
Unstable internet routing as oriented hypercubes

Paul Hunter

July 28, 2008

Abstract

We discuss a combinatorial approach to the internet routing problem

as presented at WG 2008

1 Introduction

We work from the following model: Autonomous routers are represented as
vertices of an undirected graph, with an edge between two routers if there is
a communcation pathway between them. Each router has an ordered list of
(simple) paths1 from itself to a single destination (0), specifying a preference
between different routing policies, for example if router 1 contained the list:
(10, 120, 130) then this would indicate that it would prefer to route packets to
the destination (0) via router 2 rather than through router 3, but it would prefer
routing directly to 0 over either. Paths that do not appear in the preference
list are invalid and are considered to be less favourable than any path in the
list (and equally favourable with other invalid paths). We assume that a router
does not know (or rather utilise) the policy preferences of any other router.

To model asynchronous and synchronous communication (and to some ex-
tent commication delay), we activate sets of edges at time intervals, allowing
routers to change their routing policy and/or disseminate their policy using the
newly available paths (based on information known prior to the activation).
Asynchronous communication is essentially activating one edge at a time, and
synchronicity is modelled by the simultaneous activation of many edges. We
assume that only an edge not being “used” (that is, neither of its endpoints is
[attempting to] route traffic through it) may be activated.

Taking a snapshot at each time interval gives us the notion of a state of
the system. Formally a state is a map σ which takes every vertex to one of its
neighbours (σ(v) is the neighbour of v to which v is routing its traffic). To model
delays in communication, we assume a vertex may only make policy decisions
(for the next state) based on the current state (and of course the set of activated
edges and their list of preferences). Thus a policy change may not be for the
better if routers further along the path also make a change. We assume that
the current state of the system is known to everyone.

1that is, no router is visited more than once

1



To summarise the situation, we assume we are in some state σ. We select
a set E of edges and activate them. Each router then chooses a routing policy
based on their preference list, σ and E, resulting in a new state σ′, and we
repeat. A system is stable if for all choices of E, σ = σ′ (that is, no router
changes its policy).

Given a system, some of the questions we might be interested in are as
follows:

Q1 Does there exist a stable state?

Q2 Does there exist a unique stable state?

Q3 Is there an algorithm describing a (polynomial) sequence of edge activations
which results in a stable state?

2 An alternative model

In order to simplify the combinatorial interpretation of this situation, we first
provide an alternative for the above model. In this model, the network is de-
scribed by a directed graph, with edges indicating the direction along which
packets travel. We still activate sets of edges and a state of this system is a
map which takes vertices to some vertex in their out-neighbourhood. This is
clearly more general than the above model (we replace edges by a pair of di-
rected edges in each direction), but we can also simulate the directed variant
in the undirected case by doubling every edge and then subdividing (that is,
replacing the edge AB with the four edges AC, CB, AD, DB where C and D
are new vertices); replacing occurrences of AB in all routers’ policy lists with
ACB, and occurrences of BA with BDA; and adding the appropriate sublist of
A’s policies to C, and the sublist of B’s policies to D.

We may also assume that each vertex has out-degree at most 2: if v has
m > 2 out-neighbours, we can insert a binary tree rooted at v with m leaves
(the out-neighbours of v), and make similar policy adjustments to those above.
Labelling the successors of a vertex v with out-degree 2 as v0 and v1, we see
that a state of this system can be simply represented as a vector s ∈ {0, 1}n

(where n is the number of vertices with out-degree 2).
Edge activation in this model is the same as above, however we observe that

activating the edge uv allows (only) u to change policy (if desired). Since a
policy switch is now a binary decision (either we switch or we stay the same2)
we can actually view a set of edges to be activated as a set of vertices permitted
to change policies.

Since, when a vertex has the opportunity to switch policy, it may choose
either of its successors, the choice is only dependent on the policies of all the
other vertices. That is, the preference listing of a vertex v (with out-degree 2)
can be modelled by a (partial) function pv : {0, 1}n−1 → {0, 1} indicating that

2recall we assume that edges being “used” can be considered to be part of the activation

set

2



• •

• •

• •

• •

• •

• •

• •

• •
Eye Bow Saddle Loop

Figure 1: Oriented 2-cubes

if the policy vector of the other vertices (that is, the state vector excluding the
component corresponding to v) is a, then v would prefer to be routing through
vi where i = pv(a). In order to make this function total, we need to break ties
(i.e. when v has no preference between either of its successors). So we define
pv(a) = 0 for these cases.

