in Bi−1 until it reaches a vertex
in Wt. Hence, once the play has reached v, we can read off the results of possible
strategies in Bi−1 from RESULT(Bi−1, v). This suggests the following algorithm
to compute RESULT(Bi, u).
For each r ∈ RESULT(ti, u) we compute a set Wr of sets as follows. Let W :=
{(w, p) ∈ r : w ∈ Wti

\ Wt} be the set of outcomes in r which end in vertices in
Bi−1. Let (w1, p1), . . . , (ws, ps) list the elements of W . For each tuple (r1, . . . , rs)
with ri ∈ RESULT(Bi−1, wi) add the set

{(v, p) : (v, p) ∈ r \ W or there is 1 ≤ i ≤ s and q ∈ N with (v, q) ∈ ri and p := min{q, pi}.

to Wr. Then, RESULT(Bi, u) contains for each R ∈ Wr the set of @-minimal pairs
in R.

14

Update+Expand: As the Update and Expand steps are very similar, we present them
both at the same time. Let Bt := {u}. We first expand the sets RESULT(B, v)
for v ∈ Bp computed in the Combine step so that the plays recorded in this data
structure now can contain the vertex u as an inner vertex. Recall that we assume
that u has only two successors u1, u2. Assume first, that u1, u2 ∈ B. Consider a
particular play starting at some vertex v ∈ B. If it does not reach u, then we can
read its outcome from the set RESULT(B, v). Otherwise, if the play reaches u, then
it continues at u1 or at u2. From there it can return to u, in which case we know the
winner of the play, or it runs into a vertex w ∈ Wt, in which case we stop and record
this outcome. Hence, to compute RESULT(B ∪ {u}, v), for v ∈ B, we proceed
as follows. For each r ∈ RESULT(B, v) do the following. If there is no p ∈ N

with (u, p) ∈ r, then add r to RESULT(B ∪ {u}, v). Otherwise, let (u, p) ∈ r for
some p. We distinguish between u ∈ V0 and u ∈ V1. Suppose first that u ∈ V1,
i.e. Player 1 is to choose the successor. For each pair r1 ∈ RESULT(B, u1), r2 ∈
RESULT(B, u2) do the following. Let R := r1 ∪ r2. Replace each (w, q) ∈ R by
(w, min{q, p}). Let R′ := R ∪ (r \ (u, p)). If (u, q) ∈ R′ for some odd q, then
this means that Player 1 can win the game against the chosen strategies for Player
0 and we replace (u, q) by winOdd. Similarly, if (u, q) ∈ R′ with q even, then we
replace this by winEven. Finally, we add the set of @-minimal elements of R′ to
RESULT(B ∪ Bt, v).

Now, suppose u ∈ V0. Hence, Player 0 has the choice where to continue. For
each r′ ∈ RESULT(B, u1) or r′ ∈ RESULT(B, u2) do the following. If r′ contains
(u, q) for some q so that min{q, p} is odd, replace r′ by winOdd and add it to
RESULT(B ∪ Bt, v). Otherwise, let R := r \ (u, p) ∪ {(w, q) : (w, q′) ∈ r′ and
q := min{p, q′}}. If R contains a pair (u, q) then q must be even and we replace
this pair by winEven. Add the set of @-minimal elements to RESULT(B ∪ Bt, v).

Finally, we have to compute RESULT(B ∪ Bt, u), i.e. the results for plays starting
at u. This is similar to the case above. Suppose first that u ∈ V1, i.e. Player 1 is to
choose the successor. For each pair r1 ∈ RESULT(B, u1), r2 ∈ RESULT(B, u2) do
the following. Let R := r1∪r2. Replace each (w, q) ∈ R by (w, min{q, Ω(u)}). If
(u, q) ∈ R for some odd q, then this means that Player 1 can win the game against
the chosen strategies for Player 0 and we replace (u, q) by winOdd. Similarly, if
(u, q) ∈ R with q even, then we replace this by winEven. Finally, we add the set of
@-minimal elements of R to RESULT(B ∪ Bt, v).

Now, suppose u ∈ V0. Hence, Player 0 has the choice where to continue. For
each r′ ∈ RESULT(B, u1) or r′ ∈ RESULT(B, u2) do the following. If r′ contains
(u, q) for some q so that min{q, Ω(u)} is odd, replace r′ by winOdd and add it
to RESULT(B ∪ Bt, v). Otherwise, let R := {(w, q) : (w, q′) ∈ r′ and q :=
min{Ω(u), q′}}. If R contains a pair (u, q) then q must be even and we replace
this pair by winEven. Add the set of @-minimal elements to RESULT(B ∪ Bt, v).

