
Efficient Deadlock Checking using Local
Analysis and SAT Solving — Technical Report

Pedro Antonino, Thomas Gibson-Robinson, and A.W. Roscoe

Department of Computer Science, University of Oxford, UK
{pedro.antonino,thomas.gibson-robinson,bill.roscoe}@cs.ox.ac.uk

Abstract. We build upon established techniques of deadlock analysis
by formulating a new sound but incomplete framework for deadlock
freedom analysis that tackles some sources of imprecision of current
incomplete techniques. Our new deadlock candidate criterion is based
on constraints derived from the analysis of the state space of pairs of
components. This new characterisation represents an improvement in the
accuracy of current incomplete techniques; in particular, non-hereditary
deadlock-free systems, which are neglected by most incomplete techniques,
are tackled by our framework. Furthermore, we demonstrate how SAT
checkers can be used to efficiently implement our framework in a way
that, typically, scales better than current techniques for deadlock analysis.
This is demonstrated by a series of practical experiments.

1 Introduction

Deadlock freedom usually corresponds to a first step towards analysing the cor-
rectness of a concurrent system. A system is deadlock free if and only if it cannot
reach a state in which it is stuck. Moreover, many safety properties can be reduced
to verifying deadlock freedom of modified systems [11]. Unsurprisingly, even when
restricted to deadlock analysis, existing automated verification techniques still
suffer from the state explosion problem.

Incomplete techniques for deadlock analysis [5, 14, 13] have been proposed in
attempts to circumvent the state explosion problem. These frequently scale far
better than the full state analysis required by model checking, and are sound
in proving deadlock freedom, but (i) tend not to provide examples of deadlocks
when they fail and (ii) can fail even for some deadlock-free systems: the latter is
what is meant by “incomplete”. One can see this incompleteness as the price to
pay for achieving scalability.

Current incomplete techniques are built around the principle that a deadlock
state, under reasonable assumptions, always presents a cycle of ungranted re-
quests between components of the system1. An ungranted request arises from a
component to another if and only if the former is trying to communicate with the

1 Depending on the properties of the underlying communicating system, one might
be able to restrict such cycles to proper cycles which have at least three nodes, and
where all the nodes are distinct.

latter, but they cannot agree on any event. To prove the absence of such a cycle,
these methods rely on local properties of the system, derived from the analysis
of individual components or pairs of them, to (either explicitly or implicitly)
construct and analyse a dependency graph. These approaches have two important
sources of imprecision. Firstly, under our assumptions, a cycle is a necessary
condition for a deadlock state but not a sufficient one. So, despite being deadlock
free, some deadlock-free systems are bound to present these cycles and, as such,
they cannot be handled by these methods. For instance, non-hereditary deadlock
free systems, namely, deadlock-free systems whose subsystems might deadlock,
cannot be tackled by current techniques using local analysis. Secondly, to keep
the analysis of these dependency graphs efficient, some local properties that
could be used to improved accuracy are ignored because they focus on proposing
polynomially checkable conditions in terms of the local information collected.

In this paper, we present a new incomplete method for establishing deadlock
freedom that alleviates the mentioned sources of imprecision of current techniques.
Instead of looking for cycles, we look for complete snapshots of the system that
are fully consistent with derived local properties. A complete snapshot is an
assignment of component states to components that depicts a possible state of the
concurrent system. Unlike others, our method uses a condition that is not known
to be polynomially checkable. While unsurprising in itself, this new criterion has
proved to be efficiently determinable using the power of SAT checking. Our work
has been inspired by Martin’s definition of the State Dependency Digraph [14]
(see Section 3), and by the successful use of SAT checkers for livelock analysis
reported in [16].

Outline. Section 2 briefly introduces CSP’s operational semantics, which is the
formalism upon which our strategy is based. However, this paper can be under-
stood purely in terms of communicating systems of LTSs, and knowledge of CSP
is not a prerequisite. Section 3 presents some current incomplete techniques for
deadlock analysis. In Section 4, we introduce our technique. Section 5 outlines
the complexity of our method, whereas Section 6 outlines the accuracy of our
method. In the following section, we give an encoding of our deadlock-freedom
analysis as a SAT problem. Section 8 presents some experiments conducted to
assess the accuracy and efficiency of our framework. Finally, in Section 9, we
present our concluding remarks.

2 Background

Communicating Sequential Processes (CSP) [12, 19] is a notation used to model
concurrent systems where processes interact, exchanging messages. Here we de-
scribe some structures used by FDR in implementing CSP’s operational semantics.
As this paper does not depend on the details of CSP, we do not describe the
details of the language or its semantics. These can be found in [19].

2

CSP’s operational semantics interpret language terms in a labelled transition
system (LTS)2.

Definition 1. A labelled transition system is a 4-tuple (S,Σ,∆, ŝ) where:

– S is a set of states;
– Σ is the alphabet (i.e. a set of events);
– ∆ ⊆ S ×Σ × S is a transition relation;
– ŝ ∈ S is the starting state.

For the purposes of this paper, the events τ (the silent event) and X (the
termination signal) are considered members of Σ, since there is no difference
between them and regular events for the purpose of deadlock analysis, and their
behaviour can be accommodated in the supercombinator framework we use.

As a convention, Σ− =̂ Σ∪{−}, where − /∈ Σ. We write s
e−→ s′ if (s, e, s′) ∈

∆. There is a path from s to s′ with the sequence of events 〈e1, . . . , en〉, represented

by s
〈e1,...,en〉−−−−−−→ s′, if there exist s1, . . . , sn−1 such that s

e1−→ s1 . . . sn−1
en−→ s′. A

trace of a transition system is a path such that the initial state is ŝ.
While CSP, in common with many other languages, can have its operational

semantics given in SOS style, FDR represents them as combinators, a nota-
tion which is itself compositional and allows complex CSP constructs, including
communicating systems, to be represented as supercombinator machines. A super-
combinator machine consists of a set of component LTSs along with a set of rules
that describe how the transitions should be combined. A rule combines transitions
of (a subset of) the components and determines the event the machine performs.
We also use these machines to analyse the behaviour of communicating systems.
For simplicity in our analysis, we restrict FDR’s normal definition of supercombi-
nator machines in a way that corresponds to there being a static communicating
system with all communication between components being pairwise:

Definition 2. A triple-disjoint supercombinator machine is a pair (L,R) where:

– L = 〈L1, . . . , Ln〉 is a sequence of component LTSs;
– R is a set of rules of the form (e, a) where:
• e ∈ (Σ−)n specifies the event that each component must perform, where
− indicates that the component performs no event. e must also be triple-
disjoint, that is, at most two components must be involved in a rule.
∗ triple disjoint(e) =̂ ∀ i, j, k : {1 . . . n} | i 6= j ∧ j 6= k ∧ i 6= k •

ei = − ∨ ej = − ∨ ek = −
• a ∈ Σ is the event the supercombinator performs.

