
LIFO-search: A min-max theorem and a

searching game for cycle-rank and tree-depth∗

Archontia C. Giannopoulou†‡ Paul Hunter§¶

Dimitrios M. Thilikos†

Abstract

We introduce a variant of the classic node search game called LIFO-search

where searchers are assigned different numbers. The additional rule is that

a searcher can be removed only if no searchers of lower rank are in the

graph at that moment. We show that all common variations of the game

require the same number of searchers. We then introduce the notion of

(strong) shelters in (di)graphs and prove a min-max theorem implying

their equivalence to the cycle-rank/tree-depth parameter in (di)graphs.

As (strong) shelters provide escape strategies for the fugitive, this im-

plies that the LIFO-search game is monotone and that the LIFO-search

parameter is equivalent to the one of cycle-rank/tree-depth in (di)graphs.

1 Introduction

Graph searching games are increasingly becoming a popular way to characterize,

and even define, practical graph parameters. There are many advantages to a

characterization by graph searching games: it provides a useful intuition which

can assist in constructing more general or more specific parameters; it gives

insights into relations with other, similarly characterized parameters; and it is

particularly useful from an algorithmic perspective as many parameters associ-

ated with such games are both structurally robust and efficiently computable.

∗Part of this research was presented during Dagstuhl Seminar 11071 (13.02.11 – 18.02.11)

on Theory and Applications of Graph Searching Problems [11]. Preliminary versions of this

paper appeared in EUROCOMB 2011 [13] and in FCT 2011 [15].
†Department of Mathematics, National and Kapodistrian University of Athens. Emails:

{arcgian,sedthilk}@math.uoa.gr
‡Supported by a grant of the Special Account for Research Grants of the National and

Kapodistrian University of Athens (project code: 70/4/10311).
§Department of Computer Science, University of Oxford. Email: paul.hunter@cs.ox.ac.uk
¶Supported by Model Checking Real-Time Systems project, EPSRC grant ref. BLRQEK

1

One of the most common graph searching games is the node-search game.

In this game several searchers and one fugitive occupy vertices of the graph

and make simultaneous moves. The (omniscient) fugitive moves along searcher-

free paths of arbitrary length whereas the searchers’ movements are not con-

strained by the topology of the graph. The goal of the game is to minimize

the number of searchers required to capture the fugitive by cornering him in

some part of the graph and placing a searcher on the same vertex. This game

has been extensively studied [7] and several important graph parameters such

as treewidth [28] and pathwidth [18] can be characterized by natural variants

of this game. One variation frequently used, indeed the one which separates

treewidth and pathwidth, is whether the location of the fugitive is known or un-

known to the searchers. Another common variation is whether the searchers use

a monotone or a non-monotone searching strategy. Monotone search strategies

lead to algorithmically useful decompositions, whereas non-monotone strategies

are more robust under graph operations and hence reflect structural properties,

thus showing that monotone strategies require no more searchers than non-

monotone strategies is an important and common question in the area. Whilst

node-search games on undirected graphs tend to enjoy monotonicity [4, 28, 20],

on digraphs the situation is much less clear [2, 1, 19].

Node-search games naturally extend to digraphs. However, in the transla-

tion another variation arises depending on how one views the constraints on

the movement of the fugitive. One interpretation is that in the undirected case

the fugitive moves along paths, so the natural translation would be to have the

fugitive move along directed paths. Another view is that the fugitive moves

to some other vertex in the same connected component, and here the natural

translation would be to have the fugitive move within the same strongly con-

nected component. Both interpretations have been studied in the literature,

the former giving characterizations of parameters such as DAG-width [3, 26]

and directed pathwidth [2] and the latter giving a characterization of directed

treewidth [16].

We define a variant of the node-search game in which only the most recently

placed searchers may be removed; that is, the searchers must move in a last-in-

first-out (LIFO) manner and we show that the minimum number of searchers

required to capture a fugitive on a (di)graph with a LIFO-search is independent

of:

• Whether the fugitive is invisible or visible,

• Whether the searchers use a monotone or non-monotone search, and

• Whether the fugitive is restricted to moving in searcher-free strongly con-

2

nected components or along searcher-free directed paths.

This result is somewhat surprising: in the standard node-search game these

options give rise to quite different parameters [2, 3, 19].

We show that on digraphs the LIFO-search game characterizes a pre-existing

measure, cycle-rank – a generalization of tree-depth to digraphs (though as the

definition of cycle-rank predates tree-depth by several decades, it is perhaps

more correct to say that tree-depth is an analogue of cycle-rank on undirected

graphs). The cycle-rank of a digraph is an important parameter relating digraph

complexity to other areas such as regular language complexity and asymmetric

matrix factorization. It was defined by Eggan [9], where it was shown to be

a critical parameter for determining the star-height of regular languages, and

interest in it as an important digraph parameter, especially from an algorithmic

perspective, has recently been rekindled by the success of tree-depth [10, 14, 12].

