
Complexity Bounds for Muller Games 1

Paul Hunter a, Anuj Dawar b

aOxford University Computing Laboratory, UK

bUniversity of Cambridge Computer Laboratory, UK

Abstract

We consider the complexity of infinite games played on finite graphs. We estab-
lish a framework in which the expressiveness and succinctness of different types
of winning conditions can be compared. We show that the problem of deciding the
winner in Muller games is Pspace-complete. This is then used to establish Pspace-
completeness for Emerson-Lei games and for games described by Zielonka DAGs.
Adaptations of the proof show Pspace-completeness for the emptiness problem for
Muller automata as well as the model-checking problem for such automata on regu-
lar trees. We also show co-NP-completeness for two classes of union-closed games:
games specified by a basis and superset Muller games.

1 Introduction

Recent years have seen an increasing use of two-player infinite games as a
means of modelling reactive and concurrent systems. Games have emerged as
essential tools for the analysis, synthesis and verification of such systems with
a close connection to logic and to automata on infinite objects. The general
framework consists of games played on finite or infinite graphs (whose ver-
tices represent a state space) with players moving a token along the edges of
the graph. The (possibly infinite) sequence of vertices that is visited consti-
tutes a play of the game with the winner of a play being defined by some
predetermined condition.

When we are concerned with algorithmic issues surrounding such games, we
need to restrict ourselves to games that can be described in a finite fashion.

Email addresses: paul.hunter@comlab.ox.ac.uk (Paul Hunter),
anuj.dawar@cl.cam.ac.uk (Anuj Dawar).
1 An extended abstract of this paper appeared at MFCS 2005 [7]. Some material
presented here first appeared in [6].

Preprint submitted to Theoretical Computer Science 24 June 2008

This does not mean that the graph on which the game is played is necessarily
finite as it is possible to finitely describe an infinite graph. Nor does having a
finite game graph by itself guarantee that the game can be finitely described.
Even with two nodes in a graph, the number of distinct plays can be uncount-
able and there are more possible winning conditions than one could possibly
describe. In this paper, we are concerned with Muller games played on finite
graphs. These are games in which the graph is finite and the winner of a play is
determined by the set of vertices of the graph that are visited infinitely often in
the play (see Section 2 for formal definitions). This category of games is wide
enough to include most kinds of game winning conditions that are considered
in the literature, including Streett, Rabin, Büchi and parity games.

Specifically, we are concerned with the problem of deciding, given a game and
a starting position, which player has a strategy for winning the game. It is
well-known that Muller games are determined, i.e. one of the players has a
winning strategy and the problem of determining which player has such a
strategy is decidable [1]. We are interested in the computational complexity
of deciding the winner. Since the complexity is measured as a function of the
length of the description, this in turn depends on how exactly the game is
described. In general, a Muller game is defined by an arena (V, V0, V1, E, vI),
and a winning condition F ⊆ P(V) consisting of a set of subsets of V . One
could specify F by listing all its elements explicitly (we call this an explicit
presentation) but one could also adopt a formalism which allows one to specify
F more succinctly. In the latter case, there are two possibilities. Either the
formalism is general enough that any winning condition F ⊆ P(V) can be
expressed in it or there is only a restricted class of winning conditions that
can be expressed. An example of the first case are Muller games presented by
sets of colours, while Rabin, Streett, Büchi and parity games are all examples
of the second case. Since the number of possible winning conditions F is 22|V |

,
if the formalism is general enough to describe any winning condition then the
description of the game must, in general, be exponential in the size of the
game graph. However, some presentations may still be more succinct than
the explicit presentation. On the other hand, if the formalism is restricted in
its expressive power, it may be possible that the length of a description of
the game is always bounded by a polynomial in the size of the graph. We
investigate these two dimensions of variation in the description of games – the
expressive power of the formalism on the one hand and its succinctness on the
other – in the results we establish.

As an example, consider a min-parity winning condition. Here, the winning
condition is specified by a priority function Ω : V → {0, . . . , d}. This is treated
as a specification of the set F consisting of those sets I ⊆ V such that the
smallest number in Ω(I) is even. It is clear that the description of Ω is bounded
in length by a polynomial (indeed, linear) function of |V |. It is also clear that
not every set F ⊆ P(V) can be described in this way. On the other hand,

2

there are such sets F for which the description using a priority function is
exponentially more succinct than an explicit presentation.

The exact computational complexity of deciding the winner of a parity game is
a central open question in the theory of graph games. It is known to be in NP∩
co-NP [3] and conjectured by some to be in Ptime. However, lower bounds
on the complexity of any class of games are hard to come by. It is known that
deciding games specified by the Rabin condition is NP-complete [3] and for the
Streett condition the problem is co-NP-complete. Both of these are condition
types that are restricted in that they cannot express all Muller games. No lower
bounds are previously known for formalisms that are expressive enough to
specify all Muller games, though algorithms for such games have been studied
which establish, for instance, that the games are decidable in Pspace.

We consider six general-purpose formalisms. Our main result is that the prob-
lem of deciding the winner of a Muller game is Pspace-complete. We then use
this to establish Pspace-completeness for three further general-purpose repre-
sentations: Emerson-Lei games, where the winning condition is presented as a
Boolean formula over the vertices of the graph; games with a winning condition
presented as a circuit; and the case where the winning condition is represented
as a Zielonka DAG. The latter is a data structure (defined in Definition 3.7)
based on the Zielonka trees of [17]. We define a notion of polynomial-time
translatability between formalisms. A formalism is translatable into another if
the representation of a game in the first can be transformed into a represen-
tation of the same game in the second. This is stronger than polynomial-time
reducibility of the corresponding decision problems. We show that games with
a Muller winning condition are translatable to Zielonka DAGs and Emerson-
Lei games, both of which are in turn translatable to circuit games, but the
reverse translations do not hold. Our hardness result for Muller games is based
on the presentation of these games which includes a colouring of the vertices.
This allows for more succinct descriptions than the explicit presentation of
sets. Indeed, we show that there is a translation in one direction but not the
other. The complexity of deciding the winner of the games where the sets are
explicitly presented remains an open question. As an aside, we also show that
the Pspace-completeness result for Muller games holds even when the game
arenas are restricted to small tree-width.

We also consider the restriction to games where the winning condition F is
closed under unions. The question of lower-bounds for union-closed games
was posed by Khoussainov (see [8]). It is known that deciding whether or
not Player 0 wins such a game is decidable in co-NP. The precise formal-
ism used to describe the set F is not relevant to this upper bound as the
non-deterministic algorithm runs in time polynomial in the size of the game
graph. We show, for two particular formalisms that the problem of deciding
the winner is co-NP-complete. One such formalism is what we call Basis

3

games while the other is the superset Muller games defined in [10]. The for-
mer is expressive enough to define all union-closed games while the latter is
restricted to expressing sets F that are upward-closed. Both are, as we show,
more succinct than an explicit representation of F .

An adaptation of the Pspace-completeness result shows that two important
problems related to Muller automata are also Pspace-complete. These are
the emptiness problem and the model-checking problem on regular trees.

2 Preliminaries

In this section we present the definitions of arenas, games and strategies that
we use throughout the paper. The definitions we use follow [5].

An arena is a generalization of a transition system where two entities or
players control the transitions. More precisely, an arena is a tuple A :=
(V, V0, V1, E, vI) where:

• (V, E) is a directed graph,
• V0, the set of Player 0 vertices, and V1, the set of Player 1 vertices, form a

partition of V , and
• vI ∈ V is the initial vertex.

Viewing arenas as directed graphs with some additional structure, we define
the notions of subarena and induced subarena in the obvious way.

Given an arena, A, we consider the following set of interactions between two
players: Player 0 and Player 1. 2 A token, or pebble, is placed on vI(A). When-
ever the pebble is on a vertex v ∈ V0(A), Player 0 chooses a successor of v
and moves the pebble to that vertex, and similarly when the pebble is on
a vertex v ∈ V1(A), Player 1 chooses the move. This results in a (possibly
infinite) sequence of vertices visited by the pebble. We call such a sequence a
play. More formally, a play in A (from v) is a (possibly infinite) sequence of
vertices v1v2 · · · such that v1 = v and for all i ≥ 1, (vi, vi+1) ∈ E(A). If v is
not specified, we assume the play is from vI(A). The set of all plays in A from
vI(A) is denoted by Plays(A).

Arenas and plays establish the interactions that we are concerned with. We
now use these to define games by imposing outcomes for plays. The games we
are interested in are zero-sum games, that is, if one player wins then the other
player loses. We can therefore define a winning condition as a set of plays

2 For convenience we use the feminine pronoun for Player 0 and the masculine
pronoun for Player 1.

4

that are winning for one player, say Player 0, working on the premise that
if a play is not in that set then it is winning for Player 1. A game is a pair
G := (A, Win) where A is an arena and Win ⊆ Plays(A). For π ∈ Plays(A) if
π ∈ Win, we say π is winning for Player 0, otherwise π is winning for Player 1.

As we mentioned earlier, to consider algorithmic aspects of these games we
need to assume that they can be finitely presented. Muller games are an im-
portant example of a class of finitely presentable games. With a Muller game,
if a player cannot move then he or she loses, otherwise the outcome of an
infinite play is dependent on the set of vertices visited infinitely often.

Definition 2.1 (Muller game). A game G = (A, Win) is a Muller game if A
is finite and there exists F ⊆ P(V (A)) such that for all π ∈ Plays(A):

π ∈ Win ⇐⇒

π is finite and ends with a vertex from V1(A), or

π is infinite and {v : v occurs infinitely often in π} ∈ F .

If G is a Muller game, witnessed by F ⊆ P(V (A)), we write G = (A,F).

