
Tighter Reachability Criteria for
Deadlock-Freedom Analysis

Pedro Antonino, Thomas Gibson-Robinson, and A.W. Roscoe

Department of Computer Science, University of Oxford, Oxford, UK
{pedro.antonino,thomas.gibson-robinson,bill.roscoe}@cs.ox.ac.uk

Abstract. We combine a prior incomplete deadlock-freedom-checking
approach with two new reachability techniques to create a more precise
deadlock-freedom-checking framework for concurrent systems. The reach-
ability techniques that we propose are based on the analysis of individual
components of the system; we use static analysis to summarise the be-
haviour that might lead components to this system state, and we analyse
this summary to assess whether components can cooperate to reach a
given system state. We implement this new framework on a tool called
DeadlOx. This implementation encodes the proposed deadlock-freedom
analysis as a satisfiability problem that is later checker by a SAT solver.
We demonstrate by a series of practical experiments that this tool is
more accurate than (and as efficient as) similar incomplete techniques for
deadlock-freedom analysis.

1 Introduction

Deadlock-checking techniques seek to establish whether a finite-state concurrent
system can reach a blocked state. Complete approaches construct and search a
system’s state space for blocked states, and thus, they either show that a system
is deadlock free or they find a deadlock, namely, a snapshot of the system that
is both reachable and blocked. A snapshot is a tuple containing a component
state per component of the concurrent system, i.e. a possible state of the system.
These techniques, however, tend not to be scalable: deadlock-freedom checking
quickly becomes intractable as systems grow in size.

To cope with this lack of scalability, a number of incomplete deadlock-freedom-
checking techniques have been proposed [10, 3, 11, 2]. These techniques imprecisely
characterise a deadlock using local analysis, that is, they analyse only small parts
of the system (for instance, individual components or pairs of them) to establish,
conservatively, whether a system can deadlock. This imprecise characterisation
makes these techniques scalable at the expense of making them incomplete,
namely, they either guarantee deadlock freedom or are inconclusive. In the latter
case, the system might deadlock or not.

In [2], we presented an incomplete deadlock-checking technique that signif-
icantly improves the accuracy of previous frameworks that use local analysis.
It attempts to use purely local analysis to show that no blocked snapshot is
reachable. While this works well for many classes of systems, it does not work

in cases where the interactions of the system maintain some global invariant
that prevents deadlocks too subtle to identify with our original methods. This
inability is a consequence of characterising snapshots reachability using pure
local analysis.

In this paper, we propose two complementary reachability criteria, based on
two common sorts of global invariant, that are combined with the pure-local-
analysis technique in [2] to create a more precise deadlock-freedom technique.
This new deadlock-freedom technique is implemented in the DeadlOx tool, which
makes use of SAT checkers and FDR3’s capabilities [7]. As in [2], using the
capabilities of SAT checkers means we can be ambitious in the properties of
snapshots that we seek to establish.

Outline. Section 2 briefly introduces CSP’s operational semantics, which is the
formalism upon which our strategy is based. However, this paper can be un-
derstood purely in terms of communicating systems of LTSs, and knowledge of
CSP is not a prerequisite. Section 3 presents some related incomplete deadlock-
freedom-checking techniques. In Section 4, we introduce our reachability criteria.
Section 5 presents our new framework for imprecise deadlock-freedom checking.
Section 6 presents an experiment conducted to assess the accuracy and efficiency
of our DeadlOx tool. Finally, in Section 7, we present our concluding remarks.

2 Background

Communicating Sequential Processes (CSP) [9, 16] is a notation used to model
concurrent systems where processes interact, exchanging messages. Here we
describe some structures used by the refinement checker FDR3 [7] in implementing
CSP’s operational semantics. As this paper does not depend on the details of
CSP, we do not describe the details of the language or its semantics. These can
be found in [16].

CSP’s operational semantics interpret language terms as a labelled transition
system (LTS).

Definition 1. A labelled transition system is a 4-tuple (S,Σ,∆, ŝ) where S is
a set of states, Σ is the alphabet, ∆ ⊆ S ×Σ × S is a transition relation, and
ŝ ∈ S is the starting state.

FDR3 represents concurrent systems as supercombinator machines. A super-
combinator machine consists of a set of component LTSs along with a set of
rules that describe how components transitions should be combined. For simplic-
ity, we restrict FDR3’s normal definition to only permit systems with pairwise
communication, as per [11, 4, 2].

Definition 2. A supercombinator machine is a pair (L,R) where:

– L = 〈L1, . . . , Ln〉 is a sequence of component LTSs;
– R is a set of rules of the form (i, e, a) where:
• i ∈ N is a unique identifier for the rule;

2

• e ∈ (Σ ∪ {−})n specifies the event that each component must perform,
where − indicates that the component performs no event; e must also be
triple-disjoint, that is, at most two components must be involved in a rule.
∗ triple disjoint(e) =̂ ∀ i, j, k ∈ {1 . . . n} | i 6= j ∧ j 6= k ∧ i 6= k •

ei = − ∨ ej = − ∨ ek = −
• a ∈ Σ is the event the machine performs.

The participants of a rule are the components required to perform an event.
Given a supercombinator machine, a corresponding LTS can be constructed.

Definition 3. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine where
Li = (Si, Σi, ∆i, ŝi). The LTS induced by S is the tuple (S,Σ,∆, ŝ) such that:

– S = S1 × . . .× Sn;
– Σ = {i | ∃(i, e, a) ∈ R};
– ∆ = {((s1, . . . , sn), j, (s′1, . . . , s

′
n)) | ∃(j, (e1, . . . , en), a) ∈ R • ∀ i ∈ {1 . . . n} •

(ei = − ∧ si = s′i) ∨ (ei 6= − ∧ (si, ei, s
′
i) ∈ ∆i)};

– ŝ = (ŝ1, . . . , ŝn).

We slightly change the common definition of an induced LTS to focus on rule
occurrences instead of system-event performances. Usually, a rule application is
seen as an synchronisation between components that results in a system event.
However, for our analyses, we are interested in which rule was used rather than
the event produced.

