
The automatic detection of token structures and
invariants using SAT checking

Pedro Antonino, Thomas Gibson-Robinson, and A.W. Roscoe

Department of Computer Science, University of Oxford, Oxford, UK
{pedro.antonino,thomas.gibson-robinson,bill.roscoe}@cs.ox.ac.uk

Abstract. Many distributed systems rely on token structures for their
correct operation. Often, these structures make sure that a fixed number
of tokens exists at all times, or perhaps that tokens cannot be completely
eliminated, to prevent systems from reaching undesired states. In this pa-
per we show how a SAT checker can be used to automatically detect token
and similar invariants in distributed systems, and how these invariants
can improve the precision of a deadlock-checking framework that is based
on local analysis. We demonstrate by a series of practical experiments
that this new framework is as efficient as similar incomplete techniques
for deadlock-freedom analysis, while handling a different class of systems.

1 Introduction

Many concurrent and distributed systems rely on some token mechanism to
avoid reaching undesired states. For these systems, understanding/recognising
these token structures often leads to system invariants (i.e. system abstractions)
that are sufficiently strong to prove safety properties of the considered system.
For instance, token invariants are frequently used to show mutual exclusion
properties and deadlock freedom. In this work, motivated by deadlock-freedom
analysis, we propose two techniques that can recognise token structures using
SAT checking. The first technique detects token structures where the number of
tokens is conserved at all times, whereas the second one ensures that at least one
token exists in the system at all times.

To demonstrate how these structures can be used in the analysis of safety
properties, we combine our detection techniques with the local-analysis framework
for deadlock checking presented in [3] to create a more precise, albeit still
incomplete, deadlock-checking framework. Incomplete frameworks can be far
more scalable than complete ones at the cost of being unable to prove that some
deadlock-free systems are deadlock free. The new token framework handles a
different class of system than current incomplete techniques for deadlock-freedom
analysis. We implement this new framework and our detection techniques in
a new mode of the DeadlOx tool [4], called DeadlOx-VT (for Virtual Tokens).
We reinforce that the core of our framework should be easily adaptable for the
verification of other safety properties using other formalisms.

Outline. Section 2 briefly introduces CSP’s operational semantics, which is the
formalism upon which our strategy is based. However, this paper can be un-
derstood purely in terms of communicating LTSs, and knowledge of CSP is
not a prerequisite. Section 3 presents some related invariant generation and
incomplete deadlock-freedom-checking techniques. In Section 4, we introduce
our techniques for automatically detecting token structures. Section 5 presents
our new framework for imprecise deadlock-freedom checking. Section 6 presents
an experiment conducted to assess the accuracy and efficiency of DeadlOx-VT.
Finally, in Section 7, we present our concluding remarks.

2 Background

The CSP notation [12, 18] models concurrent systems as processes that exchange
messages. Here we describe some structures used by the refinement checker
FDR3 [10] in implementing CSP’s operational semantics. As this paper does not
depend on the details of CSP, we do not describe the details of the language or
its semantics. These can be found in [18].

FDR3 interprets CSP terms as a labelled transition system (LTS).

Definition 1. A labelled transition system is a 4-tuple (S,Σ,∆, ŝ) where S is
a set of states, Σ is the alphabet, ∆ ⊆ S ×Σ × S is a transition relation, and
ŝ ∈ S is the starting state.

FDR3 represents concurrent systems as supercombinator machines. A super-
combinator machine consists of a set of component LTSs along with a set of
rules that describe how components transitions should be combined. We restrict
FDR3’s usual definition to systems with pairwise communication, as per [14, 4].

Definition 2. A triple-disjoint supercombinator machine is a pair (L,R) where:

– L = 〈L1, . . . , Ln〉 is a sequence of component LTSs;
– R is a set of rules of the form (e, a) where:
• e ∈ (Σ−)n specifies the event that each component must perform, where
− indicates that the component performs no event. e must also be triple-
disjoint, that is, at most two components must be involved in a rule.
∗ triple disjoint(e) =̂ ∀ i, j, k : {1 . . . n} | i 6= j ∧ j 6= k ∧ i 6= k •

ei = − ∨ ej = − ∨ ek = −
• a ∈ Σ is the event the supercombinator performs.

We say that two components interact/communicate in a supercombinator
machine, if a rule in this system requires the participation of these two components.
Given a supercombinator machine, a corresponding LTS can be constructed.

Definition 3. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine where
Li = (Si, Σi, ∆i, ŝi). The LTS induced by S is the tuple (S,Σ,∆, ŝ) such that:

– S = S1 × . . .× Sn;

2

– Σ =
⋃n
i=1Σi;

– ∆ = {((s1, . . . , sn), a, (s′1, . . . , s
′
n)) | ∃((e1, . . . , en), a) : R • ∀ i : {1 . . . n} •

(ei = − ∧ si = s′i) ∨ (ei 6= − ∧ (si, ei, s
′
i) ∈ ∆i)};

– ŝ = (ŝ1, . . . , ŝn).

We write s
e−→ s′ if (s, e, s′) ∈ ∆. There is a path from s to s′ with the

sequence of events 〈e1, . . . , en〉 ∈ Σ∗, represented by s
〈e1,...,en〉−−−−−−→ s′, if there exist

s0, . . . , sn such that s0
r1−→ s1 . . . sn−1

rn−→ sn, s0 = s and sn = s′.
From now on, we use system state (component state) to designate a state

in the system’s (component’s) LTS. Also, for the sake of decidability, we only
analyse supercombinator machines with a finite number of components, which
are themselves represented by finite LTSs with finite alphabets.