The games used in the literature in the study of logics and automata are
generally Muller games. In these games, the set F is often not explicitly given
but is specified by means of a condition. Different types of condition lead to
various different types of games. We explore this in more detail in Section 3.

Two important subclasses of Muller games which we consider are union-closed
and upward-closed games. A Muller game G = (A,F) is union-closed if for
all X, Y ∈ F , X ∪ Y ∈ F . G is upward-closed if for all X ∈ F and Y ⊇ X,
Y ∈ F .

Remark. Union-closed games are often called Streett-Rabin games in the lit-
erature, as Player 0’s winning set can be specified by a set of Streett pairs and
Player 1’s winning set can be specified by a set of Rabin pairs.

Given a game on an arena A we can define a restricted game on a subarena
A′ by restricting the winning condition to valid plays in the subarena. That
is, given a game G = (A, Win), and a subarena A′ of A. The subgame induced
by A′ is the game G′ = (A′, Win′) where Win′ = Win ∩ Plays(A′).

2.1 Strategies

As with most games we are less interested in outcomes of single plays in the
game and more interested in the existence of strategies that ensure one player
wins against any choice of moves from the other player.

Definition 2.2 (Strategy). Let A = (V, V0, V1, E, vI) be an arena. A strat-

5

egy (for Player i) in A is a partial function σ : V ∗Vi → V such that if
σ(v1v2 · · · vn) = v′ then (vn, v

′) ∈ E. A play π = v1v2 · · · is consistent with a
strategy σ if for all j < |π| such that vj ∈ Vi, σ(v1v2 · · · vj) = vj+1. Given a
game G = (A, Win), σ is winning if all plays consistent with σ are winning
for Player i.

Given a sequence of vertices visited, ending with a vertex in Vi, a strategy for
Player i gives the vertex to which Player i should then play.

If there exists a winning strategy for Player i in a game G, then we say Player i
wins G.

A useful class of strategies are those that can be defined from a fixed number
of previously visited vertices. If a strategy σ has the property that for some
fixed m, σ(w) = σ(w′) if w and w′ agree on their last m letters, then we say
that the strategy requires finite memory (of size m− 1). If m = 1, we say the
strategy is memoryless or positional. An important property of Muller games
is that they only require winning strategies with finite memory.

Theorem 2.3 ([1]). Let G = (A,F) be a Muller game. One player has a
winning strategy on G with finite memory of size at most |V (A)|!.

An immediate corollary of this is that Muller games are decidable: we can check
all possible strategies for both players that use at most |V (A)|! memory, and
see if the corresponding defined plays are winning. However, the complexity
bounds on such an algorithm are enormous. In [12] McNaughton provided an
algorithm with considerably better space and time bounds.

Theorem 2.4 ([12]). Let G = (A,F) be a Muller game with A = (V, V0, V1, E, vI).
Whether Player 0 has a winning strategy from vI can be decided in time
O(|V |2|E||V |!) and space O(|V |2).

For union-closed games we can reduce the memory requirement for a winning
strategy.

Theorem 2.5 ([9]). Let G = (A,F) be a Muller game. If F is closed under
unions and Player 1 has a winning strategy, then Player 1 has a memoryless
winning strategy.

Finally, two useful tools for constructing decidability algorithms are force-sets
and avoid-sets. Let A be an arena, and X, Y ⊆ V (A). The set Force i

X(Y)
is the set of vertices from which Player i has a strategy σ such that any
play consistent with σ reaches some vertex in Y without leaving X. The set
Avoid i

X(Y) is the set of vertices from which Player i has a strategy σ such
that any play consistent with σ that remains in X avoids all vertices in Y .

6

We observe from the definitions that Force i
X(Y) = X \ Avoid 1−i

X (Y). We also
observe that we may assume the strategies σ are memoryless: if Player i can
force the play from v to some vertex of Y , the play to v is irrelevant.

Computing a force-set is an instance of the well-known alternating reachability
problem. Nerode, Remmel and Yakhnis [13] provide an implementation of this
algorithm which runs in time O(|E(A)|), giving us the following:

Lemma 2.6 ([13]). Let A be an arena. For any sets X, Y ⊆ V (A), Force 0
X(Y)

can be computed in time O(|E(A)|)

3 Winning condition presentations

As we discussed above, if we are interested in investigating the complexity
of the problem of deciding Muller games, we need to consider the manner in
which the winning condition is presented. As we see in Section 3.1, for many
games that occur in the literature relating to logics and automata the winning
condition can be expressed in a more efficient manner than simply listing
the elements of F . To formally describe such specifications, we introduce the
concept of a condition type.

Definition 3.1 (Condition type). A condition type is a function A which maps
an arena A to a pair (IA, |=A) where IA is a set and |=A⊆ Plays(A) × IA is
the acceptance relation. We call elements of IA condition instances (or simply,
conditions).

A condition type is called regular if, for all π1, π2 ∈ Plays(A) and Ω ∈ IA, if
the set of elements of V (A) occuring infintely often in π1 and π2 are the same
then π1 |=

A Ω if, and only if, π2 |=
A Ω.

Remark. (1) In the sequel we will generally regard the relation |=A as intrin-
sically defined, and associate A(A) with the set IA. That is, we will use
Ω ∈ A(A) to indicate Ω ∈ IA.

(2) For a regular condition type, we can identify the relation |=A with a
subset of P(V (A)) × IA. We implicitly make this identification in the
sequel.

A condition type defines a family of games in the following manner. Let A be
a condition type, A an arena, and A(A) = (IA, |=A). For Ω ∈ IA, the game
(A, Ω) is the game (A, Win) where Win = {π ∈ Plays(A) : π |=A Ω}. That is,
we treat each condition instance as a specification of a set of plays. Clearly,
a regular condition type defines a family of Muller games. In the sequel we
are only concerned with regular condition types, and we generally drop the
qualifier “regular”.

7

We generally call a game where the winning condition is specified by a con-
dition of type A an A-game, for example a parity game is a game where the
winning condition is specified by a parity condition. We can now state precisely
the decision problem we are interested in investigating.

A-Game

Instance: A game G = (A, Ω) where Ω ∈ A(A).

Problem: Does Player 0 have a winning strategy in G?

3.1 Examples

We now give some examples of condition types that occur in the literature.
First we observe that an instance Ω ∈ A(A) of a regular condition type A

defines a family of subsets of V (A):

FΩ := {I ⊆ V (A) : I |=A Ω}.

We call this the set specified by the condition Ω. In the examples below, we
describe the set specified by a condition to define the acceptance relation |=A.

3.1.1 General purpose condition types

The first examples we consider are general purpose formalisms in that they
may be used to specify any family of sets, and therefore any Muller game.

The most straightforward presentation of the winning condition of a Muller
game (A,F) is given by explicitly listing all elements of F . We call this an
explicit presentation. We can view such a formalism in our framework as fol-
lows:

Definition 3.2 (Explicit condition type). An instance of the explicit condition
type is a set F ⊆ P(V (A)). The set specified by an instance is the set itself.

In the literature an explicit presentation is sometimes called a Muller condi-
tion. However, we reserve that term for the more commonly used presentation
for Muller games in terms of colours given next.

Definition 3.3 (Muller condition type). An instance of the Muller condition
type is a pair (χ, C) where, for some set C, χ : V (A) → C and C ⊆ P(C). The
set F(χ,C) specified by a Muller condition (χ, C) is the set {I ⊆ V (A) : χ(I) ∈
C}.

8

To distinguish Muller games from games with a winning condition specified
by a Muller condition, we explicitly state the nature of the presentation of the
winning condition if it is critical.

From a more practical perspective, when considering applications of these
types of games it may be the case that there are vertices whose appearance in
any infinite run is irrelevant. This leads to the definition of a win-set condition.

Definition 3.4 (Win-set condition type). An instance of the win-set condition
type is a pair (W,W) where W ⊆ V (A) and W ⊆ P(W). The set F(W,W)

specified by a win-set condition (W,W) is the set {I ⊆ V (A) : W ∩ I ∈ W}.

Another way to describe a winning condition is as a boolean formula. Such
a formalism is somewhat closer in nature than the specifications we have
so far considered to the motivating problem of verifying reactive systems:
requirements of such systems are more readily expressed as logical formulas.
Winning conditions of this kind were considered by Emerson and Lei [4].

Definition 3.5 (Emerson-Lei condition type). An instance of the Emerson-
Lei condition type is a boolean formula ϕ with variables from the set V (A).
The set Fϕ specified by an Emerson-Lei condition ϕ is the collection of sets
I ⊆ V (A) such that the truth assignment that maps each element of I to true

and each element of V (A) \ I to false satisfies ϕ.

A boolean formula can contain a lot of repetition, so it may be more efficient
to consider boolean circuits rather than formulas. This motivates one of the
most succinct types of winning condition we consider.

Definition 3.6 (Circuit condition type). An instance of the circuit condition
type is a boolean circuit C with input nodes from the set V (A) and one output
node. The set FC specified by a circuit condition C is the collection of sets
I ⊆ V (A) such that C outputs true when each input corresponding to a vertex
in I is set to true and all other inputs are set to false.

The final general purpose formalisms we consider are somewhat more exotic.
In [17], Zielonka introduced a representation for a family of subsets of a set
V , F ⊆ P(V), in terms of a labelled tree where the labels on the nodes are
subsets of V .

Definition 3.7 (Zielonka tree and Zielonka DAG). Let V be a set and F ⊆
P(V). The Zielonka tree (also called a split tree) of the set F , ZF ,V , is defined
inductively as:

(1) If V /∈ F then ZF ,V = ZF ,V , where F = P(V) \ F .
(2) If V ∈ F then the root of ZF ,V is labelled with V . Let M1, M2, . . . , Mk

be the ⊆-maximal sets in F , and let F|Mi
= F ∩ P(Mi). The successors

9

of the root are the subtrees ZF|Mi
,Mi

, for 1 ≤ i ≤ k.