It is well known that tree-depth can also be characterized by a node-search

game where a visible fugitive plays against searchers that are only placed and

never moved [12]. In that paper, Ganian et al. considered one extension of

this game to digraphs. Here we consider the other natural extension, where

the visible fugitive moves in strongly connected sets, and show that it also

characterizes cycle-rank. From the above, we also obtain that the LIFO-search

parameter is equivalent to the one of tree-depth.

Our final result uses these graph searching characterizations to define a dual

parameter that characterizes structural obstructions for cycle-rank. We consider

two kinds of obstructions. The first one is obtained from defining the notion

of strong shelters. The second is motivated by the havens of [16]. Both the

strong shelters and the havens define simplified strategies for the fugitive. The

game characterization then implies that these structural features are necessarily

present when the cycle-rank of a graph is large. By showing that such strategies

are also sufficient for the fugitive, we obtain a rare instance of an exact min-

max theorem relating digraph parameters. This also implies that the notion of

shelters when transferred to simple graphs characterizes structural obstructions

for tree-depth.

The results of this paper can be summarized with the following characteri-

zations of cycle-rank and tree-depth respectively.

Theorem. Let G be a digraph, and k a positive integer. The following are

equivalent:

(i) G has cycle-rank ≤ k − 1,

(ii) On G, k searchers can capture a fugitive with a LIFO-search strategy,

3

(iii) On G, k searchers can capture a visible fugitive restricted to moving in

strongly connected sets with a searcher-stationary search strategy,

(iv) G has no LIFO-haven of order > k, and

(v) G has no strong shelter of thickness > k.

Theorem. Let G be a non-empty graph and k be a positive integer. Then the

following are equivalent.

(i) G has tree-depth at most k

(ii) there is a monotone LIFO-search strategy in G of cost at most k that

captures an invisible and agile fugitive.

(iii) there is a LIFO-search strategy in G of cost at most k that captures an

invisible and agile fugitive.

(iv) every shelter in G has thickness at most k.

(v) there is a monotone LIFO-search strategy in G using k searchers against

a visible and agile fugitive.

The paper is organised as follows. In Section 2 we recall the definitions and

notation that we use throughout the paper. In Section 3 we define the LIFO-

search and searcher-stationary games and show that they characterize cycle-

rank. In Section 4 we prove the min-max theorem for cycle-rank. In Section 5 we

consider simple graphs and argue that our results imply the existense of a min-

max theorem for LIFO-search and that the LIFO-search parameter is equivalent

to the one of tree-depth, and in Section 6 we conclude with a discussion on

further research and open problems.

2 Preliminaries

All (di)graphs in this paper are finite, simple, (directed) and without self-loops,

although the results readily extend to multigraphs with self-loops. For sim-

plicity, we also assume that all (di)graphs contain at least one vertex unless

explicitly mentioned. We use standard notation and terminology, in particular

V (G) and E(G) denote the sets of vertices and edges respectively of a (di)graph

G and between (di)graphs, ⊆ denotes the subgraph relation. We will often

interchange an induced subgraph with the set of vertices which defines it, in

particular strongly connected sets of vertices are sets of vertices that induce a

strongly connected subgraph, and we will often view strongly connected compo-

nents as sets of vertices. Given a (di)graph G and a set of vertices X ⊆ V (G),

4

we use G \ X to denote the subgraph of G induced by V (G) \ X. An initial

component of a digraph G is a strongly connected component C with no edges

from G \C to C and H ⊆ G is successor-closed if there are no edges in G from

H to G \H.

Given a finite set V , we use P(V) to denote its powerset, V ∗ to denote the

set of finite words over V , and V <k to denote the set of words over V of length

< k. We use ε to denote the empty word and · or juxtaposition to denote

concatenation. For X,Y ∈ V ∗ we write X � Y if X is a prefix of Y , that is, if

there exists a word Z ∈ V ∗ such that Y = X ·Z. For X = a1a2 · · · an ∈ V ∗, we

use |X| to denote the length of X, and {|X|} to denote the set {a1, a2, . . . , an}.
Given two sets A and B we use A∆B to denote their symmetric difference, that

is A∆B = (A∪B)\(A∩B). Given a set S ⊆ P(V) of subsets of V , a ⊆-chain is

a subset {X1, . . . , Xn} ⊆ S such that X1 ⊆ X2 ⊆ · · · ⊆ Xn. If there is no Y ∈ S
such that Y ⊂ X1, Xi ⊂ Y ⊂ Xi+1 for some i, or Xn ⊂ Y , then {X1, . . . , Xn}
is a maximal ⊆-chain.

Definition 1 (Cycle-rank). The cycle-rank of a digraph G, cr(G), is defined as

follows:

• If G is acyclic then cr(G) = 0.

• If G is strongly connected then cr(G) = 1 + minv∈V (G) cr(G \ {v}).

• Otherwise cr(G) = maxH cr(H) where the maximum is taken over all

strongly connected components H of G.

We postpone the definition of tree-depth until Section 5.

3 Searching games for cycle-rank

We begin by formally defining the LIFO-search game, and its variants, for di-

graphs. Each variation of the LIFO-search game gives rise to a digraph param-

eter corresponding to the minimum number of searchers required to capture the

fugitive under the given restrictions. The main result of this section is that for

any digraph all these parameters are equal. Furthermore, we show they are all

equal to one more than the cycle-rank of the digraph.