We write s
r−→ s′ if (s, r, s′) ∈ ∆. There is a path from s to s′ with the

sequence of rule identifiers 〈r1, . . . , rn〉 ∈ Σ∗, represented by s
〈r1,...,rn〉−−−−−−→ s′, if

there exist s1, . . . , sn−1 such that s
r1−→ s1 . . . sn−1

rn−→ s′. A trace is a path
starting from the initial state. For our analyses, we will be mainly interested in
the rule-identifier traces of induced LTSs.

Definition 4. A LTS (S,Σ,∆, ŝ) deadlocks in a snapshot s if and only if the
predicate deadlocked(s) holds, where:

– deadlocked(s) =̂ reachable(s) ∧ blocked(s)

– reachable(s) =̂ ∃ tr ∈ Σ∗ • ŝ tr−→ s

– blocked(s) =̂ ¬∃ s′ ∈ S ; r ∈ Σ • s r−→ s′

3 Related Work

The SDD (State Dependency Digraph), developed by Martin in [11], is the basis
of an incomplete technique that attempts to prove deadlock-freedom for triple-
disjoint systems. It uses local analysis to construct the dependency digraph of a
system. This framework relies on the fact that every deadlock produces a cycle
in the system’s dependency digraph. So, a cycle-free dependency digraph shows
that a system is deadlock free. This characterisation can be efficiently checked by

3

algorithms that detect cycles in a digraph. However, this cycle-of-dependencies
characterisation for a deadlock can be rather imprecise.

In [2], we proposed Pair, an improved incomplete technique that checks
deadlock-freedom for triple-disjoint systems. As per [11], it characterises a dead-
lock by analysing how pairs of components interact.

Definition 5. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine. The
pairwise projection Si,j of the machine S on components i and j is given by:

Si,j = (〈Li, Lj〉, {(k, (ei, ej), a) | ∃(k, (e1, . . . , en), a) ∈ R • (ei 6= − ∨ ej 6= −)})

Instead of looking for cycles of dependencies, Pair characterises a deadlock
as a snapshot of the system that is fully consistent with local reachability and
blocking information. We call it a Pair candidate. As we use local analysis to its
full extent, we end up with a framework that is strictly better than the SDD.

Definition 6. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine, and
(S,Σ,∆, ŝ) its induced LTS. A state s = (s1, . . . , sn) ∈ S is a Pair candidate iff
pair candidate(s) holds, where:

– pair candidate(s) =̂ pairwise reachable(s) ∧ blocked(s)
– pairwise reachable(s) =̂ ∀ i, j ∈ {1 . . . n} | i 6= j • reachablei,j((si, sj))

reachablei,j is the reachable predicate for the pairwise projection Si,j.

The analysis of pairs of components can be used to exactly characterise whether
a snapshot is blocked; Pair does that. The reachability of a snapshot, however,
cannot be exactly captured by this sort of local analysis. Thus, despite using
pairwise-analysis to its full extent, Pair can only conservatively approximates
reachability with the predicate pairwise reachable(s). This limitation makes
such techniques unable to, in particular, show that a snapshot is unreachable if
that is due to some global property of the system’s behaviour. For example:

Running example 1 (From [16]). Let S = (〈L0, L1, L2〉,R) be the supercombina-
tor machine with L0, L1 and L2 defined in Figure 1 and R the set of rules that
require components to synchronise on shared events. For the sake of presentation,
we use the name of an event to refer to the rule that requires its synchronisation.
As τ is not synchronised, there are three rules τ0, τ1, τ2, such that τi allows
component i to perform a τ . Components can receive messages either from
another component, via event ringi, or from its user, via event ini. If it holds a
message, it can pass the message along, via event ringi⊕1, or output the message
to its user, via outi. The τ transitions represent an internal (non-deterministic)
decision of the component. The Pair candidate (s6, s6, s6) is not a deadlock; this
snapshot is unreachable and yet pairwise reachable. ut

Running example 2. Let S = (〈L0, L1, L2〉,R) be the supercombinator machine
with L0, L1 and L2 defined in Figure 2 and R the set of rules that require
components to synchronise on shared events. For the sake of presentation, we
use the name of an event to identify the rule requiring its synchronisation. This

4

s0 s1

s2

s3

s4

s5

s6

ini

ringi

τ

τ

ringi

outi

ringi

ringi⊕1

τ

outi

τ

ringi⊕1

Fig. 1. LTS of component Li where ⊕ represents addition modulo 3.

s0 s1 s2

token0

work0 token1
s0 s1 s2

token1 work1

token2

s0 s1 s2
token2 work2

token0

Fig. 2. LTSs of components L0, L1, and L2, respectively.

system implements a token ring where process L0 has the token initially and
the events tokeni represents the passage of a token from Li	1 to Li, where 	
is subtraction modulo 3. The Pair candidate (s1, s2, s2) is not a deadlock; this
snapshot is pairwise reachable but it is not reachable. ut

To cope with this pure-local-analysis inadequacy, Martin proposed two exten-
sions of the SDD: the CSDD (Coloured State Dependency Digraph) and FSDD
(Flashing State Dependency Digraph)[11]. These extend the SDD by adding
extra reachability information to a dependency, which in turn, leads to more
precise cycle-of-dependencies characterisations for a deadlock. They can, in par-
ticular, prove that the previous two examples are deadlock free. As for the SDD,
the characterisations proposed by these frameworks discard some local-analysis
information, which could be used to increase precision, so they obtain efficiency.

4 Imprecise Reachability using Local Static Analysis

In this section, we propose two techniques to decide whether a snapshot is
reachable. The techniques make use of two global invariants of our concurrent
systems: to reach a snapshot, components have to agree on the order in which
they synchronise on rules, and they must agree on the number of times they
perform shared rules. Informally, our techniques try to show that, for a given
snapshot, components cannot satisfy these invariants, so the snapshot must be
unreachable. If, however, components can meet these invariants, they might be
able to cooperate to reach the snapshot, and so, we conservatively assume that the
snapshot is reachable. The use of these global invariants make these techniques

5

able to prove unreachability for snapshots that are beyond the capabilities of
techniques using only pure-local-analysis.

To check whether these global invariants are met, both techniques analyse
a component projection that depicts the component’s behaviour in terms of the
system rules in which it participates rather than its own local events.