A Zielonka DAG is constructed as a Zielonka tree except nodes labelled by
the same set are identified, making it a directed acyclic graph. Nodes of ZF ,V

labelled by elements of F are called 0-level nodes, and other nodes are 1-level
nodes.

Zielonka trees are intimately related to Muller games. In particular they iden-
tify the size of memory required for a winning strategy: the “amount” of
branching of 0-level nodes indicates the maximum amount of memory re-
quired for a winning strategy for Player 0, and similarly for 1-level nodes and
Player 1 [2]. For example, the 1-level nodes of a Zielonka tree of a union-
closed family of sets have at most one successor, indicating that if Player 1
has a winning strategy then he has a memoryless winning strategy. Thus we
also consider games where the winning condition is specified as a Zielonka tree
(or the more succinct Zielonka DAG).

Definition 3.8 (Zielonka tree and Zielonka DAG condition types). An in-
stance of the Zielonka tree (DAG) condition type is a Zielonka tree (DAG)
ZF ,V (A) for some F ⊆ P(V (A)). The set specified by an instance is the set F
used to define the instance.

3.1.2 Union-closed condition types

We now consider formalisms that can only specify families of sets that are
closed under union. The first of these, the Streett condition type, introduced
in [16], is useful for describing fairness conditions such as those considered by
Emerson and Lei in [4].

Definition 3.9 (Streett condition type). An instance of the Streett condition
type is a set of pairs of sets of vertices Ω = {(Li, Ri) : 1 ≤ i ≤ m}. The set
FΩ specified by a Streett condition Ω is the collection of sets I ⊆ V (A) such
that for all i, 1 ≤ i ≤ m, either I ∩ Li 6= ∅ or I ∩ Ri = ∅.

If we are interested in specifying union-closed families of sets efficiently, we can
consider the closure under union of a given set. This motivates the following
definition:

Definition 3.10 (Basis condition type). An instance of the basis condition
type is a set B ⊆ P(V (A)). The set FB specified by a basis condition B is
the collection of sets I ⊆ V (A) such that there are B1, . . . , Bn ∈ B with
I =

⋃

1≤i≤n Bi.

In a similar manner to the basis condition type, if we are interested in effi-
ciently specifying an upward-closed family of sets, we can explicitly list the

10

⊆-minimal elements of the family. This gives us the superset condition type,
also called a superset Muller condition in [10].

Definition 3.11 (Superset condition type). An instance of the superset condi-
tion type is a set M ⊆ P(V (A)). The set FM specified by a superset condition
M is the set {I ⊆ V (A) : M ⊆ I for some M ∈ M}.

3.2 Translations

We now present a framework in which we can compare the expressiveness and
succinctness of condition types by considering transformations between games
which keep the arena the same. More precisely, we define what it means for a
condition type to be translatable to another condition type as follows.

Definition 3.12 (Translatable). Given two condition types A and B, we say
that A is polynomially translatable to B if for any arena A, with A(A) =
(IA

A , |=A
A) and B(A) = (IA

B, |=A
B), there is a function f : IA

A → IA
B such that

for all Ω ∈ IA
A

:

• f(Ω) is computed in time polynomial in |A| + |Ω|, and
• For all π ∈ Plays(A), π |=A

A
Ω ⇐⇒ π |=A

B
f(Ω).

As we are only interested in polynomial translations, we simply say A is trans-
latable to B to mean that it is polynomially translatable. Clearly, if condition
type A is translatable to B then the problem of deciding the winner for games
of type A is reducible in polynomial time to the corresponding problem for
games of type B. That is,

Lemma 3.13. Let A and B be condition types such that A is translatable to
B. Then there is a polynomial time reduction from A-Game to B-Game.

If condition type A is not translatable to B this may be for one of three
reasons. Either A is more expressive than B in that there are sets F that can
be expressed using conditions from A but no condition from B can specify F ;
or there are some sets for which the representation of type A is necessarily more
succinct; or the translation, while not size-increasing, can not be computed in
polynomial time. We are primarily interested in the second situation. Formally,
we say

Definition 3.14 (Succinctness). A is more succinct than B if B is translat-
able to A but A is not translatable to B.

We now consider translations between some of the condition types we defined
in Section 3.1.

11

3.2.1 Translations between general purpose condition types

It is straightforward to show that win-set conditions are more succinct than
explicit presentations. To translate an explicitly presented game (A,F) to a
win-set condition, simply take W = V (A) and W = F . To show that win-
set conditions are not translatable to explicit presentations, consider a game
where W = ∅ and W = {∅}. The set F(W,W) specified by this condition consists
of all subsets of V (A) and thus an explicit presentation must be exponential
in length.

Proposition 3.15. The win-set condition type is more succinct than an ex-
plicit presentation.

Similarly, there is a trivial translation from the Emerson-Lei condition type
to the circuit condition type. However, the question of whether there is a
translation in the other direction is an important open problem in the field of
circuit complexity (see [15, Problem 15.5.4]).

We now show, through the next theorems, that circuit presentations are more
succinct than Zielonka DAG presentations, which, along with Emerson-Lei
presentations, are more succinct than Muller presentations, which are in turn
more succinct than win-set presentations.

Theorem 3.16. The Muller condition type is more succinct than the win-set
condition type.

Proof. Given a win-set game
(

A, (W,W)
)

, we construct a Muller condition

describing the same set of subsets as (W,W). For the set of colours we use
C = W ∪ {c}, where c is distinct from any element of W . The colouring
function χ : V (A) → C is then defined as:

• χ(w) = w for w ∈ W ,
• χ(v) = c for v /∈ W .

The family C of subsets of C is the set
{

X, X ∪ {c} : X ∈ W
}

. For I ⊆ V , if

I ⊆ W , then χ(I) = I otherwise χ(I) = {c} ∪ I. Either way, I ∩ W is in W
if, and only if, χ(I) ∈ C.

To show that there is no translation in the other direction, consider a Muller
game on A, where half of V (A), Vr, is coloured red, the other half coloured

blue, and the family of sets of colours is
{

{red}
}

. The family F described

by this condition consists of the 2|V (A)|/2 − 1 non-empty subsets of Vr. Now
consider trying to describe this family using a win-set condition. In general, for
the set F ′ specified by the win-set condition (W,W), if v /∈ W and X ⊆ V (A)
we have {v}∪X ∈ F ′ ⇔ X ∈ F ′. Observe that in our game there is no vertex

12

v that has this property: if v ∈ Vr, then {v} ∈ F , but ∅ /∈ F ; and if v /∈ Vr

then {v} ∪ Vr /∈ F , but Vr ∈ F . Thus our win-set, W must be equal to V (A),
and W is the explicit listing of the 2|V (A)|/2 − 1 subsets of Vr. Thus (W,W)
cannot be produced in polynomial time. ⊓⊔

Theorem 3.17. The Zielonka DAG condition type is more succinct than the
Muller condition type.

Proof. Given a Muller game consisting of an arena A = (V, V0, V1, E, vI), a
colouring χ : V → C and a family C of subsets of C, we construct a Zielonka
DAG ZF ,V which describes the same set of subsets of V (A) as the Muller
condition (χ, C). Consider the Zielonka DAG ZC,C , whose nodes are labelled
by sets of colours. If we replace a label L ⊆ C in this tree with the set
{v ∈ V : χ(v) ∈ L} then we obtain a Zielonka DAG ZF ,V over the set of
vertices. We argue that F is, in fact, the set specified by the Muller condition
(χ, C) and then show that ZC,C can be constructed in polynomial time. Since
the translation from ZC,C to ZF ,V involves an increase in size by at most a
factor of |V |, this establishes that Muller games are translatable to Zielonka
DAGs.

Let I ⊆ V be a set of vertices. If I ∈ F then, by the definition of Zielonka
DAGs, I is a subset of a label X of a 0-level node t of ZF ,V and is not
contained in any of the labels of the 1-level successors of t. That is, for each 1-
level successor u of t, there is a vertex v ∈ I such that χ(v) 6∈ χ(Lu) where Lu

is the label of u. Moreover, χ(I) ⊆ χ(X). Now χ(X) is, by construction, the
label of a 0-level node of ZC,C and we have established that χ(I) is contained
in this label and is not contained in any of the labels of the 1-level successors of
that node. Therefore, χ(I) ∈ C. Similarly, by interchanging 0-level and 1-level
nodes, χ(I) /∈ C if I /∈ F .

To show that we can construct ZC,C in polynomial time, observe first that
every subset X ⊆ C has at most |C| maximal subsets. Note further that the
label of any node in ZC,C is either C, some element of C or a maximal (proper)
subset of an element of C. Thus, ZC,C is no larger than 1 + |C| + |C||C|. This
bound on the size of the DAG is easily turned into a bound on the time
required to construct it, using the inductive definition of Zielonka trees. Thus,
we have shown that the Muller condition type is translatable into the Zielonka
DAG condition type.

To show there is no translation in the other direction, consider the family F
of subsets of V (A) which consist of 2 or more elements. The Zielonka DAG
which describes this family consists of |V (A)| + 1 nodes – one 0-level node
labelled by V (A), and |V (A)| 1-level nodes labelled by the singleton subsets
of V (A). However, to express this as a Muller condition, each vertex must
have a distinct colour since for any pair of vertices there is a set in F that

13

contains one but not the other. Thus, |C| = |F| = 2|V (A)| − |V (A)| − 1. It
follows that the translation from Zielonka DAGs to Muller conditions cannot
be done in polynomial time. ⊓⊔

To show the remaining results, we use the following observation:

Lemma 3.18. There is no translation from the Emerson-Lei condition type
to the Zielonka DAG condition type.