To complete this step, we consider the case where one or both successors of u are in
Wt, say u1 ∈ Wt. We proceed as above but whenever we considered RESULT(B, u1)
we now consider the set {{(u1, Ω(u1))}} as every play stops immediately once it
has reached a node in Wt.

15

It is easily seen that the above algorithm runs in polynomial time. As for every root
t of D, Wt = ∅, we get that RESULT(t) ⊆ {winOdd, winEven} and RESULT(t) =
{{winEven}} if Player 0 wins from u ∈ Bt and RESULT(t) = {{winEven}} if
Player 1 wins. This completes the proof of the theorem.

Remarks. In the following section we show that the class of graphs of bounded Kelly-
width is (strictly) smaller than the class of graphs of bounded directed tree-width. Con-
sequently, the algorithms presented in [18] can be used on graphs of bounded Kelly-
width, including the disjoint paths algorithm. This raises the question, what advantages
does our algorithm enjoy over that for directed tree-width? The first and obvious dif-
ference is that our algorithm computes a Hamilton-cycle of minimal weight. However,
the main technical difference is the role the guards play in the algorithms. In the algo-
rithm presented above, the guards Wt of a node t play an active role: We only consider
paths from vertices u ∈ B↓

t to guards v ∈ Wt. In a directed tree-decomposition, a set
S ⊆ V (G) does not uniquely define its guards and these guards may only be reachable
from S by a path that involves other vertices outside of S. Consequently, the guards
only play an indirect role in the algorithm on directed tree-decompositions in that they
give a bound on the size of tuples that have to be considered. Although this is enough for
algorithms computing disjoint paths, Hamilton-cycles and similar problems, this forms
a significant issue for other types of problems. An example of this is in the presented
parity game algorithm, which, so far, has resisted attempts to translate it to directed
tree-decompositions. Hence, if a problem requires to compute more complicated data
structures than paths between vertices, Kelly-decompositions may be much easier to
work with than directed tree-decompositions.

As for DAG-decompositions, it is their space consumption that forms a significant
problem. Although our algorithm for parity games is similar to that of [4], ours requires
only storing at most a linear number of data structures. Until the O(nk) bound on
the size of DAG-decompositions is reduced, such dynamic programming algorithms are
only feasible for small values of k.

Finally, we believe that the presentation of algorithms on Kelly-decompositions is
simpler and more understandable than on directed tree-decompositions or DAG-decompositions,
again for the reasons that a) there is a strict separation of guards and vertices in the sets
B↓

t (which is foreign to DAG-decompositions) and b) that the guards of a set S ⊆ V (G)
are uniquely defined and can therefore be used in more ways.

5.3 Asymmetric matrix factorization
The use of elimination orders and elimination trees to investigate symmetric matrix fac-
torizations is well documented (see e.g. [19]). For example, the height of an elimination
tree gives the parallel time required to factor a matrix [7]. In [16], Gilbert and Liu in-
troduced a generalisation of elimination trees, called elimination DAGs, which can be
similarly used to analyse factorizations in the asymmetric case. Kelly-decompositions
are closely related to these structures, as illustrated by the following theorem.
Definition 5.5. Let M = (aij) be a square n×n matrix. We define GM as the directed
graph with V (GM) = {v1, . . . , vn}, and for i 6= j, (vi, vj) ∈ E(GM) if, and only if,
aij 6= 0. We define CM := (v1, . . . , vn).

16

Theorem 5.6. Let M be a square matrix that can be decomposed as M = LU without
pivoting. Let (D, (Bt)t∈V (D), (Wt)t∈V (D)) be the Kelly-decomposition of GM obtained
by applying the proof of Theorem 4.3 with elimination order CM . Then

(a) (D, (Bt)t∈V (D)) is equivalent to the lower elimination DAG (as defined in [16]),
and

(b) GU = (V (GM), {(v, w) : w ∈ Wv}), which implies the upper elimination DAG is
equivalent to the transitive reduction of the relation {(v, w) : w ∈ Wv}.