This restriction is similar to those adopted in related work to ours [14, 5].
Henceforth, we omit the mention of triple-disjoint.

Given a supercombinator machine, a corresponding LTS can be constructed.

2 FDR uses a more general representation of a process called a generalised labelled
transition system (GLTS). Nevertheless, this extension can be simply converted into
a traditional LTS and working with LTS makes our definitions considerably simpler.

3

Definition 3. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine where
Li = (Si, Σi, ∆i, ŝi). The LTS induced by S is the tuple (S,Σ,∆, ŝ) such that:

– S = S1 × . . .× Sn;
– Σ =

⋃n
i=1Σi;

– ∆ = {((s1, . . . , sn), a, (s′1, . . . , s
′
n)) | ∃((e1, . . . , en), a) : R • ∀ i : {1 . . . n} •

(ei = − ∧ si = s′i) ∨ (ei 6= − ∧ (si, ei, s
′
i) ∈ ∆i)}

;

– ŝ = (ŝ1, . . . , ŝn).

From now on, we use system state (component state) to designate a state in
the system’s (component’s) LTS.

Definition 4. A LTS (S,Σ,∆, ŝ) deadlocks in a state s if and only if deadlocked(s)
holds, where:

– deadlocked(s) =̂ reachable(s) ∧ blocked(s)

– reachable(s) =̂ ∃ tr : Σ∗ • ŝ tr−→ s

– blocked(s) =̂ ¬∃ s′ : S ; e : Σ • s e−→ s′

When considering the deadlock detection problem, for the sake of decidability,
we only analyse supercombinator machines with a finite number of components,
which are themselves represented by finite LTSs, and a finite number of rules.

3 Related Work

The authors of this paper have investigated the role played by local analysis in
establishing deadlock freedom in [17, 7, 3, 2]. These works introduce a formalisation
of design patterns that can be used for designing deadlock-free systems. Despite
being efficient, as these techniques analyse components in isolation, they can be
restrictive since only a handful of behavioural patterns are available.

In [5, 4, 13, 14], fully-automated incomplete techniques for deadlock freedom
are introduced. These techniques are proposed for different contexts and types of
concurrency: [5] proposes a method for analysing syntactically-restricted shared-
variable concurrent programs, [4] adapts [5] to a more general setting meant
to describe component-based message-passing systems, [13] proposes a method
for architecturally-restricted component-based systems interacting via message
passing, and [14] proposes a method for syntactically-restricted message-passing
concurrent systems. All these methods were designed, to some extent, around
the principle that, under reasonable assumptions about the system, any deadlock
state would contain a proper cycle of ungranted requests. So, to prove deadlock
freedom, they would use local properties of the system, derived from analysing
individual components and communicating pairs of components, to construct
an ungranted-requests graph and show that such a cycle cannot arise in any
conceivable state of the system.

4

To discuss in more detail how such approaches work, we present the SDD
framework3 developed by Martin in [14]. We regard our framework as a develop-
ment on the SDD. Martin’s analysis of SDDs is one of the most general previous
approaches to locally based deadlock analysis.

In that work, the local properties used to prove deadlock freedom are derived
from the analysis of pairs of components, or rather a projection of the system
over a pair of its components.

Definition 5. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine. The
pairwise projection Si,j of the machine S on components i and j is given by:

Si,j = (〈Li, Lj〉, {((ei, ej), a)|(e, a) ∈ R ∧ (ei 6= − ∨ ej 6= −)})

In Martin’s approach, a dependency digraph is constructed and then analysed
for absence of cycles. The dependency digraph constructed has a node for each
state of each component, and an edge from a state s of component i to a state s′

of component j if and only if reachablei,j((s, s
′)) and ungranted requesti,j(s, s

′)
hold. reachablei,j denotes the reachable predicate for the LTS induced by Si,j .
ungranted requesti,j(s, s

′) holds when, in their respective states (i in s and j
in s′), component i is willing to synchronise with j (according to Si,j), but they
cannot agree on any event.

Under the assumption that components neither terminate nor deadlock, a
cycle of ungranted requests is a necessary condition for a system deadlock. Hence,
the absence of cycles in the dependency digraph is a proof of deadlock freedom,
whereas a cycle represents a potential deadlock which we call a SDD candidate.

Definition 6. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine, where
Li = (Si, Σi, ∆i, ŝi). We assume U is the disjoint union of all Si and si,j denotes
the state j of the component i. A sequence of component states c ∈ U∗ is a
SDD candidate if and only if for all i ∈ {1 . . . |c|}, given that ci = sj,k and
ci⊕1 = sl,m, reachablej,l((sj,k, sl,m)) and ungranted requestj,l(sj,k, sl,m) hold,
where ⊕ denotes addition modulo the size of c.

This method can carry out deadlock-freedom verifications very efficiently: a
digraph can be shown to have no cycles in linear time using a modified depth-
first-search. This efficiency, however, comes with a price as the use of a cycle
as a candidate makes this method imprecise in several ways. Firstly, a cycle
might not be consistent with basic sanity conditions such as it must have a single
node per component, after all no component can be in two different states in
a single deadlock. Secondly, a cycle is only partially consistent with the local
reachability and local blocking properties derived from the analysis of pairs of
components. Note that only adjacent elements in the cycle are guaranteed to be
pairwise reachable and pairwise blocked. So, there may be local properties of
non-adjacent component states not tested for that might eliminate some SDD
candidate. Finally, a cycle, as a necessary condition, is bound to arise in some
deadlock-free systems. Thus, in such cases, this framework is ineffective. The

3 SDD stands for State Dependency Digraph.

5

reason why these sources of imprecision are not addressed is that these methods
look for polynomially checkable conditions for guaranteeing deadlock freedom
and tackling any of these sources of imprecision is likely to make the problem of
finding a candidate in the dependency digraph NP-complete.

4 A New Framework for Deadlock-freedom Verification
using Local Analysis

In this section, we propose a new framework that is meant to address the
mentioned sources of imprecision in current techniques. To achieve that, we
propose a new way of detecting potential deadlocks. Instead of looking for cycles,
we look for complete snapshots of the system that are fully consistent with
the local reachability and blocking information. A complete snapshot is a tuple
containing a component state per component in the system. So, a deadlock
candidate for this new framework, which call a pair candidate, is given as follows.