3.1 LIFO-search for digraphs

In summary, for the graph searching game in which we are interested the fugitive

can run along searcher-free directed paths of any length, the searchers can move

to any vertex in the graph, and the fugitive moves whilst the searchers are

5

relocating. The searcher’s strategy may apply two types of moves in each step:

either placement of a searcher on a vertex or removal of a searcher from a

vertex with the restriction that only the most recently placed searchers may

be removed. If a searcher is placed on the fugitive then he is captured and

the searchers win, otherwise the fugitive wins. The goal is to determine the

minimum number of searchers required to capture the fugitive. The variants

we are primarily interested in are whether the fugitive is visible or invisible,

and whether or not the fugitive must stay within the same strongly connected

component when he is moving. As our fundamental definitions are dependent

on these two options, we define four game variants: i, isc, v, vsc, corresponding

to the visibility of the fugitive and whether he is constrained to moving within

strongly connected components, that is, i and v correspond to an invisible and

a visible fugitive respectively while isc and vsc correspond to an invisible and

visible fugitive as above with the addition that the fugitives move inside the

same strongly connected component. Then we parameterize our definitions by

these variants.

Let us fix a digraph G. A position in a LIFO-search on G is a pair (X,R)

where X ∈ V (G)∗ and R is a (possibly empty) induced subgraph of G \ {|X|}.
Intuitively X represents the position and ordered placement of the searchers and

R represents the part of G that the fugitive can reach (in the visible case) or

the set of vertices where he might possibly be located (in the invisible case). We

say a position (X,R) is an i-position if R is successor-closed; an isc-position if

it is a union of strongly connected components of G \ {|X|}; a v-position if R is

successor-closed and has a unique initial component; and a vsc-position if R is

a strongly connected component of G \ {|X|}.
To reflect how the game transitions to a new position during a round of the

game we say, for gv ∈ {i, isc, v, vsc}, a gv-position (X ′, R′) is a gv-successor

of (X,R) if either X � X ′ or X ′ � X, with |{|X|}∆{|X ′|}| = 1, and

• (for gv ∈ {i, v}) For every v′ ∈ V (R′) there is a v ∈ V (R) and a directed

path in G \ ({|X|} ∩ {|X ′|}) from v to v′, or

• (for gv ∈ {isc, vsc}) For every v′ ∈ V (R′) there is a v ∈ V (R) such

that v and v′ are contained in the same strongly connected component of

G \ ({|X|} ∩ {|X ′|}).

Ideally we would like to assume games start from (ε,G), however in the visible

variants of the game this might not be a legitimate position. Thus, for gv ∈
{v, vsc}, if (ε,G) is not a gv-position we include it as a special case, and set

as its gv-successors all gv-positions of the form (ε, R). We observe that in

all variants, the successor relation is monotone in the sense that if (X,R) and

6

(X,S) are positions with S ⊆ R and (X ′, S′) is a successor of (X,S), then there

is a successor (X ′, R′) of (X,R) with S′ ⊆ R′.
For gv ∈ {i, isc, v, vsc}, a (gv-LIFO-)search in a digraph G from gv-

position (X,R) is a (finite or infinite) sequence of gv-positions (X,R) = (X0, R0),

(X1, R1), . . . where for all i ≥ 0, (Xi+1, Ri+1) is a gv-successor of (Xi, Ri). A

LIFO-search is complete if either Rn = ∅ for some n, or it is infinite. We observe

that if Rn = ∅, then Rn′ = ∅ for all n′ ≥ n.

We say that a complete LIFO-search is winning for the searchers if Rn = ∅
for some n, otherwise it is winning for the fugitive. A complete LIFO-search

from (ε,G) is monotone if Ri+1 ⊆ Ri for all i, that is, the fugitive cannot reside

in already searched areas of the digraph, it is searcher-stationary if Xi � Xi+1

for all i where Ri 6= ∅; and it uses at most k searchers if |Xi| ≤ k for all i.

Whilst a complete LIFO-search from (ε,G) describes a single run of the

game, we are more interested in the cases where one of the players (particularly

the searchers) can always force a win, no matter what the other player chooses to

do. For this, we introduce the notion of a strategy. For gv ∈ {i, isc, v, vsc}, a

(searcher) gv-strategy is a (partial1) function σ from the set of all gv-positions to

V (G)∗ such that for all (X,R), σ(X,R) is the first component of a gv-successor

of (X,R); so with the possible exception of (X,R) = (ε,G), either σ(X,R) � X
or X � σ(X,R). A gv-LIFO-search (X0, R0), (X1, R1), . . . is consistent with a

gv-strategy σ if Xi+1 = σ(Xi, Ri) for all i ≥ 0. A strategy σ is winning from

(X,R) if all complete LIFO-searches from (X,R) consistent with σ are winning

for the searchers. Likewise, a strategy is monotone (searcher-stationary, uses

at most k searchers) if all consistent complete LIFO-searches from (ε,G) are

monotone (searcher-stationary, use at most k searchers respectively). We say

k searchers can capture a fugitive on G in the gv-game with a (monotone)

LIFO-search strategy if there is a (monotone) gv-strategy that uses at most k

searchers and is winning for the searchers from (ε,G).