Definition 7. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine, where
Li = (Si, Σi, ∆i, ŝi), and (S,Σ,∆, ŝ) its induced LTS. The projection of S over
component i is given by following supercombinator machine:

Si = (〈Li〉, {(j, (ei), a) | ∃(j, (e1, . . . , en), a) ∈ R • ei 6= −})

4.1 Ordering of Rules Occurrences Consistency

In the first technique, we try to show that a snapshot is unreachable by showing
that components cannot agree on the order in which they cooperate to reach this
snapshot. We present our technique with the help of Running Example 1.

First of all, we analyse the traces that lead each component projection to its
corresponding state in the snapshot. Note that there might be infinitely many
traces leading such a projection to one of its states; this happens, for instance,
if there exists a trace reaching the target state that passes by a loop in the
component projection’s induced LTS. We summarise this set of traces with a
suffix that is common to all such traces. We adapt the general framework for
static analysis presented in [13] to systematically calculate SFi,j : the longest
common suffix for the traces leading component i’s projection to state sj . We
call SFi,j an invariant suffix of state sj of component i.

Definition 8. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine,
(S,Σ,∆, ŝ) its induced LTS, Si the projection of S over component i, and
Li = ({s0, . . . , sm}, Σi, ∆i, s0) its induced LTS. When applied to Li, the fol-
lowing static analysis framework computes a collection SFi with |Si| elements,
where SFi,j ∈ (Σ∗ ∪ {⊥}) (SFi’s j-th element) is a sequence of rule identifiers
that we call an invariant suffix of state sj of component i.

– Init = 〈〉
– D = ({⊥} ∪Σm,v), where a v b holds if b is a suffix of a and ⊥ is the least

element.
– Fr(⊥) =̂ ⊥ and Fr(d) =̂ d̂ 〈r〉.

Given these three elements and t, the join operator induced by D, the collection
SFi is the least fixed point for the following set of equations:

– SFi,0 = Init t SFi,0
– SFi,j = Fr(SFi,j) t SFi,j′ , for each (sj , r, s

′
j) ∈ ∆i

To see how these component suffixes translate to the participation of compo-
nents on the system’s behaviour, we can derive an occurrence suffix from them.
An occurrence suffix translates a sequence of rule identifiers to a sequence of
global (or system-wide) rule occurrences; i.e. they represent synchronisations a
component must engage on to reach the associated state.

6

Definition 9. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine, and
(S,Σ,∆, ŝ) its induced LTS. An occurrence variable Oir denotes the i-th most
recent occurrence of rule r, and Rct(⊥) = ⊥ or Rct(SF), where SF ∈ Σ∗, gives
the sequence of occurrence variables that is obtained by replacing the i-th most
recent occurrence of rule r in SF by Oir. We use SFOi,j to denote Rct(SFi,j).

Running example 1. For the component states in the pair candidate analysed, we
have the following invariant suffixes and occurrence suffixes: SF0,6 = 〈τ0, ring0, τ0〉,
SF1,6 = 〈τ1, ring1, τ1〉, SF2,6 = 〈τ2, ring2, τ2〉, SFO0,6 = 〈O1

τ0 , O
0
ring0

, O0
τ0〉,

SFO1,6 = 〈O1
τ1 , O

0
ring1

, O0
τ1〉, and SFO2,6 = 〈O1

τ2 , O
0
ring2

, O0
τ2〉. ut

Next, we present a predicate that formalises our technique. Roughly speaking,
we use the clock variables clkir, where clkir marks the instant at which the
occurrence Oir happened, to find a valid synchronisation ordering that respects
the occurrence suffixes of component states in the snapshot under analysis.

Definition 10. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine,
(S,Σ,∆, ŝ) its induced LTS, and clk(Oir) =̂ clkir. For s = (sj(1), . . . , sj(n)) ∈ S
and occurs = {Oab , . . . , Oyz}:

reachableS(s) =̂ ∃ clkab , . . . , clkyz ∈ N •
∧

i∈{1...n}
HBC(i, j(i))

where:

– HBC(i, j(i)) =̂

False if SFOi,j(i) = ⊥
True if SFOi,j(i) = 〈〉∧
(O,O′)∈adj(SFOi,j(i))

clk(O) < clk(O′)

∧
∧

O∈difi(SFOi,j(i))

clk(O) < clk(head(SFOi,j(i)))
otherwise

– occurs =̂
⋃
{SET(SFOi,j(i)) | i ∈ {1 . . . n}}

– adj(SFO) =̂ {(O,O′) | 〈O,O′〉 is a subsequence of SFO}
? This set contains the pairs of adjacent elements in the sequence SFO, where

the elements in these pairs are ordered by their order in SFO.

– difi(SFO) =̂ {Olr | Olr ∈ occurs ∧ i ∈ pts(r) ∧ Olr /∈ SET(SFO)};
? This set contains the occurrences of partitions that component i participates in

but are not present on SFO;

? pts(r) =̂ {i | i ∈ {1 . . . n} ∧ ∃(r, e, a) ∈ R • ei 6= −}, the participants of rule r.

If this predicate holds, these HBCs (Happen-Before Constraints) are consis-
tent and components can agree on an ordering in which they participate on these
occurrences. Hence, the snapshot might be reachable. On the other hand, if the
predicate is false, these constraints are inconsistent: either a component state is
trivially unreachable within its own projection (for which SFi,j = ⊥), or there
is an inconsistency between components happens-before orderings. Either way,
components are unable to cooperate to reach the snapshot.

7

Running example 1. For our example and blocked snapshot, we get the following
happens-before constraint:

1. HBC(0, 6) = clk1τ0 < clk0ring0 ∧ clk
0
ring0

< clk0τ0 ∧ clk
0
ring1

< clk1τ0 ;

2. HBC(1, 6) = clk1τ1 < clk0ring1 ∧ clk
0
ring1

< clk0τ1 ∧ clk
0
ring2

< clk1τ1 ;

3. HBC(2, 6) = clk1τ2 < clk0ring2 ∧ clk
0
ring2

< clk0τ2 ∧ clk
0
ring0

< clk1τ2 .

From 1, 2 and 3, we can deduce that clk0ring0 < clk0ring2 < clk0ring1 < clk0ring0 ,
this contradiction shows that reachable((s6, s6, s6)) is false and that components
cannot agree on the order in which they participate on these rule occurrences.
Note that this predicate could show the pair candidate unreachable for any such
system with 3 or more components. ut

Given that components must synchronise on shared rules to reach snapshots,
for any reachable snapshot, components must be able to, in particular, agree on
the occurrences suffixes leading to this snapshot. So:

Theorem 1. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine with
(S,Σ,∆, ŝ) its induced LTS. For a snapshot s ∈ S, reachable(s)⇒ reachableS(s).