Definition 7. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine, and
(S,Σ,∆, ŝ) its induced LTS. A state s = (s1, . . . , sn) ∈ S is a pair candidate if
and only if pair candidate(s) holds, where:

– pair candidate(s) =̂ pairwise reachable(s) ∧ blocked(s)
– pairwise reachable(s) =̂ ∀ i, j : {1 . . . n} | i 6= j • reachablei,j((si, sj))

This new characterisation creates a framework that uses more information
to disprove potential deadlock candidates if compared to prior techniques using
pairwise analysis of components. By analysing complete snapshots, only complete
states of the system are examined, and as a consequence, our framework is able
to prove that systems possessing ungranted-requests cycles are deadlock free.

Two remarks about the blocked condition deserve mention. Firstly, the block-
ing condition seems to be global, but in fact, it can be validated using individual
and pairwise component analyses. As systems are triple disjoint, a state is blocked
if and only if all components neither perform an individual event or communicate
with another component. Secondly, this blocking condition is exact, so in our
framework, false negatives can only arise from the fact that the derived local
reachability properties cannot prove the unreachability of a candidate.

Our framework is sound, as demonstrated next.

Lemma 1. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine and (S,Σ,∆, ŝ)
its induced LTS, and we use the subscript i, j to denote the elements of the LTS
induced by Si,j.

∀ s : S ; tr : Σ∗ • ŝ tr−→ s =⇒ pairwise reachable(s)

Proof. We prove by induction on the size of the path ŝ
tr−→ s that whenever

ŝ
tr−→ s holds then, for any k and l in S, reachablek,l(sk,l) also holds. We use PC

as a shorthand for predicate calculus.

6

– Base case: trivially, ŝ
〈〉−→ ŝ and ŝk,l

〈〉−→k,l ŝk,l.
– Inductive case: We show that

∀ s : S ; tr : Σ∗ ; a : Σ • ŝ tr̂ 〈a〉−−−−→ s =⇒ pairwise reachable(s)

using the following inductive hypothesis

IH =̂ ∀ s : S ; tr : Σ∗ • ŝ tr−→ s =⇒ pairwise reachable(s).

ŝ
tr̂ 〈a〉−−−−→ s

⇐⇒ ∃ s′ : S • ŝ tr−→ s′ ∧ s′ a−→ s Path def

=⇒ ∃ s′ : S • pairwise reachable(s′) ∧ s′ a−→ s IH

=⇒ ∃ s′ : S • reachablek,l(s′k,l) ∧ s′
a−→ s p. reach. def and PC

=⇒ ∃ s′ : S • reachablek,l(s′k,l) ∧
(∃((e1, . . . , en), a) : R • ∀ i : {1, . . . , n} •

(ei = − ∧ s′i = si) ∨ (ei 6= − ∧ (s′i, ei, si) ∈ ∆i)) ∆ def

At this point, there are four cases to consider for the rule ((e1, . . . , en), a).
• Case 1 (ek = − ∧ el = −). From ∆ definition, as components k and l do

not participate in the transition, s′(k,l) = s(k,l).

=⇒ ∃ s′ : S • reachablek,l(s′k,l) ∧ s′k,l = sk,l

=⇒ reachablek,l(sk,l) PC

• Case 2 (ek = − ∧ el 6= −). Based on ∆ definition, we know that s′l
el−→ sl

and s′k = sk. From Sk,l definition, we know that ((−, el), a) ∈ Rk,l. Thus,

s′k,l
a−→k,l sk,l.

=⇒ ∃ s′ : S • reachablek,l(s′k,l) ∧ s′k,l
a−→k,l sk,l

=⇒ reachablek,l(sk,l) reachablek,l def and

PC

• Case 3 (ek 6= − ∧ el = −) is symmetric to Case 2.
• Case 4. (ek 6= − ∧ el 6= −). Based on ∆ definition, we know that s′l

el−→ sl
and s′l

el−→ sl. From Sk,l definition, we know that ((ek, el), a) ∈ Rk,l. Thus,

s′k,l
a−→k,l sk,l.

=⇒ ∃ s′ : S • reachablek,l(s′k,l) ∧ s′k,l
a−→k,l sk,l

=⇒ reachablek,l(sk,l) reachablek,l def and

PC

7

p0 p1

a

b

q0 q1

b

c
r0

r1

r2 r3

a

c
c

a

c

Fig. 1. LTSs of components L1, L2 and L3, respectively.

ut

Theorem 1. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine and
(S,Σ,∆, ŝ) its induced LTS. For any s ∈ S,

¬pair candidate(s) =⇒ ¬deadlocked(s)

Proof. We know, from pair candidate’s definition, that ¬pair candidate(s) if
and only if ¬blocked(s) or ¬pairwise reachable(s). In case ¬blocked(s), the
claim follows easily. In case ¬pairwise reachable(s), the claim follows thanks to
the fact that for any s ∈ S, reachable(s) =⇒ pairwise reachable(s), which can
be, in turn, derived from Lemma 1. ut

This criterion will be shown to be more accurate than the SDD one, but
remains incomplete because it relies on local analysis to approximate reachability:
there may well be pair candidates that are not actually reachable.

Example 1. Let S = (〈L1, L2, L3〉,R) be the supercombinator machine such that
the components are described graphically in Figure 1 and they must synchronise
on shared events. That is, R = {((a,−, a), a), ((b, b,−), b), ((−, c, c), c)}.

For this system, the state (s0, s0, s3) is pairwise-reachable and blocked, but
not reachable. Thus, it constitutes a pair candidate but not a deadlock. ut

What we have done here is to use a characterisation of what a deadlock state
looks like in conjunction with an approximation to the reachability criterion for
states. What it searches for are not reachable deadlocks, but rather pair-consistent
deadlocks. Therefore, we call it Pair. One could easily imagine using different local
groups of components to determining consistency, or applying similar approaches
to analyse communicating systems for individual states that have properties
other than being deadlocked.

5 Complexity of Pair Framework

In this section, we analyse the complexity of detecting a pair candidate, given
a system represented by a supercombinator machine as an input. In order to
reason about our problem’s complexity, we define the size of such a machine.