Definition 4. A LTS (S,Σ,∆, ŝ) deadlocks in a state s iff deadlock(s) holds,

where deadlock(s) =̂ reachable(s) ∧ blocked(s), reachable(s) =̂ ∃ t : Σ∗ • ŝ t−→ s,

and blocked(s) =̂ ¬∃ s′ : S ; e : Σ • s e−→ s′.

3 Related Work

System invariants are meant to capture compact abstractions of a system’s be-
haviour. For concurrent and distributed systems, invariants are often calculated
by combining component invariants using rules that carefully analyse how compo-
nents interact [13, 5, 8, 4]. Component invariants can be automatically generated
using static analysis [4] or by custom-made generation rules [8]. These automatic
invariant-generation techniques tend to be either too imprecise to capture token
structures in general [4], or too precise so that it captures not only token struc-
tures but a much more complex abstraction of the system [8]. Token invariants
are commonly used to prove mutual-exclusion properties and deadlock-freedom
for Petri nets [1, 16]. However, many systems are more naturally described by
formalisms where token structures are not obviously recognisable. We are not
aware of any previous use of SAT checkers to calculate token-like invariants.

In the context of deadlock-analysis, we proposed Pair [3], a technique that
uses local analysis to check deadlock-freedom. It characterises a deadlock by
analysing how pairs of components interact using the following projection:

Definition 5. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine. The
pairwise projection Si,j of the machine S on components i and j is given by:

Si,j = (〈Li, Lj〉, {((ei, ej), a) | ∃((e1, . . . , en), a) ∈ R • (ei 6= − ∨ ej 6= −)})

Pair characterises a deadlock as a state of the system that is fully consistent
with local reachability and blocking information. We call it a Pair candidate.

Definition 6. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine, and
(S,Σ,∆, ŝ) its induced LTS. A state s = (s1, . . . , sn) ∈ S is a Pair candidate iff
pair candidate(s) holds, where:

3

s0 s1 s2

tk1,0
tk2,0

work0

tk0,1
tk0,2

s0 s1 s2

tk0,1
tk2,1 work1

tk1,0
tk1,2

s0 s1 s2

tk0,2
tk1,2 work2

tk2,0
tk2,1

Fig. 1. LTSs of components L0, L1, and L2, respectively.

– pair candidate(s) =̂ pairwise reachable(s) ∧ blocked(s)
– pairwise reachable(s) =̂ ∀ i, j ∈ {1 . . . n} | i 6= j • reachablei,j((si, sj))
reachablei,j is the reachable predicate for the pairwise projection Si,j.

The analysis of pairs of components cannot precisely characterise reachabil-
ity; Pair approximates reachability with pairwise reachable(s). This limitation
makes this technique unable to show unreachability if that is due to some global
property of the system’s behaviour.

To cope with this inability, some incomplete frameworks combine the use
of local analysis with some system invariants [4, 15]. However, these techniques
rely on a degree of predicability in how individual components interact. So,
they often work well on token rings where tokens take a predictable route
round the network, but they do not seem to do so on more complex uses of
tokens. The following two deadlock-free systems employ a token mechanism where
components can dynamically choose which other component to pass a token to;
this unpredictability make these techniques unable to prove them deadlock free.

Running example 1. Let S = (〈L0, L1, L2〉,R) be the supercombinator machine
with L0, L1 and L2 defined in Figure 1 and R the set of rules that require
components to synchronise on shared events; e.g. for event tk0,1, we have rule
((tk0,1, tk0,1,−), tk0,1). An arrow with two labels represents two transitions with
the same source and target states but with different labels. S implements a token
network where process L0 has the token initially and event tki,j represents the
passage of a token from Li to Lj . Both Pair and the techniques in [4] are unable
to show (s1, s2, s2) unreachable, so they consider it a deadlock candidate. ut
Running example 2. Let S = (〈L0, L1, L2〉,R) be the supercombinator machine
with L0, L1 and L2 defined in Figure 2 and R the set of rules that requires
components to synchronise on shared events except for τ that can be performed
independently. Component i can receive a message (i.e. a token) either from
component j, via event tkj,i, or from its user, via event ini. If it holds a message,
it can pass the message to component j, via event tki,j , or output the message
to its user, via outi. The τ transitions represent an internal (non-deterministic)
decision of the component. Neither Pair nor the techniques in [4] can show that
the state (s6, s6, s6) is unreachable, so they flag it as a potential deadlock. ut

4 Detecting Token Structures and Invariants using SAT

Many concurrent systems use some sort of token mechanism to guide interactions
between components and avoid undesired behaviours. In this section, we present

4

s0 s1

s2

s3

s4

s5

s6

ini

tki⊕1,i

tki⊕2,i

τ

τ

tki⊕1,i

tki⊕2,i

outi

tki⊕1,i

tki⊕2,i

tki,i⊕1

tki,i⊕2

τ

outi

τ

tki,i⊕1

tki,i⊕2

Fig. 2. LTS of component Li where ⊕ represents addition modulo 3.

two techniques that interpret concurrent systems as token networks, trying to
understand how virtual tokens might flow in these systems. We use “virtual” as
tokens are not part of the system itself but rather an element of the abstract
token mechanism it employs. Each technique assumes a particular policy that
controls how tokens can flow. So, our techniques try to mark in which component
states a component holds a token; this marking represents a token flow. This
marking is later used to create reachability invariants (i.e. predicates over system
states that over-approximate reachability) for the system under analysis.

4.1 Conservative Technique

Each technique proposes a SAT formula F with a boolean variable ti,s for each
state s of each component i such that the values for these variables in a satisfying
assignment creates a marking of the component states. The boolean value assigned
to ti,s represents whether the component i is holding a virtual token at state s or
not. F is a conjunction of three sub-formulas: Policy, NotAlwaysHoldingToken
and Participation.