3 A combinatorial interpretation

Recall that an n-dimensional hypercube is a graph Hn with vertex set V (Hn) =
{0, 1}n and an edge between a ∈ V (Hn) and b ∈ V (Hn) if and only if a and b

differ in exactly one component. For n′ ≤ n, an n′-dimensional subcube (of Hn)
is a subgraph which is isomorphic to an n′-dimensional hypercube. For a set
I ⊆ {1, . . . , n} and a vertex a = (a1, . . . , an) ∈ V (Hn), the subcube containing
a generated by I is the subcube induced by the vertex set {(v1, . . . , vn) : vi ∈
{0, 1} and if i /∈ I then vi = ai}. For a = (a1, . . . , an) ∈ V (Hn) the vertex
antipodal to a (in Hn) is the vertex b = (b1, . . . , bn) ∈ V (Hn) such that ai 6= bi

for all i.
An orientation of a hypercube Hn is a directed graph with Hn as the un-

derlying undirected graph. See Figure 1 for the four examples describing the
complete set (up to isomorphism) of oriented 2-cubes.

Given a routing system (in which every vertex has out-degree at most 2), we
associate with it an oriented hypercube Hn in the following way. The dimension,
n is the number of vertices with out-degree exactly 2. V (Hn) is the set of states
of the system. Let a = (a1, . . . , an) ∈ V (Hn) and b = (b1, . . . , bn) ∈ V (Hn)
be n-dimensional vectors differing only in the i-th component (that is aj = bj

for all j 6= i and ai 6= bi), so a and b are adjacent vertices on Hn. Let c =
(c1, . . . , ci−1, ci+1, . . . , cn) be the (n − 1)-dimensional vector common to both a

and b and assume without loss of generality that bi = 1. Then we orient the edge
ab from a to b if pa(c) = 1, otherwise we orient it from b to a (observe that by
definition, pa(c) = pb(c)). See Figures 2 and 3 for examples of routing systems
(in the directed setting) and their associated hypercubes. In these examples,
the i-th component corresponds to router i, and for each router v, v0 is router 0
(i.e. a 0 in the i-th co-ordinate corresponds to the case when router i is routing
directly to 0.)

3



0

2

(210,20)

1

(120,10)

10 11

00 01

Figure 2: The bad gadget and its hypercube

0

3

(310,30)

2

(230,20)

1

(120,10)

110 111

100 101

010 011

000 001

Figure 3: The awful (not its real name!) gadget and its hypercube

3.1 Interpreting state transition

So now that we have an oriented hypercube associated with our system, how
do we interpret the evolution of the system? Clearly, since each vertex of the
hypercube corresponds to a state in the system, we can think of a pebble being
placed on a vertex (indicating the current state of the system), and as the
system moves from state to state the pebble moves to different vertices in the
hypercube. So the question is “can we determine which vertex the pebble will
move to next?”

We observe that each vertex in our system now corresponds to a dimension
in our hypercube model, so an activation set (of vertices) is therefore a set of
dimensions. What happens when we “activate a set of dimensions”? Based on
our earlier assumption that the decision of each (activated) router to switch is
based solely on the current state of every other router, we observe that router
i will switch if and only if there is an outgoing edge (in dimension i) from
the current state. Taking into account simultaneous switching of all activated
routers, the activation-switch process can be described as follows:

1. Given the system is in state a ∈ V (Hn).

2. Let E ⊆ {1, . . . n} be a set of dimensions.

3. Let E′ ⊆ E be the set of dimensions in E that correspond to the outgoing
edges from a.

4



4. The next state for the system b is the vertex antipodal to a on the subcube
of Hn containing a generated by E′.

The computation of E′ in the above process requires only an examination of
the neighbourhood of a. We call such a query a local query (in dimensions from
E). We call the state transition in step 4 a jump (in the hypercube).

3.2 Stability

Given the above interpretation of state transition, we observe the following:

Observation. A state is stable if and only if it corresponds to a sink in Hn.

This gives us the following combinatorial interpretations of the questions
raised in the original setting.

Q1′ Does Hn contain a sink?

Q2′ Does Hn contain a unique sink?