For gv ∈ {i, isc, v, vsc}, we define the (monotone) gv-LIFO-search num-

ber of G, LIFOgv(G) (LIFOmgv(G)), as the minimum k for which there is a

(monotone) winning gv-strategy that uses at most k searchers. We also de-

fine the visible, strongly connected, searcher-stationary search number of G,

SSvsc(G) as the minimum k for which there is a searcher-stationary winning

vsc-strategy that uses at most k searchers.

In Section 4 we will also consider fugitive gv-strategies: a partial function ρ

from V (G)∗ ×P(G)× V (G)∗ to induced subgraphs of G, defined for (X,R,X ′)

if (X,R) is a gv-position and X ′ is the first component of a gv-successor of

1A strategy need only be defined for all positions (X,R) that can be reached from (ε,G) in

a LIFO-search consistent with the strategy. However, as this definition is somewhat circular,

we assume strategies are total.

7

(X,R). A LIFO-search (X0, R0), (X1, R1), . . . is consistent with a fugitive gv-

strategy ρ if Ri+1 = ρ(Xi, Ri, Xi+1) for all i ≥ 0, and a fugitive strategy is

winning if all consistent complete LIFO-searches are winning for the fugitive.

In this section, a strategy will always refer to a searcher strategy.

3.2 Relating the digraph searching parameters

We observe that in all game variants, a strategy that is winning from (X,R)

can be used to define a strategy that is winning from (X,R′) for any R′ ⊆ R:

the searchers can play as if the fugitive is located in the larger space; and from

the monotonicity of the successor relation, the assumption that the actual set

of locations of the fugitive is a subset of the assumed set of locations remains

invariant. One consequence is that a winning strategy on G defines a winning

strategy on any subgraph of G, so the search numbers we have defined are

monotone with respect to the subgraph relation.

Proposition 1. Let G be a digraph and G′ a subgraph of G. Then:

• SSvsc(G′) ≤ SSvsc(G), and

• LIFOgv(G′) ≤ LIFOgv(G) for gv ∈ {i, isc, v, vsc, mi, misc, mv, mvsc}.

Another consequence is that a winning strategy in the invisible fugitive

variant defines a winning strategy when the fugitive is visible; and a winning

strategy when the fugitive is not constrained to moving within strongly con-

nected components defines a winning strategy when he is. This corresponds

to our intuition of the fugitive being more (or less) restricted. Also, in all

game variants, a monotone winning strategy is clearly a winning strategy, and

because a searcher-stationary LIFO-search is monotone, a winning searcher-

stationary strategy is a monotone winning strategy. These observations yield

several inequalities between the search numbers defined above. For example

LIFOvsc(G) ≤ LIFOmi(G) as any winning monotone i-strategy is also a win-

ning vsc-strategy. The full set of these relationships is shown in a Hasse diagram

in Figure 1, with the larger measures towards the top.

The main result of this section is that all these digraph parameters are equal

to one more than cycle-rank.

Theorem 1. For any digraph G:

1 + cr(G) = LIFOmi(G) = LIFOi(G) = LIFOmisc(G) = LIFOisc(G)

= LIFOmv(G) = LIFOv(G) = LIFOmvsc(G) = LIFOvsc(G)

= SSvsc(G).

8

LIFOmi(G)

LIFOi(G) LIFOmv(G) LIFOmisc(G) SSvsc(G)

LIFOv(G) LIFOisc(G) LIFOmvsc(G)

LIFOvsc(G)

Figure 1: Trivial relations between digraph searching parameters

Proof. From the above observations, to prove Theorem 1 it is sufficient to prove

the following three inequalities:

(1) LIFOvsc(G) ≥ SSvsc(G),

(2) SSvsc(G) ≥ 1 + cr(G), and

(3) 1 + cr(G) ≥ LIFOmi(G).

These are established with the following series of lemmas.

Lemma 1. For any digraph G, LIFOvsc(G) ≥ SSvsc(G).

Proof. We show that if a vsc-strategy is not searcher-stationary then it is not a

winning strategy from (ε,G). The result then follows as this implies every win-

ning vsc-strategy is searcher-stationary. Let σ be a vsc-strategy, and suppose

(X0, R0), (X1, R1), . . . is a complete vsc-LIFO-search from (X0, R0) = (ε,G)

consistent with σ which is not searcher-stationary. Let j be the least index

such that Xj � Xj+1 and Rj 6= ∅. As X0 = ε, there exists i < j such that

Xi = Xj+1. By the minimality of j, and the assumption that we only place

or remove one searcher in each round, i = j − 1. As Xj−1 � Xj , Rj ⊆ Rj−1,

and as Xj+1 � Xj , Rj ⊆ Rj+1. As Rj 6= ∅, it follows that Rj−1 and Rj+1 are

the same strongly connected component of G \ {|Xj−1|}. Thus (Xj−1, Rj−1)

is a vsc-successor of (Xj , Rj). As σ(Xj , Rj) = Xj+1 = Xj−1, it follows

that (X0, R0), (X1, R1), . . . (Xj−1, Rj−1), (Xj , Rj), (Xj−1, Rj−1), (Xj , Rj), . . . is

an infinite, and hence complete, vsc-LIFO-search (from (ε,G)) consistent with

σ. As Ri 6= ∅ for all i ≥ 0, the LIFO-search is not winning for the searchers.