Proof. Let V (A) = V = {x1, . . . , x2k}, and consider the family of sets F
described by the formula

ϕ :=
∨

1≤i≤k

(x2i−1 ∧ x2i).

Clearly |ϕ| = O(|V (A)|). Now consider the Zielonka DAG ZF ,V describing F .
As V ∈ F , the root of ZF ,V is a 0-level node labelled by V . The maximal
subsets of V not in F are the 2k subsets containing exactly one of {x2i−1, x2i}
for 1 ≤ i ≤ k. Thus ZF ,V must have at least this number of nodes, and is
therefore not constructible in polynomial time. ⊓⊔

Theorem 3.19. The Emerson-Lei condition type is more succinct than the
Muller condition type.

Proof. Given a Muller game consisting of an arena A, a colouring χ : V (A) →
C and a family C of subsets of C, let ϕ be the boolean formula defined as:

ϕ :=
∨

X∈C

(

∧

c∈X

(

∨

χ(v)=c

v
)

∧
∧

c/∈X

(

∧

χ(v)=c

¬v
)

)

.

It is easy to see that a subset I ⊆ V (A) satisfies ϕ if, and only if, there is
some set X ∈ C such that for all colours c ∈ X there is some v ∈ I such that
χ(v) = c and for all colours c′ /∈ X there is no v ∈ I such that χ(v) = c′. Since
ϕ can clearly be constructed in time polynomial in |C| + |V (A)|, it follows
that there is a translation from the Muller condition type to the Emerson-Lei
condition type.

For the reverse direction, we observe that as there is a translation from the
Muller condition type to the Zielonka DAG condition type, if there were a
translation from the Emerson-Lei condition type to the Muller condition type,
this would contradict Lemma 3.18 as “translatability” is transitive. ⊓⊔

Theorem 3.20. The circuit condition type is more succinct than the Zielonka
DAG condition type.

14

Proof. Given a Zielonka DAG game (A,ZF ,V) where V = V (A), we define, for
each node t in ZF ,V a boolean circuit Ct. This circuit is defined by induction
on the height of t. For convenience, we associate each circuit with its output
node. Suppose the label of t is X. We have the following cases:

(i) t is a 0-level (X ∈ F) leaf: In this case, let Ct =
∧

x/∈X ¬x.
(ii) t is a 1-level (X /∈ F) leaf: In this case, let Ct =

∨

x/∈X x.
(iii) t is a 0-level node with k successors t1, . . . , tk: In this case, let Ct =

∧

x/∈X ¬x ∧
∧k

i=1 Cti .
(iv) t is a 1-level node with k successors t1, . . . , tk: In this case, let Ct =

∨

x/∈X x ∨
∨k

i=1 Cti.

We claim that the condition F is specified by the circuit Cr where r is the
root of ZF ,V . This formula has size at most |V (A)||ZF ,V | and is constructed in
polynomial time. To show its correctness we argue by induction on the height
of any node t with label X that Ct defines the restriction of F to X. We
consider the following cases:

(i) t is a 0-level leaf. In this case any subset of X is in F . I ⊆ V (A) satisfies
Ct if, and only if, no variable that is not in X appears in I, that is I ⊆ X.

(ii) t is a 1-level leaf. In this case any subset of X is not in F . Here I ⊆ V (A)
satisfies Ct if, and only if, there is some element in I which is not in X,
that is I 6⊆ X.

(iii) t is a 0-level node with k successors labelled by X1, . . . , Xk. In this case
any subset of X is in F unless it is a subset of Xi for some i, in which
case whether it is in F is determined by nodes lower in the DAG. Here
I ⊆ V (A) satisfies Ct if, and only if, I is a subset of X and I satisfies
Cti for all successors.

(iv) t is a 1-level node with k successors labelled by X1, . . . , Xk. In this case
any subset of X is not in F unless it is a subset of Xi for some i. Here
I ⊆ V satisfies Ct if, and only if, either I is not contained in X, or there
is some successor ti such that I satisfies Cti .

We observe that as there is a translation from the Emerson-Lei condition type
to the circuit condition type, Lemma 3.18 implies there is no translation from
the circuit condition type to the Zielonka DAG condition type. ⊓⊔

Figure 1 summarizes the succinctness results we have so far shown, with the
more succinct types towards the top. The dashed edge indicates that there is
a translation but it is not known whether there is a translation in the opposite
direction.

15

Circuit
VVVV

ggggggggg

Zielonka DAG
WWWWWWWWW Emerson-Lei

hhhhhhhh

Muller

Win-set

Explicit

Fig. 1. Summary of the succinctness results

3.2.2 Translations between union-closed condition types

Turning to union-closed condition types, we observe that the basis condition
type is a succinct way of describing union-closed sets. It is not even known if
it is translatable to the circuit condition type, the most succinct type consid-
ered above. In Section 4.2 we show that the problem of deciding basis games
is co-NP-complete. As we mentioned earlier, deciding Streett games is also
co-NP-complete. The following result implies that we cannot use translata-
bility to obtain upper or lower bounds on the complexity of basis games based
on the known bounds for Streett games.

Theorem 3.21. The basis and Streett condition types are incomparable with
respect to translatability.

Proof. To show there is no translation from Streett games to basis games, let
V (A) = {x1, . . . , x2k}, and consider the Streett game with winning condition

described by the pairs
{

(Li, ∅) : 1 ≤ i ≤ k
}

, where Li = {x2i−1, x2i}. Note that

the family of sets described by this condition is F =
{

X ⊆ V (A) : ∀i X 6⊆

V (A)\Li

}

. Any basis for F must include the minimal elements of F . However,
the minimal elements include

M =
{

{v1, . . . , vk} : vi ∈ {x2i−1, x2i}
}

,

and |M| = 2k. Thus F cannot be represented by a basis constructible in
polynomial time.

To show there is no translation in the other direction, let V (A) = {x1, . . . , x2k},
and consider the family F of sets formed by closing

B =
{

{x2i−1, x2i} : 1 ≤ i ≤ k
}

under union. Note that this is the same construction as for the proof of
Lemma 3.18. Observe that F contains 2k−1 sets, each with an even number of
elements. Any Streett condition which describes the same family must contain
at least this number of pairs in order to exclude the sets of odd cardinality.

16

Thus F cannot be represented by a Streett condition which is constructible
in polynomial time. ⊓⊔

It should be clear that the superset condition type is translatable to the basis
condition type. We include the result for completeness.

Proposition 3.22. The superset condition type is translatable to the basis
condition type.

Proof. Let (A, {A1, A2, . . . , Ak}) be a superset game. The following basis:

k
⋃

i=1

(

{

Ai

}

∪
{

Ai ∪ {x} : x /∈ Ai

}

)

specifies the same family of sets and has size at most k|V (A)| + 1. ⊓⊔

We conclude these results with the following two observations regarding trans-
lations between explicit presentations and the basis and superset condition
types.

Proposition 3.23. The superset condition type is more succinct than an ex-
plicit presentation of an upward-closed set.

Proof. Given an explicitly presented upward-closed game (A,F), the set F ,
viewed as a superset condition, clearly describes the same set of subsets of
V (A). Conversely, for the superset game

(

A,
{

{v} : v ∈ V (A)
})

, the set

described by the winning condition is of size 2|V (A)| − 1, and therefore cannot
be explicitly presented in polynomial time. ⊓⊔

Corollary 3.24. The basis condition type is more succinct than an explicit
presentation of a union-closed set.

Proof. The fact that the basis condition type is not translatable to an explicit
presentation follows from Proposition 3.23 and Proposition 3.22 as translata-
bility is transitive. The other direction is straightforward, the explicit presen-
tation itself suffices as a basis. ⊓⊔

3.3 Extendibility

We now introduce a property of condition types that allows us to make sim-
plifying assumptions about the arena. We say a condition type is extendible if
it can “ignore” a set of added vertices. More precisely,

17

Definition 3.25 (Extendible condition type). Let A be a condition type. We
say A is extendible if for any arenas A and A′ such that V (A) ⊆ V (A′), and
any instance Ω ∈ A(A), there is an instance Ω′ ∈ A(A′), computable in time
polynomial in |Ω| + |V (A′)|, such that FΩ′ = {I ⊆ V (A′) : I ∩ V (A) ∈ FΩ}.

We observe that if |V (A′)|−|V (A)| = m, then |FΩ′| = 2m|FΩ|, so in particular,
the explicit condition type is not extendible. However, all the other condition
types we have so far considered are extendible.

Proposition 3.26. The following condition types are extendible: Muller, cir-
cuit, Emerson-Lei, Zielonka tree/DAG, win-set, Streett, parity, basis, and su-
perset.

Proof. Let us fix arenas A and A′ such that V (A) ⊆ V (A′). We show for each
condition type above how to compute the required instance Ω′ from a given
Ω. It follows from the definitions that for the circuit, Emerson-Lei, win-set,
Streett and superset conditions taking Ω′ = Ω suffices. So let us consider the
other condition types.

Suppose Ω = (χ, C) is a Muller condition instance with χ : V (A) → C. We
define Ω′ = (χ′, C′) as follows. Let C ′ = C ∪ {c} where c is not an element of
C. We define

χ′(v) :=

χ(v) if v ∈ V (A)

c otherwise

and we define C′ := C ∪ {I ∪ {c} : I ∈ C}. The condition (χ′, C′) is clearly
computable in time polynomial in |Ω| + |V (A′)|, and for every I ⊆ V (A′) we
have χ′(I) ∈ C′ if, and only if, χ(I ∩ V (A)) ∈ C. Thus Ω′ is as required.