Proof. For v ∈ V (GM), let CMv = {v} ∪ {w ∈ V (GM) : w CM v}. First, from
Theorem 1 of [24]:

(E(GL))TC = {(v, w) : w CM v, and there is a path from v to w in GM [CMv]},

where RTC denotes the transitive closure of R. The first result follows from the ob-
servation that in the construction of the Kelly-decomposition, (D, (Bt)t∈V (D)) is the
transitive reduction of the right-hand side. Secondly, from Theorem 4.6 of [16], we
have

E(GU) = {(v, w) : vCMw, there is a path from v to v′ in GM [CMv] and (v′, w) ∈ E(GM)}.

The second result then follows from Lemma 3.2, which shows that {(v, w) : w ∈
Wv} = {(v, w) : w ∈ supp

CM
(v)} is equivalent to the right-hand side. �

We can use the results of [16] to make the following observation when we construct
Kelly-decompositions on undirected graphs.

Corollary 5.7. Let G be an undirected graph, C an elimination order on G and (D, (Bt)t∈V (D), (Wt)t∈V (D))
the Kelly-decomposition of G (considered as a bidirected graph) obtained by applying
the proof of Theorem 4.3 with elimination order C. Then D is a tree, and more precisely,
(D, (Bt)t∈V (D)) is equivalent to the elimination tree associated with the (undirected)
elimination order C.

6 Is it better to be invisible but lazy or visible and eager?

In this section we use graph searching games to compare Kelly-width to DAG-width
and directed tree-width. In the undirected case, all games require the same number of
searchers, however we show that in the directed case there are graphs on which all three
measures differ by an arbitrary amount. Our results do imply that Kelly-width bounds
directed tree-width within a constant factor, but the converse fails as there are classes
of graphs of bounded directed tree-width and unbounded Kelly-width. We also provide
evidence to suggest that Kelly-width and DAG-width are within a constant factor of
each other. We begin by introducing the games associated with DAG-width and directed
tree-width (see [4, 20, 18] for formal definitions).

Definition 6.1 (Visible robber game). The visible robber game is played as the inert
robber game except that the robber’s position is always known to the cops and the
robber is free to move during a cop transition irrespective of where the cops intend to

17

move (however, he still cannot run through a stationary cop). The strong visible robber
game adds the further restriction that the robber can only move in the same strongly
connected component (of the graph with the stationary cops’ locations removed). A
strategy for the cops is a function that, given the current locations of the cops and the
robber, indicates the next location of the cops. A strategy is winning if it captures the
robber, and it is monotone if the set of vertices which the robber can reach is non-
increasing.

The following theorem summarises the results of [4, 20, 18]:

Theorem 6.2. Let G be a digraph.

1. G has DAG-width k if, and only if, k cops have a monotone winning strategy in the
visible robber game on G.

2. G has directed tree-width ≤ 3k + 1 or k cops do not have a winning strategy in the
strong visible robber game on G.

Our first result shows that a monotone winning strategy in the inert robber game
can be translated to a (not necessarily monotone) winning strategy in the visible robber
game.

Theorem 6.3. If k cops can catch an inert robber with a robber-monotone strategy,
then 2k − 1 cops can catch a mobile, visible robber.

Proof. Suppose k cops have a robber-monotone winning strategy on a graph G. By
Theorem 3.6 this implies that there is a directed elimination ordering C on G of width
≤ k − 1. We use the elimination ordering to describe the winning strategy of 2k − 1
cops against a mobile, visible robber, thereby establishing the result.

The cops are split into two groups of k−1 cops each, called the blocker and chaser.
Similarly, the cop moves are split in two phases, a blocking move and a chasing phase.

In the first move, k cops are placed on the k highest elements with respect to C.
These cops form the set of blocker. Let the robber choose some element v. This con-
cludes the first (blocking) move.

If u is the C-smallest vertex occupied by a blocker-cop, then there is
no directed path from v to a vertex greater than u that has no vertex
occupied by a cop.