Thus σ is not a winning strategy.

9

Lemma 2. For any digraph G, SSvsc(G) ≥ 1 + cr(G).

Proof. We prove this by induction on |V (G)|.
If |V (G)| = 1, then SSvsc(G) = 1 = 1 + cr(G).

Now suppose SSvsc(G′) ≥ 1 + cr(G′) for all digraphs G′ with |V (G′)| <
|V (G)|. We first consider the case when G is not strongly connected. From

Proposition 1, SSvsc(G) ≥ maxH SSvsc(H) where the maximum is taken over

all strongly connected components H of G. As G is not strongly connected,

|V (H)| < |V (G)| for all strongly connected components H of G. Therefore, by

the induction hypothesis

SSvsc(G) ≥ max
H

SSvsc(H)

≥ max
H

(1 + cr(H))

= 1 + cr(G).

Now suppose G is strongly connected. Let σ be a winning searcher-stationary

vsc-strategy which uses SSvsc(G) searchers. As (ε,G) is a legitimate vsc-

position, if (X,R) is a vsc-successor of (ε,G) then |X| = 1. Thus |σ(ε,G)| = 1.

Let σ(ε,G) = v0. As σ is a searcher-stationary strategy which uses the minimal

number of searchers, it follows that SSvsc(G \ {v0}) = SSvsc(G)− 1. Thus, by

the induction hypothesis,

SSvsc(G) = SSvsc(G \ {v0}) + 1

≥ (1 + cr(G \ {v0})) + 1

≥ (1 + min
v∈V (G)

cr(G \ {v})) + 1

= 1 + cr(G).

Lemma 3. For any digraph G, 1 + cr(G) ≥ LIFOmi(G).

Proof. We also prove this by induction on |V (G)|.
If |V (G)| = 1, then 1 + cr(G) = 1 = LIFOmi(G).

Now suppose 1 + cr(G′) ≥ LIFOmi(G′) for all digraphs G′ with |V (G′)| <
|V (G)|. First we consider the case when G is not strongly connected. As

|V (H)| < |V (G)| for each strongly connected component H, by the inductive

hypothesis, there is a monotone i-strategy, σH , which captures a fugitive using

at most 1+cr(H) searchers. From the definition of cycle-rank, for each strongly

connected component H of G, cr(G) ≥ cr(H), thus σH uses at most 1 + cr(G)

searchers. We define a monotone i-strategy which captures a fugitive on G

with at most 1 + cr(G) searchers as follows. Intuitively, we search the strongly

10

connected components of G in topological order using the monotone strategies

σH . More precisely, let H1, H2, . . . ,Hn be an ordering of the strongly connected

components of G such that if there is an edge from Hi to Hj then i < j. We

define σ as follows.

• σ(ε,G) = σH1
(ε,H1),

• For 1 ≤ i, if {|X|} ⊆ Hi and R = R′ ∪
⋃n
j=i+1Hj where ∅ 6= R′ ⊆ Hi,

σ(X,R) = σHi
(X,R′),

• For 1 ≤ i < n, if ∅ 6= {|X|} ⊆ Hi and R =
⋃n
j=i+1Hj then σ(X,R) = X ′

where X ′ is the maximal proper prefix of X.

From the definition of i-successors and the ordering of the strongly connected

components if (X0, R0), . . . (Xn, Rn) is an i-LIFO-search on G where {|Xn|} ⊆
Hi and

⋃
j>iHj ⊆ Rn−1 ⊆

⋃
j≥iHj , then

⋃
j>iHj ⊆ Rn ⊆

⋃
j≥iHj . It

follows (by induction on the length of a LIFO-search) that every LIFO-search

from (ε,G) consistent with σ can be divided into a sequence of LIFO-searches

λ1, λ2, . . . , λn, where λi can be viewed as a LIFO-search consistent with σHi

with
⋃
j>iHj added to the second component of every position. Thus if each

σHi
is monotone, winning and uses at most 1 + cr(G) searchers, then σ is also

monotone, winning and uses at most 1 + cr(G) searchers.

Now suppose G is strongly connected. Let v0 be the vertex which minimizes

f(v) = cr(G \ {v}). Let G′ = G \ {v0}, so cr(G) = 1 + cr(G′). By the induction

hypothesis, there exists a winning monotone i-strategy σ′ which uses at most

1+cr(G′) searchers to capture a fugitive on G′. We define an i-strategy σ on G

which uses at most 2 + cr(G′) = 1 + cr(G) searchers as follows. Initially, place

(and keep) a searcher on v0, then play the strategy σ′ on G\{v0}. More precisely,

σ(ε,G) = v0 and σ(v0X,R) = v0 ·σ′(X,R). Clearly any LIFO-search consistent

with σ can be viewed as a LIFO-search consistent with σ′ prepended with the

position (ε,G) and where the first component of every position is prepended

with v0. Thus if σ′ is monotone, then σ is monotone, and if σ′ is winning then

σ is winning. Thus σ is a monotone winning i-strategy which uses at most

1 + cr(G) searchers.