Policy enforces a token-flow policy; it dictates how tokens are manipulated
when components (inter)act (i.e. a system transition takes place). As the system
being analysed is triple disjoint, either a component acts on its own (i.e. an
individual transition takes place) or a pair of components agrees on a rule and
interact (i.e. a pairwise transition takes place). So, this sub-formula relies on
constraint enci(s, s

′) to dictate how tokens are to be manipulated by individual
transitions, whereas enci,j(s, s

′) is its counterpart for pairwise transitions.
The first technique we propose, which we refer to as the conservative technique,

implements a token-conservation policy. For an individual transition (s, s′) of
component i, enci(s, s

′) is as follows.

enci(s, s
′) =̂ ti,s ↔ ti,s′ (1)

For a pairwise transition (s, s′) =̂ ((s0, s1), (s′0, s
′
1)) involving components i

and j, enci,j(s, s
′) is as follows. It allows exchanges of tokens between i and j.

5

It relies on the auxiliary variables maxsrc, minsrc, maxtgt, and mintgt to count
the number of tokens in the source s and target s′ states, respectively.

enci,j(s, s
′) =̂ maxsrc ↔ (ti,s0 ∨ tj,s1) ∧ maxtgt ↔ (ti,s′0 ∨ tj,s′1)

∧ minsrc ↔ (ti,s0 ∧ tj,s1) ∧ mintgt ↔ (ti,s′0 ∧ tj,s′1)
∧ maxsrc ↔ maxtgt ∧ minsrc ↔ mintgt

(2)

Policy ensures a token-policy by making sure that for all system transitions
either enci or enci,j is enforced, according to whether the transition is individual
or pairwise, respectively. Thanks to triple-disjointness, the transitions of system
S can be efficiently over-approximated by the examination of components, or
rather component projections Si, and pairs of interacting components, or rather
pairwise projections Si,j as per Definition 5.

Definition 7. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine. The
component projection Si of the machine S on components i is given by:

Si = (〈Li〉, {((ei), a) | ∃((e1, . . . , en), a) ∈ R • ei 6= −})

For a component projection Si, transitions of its induced LTS that are derived
from pure-individual rules (i.e. rules that come from individual rules in S)
represent possible system transitions, whereas transitions derived from truncated
rules (i.e. rules that come from pairwise rules of S that involve i and another
component of the system) do not. For pairwise projections Si,j , only transitions
derived from pairwise rules in Si,j represent possible system transitions.

Definition 8. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine, ∆i

the transition relation of the LTS induced by component projection Si, ∆i,j the
transition relation of the LTS induced by pairwise projection Si,j, and Sync the
set of pairs of components interacting, i.e. participating together in a rule, in S.

Policy =̂ (
∧

i∈{1...n}
∧(s,a,s′)∈∆i

∧indi(s,s′)

enci(s, s
′)) ∧ (

∧
(i,j)∈Sync
∧(s,a,s′)∈∆i,j

∧pairi,j(s,s′)

enci,j(s, s
′))

where indi(s, s
′) holds iff (s, s′) is a transition derived from a pure-individual

rule of Si involving component i, and pairi,j(s, s
′) holds iff (s, s′) is a transition

derived from an pairwise rule of Si,j.

Lemma 1. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine, ∆ the
transition relation of its induced LTS, ∆i,j the transition relation of the LTS
induced by component projection Si,j, and si the i-th element in s.

For r a pairwise rule in which components i and j participate,
if (s, a, s′) ∈ ∆ is derived from r, then ((si, sj), a, (s

′
i, s
′
j)) ∈ ∆i,j

Proof. Follows from the definition of a pairwise projection and its LTS. ut

Lemma 2. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine, ∆ the
transition relation of its induced LTS, ∆i the transition relation of the LTS
induced by component projection Si, and si the i-th element in s.

6

For r a individual rule in which component i participates,
if (s, a, s′) ∈ ∆ is derived from r, then ((si), a, (s

′
i)) ∈ ∆i

Proof. Follows from the definition of a component projection and its LTS. ut

The sub-formulas NotAlwaysHoldingToken and Participation forbid some
trivial markings (i.e. in which tokens do not get exchanged between components)
from being valid assignments for our formula. The NotAlwaysHoldingToken
sub-formula forbids assignments where some component always holds a token,
though we do permit components that never hold a token. Participation requires
the system to hold at least one token initially. To implement Participation, we
create the participation variables pi. In a satisfying assignment, the variable pi
states whether component i participates on the token-flow represented by this
assignment. These variables play an important role as we present later.

Definition 9. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine where Si
and ŝi gives the set of states and the starting state of component Li, respectively.

NotAlwaysHoldingToken =̂
∧

i:{1...n}
(
∨
s:Si

¬ti,s)

Participation =̂
∧

i:{1...n}
(pi ↔ (

∨
s:Si

ti,s)) ∧
∨

i:{1...n}
ti,ŝi

For the conservative technique, we end up with the following formula:

Definition 10. For the supercombinator machine S,

F =̂ Policy ∧ NotAlwaysHoldingToken ∧ Participation

where Policy uses enci and enci,j as defined in (1) and (2), respectively.

This technique uses function FindMarkings in Algorithm 1 to systematically
find markings for different parts of our systems. For this algorithm, we use the
function Solve to solve SAT formulas. It returns whether the formula is satisfiable
and updates the global field A with a satisfying assignment. When Solve is
called for an unsatisfiable formula, A is not updated. We use A(var) to denote
the value assigned to variable var on the satisfying assignment A.