Definition 8. The size of a supercombinator machine S = (〈L1, . . . , Ln〉,R) is
given by |S| = n · |LMax|+ |R|, where:

8

– |LMax| gives the size of the largest component LTS, and a LTS (S,Σ,∆, ŝ)
size is given by |S|+ |∆|.

The main result of this section consists of showing that our detection problem
is NP-complete, as presented next.

Theorem 2. Let S be a supercombinator machine, and (S,Σ,∆, ŝ) its induced
LTS. The problem of deciding

∃ s : S • pair candidate(s)

is NP-Complete.

Proof. To prove NP-completeness, we show that:

(a) this problem is in NP; given a state s′ ∈ S, pair candidate(s′) validity can
be verified in polynomial time on the size of the supercombinator;

(b) this problem is NP-hard; we prove this by showing that the CNF-satisfiability
problem can be polynomially reduced to our pairwise-deadlock detection
problem.

(a) We show that pair candidate(s′) can be verified in O(n2 · |LMAX |2 · |R|) steps
with the function IsPairCandidate in Algorithm 1. To this end, we present an
analysis of the number of steps needed to carry out the two auxiliary functions:
IsPairwiseReachable and IsBlocked.

1. IsPairwiseReachable takes O(n2 · |LMAX |2 · |R|) steps;

In this function, most of the constructs are self-explanatory and simple to
analyse. However, this is not the case for establishing reachablei,j(si,j) on
Line 6. For carrying out this checking, one can devise a function with three
steps: the creation of the pairwise projection Si,j , the construction of its
induced LTS, and this LTS’s state space search for si,j . In what follows, we
analyse the complexity of these three steps.

– The creation of Si,j takes O(|LMax|+ |R|) steps. The copy of the pair of
components should take O(|LMax|) steps, as the copy of each component
should take at most |LMAX | steps. The rules projection, which consists of
possibly the projection of each rule, should take O(|R|) steps. We consider
that an application or projection of a rule takes constant time due to
triple-disjointness. Triple-disjointness implies that at most two component
are involved, and thus we can concisely represent the event-tuple of a
rule using, at most, a pair of event-components.

– The construction of the induced LTS for Si,j takes O(|LMAX |2 · |R|)
steps. It can be constructed by first enumerating all the states and
then creating the edges by attempting to apply the rules to each of the
enumerated states. The enumeration of the states should take at most
O(|LMAX |2) steps, whereas the construction of the edges should take at
most |LMAX |2 · 2 · |R|.

9

– The search phase consists of a standard breath-first-search algorithm to
find the state si,j , which takes O(|LMAX |2 · |R|) steps. This search is
carried out in a linear number of steps on the size of the induced LTS,
and from our analysis of the construction process, this size should be
bound by |LMAX |2 + |LMAX |2 · 2 · |R|: there might be at most |LMAX |2
states and at most |LMAX |2 · 2 · |R| edges.

From these analyses, we can conclude that establishing reachablei,j(si,j)
should take O(|LMAX |2 · |R|) steps. Therefore, we can conclude that the com-
plexity of executing the loop body in IsPairwiseReachable is O(|LMAX |2 ·
|R|). As it can be repeated for at most n2 times, thanks to the fact that there
is only n2 as many pairs of components, we conclude that the complexity of
IsPairwiseReachable is given by O(n2 · |LMAX |2 · |R|).

2. IsBlocked takes O(|R|) steps.

In this function, the only construct that requires some explanation ismatches(s, r).
This predicate holds if the rule r can be applied to the state s. As we dis-
cussed, rule application takes constant time due to the triple-disjointness
requirement. From this consideration, we can conclude that the body of the
for -loop in IsBlocked takes O(1) steps to finish. Hence, as the loop can be
repeated at most |R| times, IsBlocked takes O(|R|) steps to complete.

Algorithm 1 pair candidate verification algorithm, where S = (〈L1, . . . , Ln〉,R)

1: function IsPairCandidate(s : S)
2: return IsPairwiseReachable(s) ∧ IsBlocked(s)
3: end function

4: function IsPairwiseReachable(s : S)
5: for all i, j ∈ {1 . . . n} such that i 6= j do
6: if ¬reachablei,j(si,j) then
7: return false
8: end if
9: end for

10: return true
11: end function

12: function IsBlocked(s : S)
13: for all r ∈ R do
14: if matches(s, r) then
15: return false
16: end if
17: end for
18: return true
19: end function

(b) In this second part of the proof, we demonstrate that our problem is NP-hard
by presenting a polynomial reduction from the CNF-SAT problem to our pair

10

candidate detection problem. To begin with, we introduce the CNF-SAT problem
and some useful notation.

Definition 9. Given a boolean function F(x1, . . . , xm) with m boolean variables,
whose formula is in Conjunctive Normal Form, the CNF-SAT problem consists
of finding an assignment to the m boolean variables so that F holds. That is,

∃x1, . . . , xn : B • F(x1, . . . , xm)

We use F without arguments to denote the formula associated with the
function, and we manipulate this formula using the following conventions. Fi

denotes F ’s i-th clause (i.e. disjunction) and Fi,j denotes its j-th literal in the
i-th clause. Moreover, |F| denotes the size of the formula (namely, the overall
number of literals in the formula), |F | denotes the number of clauses in the
formula and |Fi| denotes the number of literals in the i-th clause of the formula.
Finally, we use var(i, j) to denote the index of the boolean variable in the literal
Fi,j . For instance, if Fi,j = ¬xl then var(i, j) = l.

At the core of our reduction strategy is a mapping that translates, in polyno-
mial time on the size of the formula, a boolean function into a supercombinator
such that the boolean function is satisfiable if and only if the supercombinator has
a Pair deadlock-candidate state. Hence, our reduction consists of deciding whether
a CNF boolean function is satisfiable by translating it into a supercombinator
and looking for a pair candidate state.