3.3 Relation with other graph parameters

With a characterization of cycle-rank in terms of several graph searching games

we can compare it with other digraph measures defined by similar games. In par-

ticular, the directed pathwidth of a digraph, dpw(G), which can be characterized

by an invisible-fugitive graph searching game [2], and the DAG-depth, dd(G)

which can be characterized by a visible-fugitive, searcher-stationary searching

11

game [12]. Whilst the relationships we present here are known [14, 12], using

the game characterizations we obtain a more simple and more intuitive proof.

Corollary 1. For any digraph G, dpw(G) ≤ cr(G) ≤ dd(G)− 1.

4 Obstructions for cycle-rank

In this section we consider the dual parameter arising from considering the

graph searching games from the fugitive’s perspective. We show that it can

be characterized by two types of structural features, akin to the havens and

brambles used to dually characterize treewidth [28]. To do so we first define

the notion of the strong shelter of a digraph, a structural obstruction which we

show to be dual to cycle-rank.

Definition 2. A strong shelter of a digraph G is a collection S of non-empty

strongly connected sets of vertices such that for any S ∈ S⋂
{S′ : S′ ∈MS(S)} = ∅,

where MS(S) is the ⊆-maximal elements of {S′ ∈ S : S′ ⊂ S}. The thickness

of a shelter S is the minimal length of a maximal ⊆-chain.

The second structural obstruction we consider is motivated by the definition

of a haven in [16], a structural feature dual to directed treewidth.

Definition 3. A LIFO-haven of order k of a digraph G is a function h from

V (G)<k to induced subgraphs of G such that:

(H1) h(X) is a non-empty strongly connected component of G \ {|X|}, and

(H2) If X � Y and |Y | < k then h(Y) ⊆ h(X).

Whilst Adler [1] has shown that the havens of [16] do not give an exact

min-max characterization of directed treewidth and Safari [27] has shown that

directed versions of havens and brambles give rise to distinct parameters, we

show that LIFO-havens and strong shelters both give a tight min-max charac-

terization of cycle-rank.

Theorem 2 (Min-max theorem for cycle-rank). Let G be a digraph and k a

positive integer. The following are equivalent:

(i) G has cycle-rank less than k,

(ii) G has no LIFO-haven of order greater than k, and

12

(iii) G has no strong shelter of thickness greater than k.

Proof. (i) ⇒ (ii). Assume that it is not the case that G has no LIFO-haven of

order greater than k, that is, G has a LIFO-haven h of order at least k + 1.

We show that the fugitive has a winning strategy against k searchers, so by

Theorem 1, cr(G) ≥ k. Define a vsc-strategy ρ for the fugitive (against k

searchers) by defining ρ(X,R,X ′) = h(X ′) for all suitable triples (X,R,X ′).

From (H1), (X ′, ρ(X,R,X ′)) is a valid vsc-position. Furthermore, (H2) implies

that if (X,R) is a vsc-position such that R = h(X), then (X ′, ρ(X,R,X ′)) is

a vsc-successor of (X,R), so ρ is a vsc-strategy (defined for all LIFO-searches

that use at most k searchers). Also, if (X0, R0), (X1, R1) . . . is a complete LIFO-

search consistent with ρ then Ri = h(Xi) for all i > 0. As h(X) 6= ∅ when

|X| ≤ k, it follows that all consistent complete LIFO-searches that use at most

k searchers are winning for the fugitive. Thus ρ is a winning strategy for the

fugitive, so LIFOvsc(G) > k. By Theorem 1, cr(G) ≥ k.

(ii) ⇒ (iii). We show that a strong shelter S of thickness at least k can be

used to define a haven of order at least k. For each X ∈ V (G)<k we define

SX ∈ S inductively as follows. For X = ε, let Sε be any ⊆-maximal element of

S. Note that {S ∈ S : S ⊂ Sε} is a strong shelter of thickness at least k−1. Now

supposeX = X ′v, SX′ is defined, SX′∩{|X ′|} = ∅, and SX′ = {S ∈ S : S ⊂ SX′}
is a strong shelter of thickness at least k−1−|X ′|. From the definition of a strong

shelter, there exists a ⊆-maximal element of SX′ that does not contain v, as

otherwise v ∈ S for all S ∈MS(SX′). Let SX be that element. As SX′∩{|X ′|} =

∅ and v /∈ SX , it follows that SX ∩ {|X|} = ∅. Further, {S ∈ S : S ⊂ SX} is a

strong shelter of thickness at least (k − 1 − |X ′|) − 1 = k − 1 − |X|, satisfying

the assumptions necessary for the next stage of the induction. Now for all

X ∈ V (G)<k, SX is a non-empty strongly connected set such that SX∩{|X|} = ∅.
Thus there is a unique strongly connected component of G \ {|X|} that contains

SX . Defining h(X) to be that component we see that h satisfies (H1). For

(H2), from the definition of SX , if X � Y and |Y | < k, then SX ⊇ SY , so

h(X) ⊇ h(Y). Therefore h is a haven of order at least k.