Similarly, if Ω = (χ, P) is a parity condition, we let P
′ = P∪{p} for some odd

p < min{χ(v) : v ∈ V (A)} and define χ′(v) = p for v /∈ V (A), and χ(v) = v
otherwise. For any set I ⊆ V (A′), if I ∩ V (A) 6= ∅ then max{χ′(v) : v ∈
I} = max{χ(v) : v ∈ I ∩ V (A)}, so I ∈ FΩ′ if, and only if, I ∩ V (A) ∈ FΩ.
Otherwise, if I ∩ V (A) = ∅, then min{χ′(v) : v ∈ I} = p, and as ∅ /∈ FΩ and
p is odd, we have I /∈ FΩ′ and I ∩ V (A) /∈ FΩ. Thus Ω′ is as required.

Given a Zielonka structure ZF ,V where V = V (A), consider the Zielonka
structure Ω′ = ZF ′,V ′, where V ′ = V (A′), defined by adding V (A′) \ V (A) to
each label. That is, if t is a node in ZF ,V , labelled by X ⊆ V , then t is a node
in ZF ′,V ′ labelled by X ∪ (V (A′) \ V (A)). Now consider I ∈ F ′. From the
definition of a Zielonka structure, I is a subset of a label of a 0-level node t
and not a subset of a label of any of the successors of t. Suppose t is labelled,
in ZF ,V , by X, so I ⊆ X ∪ (V ′ \ V). Thus I ∩ V (A) ⊆ X. Now suppose
I ∩ V (A) is a subset of Y , a label (in ZF ,V) of a successor of t. It follows that
I ⊆ Y ∪ (V ′ \ V), and so I is a subset of a label (in ZF ′,V ′) of a successor of
t, contradicting the choice of t. So I ∩ V (A) ∈ F . Interchanging the roles of

18

0-level nodes and 1-level nodes establishes that if I /∈ F ′ then I ∩ V (A) /∈ F .
Thus Ω′ is as required.

Finally, given an instance of a basis condition type Ω = B, we define Ω′ = B′

as follows:

B′ = B ∪
{

B ∪ {v} : B ∈ B and v ∈ V (A′) \ V (A)
}

.

Suppose I =
⋃n

i=1 Bi for sets B1, . . . , Bn ∈ B′. Now, by definition of B′, for each
i, Bi ∩V (A) ∈ B. Thus, I ∩V (A) =

⋃n
i=1(Bi ∩V (A)) ∈ FΩ. Conversely, if I ∩

V (A) ∈ FΩ, let I ∩ V (A) =
⋃n

i=1 Bi, for Bi ∈ B. Then I =
⋃

v∈V (A′)\V (A)(B1 ∪
{v}) ∪

⋃n
i=1 Bi. Hence, I ∈ FΩ′. ⊓⊔

Given a game with a winning condition specified by an extendible condition
type, we can add vertices to the arena without significantly changing the size
of the instance. This enables us to assume that the arena has a very simple
structure.

Theorem 3.27. Let A be an extendible condition type and G = (A, Ω) be a
Muller game with Ω ∈ A(A). Then there exists a Muller game (A′, Ω′) with
Ω′ ∈ A(A′), computable in time polynomial in ||G||, such that:

(i) A′ is a bipartite graph with E(A′) ⊆ (V0(A
′)×V1(A

′))∪(V1(A
′)×V0(A

′)),
(ii) All vertices in V0(A

′) have out-degree at most 2, and
(iii) Player 0 wins G if, and only if, she wins G′.

Proof. We construct A′ from A in a series of stages by adding vertices and
adding and replacing edges, so V (A) ⊆ V (A′). We observe that the resulting
arena has size polynomial in |A|, so it can be constructed in polynomial time.
We then use the definition of extendible condition type to obtain the winning
condition Ω′ from Ω. Since the size of A′ is polynomial in the size of A, we
can compute Ω′ in time polynomial in |Ω|+ |A|. It is clear from the definition
of extendible condition types that in the resulting game Player 0 wins from
vI(A) if, and only if, she wins from vI(A

′). Thus it remains to show the first
two conditions may be met with at most a polynomial increase in the size of
the arena.

First we ensure all vertices in V0(A
′) have out-degree at most 2. If v ∈ V0(A)

has out-degree m > 2, we replace the m outgoing edges from v with a binary
branching tree, rooted at v, with m leaves – the successors of v. We observe
that this requires adding at most m vertices and m edges. Each of the newly
added vertices are added to V1(A). After repeating this for all vertices in V0(A),
the resulting arena A′ has at most |V (A)|+|E(A)| vertices, and 2|E(A)| edges,
and every vertex in V0(A

′) has out-degree at most 2.

19

Now suppose all vertices in A have out-degree at most 2. For each edge e =
(u, v) ∈ E(A) such that u, v ∈ V0(A) (u, v ∈ V1(A)), add a vertex ve to V1(A)
(V0(A)) and replace the edge e with edges (u, ve) and (ve, v). After repeating
this for all edges in E(A), the resulting arena A′ has at most |V (A)|+ |E(A)|
vertices, and 2|E(A)| edges, and E(A′) ⊆ V0(A

′) × V1(A
′) ∪ V1(A

′) × V0(A
′).
⊓⊔

4 Complexity results

In this section we consider the complexity of deciding whether Player 0 has
a winning strategy in a Muller game when the winning condition is specified
using some of the formalisms we have considered. We show that the problem of
deciding Muller games in which the winning condition is specified by a win-set
condition is Pspace-complete. It follows from our results on translatability
that the decision problems for Muller games with winning condition specified
by a Muller condition, Zielonka DAG, Emerson-Lei condition or a circuit con-
dition, are all also Pspace-complete. We also show that the decision problems
for basis and superset games are co-NP-complete.

4.1 Pspace-completeness

As we saw in Theorem 2.4, McNaughton [12] presented an algorithm for decid-
ing Muller games in space O(|V (A)|2). In fact, the games he considered were
win-set games. However, the algorithm is easily adapted to the case where the
winning condition is presented explicitly, or as a Muller condition, a Zielonka
DAG, an Emerson-Lei condition, or a circuit condition without significant
increase in the space requirements. Thus, each of these classes of games is
decidable in Pspace.

We now show corresponding lower bounds. By the results of the previous
section, it suffices to establish the hardness result for the win-set condition
type.

Theorem 4.1. Deciding win-set games is Pspace-complete.

Proof. By the above comments, we only need to show Pspace-hardness. For
this, we reduce the problem of QSAT (satisfiability of a quantified boolean
formula [QBF]) to the problem of deciding the winner of a win-set game.

We assume, without loss of generality a QBF, Φ = Qk−1xk−1 . . .∀x1∃x0ϕ
is given in which quantifiers are strictly alternating and ϕ is in disjunctive

20

x0

yy

¬x0

||
ϕ //

))

x0 ∧ xk−1 ∧ ¬xk

44

**

++

...
...

...
xk−1 ¬xk−1

¬x0 ∧ xk−1 ∧ xk //

44

77

xk

OO ;;xxxxxxxxxx

¬xk

OOccFFFFFFFFFF

Fig. 2. Arena of GΦ for ϕ = (x0 ∧ xk−1 ∧ ¬xk) ∨ . . . ∨ (¬x0 ∧ xk−1 ∧ xk)

normal form with at most 3 literals per term. We then define a win-set game
GΦ = (A, Ω), where Ω = (W,W), as follows:

• V0(A) = {ϕ} ∪ {x,¬x : for all variables x},
• V1(A) = {t0, . . . , tm−1}, the set of terms in ϕ,
• E(A) given by:
· (ϕ, tj) ∈ E(A) for 0 ≤ j < m;
· If tj = (l0 ∧ l1 ∧ l2), then (tj , l0), (tj, l1), (tj , l2) ∈ E(A);
· (xi, xi−1), (xi,¬xi−1) ∈ E(A) for 0 < i < k;
· (¬xi, xi−1), (¬xi,¬xi−1) ∈ E(A) for 0 < i < k; and
· (x0, ϕ), (¬x0, ϕ) ∈ E(A),

• vI(A) = ϕ,
• W = V0(A) \ {ϕ}, and W is

W =
{

Si, Si ∪ {xi}, Si ∪ {¬xi} : 0 ≤ i < k, i even
}

where S0 = ∅ and for i > 0, Si = {xj ,¬xj : 0 ≤ j < i}.

Figure 2 illustrates how the arena of GΦ would look if ϕ contained the terms
(x0 ∧ xk−1 ∧ ¬xk) and (¬x0 ∧ xk−1 ∧ xk).

Note that as this is a win-set game, we are only interested in vertices of W
that are visited infinitely often. Observe that the winning condition ensures
that Player 0 can win if, and only if, the minimum i such that at most one of
xi and ¬xi is visited infinitely often is even. The idea behind the strategy for
Player 0 is to perpetually verify ϕ. The choice of strategies by both players
then dictates the choices of the truth values for each of the variables, and the
winning condition guarantees a winning strategy for Player 0 if, and only if,
Φ is true. To formally show that Player 0 has a winning strategy if, and only
if, Φ is true, we proceed by induction on k, the number of quantifiers of Φ.

Base case: k = 1 By the idempotence of ∧ and ∨ and assuming Φ has no
free variables, Φ is logically equivalent to one of the following forms.

21

• Φ = ∃x0.x0 or ∃x0.¬x0. In this case the arena consists of four vertices,
{ϕ, t0, x0,¬x0}. Player 0 wins by always returning to ϕ from whichever of
x0 and ¬x0 Player 1 is forced to play to, and Φ is clearly true.