Proof. We assume that s = (sj(1), . . . , sj(n)) ∈ S is a reachable state, and show
that there exists a collection of clock values such that for any component i,
HBC(i, j(i)) holds.

Let tr = 〈r1, . . . , rm〉 be a trace of rules that leads the system to s. From tr,
we can calculate a corresponding ocurrence sequence trace otr = 〈or1, . . . , orm〉.
Based on this occurrence sequence, we create an assigment to clock values as
follows: clk(or1) = 1, . . . , clk(orm) = m.

As tr is a trace of the system, Li must be able to engage on tr |̀ i to reach
state sj(i), where tr |̀ i is the trace resulting from removing rules that component
i does not participate in from tr (namely, tr |̀ i gives the participation of
component i on the behaviour tr of the system).

The rule occurences in tr |̀ i respect their ordering in tr. From Lemma 1, we
know that SFi,j(i) is a suffix of tr |̀ i. Putting these two facts together, we can
see that rule occurences in SFi,j(i) respect their ordering in tr. So, the occurrence
variables in the occurrence suffix derived from SFi,j(i) must respect the ordering
of variables in otr, and consequently, the clock constraints in HBC(i, j(i)) are
satisfied by the clock values we defined. ut

Lemma 1. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine,
(S,Σ,∆, ŝ) its induced LTS, Si the projection of S over component i, and
Li = ({s0, . . . , sm}, Σi, ∆i, s0) its induced LTS, and SFi computed as per Defini-
tion. SFi,j is a common suffix for the traces leading Li to its state sj.

Proof. We assume that we reached a fixpoint SFi for our system of equations,
but for some state sj , SFi,j is not a common suffix for the traces leading Li to
sj (namely, there exists a trace of rules tr that leads to sj such that SFi,j is not
a suffix of tr), and we show that this leads to a contradiction.

8

Clearly, if tr = 〈〉 we reach a contradiction. As tr = 〈〉 can only lead to
the initial state, it must be the case that SFi,0 is not a suffix of tr = 〈〉. Note,
however, that in this case, the equation SFi,0 = Init t SFi,0 would not hold.
Init t SFi,0(= 〈〉) is a suffix of tr, whereas SFi,0 is not. So, this contradicts our
assumption that a fixpoint has been reached.

So, we can safely assume that this trace must be of the form tr = tr′̂ 〈r〉.
Moreover, we can assume that sk is a state of Li such that tr′ leads to sk and
sk

r−→ sj . We now split the proof into two cases:
First, let us assume that SFi,k is a common suffix for all traces leading to

sk, then the equation SFi,j = Fr(SFi,k) t SFi,j , corresponding to transition

sk
r−→ sj , does not hold. While Fr(SFi,k) t SFi,j is a suffix of tr, SFi,j is not.

Fr(SFi,k) t SFi,j is a suffix for tr as Fr(SFi,k) is a suffix of tr and t calculate
the longest common suffix of a pair of traces. So, this contradicts the fact that a
fixpoint has been reached.

Second, let us assume that SFi,k is not a common suffix for all traces leading
to sk. We can re-apply the aforementioned reasoning backwards until we reach
the empty trace and the initial state of Li. That is, there must exist a trace tr′′

such that tr′ = tr′′̂ r′ and tr′′ leads to a state sl where sl
r′−→ sk. As a trace is a

finite sequence of rules, this eventually reaches the empty trace and SFi,0 that
we showed to violate our fixpoint assumption. ut

Hence, this predicate over-approximates reachability, and as a consequence,
it can be soundly used for deadlock-freedom analysis.

4.2 Number of Rules Occurrences Consistency

In the second technique, we try to show that a snapshot is unreachable by showing
that the components cannot agree on the number of times they need to cooperate
to reach the snapshot. We use Running Example 2 to introduce this technique.

In this technique, we summarise the traces leading component i’s projection
to its state sj by an invariant relation ⊕k,li,j that relates the number of times that
rules k and l have been applied in any of these traces. We can systematically
calculate such a relation as follows.

Firstly, we use static analysis to compute DSk,li,j : a set of integers in which
the difference t ↓ k − t ↓ l lies for all traces t leading component i’s projection to
its state sj (t ↓ l counts the number of times rule l occurred in the trace t).

Definition 11. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine,
(S,Σ,∆, ŝ) its induced LTS, Si the projection of S on component i, and Li =
({s0, . . . , sm}, Σi, ∆i, s0) its induced LTS. When applied to Li and parametrised
by rules k and l, the following static analysis framework computes a collection
DSk,l

i with |Si| elements, where DSk,li,j ∈ ({∅,Z} ∪ {{a} | a ∈ Z}) (DSk,li ’s j-th
element) is a set of integers called an invariant difference set for rules k and l
and state sj of component i.

– Init = {0};

9

– D = ({∅,Z} ∪ {{a} | a ∈ Z},⊆) the flat integer domain with ⊆ is the usual
order on sets;

– Fr({d}) =̂

{d+ 1} if r = k
{d− 1} if r = l
{d} otherwise

, Fr(∅) =̂ ∅ and Fr(Z) =̂ Z.

Given these three elements and t, the join operator induced by D, the collection
DSk,l

i is the least fixed point for the following set of equations:

– DSk,li,0 = Init tDSk,li,0
– DSk,li,j = Fr(DS

k,l
i,j) tDSk,li,j′ , for each (sj , r, s

′
j) ∈ ∆i

From this difference set, we can obtain ⊕k,li,j as follows.

Definition 12. We define ⊕k,li,j = Rel(DSk,li,j), where Rel(DS) for DS ∈ ({∅,Z}∪
{{d} | d ∈ Z}) is:

– < if DS ⊆ {d | d < 0} ∧ DS 6= ∅,
– > if DS ⊆ {d | d > 0} ∧ DS 6= ∅,
– = if DS = {0},
– ⊥ if DS = ∅,
– > if DS = Z;

and ⊥ and > stand for the empty and the universal relation on N, respectively.