(∗)

This invariant is maintained by the blocking cops during the play. Now suppose after
r rounds have been played, the robber occupies vertex v and the blocker-cops occupy
vertices in X so that the invariant (∗) is preserved. Let u be the C-smallest element in
X and let C1, . . . , Cs be the set of strongly connected components of G[{u′ : u′ C u}].
Further, let @ be a linear ordering on C := {C1, . . . , Cs} so that Ci @ Cj if, and only
if, the C-maximal element in Ci is C-smaller than the C-maximal element of Cj . Now
the cops move as follows. Let C ∈ C be the component such that v ∈ C and let w ∈ C
be the C-maximal element in C. The cops place the k − 1 cops not currently on the
graph on supp

C
(w). These cops are called chasers. Seeing the chasers approach, the

robber has two options. Either he stays within C or he escapes to a vertex in a different
strongly connected component C ′. If the robber runs to a vertex x ∈ C or x ∈ C ′ for

18

some C ′ @ C then after the chasers land on S := supp
C

(w) there is no path from
x to a node u such that u B u′ for the C-minimal vertex u′ in S. Hence, the chasers
become blockers and the chasing phase is completed. Otherwise, if the robbers escapes
to a C ′ with C @ C ′, then the chasers repeat the procedure and fly to supp

C
(w′) for

the C-maximal element in C ′. However, as the robber always escapes to a @-larger
strongly connected component and also can not bypass the blocker-cops, this chasing
phase must end after finitely many steps with the robber being on a vertex v ∈ C for
some component C and the chasers being on supp

C
(w) for the C-maximal element in

C. At this point the chasers become blockers. One of the other cops is now placed on
w and all others are removed from the board. The cop on w makes sure that in each
such step the robber space shrinks by at least one vertex. By construction, the invariant
in (∗) is maintained. Further, as the robber space shrinks by at least one after every
chasing-phase, the robber is eventually caught by the cops. �

One consequence of this theorem is that Kelly-width bounds directed tree-width by
a constant factor.

Corollary 6.4. If G has Kelly-width ≤ k then G has directed tree-width ≤ 6k − 2.

Since it is not known whether monotone strategies are sufficient in the visible robber
game, we cannot obtain a similar bound for DAG-width. We can, however, ask whether
we can improve the bound, i.e. assuming that k cops have a robber-monotone winning
strategy against an invisible, inert robber can we define a winning strategy for less than
2k − 1 cops in the visible robber game? Although it might be possible to improve the
result, the next theorem shows that we cannot do better than with 4

3k cops.

Theorem 6.5. For every k ∈ N, there is a graph such that 3k cops have a robber-
monotone winning strategy in the inert robber game but no fewer than 4k cops can
catch a mobile visible robber.

Before we prove this result we need to introduce the idea of lexicographic product.

Definition 6.6 (Lexicographic product). Let G,H be graphs. The lexicographic product
G • H of G and H is defined as the graph with vertex set V (G • H) := V (G) × V (H)
and edge set

E(G • H) := {
(

(x, y), (x′, y′)
)

: (x, x′) ∈ E(G) or x = x′ and (y, y′) ∈ E(H)}.

The lexicographic product is also known as graph composition as G •H can also be
viewed as a graph obtained from G by replacing vertices by copies of H. This observa-
tion is useful for the following proposition:

Proposition 6.7. Consider the cops and robber game on a directed graph G, and let
Kn be the n-clique. Then at least k cops have a winning strategy on G if, and only if, at
least n · k cops have a winning strategy on G • Kn.

Proof. If k cops have a winning strategy on G, then a winning strategy for n · k cops
on G • Kn is obtained by simulating the game on G. If the robber’s position is (r, s) ∈
V (G • Kn) then we position a robber on r ∈ V (G). We then consider the cops’ play

19

on G and play on G • Kn by placing n cops on {(x, y) : y ∈ V (Kn)} whenever a cop
would be placed on x ∈ V (G).

For the converse we show that if the robber can defeat k − 1 cops on G then he
can defeat nk − 1 cops on G • Kn. Again we simulate the game for G • Kn on G,
but this time from the robber’s perspective. We place a cop on x ∈ V (G) only if all
vertices in V (G • Kn) of the form (x, y), y ∈ V (Kn) are occupied. By the pigeon-
hole principle, this requires at most k − 1 cops on G. The robber’s current position
is projected as before. The robber’s response r′ on G is lifted to G • Kn by playing
to a non- occupied vertex of the form (r′, y). As r′ is unoccupied in the simulated
game, at least one such vertex exists. We need to be careful if the projected play is to
remain at the same vertex because the robber’s position may become occupied. But as
the projected vertex remains unoccupied, there is at least one unoccupied vertex in the
block isomorphic to Kn and so the robber is able to run to that vertex. As the robber
can defeat k − 1 cops on G, the strategy is winning. �

It is worth observing that Proposition 6.7 holds regardless of the visibility or mobil-
ity of the robber, as well as when the cops are restricted to monotone strategies, giving
us the following:

Corollary 6.8. For any directed graph G:

(i) DAG-width(G • Kn) = n · DAG-width(G).
(ii) Kelly-width(G • Kn) = n · Kelly-width(G).