• Φ = ∃x0.(x0 ∨ ¬x0). Here Φ is also true. The arena consists of five ver-
tices {ϕ, t0, t1, x0,¬x0} and Player 0 has the only choice (at ϕ). A winning
strategy is to always play from ϕ to t0.

• Φ = ∃x0.(x0 ∧ ¬x0). Here Φ is false. The arena consists of four vertices
{ϕ, t0, x0,¬x0} and Player 1 can force the play to visit both x0 and ¬x0

infinitely often by alternately choosing each from t0. Note that this strategy
requires memory to remember which vertex was visited last time.

Note that if x0 does not appear in ϕ, we can add the term (x0 ∧¬x0) without
changing the truth value of Φ.

Inductive case: The inductive hypothesis asserts that if Φ has k − 1 quan-
tifiers and has no free variables, then Player 0 has a winning strategy if, and
only if, Φ is true. To show that this implies the case for k quantifiers, we use
the following lemma which shows how subgames correspond to restricted sub-
formulas. First we introduce some notation. If x is free in Φ′ and v is either
true or false, we write Φ′[x 7→ v] to denote the formula obtained by substitut-
ing v for x in Φ′ and simplifying. Note that if Φ′[x 7→ true] simplifies to true

then Φ′ must have at least one term containing the single literal x, and if it
simplifies to false, then all terms contain ¬x. The crucial lemma can now be
stated as

Lemma 4.2. If Φ = QxΦ′ (Q ∈ {∃, ∀}) and Φ′[x 7→ true] does not simplify
to true or false, then GΦ′[x 7→true] is isomorphic to the subgame of GΦ = (A, Ω)
induced by the set Avoid 1

Avoid
0

A(¬x)(x). Dually, if Φ′[x 7→ false] does not simplify
to true or false, then GΦ′[x 7→false] is isomorphic to the subgame of GΦ induced
by the set Avoid 1

Avoid
0

A(x)(¬x).

Proof. Let Φ = Qx . . .∃x0ϕ and Φ′[x 7→ true] = Q′y . . .∃x0ϕ
′. Then ϕ′ consists

of the terms of ϕ that do not contain ¬x, with all occurrences of x removed.
The assumption that Φ′[x 7→ true] does not simplify to true or false implies
that there is at least one such term. Thus the vertices of the arena for the game
GΦ′[x 7→true] have a natural embedding in the vertices of the arena for the game
GΦ. Furthermore, the edges of the arena for GΦ′[x 7→true] are the same as those
for GΦ restricted to this vertex set. We show that the subarena of GΦ induced
by Avoid 1

Avoid
0

A(¬x)(x) is identical. As the winning condition only depends on
vertices corresponding to variables, it follows that the winning conditions are
also identical.

In GΦ = (A, Ω), the set Avoid 0
A(¬x) consists of the vertices from which

Player 0 can avoid ¬x. As Player 1 chooses the play from vertices corre-
sponding to terms, the set of vertices from which Player 1 can reach ¬x is

22

{¬x} ∪ {t : ¬x ∈ t}. As there is at least one term that does not contain ¬x,
Player 0 can play to that term to avoid ¬x from ϕ. As x is the outermost
variable of Φ, there are no other vertices that can reach ¬x, so

Avoid 0
A(¬x) = V (A) \

(

{¬x} ∪ {t : ¬x ∈ t}
)

.

Next we consider Avoid 1
V ′(x) for V ′ = Avoid 0

A(¬x). As ϕ does not contain a
term containing x by itself, Player 0 cannot force the play to x from ϕ, as
Player 1 can always choose to play to another literal. Furthermore, as x is the
outermost variable in Φ, the only edges to x are from vertices associated with
terms. Thus x is the only vertex from which Player 0 can force the play to
visit x, so

Avoid 1
V ′(x) = V ′ \ {x}.

Thus Avoid 1
Avoid

0

A(¬x)(x) = V (A) \
(

{x,¬x} ∪ {t : ¬x ∈ t}
)

, which is precisely
the vertex set corresponding to GΦ′[x 7→true]. The edges for both arenas are those
of GΦ restricted to these vertices, as are the winning conditions. Thus the two
games are identical. ⊣

To complete the inductive step, we consider two cases.

• Φ = ∃xk−1.Φ
′. If Φ is true, then there is a value of v such that Φ′[xk−1 7→ v]

is true. Assume that v = true, the case for v = false being similar. The
winning strategy for Player 0 is then to avoid ¬xk−1 and try to play to
xk−1, playing through each vertex in Sk−1 when the latter vertex is reached.
Note that to play through each vertex in Sk−1 requires at least two visits
to xk−1 – Player 0 must remember (the parity of) the number of times she
has visited that vertex. If Φ′[xk−1 7→ v] simplifies to true, then Player 0
can force the play to visit xk−1, by playing to the term that only contains
xk−1. Otherwise Player 1 can play to avoid xk−1, restricting the play to
Avoid 1

Avoid
0

A(¬xk−1)(xk−1). From the above lemma, this subgame is equivalent
to GΦ′[xk−1 7→true], and from the inductive hypothesis, Player 0 has a winning
strategy on this game. Thus the strategy of Player 0 is to play her winning
strategy on the smaller game. If Φ is false, then Player 1 plays a strategy
similar to the strategy of Player 0 in the case below.

• Φ = ∀xk−1.Φ
′. In this case, if Φ is true, then for both choices of truth value

v ∈ {true, false}, Φ′[xk−1 7→ v] is true. The winning strategy for Player 0 is
to alternately attempt to play to each of xk−1 and ¬xk−1 (and then through
all vertices in Sk−1), avoiding the other at the same time. If, at any point,
Player 1 plays to avoid the vertex Player 0 is attempting to reach, Player 0
plays her winning strategy on the reduced game (which exists from the
lemma and the inductive hypothesis). Again, if Φ is false, Player 1 plays a
strategy similar to the strategy of Player 0 in the previous case. Note that
in this case Player 0 cannot force the play to visit both xk−1 and ¬xk−1.

⊓⊔

23

From the results on translatability in Section 3 and our observation regarding
the Pspace solvability of these games, we obtain completeness results for
Muller games when the winning condition is presented as a Muller condition,
Zielonka DAG, Emerson-Lei condition or a circuit condition.

Corollary 4.3. The following problems are Pspace-complete: Deciding Muller
games with winning condition specified by a Muller condition, deciding Zielonka
DAG games, deciding Emerson-Lei games, and deciding circuit games.

It can be verified that an explicit presentation of the winning condition con-
structed in the proof of Theorem 4.1 would be exponentially larger than the
presentation using a win-set. Thus, the proof cannot be used to provide a
Pspace-hardness result for the explicitly presented games. The exact com-
plexity of deciding the winner of such games remains open. Indeed, it is con-
ceivable (though it appears unlikely) that the problem is in Ptime. However,
if the explicitly presented winning condition is an anti-chain with respect to
the subset relation (that is, X 6⊆ Y for all X, Y ∈ F), determining the win-
ner is tractable. The following result generalizes a similar result for the fully
separated games of Ishihara and Khoussainov [8].

Theorem 4.4. Let G = (A,F) be an explicitly presented Muller game such
that F is an anti-chain. Whether Player 0 wins G can be decided in time
O(|F||V (A)|2|E(A)|).

Proof. Consider the algorithm Antichain(A,F) in Algorithm 1. We show
that it is correct and runs in time O(|F||V (A)|2|E(A)|).

Algorithm 1 Antichain(A,F)

Returns: true if, and only if, Player 0 has a winning strategy from vI(A) in
(A,F) when F is an anti-chain.
for each X ∈ F do

NX =
{

v : Player 0 has a winning strategy from v in the game (A, {X})
}

let N = Force0
A(

⋃

X∈F NX)
if vI(A) ∈ N then

return true

else if N = ∅ then

return false

else

let F ′ = {X ∈ F : X ∩ N = ∅}
return Antichain(A \ N,F ′)

We first show that Antichain(A,F) returns true if, and only if, Player 0 has
a winning strategy in G = (A,F). Let us suppose N has been computed as
above. We consider three cases:

24

(i) vI(A) ∈ N . From the definition of N , there exists v ∈ V (A) and X ∈ F
such that Player 0 can force the play to v from vI(A) and Player 0 has a
winning strategy from v which visits every vertex in X, and only vertices
in X, infinitely often. The winning strategy for Player 0 is then to force
the play to v and play this strategy. Since X ∈ F , this is a winning
strategy.

(ii) N = ∅. In this case, for every X ∈ F , Player 1 has a strategy τX from
every vertex in A which can ensure either not all vertices of X are visited
infinitely often, or some vertices not in X are visited infinitely often. The
strategy for Player 1 on (A,F) is now defined as follows. Play anything
until the play enters some X ∈ F , then play the strategy τX until the
play leaves X. Clearly if there is no X ∈ F such that the play remains
forever in X, Player 1 wins the play. So let us suppose the play remains
indefinitely in X for some X ∈ F . From the definition of τX , the set I
of vertices visited infinitely often is properly contained in X. Since F is
an anti-chain, it follows that I /∈ F . Thus Player 1 wins the play.

(iii) N 6= ∅ and vI(A) /∈ N . In this case, Player 1 can force the play to
remain in A \ N and it follows from case (i) above that Player 0 has
a winning strategy from every vertex in N . Clearly, if Player 0 has a
winning strategy in (A \ N,F ′) then she has a winning strategy in the
larger game: if Player 1 chooses to keep the play in A \N then Player 0
can play her winning strategy on the subgame, otherwise if Player 1
chooses to move to a vertex in N , Player 0 can play her winning strategy
from N . Conversely, if Player 1 has a winning strategy in (A \ N,F ′)
then, as he can force the play to remain in A\N , he can play his winning
strategy on the subgame.