Our translation creates a supercombinator with a component T (Fi) for each
clause Fi and a component T (xi) for each variable xi of a formula F . The
component T (Fi) captures the satisfiability of Fi, whereas the component T (xi)
model the assignment of xi to a boolean value. In Figure 5, we introduce two
diagrams that informally define these two components. (We formally define them
in Definition 10). For these diagrams, we assume that Fi = Fi,1 ∨ . . . ∨ Fi,|Fi| is
a clause of the formula F , that xi is a variable of F , and that ev is a function
from a literal to an event such that ev(¬xi) = falsei and ev(xi) = truei.

s0 ...

s1

s|Fi|

τ

ev(
Fi,1

)

ev(F
i,|F

i |)

s0

s1

s2

τ

τ

truei

falsei

Fig. 2. LTSs T (Fi) and T (xi) respectively

Component T (Fi) is initially in state s0, which captures that no literal of
Fi has been satisfied, and it can transition to a final state sj , which captures
the fact that literal Fi,j has been satisfied, upon performing the event ev(Fi,j),
which denotes that the variable in the corresponding literal has been assigned

11

to a value satisfying the literal. Component T (xi) is initially in state s0, which
denotes that no assignment has been made to variable xi, and it can transition
to either state s1 or s2. s1 denotes that xi has been assigned to true, whereas s2
corresponds to the assignment of xi to false. When in s1 (s2), the component
can perform the event truei (falsei), which correspond to the assignment that
has been made. So, in the translated supercombinator, the system can be seen
as a set of components that capture the satisfiability of clauses and a set of
components that capture assignments for boolean variables.

The set of rules provides the appropriate connection between these two sets
of components. They enable the synchronisation between variable components
and clauses components so that the satisfiability of the clauses is guided by the
assignment of variables. The formal translation function is provided next. In the
components sequence of our translated supercombinator, we use as a convention
that the components in the range 1 to |F | are clause components, whereas
components in the range |F |+ 1 to |F |+m are variable ones.

Definition 10. Given a boolean function F and its variables x1, . . . , xm, we pro-
pose the following transformation function Translate(F , (x1, . . . , xm)) = (L,R),
where:

– L = 〈T (F1), . . . , T (F|F |), T (x1), . . . , T (xm)〉
• T (Fi) = (S,Σ,∆, ŝ), where:
∗ S = {s0, . . . , s|Fi|}
∗ Σ = {ev(Fi,j) | j ∈ {1 . . . |Fi|}} ∪ {τ}
∗ ∆ = {(s0, τ, s0)} ∪ {(s0, ev(Fi,j), sj) | j ∈ {1 . . . |Fi|}}
∗ ŝ = s0

• T (xi) = (S,Σ,∆, ŝ), where:
∗ S = {s0, s1, s2}
∗ Σ = {τ, truei, falsei}
∗ ∆ = {(s0, τ, s1), (s0, τ, s2), (s1, truei, s1), (s2, falsei, s2)}
∗ ŝ = s0

– R =
⋃

i∈{1...|F |}

{ev(Fi,j)
{l,|F |+i}|j ∈ {1 . . . |Fi|}}

∪ {τ{i}|i ∈ {1 . . . |F |}}
– The function ev maps a literal to an event as follows.
• ev(¬xi) = falsei
• ev(xi) = truei

– eI gives rise to the rule (t, e) where ti = e if i ∈ I, and ti = − if i /∈ I.

Even though we do not explicitly present an algorithm for the Translate
function, from its definition, it is easy to devise a simple procedure that constructs
the supercombinator by traversing the formula, and that takes O(|F|+m) time
for this. We discuss this procedure as follows.

– S can be constructed in O(|F|+m) steps. This follows from the fact that
each T (Fi) and T (xi) can be constructed in O(|Fi|) and O(1), respectively.

12

• One can construct the LTS T (Fi) in O(|Fi|) steps. It is easy to see that
each element in such an LTS can be constructed by a single traversal of
the clause, that is, in O(|Fi|) steps.

• One can construct T (xi) in O(1). This follows from the fact that each
element of this LTS can be constructed in constant time.

– R can be constructed in O(|F|). This follows from the fact that each literal
gives rise to a rule, and a rule is formed in constant time. Also, |F | τ -rules
are created, but note that |F| ≥ |F |.

After the presentation of our mapping, we show that our pair-candidate
detection problem can be soundly used to check the satisfiability of a CNF
boolean function. To this end, we show that there exists a satisfying assignment
for a given formula if and only if there exists a Pair deadlock candidate for the
translated supercombinator.

Theorem 3. Let F(x1, . . . , xm) be a CNF boolean function with m variables,
and S a supercombinator such that S = Translate(F , (x1, . . . , xm)). Also, let
(S,Σ,∆, ŝ) be the induced supercombinator of S.

∃x1, . . . , xm : B • F(x1, . . . , xm)⇐⇒ ∃ s : S • pair candidate(s)

Proof. Case 1 (=⇒). To prove this case, given the existence of a model for the
formula F , we show that there exists a state s which represents a Pair deadlock
candidate. Let us assume that M = (M1, . . . ,Mm) is the model in question,
where Mi is either xi or ¬xi, according to whether xi has been assigned to true
or false, respectively.

1. In order to be a model for F , there must exist a literal satisfied in each
clause. So, we assume, without loss of generality, that the k(i)-th literal of
the i-clause is satisfied, i.e. Fi,k(i) =Mvar(i,k(i)).

2. Based on this, we can form the following supercombinator state s where
(a) si = sk(i) if i ∈ {1 . . . |F |}
(b) si = s1 if i ∈ {|F |+ 1 . . . |F |+m} and Mj = xj , with j = i− |F |
(c) si = s2 if i ∈ {|F |+ 1 . . . |F |+m} and Mj = ¬xj , with j = i− |F |
This state symbolises that the clauses components have reached satisfying
states by reaching their respective terminal state sk(i), in which the literal
Fi,k(i) has been satisfied, and that the variable components are in states
miming the model M.

3. s is blocked thanks to two facts. First, all states of clause components in s
are terminal, i.e. they cannot engage in any more actions. Second, from our
translation, all the rules involve the participation of one of these components.
So, based on this two facts, no rule can be applied.

4. s is pairwise reachable. First, a pair of states involving two clause component
states or two variable component states are trivially pairwise reachable, as
they are in interleaving. Moreover, a pair of component states involving the
component state sj of clause i and the component state sk of variable xl
is trivially pairwise reachable if var(i, j) 6= l, as this clause component can

13

reach sj without synchronising with this variable component. So, the only
case left to prove is the case involving the component state sj of clause i and
the component state sk of variable xl where var(i, j) = l.
In such a case, as we know that sj is a terminal state and assuming that
Fi,j = xl (the other case where Fi,j = ¬xl is symmetric), we can deduce
that (s0, truel, sj) ∈ ∆i. Also, thanks to Fi,k(i) =Mvar(i,k(i)), we know that
sk = s1. From our translation, we also know that (s0, τ, s1), (s1, truel, s1) ∈
∆k. Thus, the sequence of event 〈τ, truel〉 leads these components pairwise
projection from their initial state to the desired state (sj , sk), thereby making
this pair of component states pairwise reachable.