Q3′ Is there an algorithm which finds a sink in Hn using (a polynomial number
of) local queries?

4 The structure of Hn

The theory on oriented hypercubes is extensive, so a natural question to ask
is what, if anything, can be said about the structure of an oriented hypercube
arising from these routing systems (and some restrictions we consider later in
this section). For example, can every oriented hypercube be realized as the
hypercube associated with a routing system? The answer to this is no – one
can readily verify with brute force that the Loop (see Figure 1) cannot be the
oriented hypercube of a routing system. In fact, we have a considerably stronger
result:

Theorem 1. The oriented hypercube associated with a routing system is Loop-
free3.

Proof. Suppose we have a routing system that is associated with a hypercube
which contains a Loop. We can fix the policies of all but 2 of the routers so
that state transitions remain within the Loop. Observe that this effectively
reduces our routing system to a system with two routers (plus possibly some
additional routers which have no choice for their routing policy which may be
useful for distinguishing paths) and the associated hypercube to this system is
the subcube that we have restricted to. Call these routers 1 and 2 and assume
their successors are 10, 11, 20 and 21 (labelled in the obvious way). We assume
each router is attempting to find a path to 0, and we can assume without loss

3That is, it does not contain the Loop as an induced subgraph; or equivalently, every

2-dimensional subcube is either an Eye, a Bow, or a Saddle.

5



of generality that each of these seven routers are distinct. Since routers 1 and 2
are the only routers with a choice of successors, every path is determined until
it reaches 0, 1 or 2.

We make the following observations:

Obs1 Since, for some state, router 1 switches from 10 to 11, it follows that
there must be a (valid) route from 11 to 0 (possibly via 2) – router 1 will
always choose 10 if there is no (valid) path to 0 from either successor.
Symmetrically there is a (valid) route from 21 to 0 (possibly via 1).

Obs2 If neither of the paths from 10 and 11 reach 2 then the choice for 1 is
independent of the state of 2, so 1 will switch from 10 to 11 (or from 11 to
10) for both choices of 2, contradicting the assumption that the associated
hypercube is the Loop. Therefore at least one of 10 or 11 has a path to
2. Symmetrically, at least one of 20 or 21 has a path to 1.

Obs3 Now if both 10 and 11 have a path to 2, then from Obs1 the path from
21 to 0 is not via 1. It follows from Obs2 that there is a path from
20 to 1. But then the choice, for 2, of 20 always results in an invalid
route (recall we do not allow looping) whereas the choice of 21 is a valid
route. So router 2 will always switch to 21 regardless of the policy of
router 1, contradicting the assumption that the associated hypercube is
the Loop. Symmetrically, if both 20 and 21 have a path to 1 we arise at a
contradiction. Thus exactly one of 10 and 11 has a path to 2 and exactly
one of 20 and 21 has a path to 1.

We claim that when router 1 switches to the one successor which routes
through 2 then 2 must be routing directly (i.e. not via 1) to 0. If 11 is the
successor which routes through 2, then from Obs1 and Obs3 it follows that one
of 20 or 21 has a path to 1 and the other has a path to 0. As 11 is not the
“default” choice for 1, router 2 must be routing directly to 0 when 1 switches.
If 10 is the successor which routes through 2, then from Obs1 there is a valid
(from router 1) path from 11 to 0. Since the path from 11 is valid (from 1), the
route through 10 must also be valid. Thus 2 must be routing directly to 0 when
1 switches.

By symmetry, when router 2 switches to the one successor which routes
through 1, then 1 must be routing directly to 0. But then, as we have just
argued, it is impossible for router 1 to switch (as required by the associated
Loop hypercube). This gives us a contradiction, and therefore there can be no
routing system which has the Loop as a subcube of its associated hypercube.

It is an interesting question as to whether the converse to this holds:

Open problem 1. Is every Loop-free hypercube realizable as a hypercube asso-
ciated with a routing system?

I personally expect the answer to this to be negative as there ought to be
higher-dimensional analogues of the Loop which contradict the cycle-free nature
of routes. However, the example in Figure 3 provides a useful counter-example
for some of the more obvious generalizations.

6



4.1 Restricted classes

We now consider the structure of hypercubes corresponding to some of the
resticted classes of routing systems discussed at WG (or what I can remember
of them...)