The call to Solve in FindMarkings tries to find a marking for some subsys-
tem (i.e. a subset of components) of the system S. Note that the Participation
clause only requires some subsystem of S to participate in a token-flow. If a
marking is found, it is minimised by Minimise. The minimal marking is, then,
recorded by ExtractMarking. We modify our formula at the end of each
iteration to ensure that in the next iteration we look for a marking for a different
subsystem; this also guarantees that our function terminates.

Minimise iteratively minimises the subsystem currently marked (i.e. the com-
ponents that participate in the token-flow associated with the current satisfying
assignment in A), making sure a component in this subsystem holds a token
initially, until a minimal subsystem is found. It begins with the subsystem marked
by FindMarkings, and at each iteration, it tries to mark a strictly smaller

7

Algorithm 1 Algorithm to find conservative token-structures

1: function FindMarkings(S)
2: partition := ∅; marking := ∅
3: Construct F for S
4: while Solve(F) do
5: Minimise(F)
6: ExtractMarking(A)
7: F := F ∧ (

∧
i:{1...n}∧A(pi)

¬pi)

8: end while
9: end function

10: function Minimise(F)
11: repeat
12: F := F ∧ (

∨
i∈{1...n}
∧A(pi)

¬pi) ∧ (
∨

i∈{1...n}
∧A(pi)

ti,ŝi) ∧ (
∧

i∈{1...n}
∧¬A(pi)

¬pi)

13: until not Solve(F)
14: end function

15: function ExtractMarking(A)
16: partitions := partitions ∪ {{i | i ∈ {1 . . . n} ∧ A(pi)}}
17: marking := marking ∪ {(i, s,A(ti,s)) | i ∈ {1 . . . n} ∧ s ∈ Si ∧ A(pi)}
18: end function

subsystem. Finally, ExtractMarking records in the global fields partitions
and marking the subsystem marked and the marking itself.

The proposed minimisation attempts to more finely capture the behaviour of
systems. Small(er) subsystems imply that we know more precisely where tokens
are confined, and so, we have a better understanding on how tokens can move
around. For instance, we can better identify illegal behaviours such as a token
that has moved between two confined subsystems.

We use the information recorded in partitions and marking to create reach-
ability invariants. As we enforce the preservation of the number of tokens for any
system transition, all reachable states must have the same number of tokens. So,
we can calculate the number of tokens at the initial state and use it to enforce
this sum invariant ; we systematically enforce it for each subsystem in partitions.

Definition 11. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine where
ŝi is the starting state for Li, partitions and marking the sets recorded after the
execution of FindMarkings(S) in Algorithm 1, and marking(i, s) yields 1 if
the state s of component i is assigned to true, and 0 otherwise. The reachability
invariant reachC(s) is as follows:

reachC(s) =̂ ∀ sub ∈ partitions • N(sub) = Tks(sub, s)

where N(sub) =̂
∑
i∈sub

marking(i, ŝi), and Tks(sub, s) =̂
∑
i∈sub

marking(i, si).

Lemma 3. reachable(s)⇒ reachC(s)

8

Proof. Let sub be a subsystem in partitions. For ŝ the starting state of the LTS
induced by system S, we have trivially that N(sub) = Tks(sub, ŝ). Each transition
preserves this invariant, that is, if (s, a, s′) ∈ ∆ then Tks(sub, s) = Tks(sub, s′).
This is guaranteed by Policy. As we require triple disjointness, (s, a, s′) ∈ ∆ is
derived either from a individual rule or a pairwise one.

Let us assume that (s, a, s′) is derived from an individual rule in which
component i participates. Thanks to Lemma 2 and to Policy, we have that
marking(i, si) = marking(i, s′i). As for all other components j we have sj = s′j ,
we end up with Tks(sub, s) = Tks(sub, s′).

Now we assume (s, a, s′) is derived from a pairwise rule in which component i
and j participate. Thanks to Lemma 1 and Policy, we have that marking(i, si) +
marking(j, sj) = marking(i, s′i) +marking(j, s′j). As for all other components
k we have sk = s′k, we end up with Tks(sub, s) = Tks(sub, s′). ut

This technique should be particularly useful when applied to systems that
implement a token-conservation mechanism to avoid reaching undesired states.
We illustrate the application of this technique with Running Example 1.

Running example 1. FindMarkings(S) can result in partitions = {{0, 1, 2}}
and marking = {(0, s0), (0, s1), (1, s1), (1, s2), (2, s1), (2, s2)}; for conciseness, we
represent a marking by the states that are assigned to true, so the missing
states are assigned to false. With this information, we create the invariant
reachC(s) =̂ Tks(s, {0, 1, 2}) = 1. As we have that Tks((s1, s2, s2), {0, 1, 2}) = 3,
we have that this technique is able to prove that (s1, s2, s2) is unreachable. This
reachability invariant can show that this system can never be either filled with
tokens, as in (s1, s2, s2), or empty, as in (s2, s0, s0). As these are the two cases in
which this system is blocked, this technique can prove that S is deadlock-free. In
this example, S is a token network with three components and a single token,
initially held by L0. This technique can, in fact, show that similar systems with
N components and n (where 0 < n < N) tokens are deadlock-free. ut

4.2 Existential Technique

We term our second approach the existential technique. It enforces a token-flow
policy where tokens can be created and destroyed but not eliminated altogether.
We implement this new policy using the following definitions for enci and enci,j .
For an individual transition (s, s′) of component i, we define enci(s, s

′) as follows.
It says that such transitions can create but not destroy tokens.

enci(s, s
′) =̂ ti,s → ti,s′ (3)

For a pairwise transition (s, s′) =̂ ((s0, s1), (s′0, s
′
1)) involving components i

and j, i and j can create or destroy tokens, provided that whenever a token is
destroyed one of i and j continues to hold one. Thus the only way a token can be
destroyed is in a pairwise transition where both parties hold a token before and

9

only one after. The auxiliary variables hastksrc and hastktgt represent whether
a component holds a token in the source s and target s′ states, respectively.

enci,j(s, s
′) =̂ hastksrc ↔ (ti,s0 ∨ tj,s1) ∧ hastktgt ↔ (ti,s′0 ∨ tj,s′1)

∧ hastksrc ↔ hastktgt

(4)

So, for this technique, we have the following SAT formula:

Definition 12. For the supercombinator machine S,

F =̂ Policy ∧ NotAlwaysHoldingToken ∧ Participation

where Policy uses enci and enci,j as defined in (3) and (4), respectively.