We now use this result to complete the proof of Theorem 6.5.
Proof. Consider the graph G in Figure 1.

Fig. 1. Graph G to show difference between DAG-width and inert robber game

It is easy to see that on G, 3 cops do not have a (non-monotone winning) strategy to
catch a visible robber, however 4 cops do. On the other hand, 3 cops suffice to capture
an invisible, inert robber with a robber-monotone strategy. The result follows by taking
the lexicographic product of this graph with the complete graph on k vertices.

�

In fact, 4 cops can capture a visible robber with a monotone strategy on the graph
in the previous proof, giving us the following:

Corollary 6.9. For all k ≥ 1 there exists graphs of DAG-width 4k and Kelly-width 3k.

20

Despite this 4
3 bound, for graphs of small Kelly-width we can do better.

Theorem 6.10. For k = 1 or 2, if G has Kelly-width k, G has DAG-width k.

Proof. If G has an elimination ordering of width 0 then it must be acyclic, as all
support sets are empty. Thus it has DAG-width 1. If G has an elimination ordering
C = (v1, v2, . . . , vn) of width 1 then a cop-monotone strategy for two cops against a
visible robber is as follows. Initially, let i = n and place one cop on vi. At this point,
the robber is restricted to {v1, . . . , vi−1}. Let j < i be the maximal index such that the
robber can reach vj . Place a cop on vj . After the cop has landed, we claim that the rob-
ber is unable to reach vi. For otherwise, let r be the maximal index such that the robber
can reach vr and from vr can reach both vi and vj . By the maximality of j, r < j.
Let s > r be the first index greater than r which occurs on a path from vr to vi and
t > r be the first index greater than r which occurs on a path from vr to vj . Then from
the maximality of r, s 6= t. Furthermore, {vs, vt} ⊆ supp

C
(r), so |supp

C
(vr)| > 1,

contradicting the width of the ordering. So we can remove the cop from vi without
changing the robber space, and by the maximality of j, the robber is now restricted to
{v1, . . . , vj}. It is clear that this is a monotone winning strategy for two cops. �

We now turn to the converse problem, what can be said about the Kelly-width of
graphs given their directed tree-width or DAG-width? First, we consider the binary tree
with back-edges example in [4], where it was shown this class of graphs has bounded
directed tree-width but unbounded DAG-width. It is readily shown that this class of
graphs also has unbounded Kelly-width.

Theorem 6.11. There exists classes of digraphs with bounded directed tree-width and
unbounded Kelly-width.

Our final result is a step towards relating Kelly-width to DAG-width by showing
how to translate a monotone strategy in the visible robber game to a (not necessarily
monotone) strategy in the inert robber game.

Theorem 6.12. If G has DAG-width ≤ k, then k cops have a winning strategy in the
inert robber game.

Proof. Given a DAG-decomposition (D, (Xd)d∈V (D)) of G of width k, the strategy
for k cops against an invisible, inert robber is to follow a depth-first search on the
decomposition. More precisely, we assume the decomposition has a single root r, and
we have an empty stack of nodes of D.

1. Initially, place the cops on Xr and push r onto the stack.
2. At this point we assume d is on the top of the stack and the cops are on Xd. We next

“process” the successors of d in turn. To process a successor d′ of d, we remove
all cops not on Xd ∩ Xd′ , place cops on Xd′ , push d′ onto the stack, and return to
step 2. Note that a node may be processed more than once.

3. Once all the successors of a node have been processed, we pop the node off the
stack and if the stack is non-empty, return to step 2.

21

Because the depth-first search covers all nodes of the DAG and hence all vertices of the
graph are eventually occupied by a cop, the robber will be forced to move at some point.
Due to the guarding condition for DAG-decompositions, when the robber is forced to
move this strategy will always force the robber into a smaller region and eventually
capture him. �

Again we observe that it is unknown if monotone strategies suffice in the inert rob-
ber game, so this result does not allow us to compare Kelly-width and DAG-width.
However, we strongly believe that monotone strategies suffice in both the inert robber
game and the visible robber game, giving us the following conjecture:

Conjecture 6.13 The Kelly-width and DAG-width of a graph lie within constant factors
of one another.