Safety

Our first restriction is to systems that always enter a stable state on various sets
of infinite sequences of edge activations. For convenience, we consider sequences
of edge (equivalently router) activations which change the state of a system. So
for example, if a system always reaches a stable state after any (finite) choice
of edge activations, then every sequence of activations is finite. We now show
that the hypercubes associated with this class of systems characterized by this
property enjoy a nice combinatorial structure, which allows us to show that such
systems have a unique stable state.

An acyclic unique sink ordering (AUSO) of an n-dimensional hypercube H
is an orientation of H such that every subcube of H contains a unique sink.
AUSOs (also called completely unimodal pseudo-boolean functions) are a well-
studied class of structures. They enjoy many nice properties, for example from
every vertex there is a path of length at most n to the global sink; and each
vertex has a unique set of improving directions. Another property is that it is
relatively easy to decide if an orientation is an AUSO thanks to the following
theorem of Williamson Hoke:

Theorem 2 (Williamson Hoke 88). An oriented hypercube is an AUSO if and
only if it is acyclic and {Loop,Saddle}-free.

Note that the latter statement in the above equivalence could be rephrased
as “acyclic and every 2-subcube is an AUSO” because the Eye and the Bow are
the two 2-dimensional AUSOs.

Using the above result, we can show that if a system always eventually
reaches a stable state, then it has a unique stable state. Let us say a system is
very safe if it has no infinite sequence of activations.

Theorem 3. The hypercube associated with a very safe system is an AUSO.

Proof. Let H be the hypercube associated with a very safe system. We show
that it is acyclic and Saddle-free. From Theorem 1 it follows that it is also
Loop-free, which, with Theorem 2 gives us our result. Suppose H has a cycle
C = v1v2 · · · vn (where vn = v1). By the definition of a hypercube for each
i, vi differs from vi+1 in exactly one component, say ai. Assume the system
is in the state corresponding to v1 and consider the activation sequence S =
({a1} · · · {an})

ω. From the definition of state transition the state of the system
under this sequence moves around C. As C has more than one vertex, this gives
us an infinite activation sequence contradicting the very safe-ness of the system.
Thus H is acyclic. Now suppose H contains a Saddle. By the definition of
subcube, all vertices of the Saddle agree on all but two components. Let b1 and

7



b2 be those components. Assume the system is in a state which corresponds to
one of the local sinks of the Saddle and consider the set of activations {b1, b2}.
From the definition of state transition, the state will jump to the other local sink
of the Saddle. Thus the sequence ({b1, b2})

ω is an infinite activation sequence
for the system, again a contradiction. Thus H does not contain a Saddle.

Corollary. A very safe system has a unique stable state.

This association of very safe systems with AUSOs raises some interesting
questions. The first is whether the converse to Theorem 3 holds.

Open problem 2. Is every AUSO realizable as a hypercube associated with a
very safe routing system?

The second question stems from a much researched problem associated with
AUSOs: “Is there a deterministic algorithm which finds the global sink of an
AUSO in a polynomial number of queries?”. So far the best known algorithm
(Fibonacci See-Saw) uses O(1.61n) queries, and it is known that the greedy
jumping procedure (i.e. jump in all improving directions) may visit 2n/2 vertices.
If the above conjecture is true, then this question is equivalent to Q3 applied to
very safe systems. But it may be that very safe systems result in a subclass of
AUSOs that can tractably find the sink with a polynomial local search.

Open problem 3. Is there an algorithm describing a polynomial sequence of
edge activations which results in the stable state of a very safe system?

We now turn to a more general class of systems that only have infinite
activation sequences of a certain kind. We say an activation sequence is fair
if every edge is activated at least once. We say a system is safe if every fair
sequence is finite. These systems were introduced at WG, and the question was
asked whether these systems always have a unique stable state. Although it is
straightforward to translate the definitions of fairness and safety to hypercubes,
the structure of the hypercubes associated with safe systems is not immediately
obvious. However as Figure 4 shows, the class of hypergraphs associated with
safe systems includes hypercubes which are not AUSOs. In the section after
next we make a conjecture about the structure of “safe” hypercubes.

Greedy algorithm

We now consider classes of systems for which stable states can be found via an
algorithm. I cannot recall the greedy algorithm described at WG, however I will
consider the structure of the hypercube associated with systems for which stable
states can be found with an alternative algorithm. Let us say that a router has
a locally dominant policy if there is a unique neighbour to which all traffic is
preferred to be routed regardless of the state of the system. For example, in
Figure 4, router 3 has a locally dominant policy of routing traffic to router 4.
The algorithm works as follows:

1) Find a router r with a locally dominant policy.