Thus, Antichain(A,F) returns true if, and only if, Player 0 has a winning
strategy in G = (A,F).

To show the algorithm returns in time O(|F||V (A)|2|E(A)|), we require the
following result from [8]:

Lemma 4.5 ([8]). Let G = (A,F) be an explicitly presented Muller game with
F = {X}. The set {v ∈ V (A) : Player 0 has a winning strategy from v in G}
can be computed in time O(|V (A)||E(A)|).

It follows that at each stage of the recursion, it takes O(|F||V (A)||E(A)|)
time to compute N . Furthermore, since |N | ≥ 1 whenever Antichain(A,F)
is recursively called, it follows that the algorithm has recursion depth at most
|V (A)|. Thus the algorithm runs in time O(|F||V (A)|2|E(A)|) as required.

⊓⊔

25

4.1.1 Bounded tree-width arenas

Tree-width is an important graph parameter which measures how closely a
graph resembles a tree. It has proved useful in the design of algorithms as
many problems that are intractable on general graphs are known to have
polynomial time solutions when restricted to graphs of bounded tree-width.
In the context of Muller games, Obdržálek [14] exhibited a polynomial-time
algorithm for deciding the winner in parity games on arenas of bounded tree-
width. We show that this is not the case for games presented by a Muller
condition type (and neither, therefore, for Zielonka DAG games, Emerson-Lei
games, and circuit games). The proof of Theorem 4.1 can be modified so that
the arenas constructed all have tree-width two provided we allow ourselves to
specify the winning condition as a Muller condition rather than a win-set.

Theorem 4.6. Deciding Muller games specified by a Muller condition on are-
nas of tree-width 2 is Pspace-complete.

Proof. Membership of Pspace follows from the fact that deciding general
Muller games specified by a Muller condition is in Pspace.

The construction to show Pspace-hardness is similar to that of Theorem 4.1.
The reduction is also from QSAT, and the proof that it is in fact a reduction
is similar. Given a QBF Φ = Qk−1xk−1 . . .∀x1∃x0ϕ where ϕ is in DNF with
three literals per term, the Muller game we construct is:

• V1(A) = T where T is the set of terms.

• V0(A) = {ϕ} ∪
(

T × {1, 2, 3} × {x,¬x : x is a variable}
)

.

• We have the following edges in E(A) for all t ∈ T :
· (ϕ, t),

·
(

t, (t, n, l)
)

if l is the n-th literal in t,

·
(

(t, n, xi), (t, n, xi−1)
)

if the n-th literal of t is xi (i > 0)

·
(

(t, n, x0), ϕ
)

if the n-th literal of t is x0

·
(

(t, n, xi), (t, n,¬xi)
)

for all i less than the index of the n-th literal of t

·
(

(t, n,¬xi), (t, n, xi−1)
)

for all i less than or equal to the index of the n-th
literal of t

·
(

(t, n,¬x0), ϕ
)

for all n.

• C = {ϕ} ∪ {x,¬x : x is a variable} is the set of colours,
• χ : V (A) → C defined as:
· χ(ϕ) = χ(t) = ϕ for all t ∈ T

· χ
(

(t, n, l)
)

= l.

• C =
{

Si, Si ∪ {xi}, Si ∪ {¬xi} : 0 ≤ i < k, i even
}

where S0 = {ϕ} and for

i > 0, Si = {ϕ} ∪ {xj ,¬xj : 0 ≤ j < i}.

26

x0 ∧ xk−1 ∧ xk //

$$III
II

III
II

I

��7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

x0

BECDGF

��
ϕ

::uuuuuuuuuuu
...

xk−1 // · · · // x0 // ¬x0

BC

EDGF

��

xk // xk−1 //¬xk−1 // · · · // ¬x0

BC

EDGF

��

Fig. 3. Arena with bounded tree-width

Figure 3 illustrates how this arena differs from that of Theorem 4.1.

The resulting arena has tree-width 2, and the proof that Player 0 has a winning
strategy if, and only if, Φ is true is similar to that of Theorem 4.1. ⊓⊔

4.2 Complexity of union-closed games

We now turn our attention to Muller games where the winning condition F
is a union-closed set. Among games studied in the literature, Streett games
and parity games are examples of condition types that can only specify union-
closed games. Union-closed games were also studied as a class in [8]. One
consideration that makes them an interesting case to study is that they admit
memoryless strategies for Player 1 [9]. That is, on a game with a union-closed
winning condition, if Player 1 has a winning strategy then he has a strategy
which is a function only of the current position. One consequence of this fact
is that, for explicitly presented union-closed games, the problem of deciding
whether Player 0 wins such a game is in co-NP. This is because once a
memoryless strategy for Player 1 is fixed, the problem of deciding whether
Player 0 wins against that fixed strategy is in Ptime. Indeed, it is a version
of alternating reachability. Thus, to decide whether Player 1 has a winning
strategy we can nondeterministically guess such a strategy and then verify that
Player 0 cannot defeat it. Hence, determining whether Player 1 wins is in NP

and therefore deciding whether Player 0 wins is in co-NP. In this section, we
aim to establish a corresponding lower bound for two condition types that can
only represent union-closed games, namely the basis and superset condition
types.

We saw with Theorem 3.21 that we cannot use the known complexity bounds
on Streett games to easily establish similar bounds for basis games. Neverthe-
less, deciding basis games is still in co-NP.

Proposition 4.7. Deciding basis games is in co-NP.

27

Proof. From the comments above, it suffices to show that if we fix a memory-
less strategy for Player 1 then we can decide the resulting single player basis
game in polynomial time.

The algorithm is as follows. Let B be the basis for the winning condition.
Initially let B0 = B, and repeat the following:

(1) Let Xi =
⋃

B∈Bi
B.

(2) Partition Xi into strongly connected components (SCCs).
(3) Remove any element of Bi which is not wholly contained in a SCC to

obtain Bi+1,

until Bi = Bi−1, at which point, let X = Xi. This takes at most O
(

|B|(|V (A)|+

|E(A)|)
)

time using a standard SCC-partitioning algorithm. At this point,
every SCC of X is a union of basis elements – all x in X are members of basis
elements, and any basis element not contained in any SCC of X is removed at
step 3. Furthermore, any strongly connected set of V (A) which is a union of
basis elements is a subset (of an SCC) of X, because the algorithm preserves
such sets. Thus, Player 0 can win from any node from which she can reach X
(play to X and then visit every node within an SCC of X forever); and Player 0
cannot win if she cannot reach X (there is no union of basis elements for which
Player 0 can visit every vertex infinitely often). Thus the set of nodes from

which Player 0 wins can be computed in O
(

|B|(|V (A)| + |E(A)|) + |E(A)|
)

time. ⊓⊔

We now obtain the lower bounds we seek on superset games.

Theorem 4.8. Deciding superset games is co-NP-complete.

Proof. Membership of co-NP follows from Propositions 3.22 and 4.7. To show
co-NP-hardness, we use a reduction from validity of DNF formulas.

Given a formula ϕ(x0, x1, . . . , xk−1) in DNF, consider the superset game de-
fined as follows:

• for every variable xi we include three vertices, xi,¬xi ∈ V0(A) and x′
i ∈

V1(A);
• for each i we have the edges (x′

i, xi), (x
′
i,¬xi), (xi, x

′
i+1), (¬xi, x

′
i+1), where

addition is taken modulo k;
• vI(A) = x0; and
• the winning condition is specified by the set

M =
{

{li ∈ V0(A) : li is a literal of t} for every term t of ϕ
}

,

28

As the superset condition is closed under union, if Player 1 has a winning
strategy he has a memoryless winning strategy. Note that any memoryless
strategy for Player 1 effectively chooses a truth value for each variable. The
set of vertices visited infinitely often is a superset of an element of M if, and
only if, the truth assignment chosen by Player 1 makes one term of ϕ (and
hence all of ϕ) true. Thus Player 0 wins this game if, and only if, there is no
truth assignment which makes ϕ false. ⊓⊔

Corollary 4.9. Deciding basis games is co-NP-complete.

We note in conclusion that the exact complexity of deciding union-closed
games when they are explicitly presented remains an open problem. It is clearly
in co-NP but the above arguments do not establish lower bounds for it.

5 Infinite tree automata

One of the original motivations for studying Muller and related games was to
establish decidability results for problems such as non-emptiness and model
checking for infinite tree automata [11]. A reduction to non-emptiness of in-
finite tree automata is used in some of the most effective algorithms for de-
ciding satisfiability of formulas in logics such as S2S, µ-calculus, CTL∗, and
other logics useful for reasoning about non-terminating, branching computa-
tion. Furthermore, determining if a structure satisfies a formula in any of these
logics reduces to determining if a certain automaton accepts a particular tree.
In this section we show that the non-emptiness and model-checking problems
(for regular trees) are Pspace-complete for Muller automata. We first present
the definitions of infinite trees and infinite tree automata.

Definition 5.1 (Infinite tree). For k ∈ N, let [k] = {1, 2, . . . , k}. An infinite,
k-ary branching tree labelled by elements of Σ is a function t : [k]∗ → Σ. Nodes
of an infinite tree are elements of its domain, the root of an infinite tree is the
empty string.

Definition 5.2 (Regular tree). A subtree of tree t rooted at u ∈ [k]∗ is the
tree tu defined as tu(v) = t(u · v) for all v ∈ [k]∗. A tree t is regular if it
has finitely many distinct subtrees, or equivalently, if there are finitely many
equivalence classes under the equivalence relation

u ∼ v ⇐⇒ t(u · w) = t(v · w) ∀w ∈ [k]∗.

Note that if a tree is regular it can be represented by a finite transition sys-
tem, with the equivalence classes of the above equivalence relation as states,

29

the equivalence class containing the root as the initial state, and k distinct
transition relations.