References
1. I. Adler. Directed tree-width examples. To appear in Journal of Combinatorial Theory,

Series B.
2. B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. Journal

of the ACM, 41(1):153–180, 1994.
3. J. Barát. Directed path-width and monotonicity in digraph searching. To appear in Graphs

and Combinatorics.
4. D. Berwanger, A. Dawar, P. Hunter, and S. Kreutzer. DAG-width and parity games. In

Proceedings of the 23rd Annual Symposium on Theoretical Aspects of Computer Science
(STACS), pages 524–536, 2006.

5. H. Bodlaender. Treewidth: Algorithmic techniques and results. In Proceedings of the 22nd
International Symposium on Mathematical Foundations of Computer Science (MFCS), pages
19–36, 1997.

6. H. Bodlaender, F. Fomin, A. Koster, D. Kratsch, and D. Thilikos. On exact algorithms for
treewidth. In Proceedings of the 14th Annual European Symposium on Algorithms (ESA),
2006.

7. H. Bodlaender, J. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating treewidth, path-
width, frontsize, and shortest elimination tree. Journal of Algorithms, 18(2):238–255, 1995.

8. B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. van Leeuwan, editor,
Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics (B),
pages 193–242. 1990.

9. B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete Applied
Mathematics, 1–3:77–114, 2000.

10. E. Demaine, M. Hajiaghayi, and K. Kawarabayashi. Algorithmic graph minor theory: De-
composition, approximation, and coloring. In Proceedings of the 46th IEEE Symposium on
Foundations of Computer Science (FOCS), pages 637–646, 2005.

11. N. Dendris, L. Kirousis, and D. Thilikos. Fugitive-search games on graphs and related pa-
rameters. Theoretical Computer Science, 172(1-2):233–254, 1997.

12. R. Diestel. Graph Theory. Springer, 3rd edition, 2005.
13. F. Dorn, E. Penninkx, H. Bodlaender, and F.Fomin. Efficient exact algorithms on planar

graphs: Exploiting sphere cut branch decompositions. In Proceedings of the 13th Annual
European Symposium on Algorithms (ESA), pages 95–106, 2005.

14. D. Eppstein. Subgraph isomorphism in planar graphs and related problems. Journal of
Graph Algorithms and Applications, 3(3):1–27, 1999.

22

15. F. V. Fomin, P. Heggernes, and J. A. Telle. Graph searching, elimination trees, and a gener-
alization of bandwidth. Algorithmica, 41(2):73–87, 2004.

16. J. Gilbert and J. Liu. Elimination structures for unsymmetric sparse LU factors. SIAM
Journal of Matrix Analysis and Applications, 14:334–352, 1993.

17. Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata Logics, and Infinite
Games, volume 2500 of LNCS. Springer, 2002.

18. T. Johnson, N. Robertson, P. Seymour, and R. Thomas. Directed tree-width. Journal of
Combinatorial Theory, Series B, 82(1):138–154, 2001.

19. J. W. H. Liu. The role of elimination trees in sparse factorization. SIAM Journal of Matrix
Analysis and Applications, 11(1):134–172, 1990.

20. J. Obdrz̆álek. DAG-width: connectivity measure for directed graphs. In Proceedings of the
17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 814–821, 2006.

21. S.-I. Oum. Rank-width and vertex-minors. Journal of Combinatorial Theory, Series B, 95:79
– 100, 2005.

22. S.-I. Oum and P. Seymour. Approximating clique-width and branch-width. Journal of Com-
binatorial Theory, Series B, 2006. to appear.

23. B. Reed. Introducing directed tree width. In 6th Twente Workshop on Graphs and Com-
binatorial Optimization, volume 3 of Electronic Notes in Discrete Mathematics. Elsevier,
1999.

24. D. Rose and R. Tarjan. Algorithmic aspects of vertex elimination on directed graphs. SIAM
Journal of Applied Mathematics, 34(1):176–197, 1978.

25. D. J. Rose. Triangulated graphs and the elimination process. Journal of Mathematical
Analysis and Applications, 32:597–609, 1970.

26. M. Safari. D-width: A more natural measure for directed tree width. In Proceedings of the
30th International Symposium on Mathematical Foundations of Computer Science (MFCS),
pages 745–756, 2005.

23