8



3

(340,30)

0 4

2

2130,230)

(2340,21340,

1

1230,130)

(12340,1340,

110 111

100 101

010 011

000 001

Figure 4: The not very safe gadget and its hypercube

2) Remove all arcs from r which do not go to the locally dominant neighbour
(thereby reducing the state space).

3) Return to 1) until all vertices have been processed.

We observe that if this algorithm terminates then no router prefers to route via
any other path, so the system is stable. Thus it makes sense to classify routing
systems based on whether or not this algorithm terminates, and, in line with the
terminology of WG, we call such systems greedy. We now examine the structure
of hypercubes associated with greedy systems.

We say that a digraph G is a directed union of (disjoint) digraphs G1 and
G2 if V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2) ∪ E where E ⊆
V (G1)×V (G2). That is, G is a disjoint union of G1 and G2 with possibly some
edges from G1 to G2. Let us say an oriented hypercube is separable4 if it can
be recursively constructed as follows:

1. A 1-dimensional oriented hypercube (i.e. a directed edge) is separable; and

2. An n-dimensional oriented hypercube is separable if it is the directed union
of a pair of (n − 1)-dimensional separable hypercubes.

For the hypercubes of greedy systems, we need a slight weakening of the sep-
arable condition. Let us say an oriented hypercube is semi-separable4 if it can
be recursively constructed as follows:

1. A 1-dimensional oriented hypercube is semi-separable; and

2. An n-dimensional oriented hypercube is semi-separable if it is the directed
union of H1 and H2 where H2 is a (n − 1)-dimensional semi-separable
hypercube.

It should be clear that a semi-separable hypercube has a unique sink (though not
necessarily a unique source). Furthermore, the following result follows directly
from the definition of the associated hypercube:

4this is my own terminology, there may be more usual names for these cubes

9



Theorem 4. The oriented hypercube associated with a greedy system is semi-
separable.

The converse to Theorem 4 does not hold as a semi-separable hypercube
may contain a Loop. However, it does seem plausible if we restrict to Loop-free
(or, if the answer to Open problem 1 is negative, hypercubes realizable from
routing systems) semi-separable hypercubes. We leave it as an open problem.

Open problem 4. Is every Loop-free (or realizable) semi-separable hypercube
realizable as the hypercube of a greedy system?

We observe in passing that for a semi-separable hypercube to be Loop-free
(or realizable) it suffices for H1 in the above definition to be Loop-free (respec-
tively realizable).

Generalizing AUSOs and semi-separable hypercubes

It should be clear that a separable hypercube is an AUSO, as every 2-dimensional
subcube must contain a pair of parallel edges. However, as Figure 4 shows,
there are semi-separable hypercubes which are not AUSOs. Also it is relatively
easy to construct an AUSO which is not semi-separable. We now introduce a
generalization of both these classes. Let us say a hypercube is a semi-seperable
unique sink orientation (SSUSO)5 if it can be recursively constructed as follows:

1. An AUSO is an SSUSO; and

2. An n-dimensional oriented hypercube is an SSUSO if it is the directed
union of H1 and H2 where H2 is a (n − 1)-dimensional SSUSO.

It is trivial to show that SSUSOs have a unique sink. It should also be clear
that SSUSOs satisfy the natural interpretation of the safety constraint discussed
earlier. More precisely,

Theorem 5. If the hypercube associated with a routing system is an SSUSO,
then the system is safe.

There are two ways we could extend this result First we have the question
of whether every safe routing system has an SSUSO hypercube.

Open problem 5. Is the hypercube associated with a safe routing system always
an SSUSO?

The second extension to Theorem 5 is whether every SSUSO is realizable as
the hypercube associated with a safe system. Clearly this does not immediately
hold as SSUSOs may contain Loops. However, restricting to the Loop-free (or
realizable) SSUSOs may be sufficient.

Open problem 6. Is every Loop-free (or realizable) SSUSO realizable as the
hypercube of a greedy system?

5again, this is my own terminology

10



From our above observations regarding SSUSOs, a positive answer to this
last open problem would resolve the question of whether every safe routing
system has a unique stable state.

11