Case 2 (⇐=). In this case, we show that given a pairwise-deadlocked state s for
the translated supercombinator, we can construct a model M.

1. A blocked state must have all clause components in a terminal state. Other-
wise, a clause component would be in the initial state, thereby being able to
perform the transition (s0, τ, s0) on its own. So, we assume, without loss of
generality, that for the clause component i, its terminal state reached is sk(i).

2. From this fact, we have that each clause component i must have performed a
transition (s0, ev(Fi,k(i)), sk(i)).

3. From the pairwise-reachability requirement, we know that each variable
component present in one of these satisfied literal, namely xvar(i,k(i)), must
be in a state such that it agrees to perform ev(Fi,ki

). Hence, they must
be either in state s1 or s2, according to whether Fi,ki

= xvar(i,k(i)) or
Fi,ki

= ¬xvar(i,k(i)), respectively.
4. Based on these facts, we can construct the model M where for each clause

index i, Mvar(i,k(i)) = Fi,k(i).
5. M represents a model to F , as each clause Fi has the literal Fi,k(i) satisfied.

ut

Most of the incomplete techniques for deadlock analysis rely on polynomial-
time checkable conditions; ours, however, is based on a NP-complete problem.
This suggests that our strategy deals with a different class of systems for which
deadlock analysis seems to be a more difficult task.

6 Accuracy of the Pair Framework

In this section, we shed light on the class of systems that can be successfully
proved deadlock free by Pair. To this end, we analyse its generality by comparing
it to the SDD framework. In this comparison, we first outline the class of systems
tackled by SDD and then we show that our approach can tackle a class of systems
strictly larger than SDD.

The SDD framework has been able to successfully prove deadlock freedom for
some relevant classes of system. Martin has shown that his framework can prove
deadlock freedom for systems designed using two well-known design rules: the
resource-allocation and the client-server. The resource allocation rule has been

14

proposed initially as a mechanism for avoinding deadlocks when allocating the
resources of an operating system to programs [8], whereas client-server protocols
constitutes a very common paradigm for the interaction of distributed system.
Both rules prevent an undesired cycle of ungranted requests from arising.

6.1 Pair is at least as good as SDD

A deadlocked state has to exhibit a cycle of ungranted requests between component
states when components are deadlock-free and termination-free. So, to compare
Pair with SDD, we limit ourselves to such systems in this section.

In this restricted setting, we show that our approach can prove deadlock
freedom for a system whenever SDD can. This follows from the claim that for a
live system, a blocked state must exhibit a cycle of ungranted requests.

Lemma 2 (Theorem 1 in [14]). Let S be a supercombinator machine, (S,Σ,∆, ŝ)
its induced LTS, and U the disjoint union of all the component states of each
component.

∃ s : S • blocked(s) =⇒ ∃ c : U∗ • sdd candidate(c)

Theorem 4. Let S be a supercombinator machine, (S,Σ,∆, ŝ) its induced LTS,
and U the disjoint union of all the component states of each component.

¬∃ c : U∗ • sdd candidate(c) =⇒ ¬∃ s : S • pair candidate(s)

Proof. From Lemma 2, we can deduce the following: ∃ s : S • pair candidate(s) =⇒
∃ c : U∗ • sdd candidate(c). Our claim follows easily from this result.

6.2 Pair is more accurate than SDD

Even though SDD is accurate for a reasonably large and relevant class of systems,
it is unable to prove deadlock freedom for non-hereditary deadlock-free systems.
This is shown by Lemma 2: if a subsystem deadlocks then there must exist a
cycle of ungranted requests between the states of components in this subsystem
that constitutes a SDD candidate. Roughly speaking, SDD can be seen as a
method that tries to prove hereditary deadlock freedom using local analysis. On
the other hand, our method can prove deadlock freedom for both hereditary and
non-hereditary deadlock-free systems, such as the following example.

Example 2. This well-known example system is composed of three different
components: forks, philosophers and a butler. We parametrise our system with
N , which denotes the number of philosophers in the system.

A philosopher has access to a table at which it can pick up two forks to eat:
one at its left-hand side and the other at its right-hand side. A fork is placed, and
shared, between philosophers sitting adjacently in the table. The behaviour of
philosopher (fork) i is depicted in Figure 2 (4). ⊕ stands for addition modulo N .

Given that these components synchronise in their shared events, the philoso-
phers and forks can reach a deadlock state in which all philosophers have acquired

15

pi,0 pi,1 pi,2 pi,3 pi,4 pi,5

sitsi picksupi,i picksupi,i⊕1 putsdowni,i putsdowni,i⊕1

getsupi

Fig. 3. LTS of philosopher i.

fi,0

fi,1

fi,2

picksupi,i

picksupi⊕1,i

putsdowni,i

putsdowni⊕1,1

bS bS∪{i}

bS bS−{i}

sitsi

if i /∈ S ∧ |S| < N

getsupi

if i ∈ S

Fig. 4. LTS of fork i and transitions of the butler process.

their left-hand side forks and, as a consequence, no right-hand side fork is left
to be acquired. The butler is introduced to prevent all the philosophers from
sitting at the table at the same time, thereby precluding this deadlock state. We
use bS to depict the state in which the butler has allowed the philosophers in
S to the table. So, the butler states space is given by the set of all bS where
S ∈ P({1 . . . N})− {1 . . . N}. Its transitions are created as depicted in Figure 4,
and its initial state is given by b∅.

The complete system has N philosophers, N forks and a butler, and these
components synchronise on their shared events. Despite being deadlock free, this
system has a cycle of component states that forms a SDD candidate, namely,
where all the philosphers have acquired their left-hand fork:

〈p0,2, f1,1, p1,2, f2,1, . . . , pN−2,2, fN−1,1, pN−1,2, f0,1〉

However, this SDD candidate cannot be extended to a pair candidate, because
the latter would have to include a butler state, and no butler state is consistent
with this combination of philosopher states. ut

This example shows that the Pair method is strictly more accurate than
SDD. Going a step further, one can perceive this example as depicting a class of
non-hereditary deadlock-free systems in which a guard-like component prevents a
subsystem’s deadlock state from being reached. In our example, the deadlocking
subsystem consists of the composition of philosophers and forks, and the butler
is the guard-like component leading the system away from the deadlocked state.
As for the relevance of this class of systems, many parallel systems make use
of semaphores, which are guard-like components, to avoid undesired concurrent
behaviour (such as reaching a deadlocked state).