Definition 5.3 (Infinite tree automaton). An infinite (Muller) (k-ary) tree
automaton is a tuple A = (Q, Σ, δ, q0,F) where

• Q is a finite set of states,
• Σ is a finite alphabet,
• δ ⊆ Q × Σ × Qk is the transition relation,
• q0 is the initial state, and
• F ⊆ P(Q) is the acceptance condition.

Given an infinite, k-ary branching tree t labelled by elements of Σ, a run of A

on t is an infinite, k-ary branching tree r labelled by elements of Q satisfying
the following two conditions.

• The root of r is labelled by q0 (r(ε) = q0).
• For all w ∈ [k]∗, if r(w) = q, r(w · 1) = q1, r(w · 2) = q2, . . . , r(w · k) = qk,

and t(w) = a, then (q, a, q1, q2, . . . , qk) ∈ δ.

We say a run r is successful if for every (infinite) path, the set I of states
visited infinitely often is an element of F . We say A accepts t if there is a
successful run of A on t. Given an automaton A, the language of A is the set
of trees

L(A) := {t : A accepts t}.

Two important decision problems in automata theory are non-emptiness and
model-checking.

Non-emptiness of Muller tree automata

Instance: A Muller automaton A

Problem: Is L(A) 6= ∅?

Model-checking for Muller tree automata

Instance: A Muller automaton A, and a regular infinite tree t

Problem: Is t ∈ L(A)?

The close connection between automata and games can be established by con-
sidering the game where the moves of Player 0 consist of choosing a transition
in δ to make from a current state, and the moves of Player 1 consist of choos-
ing which branch of the tree to descend. With this translation in mind, the

30

non-emptiness problem reduces to the problem of finding the winner in the
win-set game

(

A, (W,W)
)

with

• V0(A) = W = Q,
• V1(A) = Qk,
• W = F ,
• edges from V0(A) to V1(A) determined by δ: an edge from q to (q1, q2, . . . , qk)

if there is a ∈ Σ such that (q, a, q1, . . . qk) ∈ δ, and
• edges from V1(A) to V0(A) being projections: an edge from (q1, . . . , qk) to

qi for all i ∈ [k].

Clearly if Player 0 has a winning strategy in this game, it is possible to con-
struct a tree which the automaton accepts. Conversely, if Player 1 has a win-
ning strategy, no such tree exists.

By adapting the proof of Theorem 4.1 we are able to show that the non-
emptiness problem for Muller automata as well as the problem of determining
whether a given automaton accepts a given regular tree are both Pspace-
complete.

Theorem 5.4. The non-emptiness problem for Muller tree automata is Pspace-
complete.

Proof. Membership in Pspace is established by the above polynomial time re-
duction from the non-emptiness problem of Muller automata to win-set games.
Here we show Pspace hardness through a reduction from QSAT.

Given a QBF Φ = Qk−1xk−1 . . .∀x1∃x0ϕ, where ϕ is in disjunctive normal
form with 3 literals per term, we construct the following Muller automaton
AΦ = (Q, Σ, qI , δ,F) that accepts infinite ternary trees:

• Q = {qϕ} ∪ {qx, q¬x : for all variables x}
• Σ = {a} 3

• qI = qϕ

• δ ⊆ Q × Q3 given by:
· for each term (l0 ∧ l1 ∧ l2) of ϕ, (qϕ, ql0 , ql1, ql2) ∈ δ;
· (qxi

, qxi−1
, qxi−1

, qxi−1
), (qxi

, q¬xi−1
, q¬xi−1

, q¬xi−1
) ∈ δ for 0 < i < k;

· (q¬xi
, qxi−1

, qxi−1
, qxi−1

), (q¬xi
, q¬xi−1

, q¬xi−1
, q¬xi−1

) ∈ δ for 0 < i < k; and
· (qx0

, qϕ, qϕ, qϕ), (q¬x0
, qϕ, qϕ, qϕ) ∈ δ.

• F =
{

Si, Si ∪ {qxi
}, Si ∪ {q¬xi

} : 0 ≤ i < k, i even
}

where Si = {qϕ} ∪

{qxj
, q¬xj

: 0 ≤ j < i}.

Now by using the reduction to win-set games outlined above, asking if AΦ

3 as Σ is a singleton, for ease of reading we omit a from the description of δ.

31

accepts any tree is equivalent to asking if Player 0 has a winning strategy
(from qϕ) on the win-set game used in Theorem 4.1. ⊓⊔

The model checking problem also reduces to deciding which player wins an
infinite game. However, depending on how the tree is presented, the resulting
arena may be of infinite size. If the tree is presented as a finite transition
system, a game with finite arena can be constructed, and we can apply The-
orem 5.4 to obtain the following corollary.

Corollary 5.5. Given a regular, infinite, k-ary branching tree t (represented
as a transition system) and a Muller automaton A = (Q, Σ, δ, qI ,F), asking if
A accepts t is Pspace-complete.

Proof. Pspace hardness follows from the proof of Theorem 5.4, as the au-
tomata constructed there accept at most one tree – the ternary branching
tree with all nodes labelled by a.

To show that the problem is in Pspace, we reduce it to the problem of de-
ciding a Muller game with winning condition specified by a Muller condition.
Let (S, s0, t1, . . . , tk) denote the transition system representing the tree t. The

required Muller game,
(

A, (χ, C)
)

, is given by the following.

• V0(A) = Q × S.
• V1(A) = Q × S × Qk.
• There is an edge from (q, s) ∈ V0(A) to (q, s, q1, . . . qk) ∈ V1(A) whenever

(q, a, q1, . . . , qk) ∈ δ where a is the label of s.
• There is an edge from (q, s, q1, . . . , qk) ∈ V1(A) to (qi, ti(s)) ∈ V0(A) for

1 ≤ i ≤ k.
• vI(A) = (qI , s0),
• Q is the set of colours,
• χ : V (A) → Q is defined by taking the first component of the vertex.
• C = F .

It is clear from the definitions that Player 0 has a winning strategy from (qI , s0)
in this game if, and only if, A accepts t. ⊓⊔

6 Conclusion

We have considered the complexity of deciding the winner in a variety of
Muller games. We establish a framework, through the notion of polynomial
translatability, within which the expressive power and the succinctness of types

32

of winning conditions can be considered. We used this, along with an encod-
ing of QBF in win-set conditions to establish Pspace-completeness for five
different condition types that can be used to describe Muller games and to
establish the Pspace-completeness of the non-emptiness and model-checking
problems for Muller automata. We also showed co-NP-completeness results
for two different condition types describing union-closed games.

References

[1] J. R. Büchi and L. H. Landweber. Solving sequential conditions by finite-state
strategies. Transactions of the American Mathematical Society, 138:295–311,
1969.

[2] S. Dziembowski, M. Jurdziński, and I. Walukiewicz. How much memory
is needed to win infinite games? In Proceedings of the 12th Annual IEEE

Symposium on Logic in Computer Science, pages 99–110, 1997.

[3] E. A. Emerson and C. S. Jutla. The complexity of tree automata and logics
of programs (extended abstract). In Proceedings for the 29th IEEE Symposium

on Foundations of Computer Science, pages 328–337, 1988.

[4] E. A. Emerson and C.-L. Lei. Modalities for model checking: Branching time
strikes back. In Proceedings of the 12th Annual ACM Symposium on Principles

of Programming Languages, pages 84–96, 1985.

[5] E. Grädel, W. Thomas, and T. Wilke, editors. Automata Logics, and Infinite

Games, volume 2500 of Lecture Notes in Computer Science. Springer, 2002.

[6] P. Hunter. Complexity and Infinite Games on Finite Graphs. PhD thesis,
University of Cambridge, 2007.

[7] P. Hunter and A. Dawar. Complexity bounds for regular games. In Proceedings

of the 30th International Symposium on Mathematical Foundations of Computer

Science, volume 3618 of Lecture Notes in Computer Science, pages 495–506.
Springer, 2005.

[8] H. Ishihara and B. Khoussainov. Complexity of some infinite games played
on finite graphs. In Proceedings of the 28th International Workshop on Graph

Theoretical Concepts in Computer Science, volume 2573 of Lecture Notes in

Computer Science. Springer, 2002.

[9] N. Klarlund. Progress measures, immediate determinacy, and a subset
construction for tree automata. Annals of Pure and Applied Logic, 69(2-3):243–
268, 1994.

[10] S. La Torre, A. Murano, and M. Napoli. Weak Muller acceptance conditions
for tree automata. In Proceedings of the 3rd International Workshop on

Verification, Model Checking and Abstract Interpretation, volume 2294 of
Lecture Notes in Computer Science, pages 240–254. Springer, 2002.

33

[11] R. McNaughton. Testing and generating infinite sequences by a finite
automaton. Information and Control, 9(5):521–530, 1966.

[12] R. McNaughton. Infinite games played on finite graphs. Annals of Pure and

Applied Logic, 65(2):149–184, 1993.

[13] A. Nerode, J. B. Remmel, and A. Yakhnis. McNaughton games and extracting
strategies for concurrent programs. Annals of Pure and Applied Logic, 78(1-
3):203–242, 1996.

[14] J. Obdržálek. Fast mu-calculus model checking when tree-width is bounded. In
Proceedings of 15th International Conference on Computer Aided Verification,
volume 2725 of Lecture Notes in Computer Science, pages 80–92. Springer, 2003.

[15] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1995.

[16] R. S. Streett. Propositional dynamic logic of looping and converse is
elementarily decidable. Information and Control, 54(1-2):121–141, 1982.

[17] W. Zielonka. Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theoretical Computer Science, 200:135–183, 1998.

34