(iii) ⇒ (i). Again, we prove the contrapositive. Suppose cr(G) ≥ k. Let G′

be a strongly connected component of G which has cycle-rank ≥ k. We prove

by induction on k that G′, and hence G, has a strong shelter of thickness at

least k + 1. Every digraph with |V (G)| ≥ 1 has a strong shelter of thickness 1:

take S = {{v}} for some v ∈ V (G). Thus for k = 0, the result is trivial. Now

suppose for k′ < k every digraph of cycle-rank ≥ k′ contains a strong shelter of

thickness at least k′+1. For v ∈ V (G′), let G′v = G′\{v}. From the definition of

cycle-rank, cr(G′v) ≥ k−1 for all v ∈ V (G′). Thus, by the induction hypothesis,

G′v contains a strong shelter, Sv, of thickness at least (k − 1) + 1. As v /∈ S for

13

all S ∈ Sv, it follows that S = {G′} ∪
⋃
v∈V (G′) Sv is a strong shelter of G. As

Sv has thickness at least k for all v ∈ V (G′), S has thickness at least k+ 1.

Combining Theorems 1 and 2 we obtain the following.

Theorem 3. Let G be a digraph, and k a positive integer. The following are

equivalent:

(i) G has cycle-rank at most k − 1,

(ii) On G, k searchers can capture a fugitive with a LIFO-search strategy,

(iii) On G, k searchers can capture a visible fugitive restricted to moving in

strongly connected sets with a searcher-stationary search strategy,

(iv) G has no LIFO-haven of order greater than k, and

(v) G has no strong shelter of thickness greater than k.

5 LIFO-search in simple graphs

In this section we consider the consequences of our results to simple graphs. In

order to do so, we first give the definition of tree-depth and then restrict the

notions of strong shelters on simple graphs.

Definition 4 (Tree-depth). The tree-depth of a graph G, td(G), is defined as

follows:

• If |V (G)| = 1 then td(G) = 1.

• If |V (G) > 1 and G is connected then td(G) = 1 + minv∈V (G) td(G \ {v}).

• Otherwise td(G) = maxH td(H) where the maximum is taken over all

connected components H of G.

Tree-depth is also known as the vertex ranking problem [5], the ordered

colouring problem [17], or the the minimum-height of an elimination tree of a

graph [6, 8, 23] and has received much attention, mostly because of the theory

of graph classes of bounded expansion, developed by Nešetřil and Ossona de

Mendez in [23, 21, 24, 25, 22].

Given a graph G we define the digraph Gd where V (Gd) = V (G) and

E(Gd) = {(x, y) | {x, y} ∈ E(G)}, that is, Gd is obtained from G after replacing

every edge {x, y} ∈ E(G) with the arcs (x, y) and (y, x). From Definitions 1

and 4 we get that.

14

Observation 1. For every graph G, td(G) = cr(Gd) + 1.

We now give the definition of shelters when restricted to simple graphs.

Definition 5 (Shelter). A shelter of G is a collection S of connected sets in G

such that for every set S ∈ S its children have no vertex in common, in other

words, ⋂
{S′ | S′ ∈MS(S)} = ∅,

where MS(S) is the ⊆-maximal elements of {S′ ∈ S : S′ ⊂ S}. The thickness

of a shelter S is the minimal length of a maximal ⊆-chain.

Observation 1 ensures that we may restate Theorem 3 for simple graphs in

the following way.

Theorem 4. Let G be a non-empty graph and k be a positive integer. Then the

following are equivalent.

(i) G has tree-depth at most k

(ii) there is a monotone LIFO-search strategy in G of cost at most k that

captures an invisible and agile fugitive.

(iii) there is a LIFO-search strategy in G of cost at most k that captures an

invisible and agile fugitive.

(iv) every shelter in G has thickness at most k.

(v) there is a monotone LIFO-search strategy in G using k searchers against

a visible and agile fugitive.

6 Conclusions and further work

To conclude, this multiple characterization of cycle-rank gives a new perspec-

tive on the measure which can be useful for further investigation. For exam-

ple, whilst it is known that computing the cycle-rank is NP-complete [14], the

characterization in terms of a graph searching game with a visible fugitive au-

tomatically implies that for any fixed k, deciding if a digraph has cycle-rank k

is decidable in polynomial time. From a parameterized complexity perspective,

techniques based on separators have shown measures such as directed treewidth

are fixed-parameter tractable. Whether the visible, strongly connected game

characterizations of cycle-rank can improve the known complexity from XP to

FPT is part of ongoing research.

15

References

[1] Isolde Adler. Directed tree-width examples. Journal of Combinatorial

Theory, Series B, 97(5):718–725, 2007.

[2] János Barát. Directed path-width and monotonicity in digraph searching.

Graphs and Combinatorics, 22(2):161–172, 2006.