Moreover, our method has better accuracy than SDD even for hereditary
deadlock-free systems, thanks to the fact that we use local reachability and
blocking information to its full extent. This increase in accuracy, however, comes

16

with a price. The explicit exploration of, only, localised state spaces helps to
tame the complexity of checking our deadlock-freedom condition. Nevertheless,
by strengthening the candidate’s definition in relation to prior techniques, we
end up with a NP-complete problem.

7 Pair Candidate Detection using a SAT Solver

In this section, we propose a procedure that encodes the pair-candidate detection
problem in terms of propositional satisfiability, which can later be checked by
a SAT solver. Given a supercombinator machine as an input, our procedure
creates a propositional formula in conjunctive normal form (CNF). A satisfying
assignment for this formula gives a pair candidate: the variables assigned to true
correspond to a combination of component states that forms a pair candidate,
whereas a proof of unsatisfiability entails deadlock freedom for the input system.
The use of intermediate structures in our encoding procedure and the application
of a SAT solver in the process of deadlock checking was inspired by the success
of the SLAP tool [16], which uses SAT solvers for the verification of livelocks4.

We consider for the sake of presentation that we are translating the supercom-
binator machine S = (〈L1, . . . , Ln〉,R), where Li = (Si, Σi, ∆i, ŝi). Additionally,
we assume component states are unique across the system and that si,j denotes
the state j of the component i. Our encoding procedure can be divided into
two parts: an initial one where intermediate structures are calculated from the
supercombinator machine, and a final one where the boolean formula is generated
based on these intermediate structures.

The intermediate structures can be seen as storing information that is later
used to filter out combinations of component states that do not belong to a valid
pair candidate. The first intermediate structure created, RequireSynci, stores
for each component the states in which cooperation is required. So, it provides
information to filter out component states that can independently act and are,
therefore, trivially not blocked.

Definition 11. RequireSynci = {s|s ∈ Si ∧ ¬independenti(s)}

– independenti(s) =̂ ∃(e, a) : R • (ei 6= − ∧ ∀ k : {1 . . . n} | k 6= i • ek = −)

∧ (∃ s′ : Si • (s, ei, s
′) ∈ ∆i)

The structure CanSync stores blocking information about pairs of compo-
nents. It provides information to filter out pairs of component states in which
components can interact. The triple disjointness assumption means that this
pairwise information is enough to determine whether a system state is blocked.

Definition 12.

4 There are some significant differences with SLAP: here the propositional formula
is satisfied by a possible deadlock, whereas in SLAP the propositional formula is
satisfied by a proof of livelock freedom. We might also note that livelock arises from a
sequence of states, whereas deadlock arises in a single one.

17

CanSync =
⋃

i,j∈{1...n}∧i 6=j

{
(s, s′)

∣∣∣∣ s ∈ RequireSynci ∧ s′ ∈ RequireSyncj ∧reachablei,j((s, s
′)) ∧ synci,j(s, s′)

}
– synci,j(s, s

′) = ∃(e, a) : R ; t : Si ; t′ : Sj • (s, ei, t) ∈ ∆i ∧ (s′, ej , t
′) ∈ ∆j

The last structure NPR (Not Pairwise Reachable) collects local reachability
properties and is used to filter out pairs of components that are not mutually
reachable.

Definition 13.

NPR =
⋃

i,j∈{1...n}∧i 6=j

{
(s, s′)

∣∣∣∣s ∈ RequireSynci ∧ s′ ∈ RequireSyncj ∧¬reachablei,j((s, s′))

}
In the second phase of our encoding procedure, we construct a boolean formula

based on these derived structures. The formula generated is a conjunction of three
constraints; each of them uses the information encompassed in a derived structure
to filter out invalid combinations of component states. For the construction of
our formula, we use our state representation si,j to denote the boolean variable
representing this state. So, the assignment si,j = true might be seen as claiming
that this state belongs to a pair candidate, whereas si,j = false means it does
not.

The first constraint, State, restricts the space of valid combinations of com-
ponent states to complete snapshots. As discussed, only states in RequireSync
structure are relevant.

Definition 14.

State =̂
∧

i∈{1...n}
(

∨
s∈RequireSynci

s) ∧
∧

i∈{1...n}
(

∧
s,s′∈RequireSynci∧s6=s′

(¬s ∨ ¬s′))

The second constraint restricts the space of valid combinations of component
states to the ones respecting local reachability properties.

Definition 15. Reachable =̂
∧

(s,s′)∈NPR

(¬s ∨ ¬s′)

Finally, the last constraint ensures that the space of valid combinations of
component states are the ones respecting our blocking requirement.

Definition 16. Blocked =̂
∧

(s,s′)∈CanSync

(¬s ∨ ¬s′)

The validity of this encoding is based on the following theorem.

Theorem 5. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine, (S,Σ,∆, ŝ)
its induced LTS, and F be the boolean function with m variables whose formula
is the result of applying our encoding procedure to S. The following holds.

∃ s : S • pair candidate(s)⇔ ∃x0, . . . , xm : B • F(x0, . . . , xm)

18

Proof. This can be deduced from the correspondence between the constraints in
our formula and the aspects that they encode.

Case 1 (=⇒). In this case, we assume s to be a pair candidate, and we show
that the assignment m where all the variables (i.e. component states) but the
ones in s are set to false is a model for F .

First of all, we know that s has no granted states, otherwise s would not be
blocked, thus, not a pair candidate.

– m satisfies the State constraint. The state constraint mandates the model to
have a single component state of each component assigned to true and that
is clearly the case for m, as it is derived from the system state s.

– m satisfies the Reachability constraint. As s is pairwise reachable, all the
pairs of component state in s must be reachable in their pairwise projection
of S. Hence, no two component states assigned to true in m form a pair in
NPR. As a consequence, this constraint is satisfied by m.

– m satisfies the Blocked constraint. As s is blocked, all the pairs of component
state in s must not be able to communicate. Note that, we do not need to cover
triples or larger combinations of interactions because our supercombinator
only allows the interaction of pairs of components at a time. Hence, as
assignment m has no pair of component states which can interact nor granted
states, the Blocked constraint is satisfied.

Case 2. In this case, we show that a model m for the formula gives rise to a
state of the system which represents a pair candidate. Let s be a sequence of
component states, ordered according to the component’s orders in S, that are
assigned to true in the model m.

– s is a system state. From satisfying the State constraint, we know that m
has exactly one component state of each component assigned to true.

– s is pairwise reachable. From satisfying the Reachable constraint, we know
that all pairs of component states in m assigned to true, must be reachable
in their corresponding supercombinator pairwise projection.