Running example 2. For the sake of brevity, we show only the invariant differ-
ence sets and relations that are relevant to prove the pair candidate unreach-
able. So, DStoken0,token1

0,1 = {0}, DStoken1,token2

1,2 = {1}, DStoken2,token0

2,2 = {1},
⊕token0,token1

0,1 is =, ⊕token1,token2

1,2 is >, and ⊕token2,token0

2,2 is >. ut

We formalise this technique as follows. Simply put, we find values Ni, where
Ni represents the value agreed by components as the number of times they
applied rule i, such that they respect the relations we calculate for components.

Definition 13. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine,
(S,Σ,∆, ŝ) its induced LTS. For s = (sj(1), . . . , sj(n)) ∈ S:

reachableN (s) =̂ ∃N1, . . . , N|Σ| ∈ N •
∧

i∈{1...n}
RC(i, j(i))

– RC(i, j(i)) =̂
∧

k,l∈Σ∧
i∈pts(k)∩pts(l)


True if ⊕k,li,j(i) = >
False if ⊕k,li,j(i) = ⊥
Nk ⊕k,li,j(i) Nl otherwise

This predicate is false if either one the component states is trivially unreachable
in its own component projection, for which ⊕k,li,j(i) = ⊥, or if all component states

are trivially reachable but there exists an inconsistency on the RCs (Relation
Constraints) calculated that shows that components cannot agree on the number
of times they performed some rules. Either way, the snapshot must be unreachable.

10

Running example 2. Given the relations calculated for our example, we can derive
from RC(0, 1) that Ntoken0

= Ntoken1
, from RC(1, 2) that Ntoken1

> Ntoken2
,

and from RC(2, 2) that Ntoken2 > Ntoken0 . From these constraints, we can deduce
that Ntoken0 = Ntoken1 and Ntoken0 > Ntoken1 , a contradiction that shows that
components cannot agree on the number of times they perform these rules and
that reachableN ((s1, s2, s2)) does not hold. Note this technique can show that the
blocked state is unreachable for any such system with M (M > 1) components
of which m (M > m > 0) hold initially a token. ut

Given that components must synchronise on shared rules to reach snapshots,
for any reachable snapshot, components must be able to, in particular, agree on
the number of times they perform shared rules. So:

Theorem 2. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine with
(S,Σ,∆, ŝ) its induced LTS. For s ∈ S, reachable(s)⇒ reachableN (s).

Proof. We assume that s = (sj(1), . . . , sj(n)) ∈ S is a reachable state, and show
that there exists a collection of values Nrs, one for each rule r of the system,
such that for component i, RC(i, j(i)) holds (i.e. for any two rules k and l that i

participates in, Nk ⊕k,li,j(i) Nl holds).

Let tr be a trace of rules that leads the system to s, tr exists as s is reachable.
We calculate Nr = tr ↓ r, where tr ↓ r gives the number of times that rule r
appears in tr.

As tr is a trace of the system, Li must be able to engage on tr |̀ i to reach
state sj(i), where tr |̀ i is the trace resulting from removing rules that component
i does not participate in from tr (namely, tr |̀ i gives the participation of
component i on the behaviour tr of the system).

If i participates on a rule r then tr ↓ r = (tr |̀ i) ↓ r, as the same occurrences
of rule r are present in both traces. From Lemma 2 and as tr |̀ i leads Li to

sj(i), we can derive that (tr |̀ i) ↓ k ⊕k,li,j(i) (tr |̀ i) ↓ l. As the relation constraint

concerns only the number of occurrence of rules a component participate in, we
can assume that component i participates in k and l. Hence, we can derive that
tr ↓ k ⊕k,li,j(i) tr ↓ l, and so Nk ⊕k,li,j(i) Nl holds.

Lemma 2. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine,
(S,Σ,∆, ŝ) its induced LTS, Si the projection of S over component i, and

Li = ({s0, . . . , sm}, Σi, ∆i, s0) its induced LTS, and DSk,l
i computed as per

Definition 12. (tr ↓ k)⊕k,li,j (tr ↓ k) holds for any trace tr leading Li to state sj.

Proof. We show first that (tr ↓ k)−(tr ↓ k) ∈ DSk,li,j holds for any trace tr leading

Li to state sj . To show that, we assume that we reached fixpoint DSk,li for our

system of equations, but for some state sj and the set DSk,li,j calculated, there

exists a rule-identifier trace tr that leads to sj such that (tr ↓ k)−(tr ↓ k) /∈ DSk,li,j .
Clearly, tr can be the empty trace, 〈〉, since 〈〉 leads only to the initial state,

and this assumption would violate the equation DSk,li,0 = Init tDSk,li,0 , and our
assumption that a fixpoint has been reached. So, we can safely assume that this

11

trace must be of the form tr = tr′̂ 〈r〉. As it is a trace of the component, we can
also assume that sk is a state of component i’s LTS such that tr′ leads to sk and
sk

r−→ sj . We now split the proof into two cases:
Clearly, if tr = 〈〉 we reach a contradiction. As tr = 〈〉 can only lead to the

initial state, it must be the case that (〈〉 ↓ k)− (〈〉 ↓ k) /∈ DSk,li,0 (i.e. 0 /∈ DSk,li,0).

Note, however, that in this case, the equation DSk,li,0 = Init t DSk,li,0 would

not hold. 0 ∈ (Init t DSk,li,0), as 0 ∈ (0 t DSk,li,0), whereas 0 /∈ DSk,li,0 . So, this
contradicts our fixpoint assumption that a fixpoint has been reached.

So, we can safely assume that this trace must be of the form tr = tr′̂ 〈r〉.
Moreover, we can assume that sh is a state of Lh such that tr′ leads to sh and
sh

r−→ sj . We now split the proof into two cases:

First, let us assume that (t ↓ k) − (t ↓ k) ∈ DSk,li,h holds for any trace t

leading Li to sk, then the equation DSk,li,j = Fr(DS
k,l
i,h)tDSk,li,j , corresponding to

transition sh
r−→ sj , does not hold. While (tr ↓ k)−(tr ↓ k) ∈ (Fr(DS

k,l
i,h)tDSk,li,j),

(tr ↓ k) − (tr ↓ k) /∈ DSk,li,j . (tr ↓ k) − (tr ↓ k) ∈ (Fr(DS
k,l
i,h) t DSk,li,j), as

(tr ↓ k) − (tr ↓ k) ∈ Fr(DSk,li,h) and t overapproximates the conversional set-
union operator. So, this contradicts the fact that a fixpoint has been reached.