The existential technique uses FindMarkings presented in Algorithm 2 to
systematically find markings. It works exactly like the one presented for the
conservative technique except that it does a second minimisation step, carried
out by FurtherMinimise. The functions Minimise and ExtractMarking
are as described in Algorithm 1.

While Minimise tries to minimise the subsystem being marked, Further-
Minimise tries to minimise the timespan in which components hold a token.
Given the minimal assignment found by Minimise, it tries to reduce the number
of component states where tokens are held1. This second minimisation is an
attempt to prevent the creation of spurious tokens; for instance, the creation of
unnecessary tokens by individual transitions. Again, markings and subsystems
marked are recorded in the global fields marking and partitions.

The information in partitions and marking is, once again, used to create
reachability invariants. Note that our token-flow policy allows tokens to be
destroyed as long as tokens are not completely annihilated from the system.
So, as this technique guarantees that at least a token exists initially, a token
should exists at all times. The reachability invariant that we propose enforce this
existential property for each subsystem in partitions.

Definition 13. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine where
ŝi is the starting state for Li, partitions and marking the sets recorded after the
execution of FindMarkings(S) in Algorithm 2, and marking(i, s) yields 1 if the
state s of component i is assigned to true, and 0 otherwise. Also, Tks(sub, s) =̂∑
i∈sub

marking(i, si). The reachability invariant reachE(s) is as follows:

reachE(s) =̂ ∀ sub ∈ partitions • Tks(sub, s) ≥ 1

Lemma 4. reachable(s)⇒ reachE(s)

Proof. Let sub be a subsystem in partitions. For ŝ the starting state of the LTS
induced by system S, we have by construction that Tks(sub, ŝ) ≥ 1; Minimise
ensures that at least one component in sub holds a token. Each transition preserves

1 Setting the polarity of SAT variables, so that the solver first decides to assign variables
to false, can substantially speed this minimisation process.

10

Algorithm 2 Algorithm to find existential token-structures

1: function FindMarkings(S)
2: partition := ∅; marking := ∅
3: Construct F for S
4: while Solve(F) do
5: Minimise(F)
6: FurtherMinimise(F)
7: ExtractMarking(A)
8: F := F ∧ (

∧
i∈{1...n}∧A(pi)

¬pi)

9: end while
10: end function

11: function FurtherMinimise(F)
12: repeat
13: F := F ∧ (

∨
i∈{1...n}∧A(pi)
∧s∈Si∧A(ti,s)

¬ti,s) ∧ (
∧

i:{1...n}∧A(pi)
∧s∈Si∧¬A(ti,s)

¬ti,s)

14: until not Solve(F)
15: end function

this invariant, that is, if (s, a, s′) ∈ ∆ and Tks(sub, s) ≥ 1 then Tks(sub, s′) ≥ 1.
This is guaranteed by Policy. Again, triple disjointness guarantees that (s, a, s′) ∈
∆ is derived either from a individual rule or a pairwise one.

Let us assume that (s, a, s′) is derived from an individual rule in which
component i participates. Thanks to Lemma 2 and to Policy, we have that
marking(i, s′i) ≥ marking(i, si). As for all other components j we have sj = s′j ,
we end up with Tks(sub, s′) ≥ Tks(sub, s). From Tks(sub, s′) ≥ Tks(sub, s) and
Tks(sub, s) ≥ 1, we can conclude Tks(sub, s′) ≥ 1.

Now we assume (s, a, s′) is derived from a pairwise rule in which compo-
nent i and j participate. Thanks to Lemma 1 and Policy, we have that if
marking(i, si) + marking(j, sj) ≥ 1 then marking(i, s′i) + marking(j, s′j) ≥ 1.
Assuming marking(i, si) +marking(j, sj) ≥ 1, we have Tks(sub, s′) ≥ 1. On the
other hand, if marking(i, si) +marking(j, sj) = 0, as we have Tks(sub, s) ≥ 1,
there must be a component k ∈ sub such that marking(k, sk) = 1. Hence, as for
all other components k we have sk = s′k, we end up with Tks(sub, s′) ≥ 1. ut

This technique should be particularly useful when applied to systems where
tokens represent property of components and the fact that at least one component
always has this property (i.e. a token) prevents the system from reaching a “bad”
state. We illustrate the application this technique with Running Example 2.

Running example 2. Applying FindMarkings to S can result in partitions =
{{0, 1, 2}} and

marking = {(0, s0), (0, s1), (0, s2), (0, s3), (1, s0), (1, s1),
(1, s2), (1, s3), (2, s0), (2, s1), (2, s2), (2, s3)}

11

With this information, we create invariant reachE(s) =̂ Tks(s, {0, 1, 2}) ≥ 1. For
this examples, we can interpret tokens as marking states in which the component
is not full, and the invariant being that all components cannot be full at the
same time. As we have that Tks((s6, s6, s6), {0, 1, 2}) = 0, this technique is able
to prove that (s6, s6, s6) is unreachable. As this state is the only on in which
the system is blocked, this technique can prove that S is deadlock-free. In this
example, S is a token network with three components, each of them has a two-slot
buffer to store messages. This technique can, in fact, show that similar systems
with N ≥ 3 components with b-slot buffers, where b ≥ 2, are deadlock-free. ut

5 Checking Deadlock-Freedom

In this section we combine Pair, a technique proposed in [3], with the new
reachability tests presented in Section 4. In this new framework, a potential
deadlock is a pair candidate that meets our new reachability invariants.