[3] Dietmar Berwanger, Anuj Dawar, Paul Hunter, and Stephan Kreutzer.

DAG-width and parity games. In Proceedings of the 23rd International

Symposium on Theoretical Aspects of Computer Science, pages 524–536,

2006.

[4] Daniel Bienstock and Paul D. Seymour. Monotonicity in graph searching.

Journal of Algorithms, 12:239–245, 1991.

[5] Hans L. Bodlaender, Jitender S. Deogun, Klaus Jansen, Ton Kloks, Dieter

Kratsch, Haiko Müller, and Zsolt Tuza. Rankings of graphs. SIAM J.

Discrete Math., 11(1):168–181 (electronic), 1998.

[6] P. de la Torre, R. Greenlaw, and A. A. Schäffer. Optimal edge ranking of

trees in polynomial time. Algorithmica, 13(6):592–618, 1995.

[7] Nick D. Dendris, Lefteris M. Kirousis, and Dimitrios M. Thilikos. Fugitive-

search games on graphs and related parameters. Theoretical Computer

Science, 172(1-2):233–254, 1997.

[8] J. S. Deogun, T. Kloks, D. Kratsch, and H. Müller. On vertex ranking for

permutation and other graphs. In STACS 94 (Caen, 1994), volume 775 of

Lecture Notes in Comput. Sci., pages 747–758. Springer, Berlin, 1994.

[9] L. C. Eggan. Transition graphs and the star-height of regular events. Michi-

gan Mathematical Journal, 10(4):385–397, 1963.

[10] Stanley Eisenstat and Joseph Liu. The theory of elimination trees for sparse

unsymmetric matrices. SIAM Journal of Matrix Analysis & Applications,

26(3):686–705, 2005.

[11] Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer, and Dimitrios M.

Thilikos. Theory and Applications of Graph Searching Problems (GRASTA

2011) (Dagstuhl Seminar 11071). Dagstuhl Reports, 1(2):30–46, 2011.

[12] Robert Ganian, Petr Hlinený, Joachim Kneis, Alexander Langer, Jan Ob-

drzálek, and Peter Rossmanith. On digraph width measures in parame-

terized algorithmics. In 4th International Workshop on Parameterized and

Exact Computation (IWPEC 2009), pages 185–197, 2009.

16

[13] Archontia C. Giannopoulou and Dimitrios M. Thilikos. A min-max theorem

for lifo-search. Electronic Notes in Discrete Mathematics, 2011.

[14] Hermann Gruber. Digraph Complexity Measures and Applications in For-

mal Language Theory. In 4th Workshop on Mathematical and Engineering

Methods in Computer Science (MEMICS 2008), pages 60–67, 2008.

[15] Paul Hunter. Lifo-search on digraphs: A searching game for cycle-rank. In

FCT, 2011.

[16] Thor Johnson, Neil Robertson, Paul D. Seymour, and Robin Thomas. Di-

rected tree-width. Journal of Combinatorial Theory (Series B), 82(1):138–

154, 2001.

[17] Meir Katchalski, William McCuaig, and Suzanne Seager. Ordered colour-

ings. Discrete Math., 142(1-3):141–154, 1995.

[18] Lefteris Kirousis and Christos Papadimitriou. Searching and pebbling. The-

oretical Computer Science, 47(3):205–218, 1986.

[19] Stephan Kreutzer and Sebastian Ordyniak. Digraph decompositions and

monotonicity in digraph searching. In 34th International Workshop on

Graph-Theoretic Concepts in Computer Science (WG 2008), pages 336–

347, 2008.

[20] Andrea S. LaPaugh. Recontamination does not help to search a graph.

Journal of the ACM, 40(2):224–245, 1993.

[21] Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes with

bounded expansion II. Algorithmic aspects. Eur. J. Comb., 29(3):777–791,

2008.

[22] Jaroslav Nešetřil and Patrice Ossona de Mendez. Linear time low tree-width

partitions and algorithmic consequences. In STOC’06: Proceedings of the

38th Annual ACM Symposium on Theory of Computing, pages 391–400.

ACM, New York, 2006.

[23] Jaroslav Nešetřil and Patrice Ossona de Mendez. Tree-depth, subgraph

coloring and homomorphism bounds. European J. Combin., 27(6):1022–

1041, 2006.

[24] Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes with

bounded expansion. I. Decompositions. European J. Combin., 29(3):760–

776, 2008.

17

[25] Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes

with bounded expansion. II. Algorithmic aspects. European J. Combin.,

29(3):777–791, 2008.

[26] Jan Obdržálek. DAG-width: Connectivity measure for directed graphs. In

Proceedings of the 17th ACM-SIAM Symposium on Discrete Algorithms,

pages 814–821, 2006.

[27] Mohammad Ali Safari. D-width: A more natural measure for directed tree

width. In Proceedings of the 30th International Symposium on Mathemat-

ical Foundations of Computer Science, pages 745–756, 2005.

[28] Paul D. Seymour and Robin Thomas. Graph searching, and a min-max

theorem for tree-width. Journal of Combinatorial Theory (Series B), 58:22–

33, 1993.

18