Second, (t ↓ k)− (t ↓ k) ∈ DSk,li,h does not hold for all traces t leading Li to
sk. We can re-apply the aforementioned reasoning backwards until we reach the
empty trace and the initial state of Li. That is, there must exist a trace tr′′ such

that tr′ = tr′′̂ r′ and tr′′ leads to a state sg where sg
r′−→ sh. As a trace is a

finite sequence of rules, this eventually reaches the empty trace and DSk,li,0 that
we showed to violate our fixpoint assumption.

Given our result for DSk,li,j , the fact that “(tr ↓ k)⊕k,li,j (tr ↓ k) holds for any

trace tr leading Li to state sj” follows trivially from the definition of ⊕k,li,j . ut

Thus, this predicate conservatively over-approximates reachability, and as
such, it can be soundly used for deadlock-freedom analysis.

4.3 Abstraction

We can extend and improve these techniques by carrying out some abstractions.
Firstly, observe that single-participant rules are irrelevant in our reachability
analysis, as our techniques are based on the search of an inconsistency in the way
components collaborate to reach a snapshot.

Secondly, we can achieve a sort of data abstraction for our techniques as
follows. Intuitively, the application of a rule can be seen as a communication
taking place between participants in this rule, whereas a set of rules involving
the same exact participants might be seen as a set of possible values that they
can communicate. With this view in mind, if we identify rules with the same
participants, we are abstracting away these values and focusing on the fact a
communication occurred between these participants. Our concrete framework and
this abstract one can be seamlessly and uniformly integrated in our techniques
by using the following partitioning and slightly modified component projection.

12

Definition 14. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine and
(S,Σ,∆, ŝ) its induced LTS. For a given rule identifier i ∈ Σ, we have the
following partitions:

– Concrete: [i]C =̂ i
– Abstract: [i]A =̂ min({j | j ∈ Σ ∧• pts(i) = pts(j)}), where min returns the

smallest integer in a set.

We analyse slightly different component projections, depending on the level
of abstraction we want.

Definition 15. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine, where
Li = (Si, Σi, ∆i, ŝi), and (S,Σ,∆, ŝ) its induced LTS, and x ∈ {A,C} a level of
abstraction. The projection of S over component i is given by following super-
combinator machine:

Si = (〈Li〉, {([j]x, (ei), a) | ∃(j, (e1, . . . , en), a) ∈ R • ei 6= −})

So, we end up with two different predicates for each technique: reachableCN (s)
and reachableCS (s) represent our original predicates, while reachableAN (s) and
reachableAS (s) their abstract counterparts.

4.4 Discussion

Our frameworks are intended to automate some common methods for proving that
a snapshot is unreachable. Some methods use the recent behaviour of components
to show that they cannot cooperate to reach a system’s snapshot [11, 10], while
other methods rely on relational invariants to characterise states and prove
snapshots unreachable [6, 14]. As both of our running examples show, we provide
a fully systematic framework to carry out these specific sorts of reasoning.

We were particularly inspired by Martin’s CSDD and FSDD to create our
reachability tests. These techniques were, in turn, inspired by deadlock-freedom
proof rules presented in [14]. We tried, however, to work on some of FSDD
and CSDD’s limitations. In particular, we propose reachability criteria that are
completely independent from the safety property that is being checked, while
both the CSDD and FSDD are centred on deadlock analysis.

5 Combining Reachability Tests with Local Analysis

In this section we combine the Pair characterisation, proposed in [2], with the
new reachability tests presented in Section 4. In this new framework, a potential
deadlock is a pair candidate that meets our new reachability tests.

Definition 16. Let S be a supercombinator machine and (S,Σ,∆, ŝ) its induced
LTS. A snapshot s ∈ S is a deadlock candidate if and only if the following
predicate holds:

13

p0 p1

a

b

q0 q1

b

c
r0

r1

r2 r3

a

c
c

a

c

Fig. 3. LTSs of components L1, L2 and L3, respectively.

deadlock candidate(s) =̂ pair candidate(s) ∧ reachableCN (s) ∧ reachableCS (s)
∧ reachableAN (s) ∧ reachableAS (s)

Given that our reachability tests over-approximate reachability and that every
deadlock is also a pair candidate [2], every deadlock must also to be a deadlock
candidate. So, as a deadlock is guaranteed to be a deadlock candidate, a system
free of deadlock candidates has to be deadlock free.

Theorem 3. Let S be a supercombinator machine and (S,Σ,∆, ŝ) its induced
LTS. If ¬∃ s ∈ S • deadlock candidate(s) then ¬∃ s ∈ S • deadlock(s).

Proof. We prove this theorem by showing that for any state s ∈ S, if s is a
deadlock then s has to be a deadlock candidate.

This follows from the fact that all reachability tests are overapproximation
for reachability, namely, if s is reachable then s also satisfy all reachability tests
proposed. This has been proved for reachableCN and reachableCS , in Theorems 2
and 1, and the reasoning used in these theorems can be directly used to prove
the same for reachableAN and reachableAS . ut

Our new characterisation is clearly more precise than the Pair one, but it
remains imprecise: a blocked snapshot can be unreachable and yet meet all the
imprecise reachability tests proposed. Nevertheless, by conjoining these new tests,
we tighten the snapshot space analysed. Observe that it only takes one failed
reachability test, out of the four proposed, to consider a snapshot unreachable.
The incompleteness of our method is illustrated by the following example.

Example 1. Let S = (〈L1, L2, L3〉,R) be the supercombinator machine such that
L1, L2 and L3 are described in Figure 3 andR requires components to synchronise
on shared events. The snapshot (p0, q0, r3) is blocked and it meets all reachability
tests, but it is not reachable. Thus, it constitutes a deadlock candidate but
not a deadlock. Neither local analysis nor the underlying proof methods in our
reachability tests are strong enough to prove this snapshot unreachable. ut

5.1 Implementation

We built upon [2] to create an efficient implementation for our framework.
So, we encode the search for a deadlock candidate as a satisfiability problem

14

to be later checked by a SAT solver. For the remainder of this section, let
S = (〈L1, . . . , Ln〉,R) be a supercombinator machine, (S,Σ,∆, ŝ) its induced
LTS, Si the projection of S on component i, and (Si, Σi, ∆i, ŝi) its induced LTS.