Definition 14. Let S be a supercombinator machine and (S,Σ,∆, ŝ) its induced
LTS. A state s ∈ S is a deadlock candidate iff deadlock candidate(s) holds,
where deadlock candidate(s) =̂ pair candidate(s) ∧ reachC(s) ∧ reachE(s).

Given that our reachability tests over-approximate reachability and that every
deadlock is also a Pair candidate [3], every deadlock must also be a deadlock
candidate. So, a system free of deadlock candidates has to be deadlock free.

Theorem 1. If a supercombinator machine is deadlock-candidate free, then it
must also be deadlock free.

Proof. This follows from the fact that every deadlock is also a Pair candidate [3],
and Lemmas 3 and 4.

Our new characterisation is clearly more precise than the Pair one, but
it remains imprecise: a blocked state can be unreachable and yet meet our
two reachability invariants. Nevertheless, by conjoining these new reachability
tests, we tighten the state space analysed. Observe that it only takes one failed
test to consider a state unreachable. Furthermore, we note that the techniques
presented in Section 4 might generate different reachability invariants for the
same system. This means that we might have different outcomes when verifying
systems with this deadlock-checking technique. We illustrate the unpredictability
and incompleteness of our method with the following example.

Example 1. Let S = (〈L1, L2, L3〉,R) be the supercombinator machine such that
L1, L2 and L3 are described in Figure 3 andR requires components to synchronise
on shared events. The states (p0, q0, r1) and (p1, q1, r2) are blocked but not
reachable, so neither of them represents a deadlock. Let us consider partition =
{1, 2, 3}, marking = {p1, q1, r0, r2} and marking′ = {p0, q0, r0, r1}. For S, the
conservative technique cannot find any markings, while the existential technique
might compute either partition and marking or partition and marking′. If it

12

p0 p1

a

b

q0 q1

b

c r0

r1

r2

a

c

c a

Fig. 3. LTSs of components L1, L2 and L3, respectively.

computes marking, then (p0, q0, r1) is proved unreachable but not (p1, q1, r2). In
case marking′ is computed, (p1, q1, r2) is proved unreachable but not (p0, q0, r1).
As it cannot use marking and marking′ simultaneously, it cannot show that S
is deadlock free. It could with a slightly modification in our techniques. ut

5.1 Implementation

We built upon [3] to create an efficient implementation for our framework.
So, we encode the search for a deadlock candidate as a satisfiability problem
to be later checked by a SAT solver. For the remainder of this section, let
S = (〈L1, . . . , Ln〉,R), where Li = (Si, Σi, ∆i, ŝi), be a supercombinator machine,
and (S,Σ,∆, ŝ) its induced LTS.

In our propositional encoding, sti,s is the boolean variable representing the
state s of component i. The assignment sti,s = true indicates this component
state belongs to a deadlock candidate, whereas sti,s = false means it does
not. Our formula DC =̂ PC ∧ ReachC ∧ ReachE is a conjunction of three
sub-formulas, each of them captures a predicate of our deadlock characterisation.
The combination of component states assigned to true in a satisfying assignment
of DC forms a deadlock candidate.

The first sub-formula PC captures the pair-candidate characterisation; we
reuse the propositional formula that is presented in [3]. The component states
assigned to true in a satisfying assignment for PC form a Pair-candidate.

ReachC and ReachE capture the reachability invariants reachC and reachE ,
respectively. To encode Reachx where x in {C,E}, we encode the markings
with Markingx and the associated cardinality constraints with Cardinalityx.
In the following, we assume partitionsC and markingC were generated by our
conservative technique, and partitionsE and markingE by the existential one.

Markingx, where x is C or E, uses a boolean variable tkix for each component
i (tkix conveys whether component i holds a token) to encode the information
recorded in markingx, i.e. in which states components hold tokens.

Markingx =̂
∧

i∈{1...n}∧s∈Si

sti,s →
{

tkix if (i, s, true) ∈ markingx
¬tkix if (i, s, false) ∈ markingx

The cardinality constraint CardinalityC uses the variables tkiC to make sure
that, in a satisfying assignment, subsystems in partitions have their expected

number of tokens. Let sub be a subsystem in partitionsC , tk
sub

C the vector of

13

variables tkiC such that i ∈ sub, xsub a vector of fresh boolean variable of size
|sub|, and Nsub

C =
∑
i∈submarkingC(i, ŝi) the number of tokens confined in sub.

Constraint Sort(tk
sub

C , xsub) makes sure that xsub is the result of sorting the

values assigned to tk
sub

C , i.e. true values come first. We use odd-even-merging
sorting networks [7] to implement this sorting; they tend to provide a better
compromise between the size of the encoding and the efficiency in which these

constraints are checked [9]. Intuitively, tk
sub

C is a unary-unordered representation
of the number of tokens being held by components in sub, whereas xsub gives its
unary-ordered representation. Constraint Eq(xsub, Nsub

C) ensures that xsub is the
unary-ordered representation of number Nsub

C .