In our propositional encoding, si,j is the boolean variable representing
the state sj of component i, and U represents the disjoint union of all Si
sets. The assignment si,j = true indicates this component state belongs to
a deadlock candidate, whereas si,j = false means it does not. Our formula
F =̂ PC ∧ ReachCN ∧ ReachCS ∧ ReachAN ∧ ReachAS is a conjunction of five
sub-formulas, each of them captures a predicate of our deadlock characterisation.
The combination of component states assigned to true in a satisfying assignment
of F forms a deadlock candidate.

The first sub-formula PC captures the pair-candidate characterisation; we
reuse the propositional formula that is presented in [2]. The component states
assigned to true in a satisfying assignment for PC form a pair-candidate snapshot.

Next, we present a way to encode our newly proposed reachability tests. First,
we present how to encode the predicates reachablexN for x ∈ {A,C}.

ReachxN =̂
∧

si,j∈U
si,j ⇒ RC(i, j)

We encode the variables N1, . . . , N|Σ| as bit-vectors of size dlog2 |Σ|e, as we
need |Σ| distinct values to find a model for such a constraint1. We encode <, =
and > as the corresponding operations on bit-vectors.

As follows, we present how to encode the predicates reachablexS for x ∈ {A,C}.
Let occurs = {P ab , . . . , P yz } with occurs =̂

⋃
{SET(SFOi,j) | si,j ∈ U}.

ReachxS =̂
∧

si,j∈U
si,j ⇒ HBC(i, j)

We encode the variables clkab , . . . , clk
y
z as bit-vectors of size dlog2 |occurs|e,

again we only need |occurs| distinct values to satisfy this formula2. We encode
< as the corresponding operation on bit-vectors.

The rationale behind these two last sub-formulas is as follows. If the com-
ponent state is assigned to true in a satisfying assignment, we make sure, by
the implication, that the associated reachability constraint is also met. So, any
satisfying-assignment snapshot has to meet our reachability tests.

6 Practical Evaluation

In this section, we evaluate our new deadlock-freedom-checking framework; we
implemented our SAT encoding, using FDR3’s capabilities, which is then checked
by the Glucose 4.0 solver [5]. We call this new tool DeadlOx. A prototype of
our DeadlOx and the models used in this section are available at [1]. For this

1 We can disregard the case in which |Σ| = 1, as it is trivially possibly-reachable.
2 We can disregard the case in which |occurs| = 1, as it is trivially possibly-reachable

15

experiment, we checked deadlock freedom for some CSP benchmark problems. The
experiment was conducted on a dedicated machine with a quad-core Intel Core
i5-4300U CPU @ 1.90GHz, and 8GB of RAM. We compare our prototype against:
SDD, CSDD and FSDD (which are implemented in Martin’s Deadlock Checker
tool [12]); Pair technique [2]; FDR3’s built-in deadlock freedom assertion [7],
and its combination with partial order reduction (FDRp) [8] or compression
techniques (FDRc) [15].

We analyse 13 systems that are deadlock free and triple disjoint. Out of these
systems, 12 can be proved deadlock free by DeadlOx, 6 can be proved by CSDD,
and 5 can be proved by FSDD. The latter two frameworks combine to prove 7
of the 13 systems deadlock free. Pair proves 6 of them deadlock-free, and SDD
only 4 of them. The systems that we evaluated are: the alternating bit protocol
(ABP), the butler solution to the dining philosophers (Butler), a distributed
database (DDB), a matrix multiplication system (Matmul), the asymmetric
solution to the dining philosophers (Phils), a ring network (Ring), the mad
postman routing algorithm (Rout), the sliding window protocol (SWP), Milner’s
scheduler (Scheduler), a telephone switch system (Tel), a token ring system with
a single token (Token Ring), a token ring system with N/2 tokens (Token Ring
HF) and a train track system. These problems are discussed in detail in [16].
Table 1 presents the results that we obtain for 12 of the 13 systems; the train
track system is not presented in this table as none of the incomplete techniques
evaluated here can prove it deadlock free. DeadlOx fails on this example because
neither of the additional reachability arguments are sufficient for this system; it
seems to require invariants based explicitly on the number of tokens (i.e. trains),
and the movement of the tokens is too unpredictable to capture using our rules.

For the benchmark problems analysed, DeadlOx is significantly more accurate
than the other incomplete techniques (i.e. SDD, Pair, CSDD, and FSDD) while
faring similarly in terms of analysis time. Comparing to the complete approaches
(i.e. FDR3, FDR3c, FDR3p), DeadlOx is consistently faster than the best com-
plete approach, which is the combination of FDR3’s deadlock assertion with
compression techniques, while being able to prove deadlock freedom for all the
benchmark problems except for the train track example. We point out, however,
that the effective use of compression techniques requires a careful and skilful
application of those, whereas our method is fully automatic.

7 Conclusion

We combine the Pair imprecise characterisation given in [2] with two newly
proposed reachability techniques to create a new framework for deadlock-freedom
analysis. These new reachability techniques combine information extracted from
static analysis of components with a global property of the system to show that
components cannot cooperate to reach the snapshot under analysis. Our new
framework is strictly more accurate than the Pair framework. Particularly, while
Pair is unable to show that a snapshot is unreachable if that depends on a global
aspect of the system, our new reachability tests can show that with respect to

16

Incomplete Complete

Example N DeadlOx SDD Pair CSDD FSDD FDR3c FDR3p FDR3

ABP
50 0.06 0.27 0.06 0.28 0.29 + 0.13 0.17
100 0.07 0.71 0.07 0.62 0.75 + 0.23 0.39
200 0.12 1.89 0.12 1.95 1.97 + 0.60 1.29

Butler

5 0.06 - 0.06 - - 0.10 0.07 0.07
10 0.36 - 0.37 - - 0.46 1.36 116.93
12 1.75 - 1.72 - - 1.30 12.78 *
15 19.57 - 22.10 - - 13.79 * *