CardinalityC =̂
∧

sub∈partitionsC

Sort(tk
sub

C , x̄sub) ∧ Eq(xsub, Nsub
C)

For instance, if in a satisfying assignment we have tk
sub

C = (true, false, true)
(i.e. 101, a unary-unordered representation of 2), Sort makes sure that xsub =
(true, true, false) (i.e. 110, the unary-ordered representation of 2).

The cardinality constraint CardinalityE uses the variables tkiE to ensure
that, in a satisfying assignment, subsystems in partitions have at least one token.
The “at least one token is being held” restriction is a trivial case of a cardinality
constraint that can be implemented without need to sorting networks.

CardinalityE =̂
∧

sub∈partitionsE

(
∨
i∈sub

tkiE)

6 Practical Evaluation

We here evaluate our new framework. FDR3’s ability to analyse CSP and generate
supercombinator machines is exploited in generating our SAT encoding, which is
then checked by the Glucose 4.0 solver [6]. Our framework, implemented as the
new DeadlOx-VT mode in the DeadlOx tool [4], detects both types of structures
and combine them to prove deadlock-freedom2. A prototype of this tool and
the models used in this section are available at [2]. For this experiment, we
checked deadlock freedom for some CSP benchmark problems. The experiment
was conducted on a dedicated machine with a quad-core Intel Core i5-4300U
CPU @ 1.90GHz, and 8GB of RAM. We compare our prototype against: CSDD
and FSDD (which are implemented in Martin’s Deadlock Checker tool [15]);
the original DeadlOx mode [4]; FDR3’s built-in deadlock freedom assertion
(FDR3) [10], and its combination with partial order reduction (FDR3p) [11] or
compression techniques (FDR3c) [17]. We point out that only FDR3’s techniques
take advantage of the multicore setting, as our prototype is sequential.

2 Note that the conditions for the conservative technique imply those for the existential
one. So, a system that has a conservative invariant must have a existential one as
well. We plan to improve our tool by, first, detecting conservative structures, and
then only in case the invariants derived from these structures are not strong enough
to prove deadlock-freedom, we would search for existential structures.

14

Incomplete Complete

N DeadlOx
DeadlOx-VT

CSDD FSDD FDR3c FDR3p FDR3
DF Co Ex

DDB
5 0.14 - x 0.02 - - 0.31 0.18 0.15
10 1.61 - x 0.47 - - * * *
20 57.75 - x 19.13 - - * * *

Mat
10 3.68 - 0.05 0.05 0.17 - 15.52 0.29 *
20 48.19 - 0.37 0.30 0.59 - * 22.43 *
30 * - 1.97 1.14 2.08 - * * *

Ring
500 0.80 1.34 x 0.22 - 0.86 0.64 * *
1000 2.38 4.47 x 0.50 - 2.63 1.49 * *
1500 5.02 9.83 x 0.88 - 5.93 6.68 * *

Sched
500 0.55 0.82 0.19 0.23 0.45 - 3.05 103.26 *
1000 1.29 2.23 0.55 0.73 0.84 - 8.72 * *
1500 2.29 4.76 1.31 1.62 1.30 - 20.06 * *

Tk
50 0.78 1.08 0.22 0.21 - - + 45.62 11.85
100 5.84 7.40 1.43 1.35 - - + * *
200 66.44 76.11 11.23 11.84 - - + * *

Tk2
50 0.75 1.05 0.21 0.21 - - + * *
100 5.71 7.56 1.40 1.46 - - + * *
200 63.74 79.13 12.62 12.91 - - + * *

Tck
100 - 0.48 0.09 0.09 - - 20.56 2.30 1.30
200 - 1.16 0.22 0.18 - - 209.96 23.84 9.24
500 - 4.85 0.67 0.58 - - * * 177.07

Tck2
100 - 0.55 0.09 0.09 - - 20.66 * *
200 - 1.24 0.21 0.22 - - 209.96 * *
500 - 5.03 0.66 0.54 - - * * *

RC
30 - 18.81 4.59 4.50 - - + * 5.65
40 - 79.52 19.00 18.61 - - + * 36.05
50 - 241.36 54.97 54.69 - - + * 134.58

RC2
30 - 19.08 4.66 4.52 - - + * *
40 - 79.95 19.05 19.15 - - + * *
50 - 243.39 55.88 55.58 - - + * *

RE
25 - 0.80 x 0.21 - - + * *
50 - 5.21 x 1.42 - - + * *
100 - 38.86 x 10.64 - - + * *

RE10
30 - 20.18 x 5.94 - - + * *
40 - 44.93 x 13.09 - - + * *
50 - 87.53 x 26.30 - - + * *

Table 1. Benchmark efficiency comparison. N is a parameter that is used to alter the
size of the system. We measure in seconds the time taken to check deadlock freedom
for each system. * means that the method took longer than 300 seconds. - means that
the method is unable to prove deadlock freedom. + means that no efficient compression
technique could be found. For the DeadlOx-VT, we present the total time taken to verify
deadlock-freedom in column DF, whereas columns Co and Ex present the time taken for
token-structure detection by the conservative and existential techniques, respectively,
and x means that a token-structure has not been detected. There was no significant
difference between the time taken by successful and failed detections of token structures.

15

We analyse 12 systems that are deadlock free, triple disjoint and cannot be
proved deadlock-free by pure local analysis. We evaluate systems that cannot
be proved deadlock free by pure local analysis as we want to evaluate how well
incomplete techniques can leverage global invariants. Out of these systems, 10
can be proved deadlock free by DeadlOx-VT, 6 by DeadlOx, 2 by CSDD, and 1
by FSDD. The systems that we evaluated are: a distributed database (DDB), a
matrix multiplication system (Mat), a non-fillable ring system (Ring), Milner’s
scheduler (Sched), a token ring system with a single token (Tk), a token ring
system with N/2 tokens (Tk2), a train track system with two trains (Tck), a train
track system with 2N trains (Tck2), and four routing networks: RC and RC2
implement a conservative token mechanism with two and N/2 tokens intially,
respectively, whereas RE and RE10 implement an existential token structure
with components that have two-slot and 10-slot buffers, respectively. Table 1
presents the results that we obtain for them.

Our results attest that DeadlOx-VT is able to handle a class of systems that
is different from the one tackled by the original DeadlOx, while faring similarly
in terms of analysis time. Comparing to the complete approaches, incomplete
frameworks are consistently faster than the best complete approach, which is the
combination of FDR3’s deadlock assertion with compression techniques, while
being able to prove deadlock freedom for all the benchmark problems. We point
out, however, that the effective use of compression techniques requires a careful
and skilful application of those, whereas our method is fully automatic.

7 Conclusion

Motivated by deadlock analysis, we have demonstrated that token structures of
concurrent systems, sometimes too subtle to be obviously recognisable as such,
can be recognised by SAT checkers and used to prove safety properties of the
system concerned. We have identified two types of token structures: the first
one makes sure that tokens are conserved, and the second one ensures at least
one token is present in the system at all times. While we have interpreted these
structures as token mechanisms, there might be other views to them. For instance,
as we discussed in the application of our existential technique to Running Example
2, tokens can be seen as the component property “component is not full”.

In the case of deadlock checking, our token-structure-detection techniques can
be used to create not only a useful framework for deadlock-freedom analysis but
one that improves the precision of current incomplete locally-based frameworks.
Our experiments have confirmed the usefulness of our new framework, showing
deadlock freedom for classes of systems our previous local analysis tools could
not handle. They have also demonstrated that, for the systems analysed, the
SAT calculations used to detect token structures can be carried out efficiently.

There is nothing CSP-specific in our methods, other than that we have a
systems described as a pairwise interacting LTSs. So, the ideas in this paper
should transfer easily to any formalism where systems are described as such.
DeadlOx-VT uses FDR3 to obtain supercombinator machines from systems

16

described using CSP, but an analogous tool could be created for other notations
by replacing its use of FDR3 to generate such machines.

This work begs a number of questions. What other uses, besides deadlock-
checking, do the types of invariant we have identified have? What other sorts
of invariants are there where partitioning of component states can be efficiently
calculated? An obvious one is to handle token systems where nodes can have
more than one token, or where there are multiple tokens with different properties.
We will aim to answer these questions in future research.
Acknowledgments The first author is a CAPES Foundation scholarship holder
(Process no: 13201/13-1). The second and third authors are partially sponsored by
DARPA under agreement number FA8750-12-2-0247 and EPSRC under agreement
number EP/N022777.

References

1. Tilak Agerwala and Y-C Choed-Amphai. A synthesis rule for concurrent systems.
In Design Automation, 1978. 15th Conference on, pages 305–311. IEEE, 1978.

2. Pedro Antonino, Thomas Gibson-Robinson, and A. W. Roscoe. Experiment package,
2016. http://www.cs.ox.ac.uk/people/pedro.antonino/pkg-vt.zip.

3. Pedro Antonino, Thomas Gibson-Robinson, and A.W. Roscoe. Efficient deadlock-
freedom checking using local analysis and SAT solving. In IFM, number 9681 in
LNCS, pages 345–360. Springer, 2016.

4. Pedro Antonino, Thomas Gibson-Robinson, and A.W. Roscoe. Tighter reachability
criteria for deadlock freedom analysis. 2016.

5. Krzysztof R. Apt, Nissim Francez, and Willem P. De Roever. A proof system for
communicating sequential processes. ACM Transactions on Programming Languages
and Systems (TOPLAS), 2(3):359–385, 1980.

6. Gilles Audemard and Laurent Simon. Predicting Learnt Clauses Quality in Modern
SAT Solvers. IJCAI’09, pages 399–404, San Francisco, CA, USA, 2009.

7. K. E. Batcher. Sorting networks and their applications. In Proceedings of the April
30–May 2, 1968, Spring Joint Computer Conference, AFIPS ’68 (Spring), pages
307–314, New York, NY, USA, 1968. ACM.

8. Saddek Bensalem and Yassine Lakhnech. Automatic Generation of Invariants.
Form. Methods Syst. Des., 15(1):75–92, July 1999.

9. Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into SAT.
JSAT, 2(1-4):1–26, 2006.

10. Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, and A.W.
Roscoe. FDR3 — A Modern Refinement Checker for CSP. In TACAS, volume
8413 of LNCS, pages 187–201, 2014.

11. Thomas Gibson-Robinson, Henri Hansen, A.W. Roscoe, and Xu Wang. Practical
partial order reduction for CSP. In NFM, volume 9058 of LNCS, pages 188–203.
Springer International Publishing, 2015.

12. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
13. Leslie Lamport. Proving the correctness of multiprocess programs. Software

Engineering, IEEE Transactions on, (2):125–143, 1977.
14. Jeremy M. R. Martin. The Design and Construction of Deadlock-Free Concurrent

Systems. PhD thesis, University of Buckingham, 1996.

17

15. J.M.R. Martin and S.A. Jassim. An efficient technique for deadlock analysis of
large scale process networks. In FME ’97, pages 418–441, 1997.

16. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, Apr 1989.

17. A. W. Roscoe, Paul H. B. Gardiner, Michael Goldsmith, J. R. Hulance, D. M.
Jackson, and J. B. Scattergood. Hierarchical compression for model-checking CSP

or how to check 1020 dining philosophers for deadlock. In TACAS, pages 133–152,
1995.

18. A.W. Roscoe. Understanding Concurrent Systems. Springer, 2010.

18