DDB
5 0.15 - - - - 0.31 0.41 0.13
10 1.61 - - - - * * *
20 56.39 - - - - * * *

Matmul

5 0.20 - - 0.11 - 0.16 0.07 *
10 3.66 - - 0.16 - 15.27 0.32 *
20 48.08 - - 0.59 - * 22.18 *
30 * - - 1.97 - * * *

Phils

20 0.07 0.16 0.07 0.16 0.16 0.27 0.14 *
50 0.11 0.23 0.13 0.23 0.23 1.42 0.75 *
100 0.18 0.35 0.30 0.36 0.35 13.20 5.50 *
500 1.72 2.78 5.42 2.80 2.80 * * *

Ring

50 0.10 - - - 0.13 0.29 * *
100 0.15 - - - 0.16 0.60 * *
200 0.27 - - - 0.28 1.41 * *
500 0.81 - - - 0.83 5.87 * *

Rout

5 0.10 0.13 0.12 0.15 0.15 0.19 * *
10 0.28 0.30 0.99 0.32 0.31 0.68 * *
20 2.05 1.1 14.06 1.31 1.19 4.14 * *
50 24.45 21.5 * 23.05 22.30 115.36 * *

SWP
3 0.15 0.91 0.14 0.93 0.90 0.24 0.21 2.9
5 3.52 * 3.20 * * 4.58 41.9 41.81
7 107.69 * 105.69 * * 136.64 * *

Scheduler

100 0.13 - - 0.15 - 0.29 0.43 *
500 0.57 - - 0.40 - 2.32 106.26 *
1000 1.36 - - 0.86 - 8.14 * *
1500 2.43 - - 1.32 - 23.47 * *

Tel

3 0.06 - 0.06 - - 2.05 * *
5 0.32 - 0.32 - - * * *
8 2.88 - 31.69 - - * * *
10 38.73 - * - - * * *

Token Ring
15 2.42 - - - - + 5.62 0.34
20 11.95 - - - - + 38.45 1.07
25 48.94 - - - - + 171.52 2.97

Token Ring HF
15 2.14 - - - - + * *
20 11.63 - - - - + * *
25 45.16 - - - - + * *

Table 1. Benchmark efficiency comparison. N relates (is proportional) to the size of
the system. We measure in seconds the time taken to check deadlock freedom for each
system. * means that the method took longer than 300 seconds. - means that the
method is unable to prove deadlock freedom. + means that no efficient compression
technique could be found.

17

two specific global invariants of the system, namely, components have to agree
on the order of cooperation and on the number of time they cooperate.

We have implemented this new framework using FDR3 capabilities and
SAT checkers in the DeadlOx tool. This implementation shows that for the
assessed benchmark systems, DeadlOx is substantially more accurate than similar
incomplete techniques, whilst taking a similar amount of time to analyse systems.
Also, as it seems to be consistently more efficient than complete techniques, it
could be used as a preliminary step in deadlock-freedom checking. If it fails to
prove deadlock freedom, then a complete method should be used.

We plan to extend this work in two directions. Firstly, we would like to see
how we could reuse (a part of) this framework to check other safety properties. In
particular, we plan to reuse it to check trace-refinement properties and a notion
of freedom from permanently blocked subsystems. Secondly, we plan to create
additional imprecise tests for reachability, so we can have an even more accurate
framework. Note, for instance, that our techniques are not strong enough to
prove deadlock-freedom for one of the benchmark systems evaluated. We are
particularly interested in the application of SAT solvers to automatically infer
some specific system invariants.

Acknowledgments

The first author is a CAPES Foundation scholarship holder (Process no: 13201/13-
1). The second and third authors are partially sponsored by DARPA under
agreement number FA8750-12-2-0247.

References

1. Pedro Antonino, Thomas Gibson-Robinson, and A. W. Roscoe. Experiment package,
2016. http://www.cs.ox.ac.uk/people/pedro.antonino/pkg.zip.

2. Pedro Antonino, Thomas Gibson-Robinson, and A.W. Roscoe. Efficient deadlock-
freedom checking using local analysis and SAT solving. In IFM, number 9681 in
LNCS, pages 345–360. Springer, 2016.

3. Paul C. Attie, Saddek Bensalem, Marius Bozga, Mohamad Jaber, Joseph Sifakis,
and Fadi A. Zaraket. An Abstract Framework for Deadlock Prevention in BIP. In
FORTE, number 7892 in LNCS, pages 161–177. Springer, 2013.

4. Paul C. Attie and Hana Chockler. Efficiently verifiable conditions for deadlock-
freedom of large concurrent programs. In VMCAI, pages 465–481. Springer, 2005.

5. Gilles Audemard and Laurent Simon. Predicting Learnt Clauses Quality in Modern
SAT Solvers. IJCAI’09, pages 399–404, San Francisco, CA, USA, 2009.

6. Naiem Dathi. Deadlock and Deadlock Freedom. PhD thesis, University of Oxford,
1989.

7. Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, and A.W.
Roscoe. FDR3 — A Modern Refinement Checker for CSP. In TACAS, volume
8413 of LNCS, pages 187–201, 2014.

8. Thomas Gibson-Robinson, Henri Hansen, A.W. Roscoe, and Xu Wang. Practical
partial order reduction for CSP. In NFM, volume 9058 of LNCS, pages 188–203.
Springer International Publishing, 2015.

18

9. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
10. Christian Lambertz and Mila Majster-Cederbaum. Analyzing Component-Based

Systems on the Basis of Architectural Constraints. In FSEN, pages 64–79. Springer,
April 2011.

11. Jeremy M. R. Martin. The Design and Construction of Deadlock-Free Concurrent
Systems. PhD thesis, University of Buckingham, 1996.

12. J.M.R. Martin and S.A. Jassim. An efficient technique for deadlock analysis of
large scale process networks. In FME ’97, pages 418–441, 1997.

13. Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program
Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

14. A. W. Roscoe and Naiem Dathi. The pursuit of deadlock freedom. Inf. Comput.,
75(3):289–327, 1987.

15. A. W. Roscoe, Paul H. B. Gardiner, Michael Goldsmith, J. R. Hulance, D. M.
Jackson, and J. B. Scattergood. Hierarchical compression for model-checking CSP

or how to check 1020 dining philosophers for deadlock. In TACAS, pages 133–152,
1995.

16. A.W. Roscoe. Understanding Concurrent Systems. Springer, 2010.

19