– s is blocked. From the Blocked constraint and as we know that m has only
pairwise reachable component states, we know that the pair of component
states in m must not be able to communicate. As the granted states are not
part of this formula and as interactions involving more than two components
are not allowed by our supercombinator definition, we know that s cannot
transition to another state.

ut

8 Practical evaluation

In this section, we evaluate our framework in practice; we modified FDR3 to
generate our SAT encoding which is then checked by the Glucose 4.0 solver [6].
Our prototype and the models used in this section are available at [1]. We conduct
two experiments in this section: the first one evaluates deadlock freedom for

19

randomly generated systems, the second one evaluates deadlock freedom for
some deadlock-free benchmark problems. The experiments were conducted in a
dedicated machine with a quad-core Intel Core i5-4300U CPU @ 1.90GHz, 8GB
of RAM, and the Fedora 20 operating system. In these experiments, we compare
our prototype with the Deadlock Checker [15] and FDR3’s deadlock freedom
assertion [9]. Deadlock Checker implements the SDD framework, whereas FDR3
is a complete method that performs explicit space exploration. When appropriate,
we combine FDR3’s explicit state exploration with partial order reduction (FDRp)
[10] or compression techniques (FDRc) [18].

In the first experiment, we verify models of live systems randomly generated,
but with fixed communication topologies. We verify systems whose communication
topologies are grid-like, fully connected, or a pair of rings. The parameter N is
related to the size of these systems. The choice of these communication topologies
was based on the fact that most of CSP benchmark problems use one of these or
a variation. For each of topology and N , we generate 900 random systems.

In Table 1, we summarise the accuracy results obtained. For the accuracy
comparison, we take FDR3’s deadlock assertion out, as it is a complete method.
Also, the reason why we present in some occasions the absolute number of
deadlock-free systems is that we use FDR3 to get the exact number of deadlock-
free systems, but when FDR3 times out, this number is unavailable. In Table 2,
for FDR3, we present the figures for the method that worked best. So, for the
pair of rings, applying partial order reduction made FDR3 scale better, whereas
for the other two cases, explicit state exploration was the best option.

Based on the data gathered in this first experiment, we can conclude that our
prototype provides a far better compromise between accuracy and speed than
the Deadlock Checker for the systems checked. The fact that hereditary deadlock
freedom is more difficult to achieve than deadlock freedom seems to be the reason
why our approach is substantially more accurate. In terms of efficiency, we see
that our method scales fairly well for the generated systems. It fared better than

Rings Grid Fully

N Pair SDD Pair SDD Pair SDD

3 99.13 64.34 100 34.44 93.98 18.67

4 99.67 68.19 (599) (106) 98.76 6.4

5 99.71 73.57 (635) (96) 98.11 1.8

6 98.98 77.41 (644) (92) 99.25 1.1

7 100 76.14 (771) (30) 99.28 0.1

8 (469) (385) (773) (57) 99.65 0

9 (500) (422) (779) (28) 99.83 0

10 (517) (444) (774) (8) 99.52 0

15 (590) (491) (900) (0) (692) (0)

20 (645) (547) (900) (0) (703) (0)

25 (680) (566) (887) (0) (742) (0)
Table 1. Accuracy comparison; the numbers not in parentheses depict the percentages
of deadlock free systems proved as so. The numbers in parentheses represent the total
number of deadlock free systems proved as so.

20

FDR3 even when combined with sophisticated techniques to combat the state
space explosion problem. For most of the cases, our method also fared better
than the Deadlock Checker. For the cases in which the Deadlock Checker scales
better, we can see a considerable difference in the accuracy of the two methods
that justifies the difference in their speed.

Our second experiment consists of applying deadlock verification methods to
some benchmark problems that are carefully designed to be deadlock free. We
chose six benchmark problems that are proved deadlock free by Pair. These prob-
lems are the alternating-bit protocol (ABP), the sliding window protocol (SWP),
a binary telephone switch (Telephone), the mad postman routing algorithm
(Routing), the asymmetric dining philosophers (Phils), and the butler solution to
the dining philosophers (Butler). These problems are discussed in detail in [19].
For each of these benchmarks problems, we vary a parameter N which relates to
the size of these systems. Table 3 presents the results of this second experiment,
which suggests that our method scales similarly to the combination of FDR3’s
assertion techniques with compression techniques. We point out that the effective
use of compression techniques requires a careful and skilful application of those,
whereas our method is fully automatic. In fact, our strategy seems to be the
most efficient option for all but the Routing problem in which both the Deadlock
Checker and FDR3’s assertion with compression techniques outperform us.

Unsurprisingly, for some other benchmark problems our method is not able
to prove deadlock freedom. The reason is that, for these cases, deadlock freedom
depends on some global invariant preserved by the system (or perhaps by larger
subsets of the system than the pairs used here), and as argued, this type of
reasoning is beyond the capabilities of our method. For instance, proving deadlock
freedom for the Milner’s scheduler problem, which is a fairly simple benchmark
problem, is out of our method’s reach. The issue with Milner’s scheduler is that it
is essentially a token ring which depends on the fact that there is always precisely
one token present; this latter property cannot be proved by local analysis.

Rings Grid Fully

N Pair SDD FDR3p Pair SDD FDR3 Pair SDD FDR3

3 37.38 66.04 40.91 40.47 71.01 70.27 37.39 65.64 42.74

4 37.88 67.65 42.89 44.89 76.57 * 39.04 70.02 43.36

5 39.00 68.30 51.60 52.67 90.50 * 39.74 74.19 43.97

6 39.67 69.97 103.83 60.85 104.07 * 42.46 83.18 48.96

7 41.07 71.69 788.03 70.39 113.95 * 45.50 92.91 61.47

8 41.12 73.11 * 84.67 128.41 * 49.24 103.08 118.78

9 41.90 73.71 * 101.18 142.65 * 53.91 115.87 415.87

10 42.67 75.31 * 124.80 157.76 * 60.32 125.60 1897.71

15 46.75 80.52 * 326.56 249.27 * 108.99 210.65 *

20 52.09 89.03 * 797.25 385.99 * 208.37 372.44 *

25 57.48 95.74 * 1745.72 566.27 * 382.89 645.74 *
Table 2. Efficiency comparison; we measure in seconds the time taken to check deadlock
freedom for the 900-systems batch, and * means that the methods has timed out. We
establish a time out of 2000 seconds for checking each batch.

21

9 Conclusion

We have introduced a new test for deadlock freedom that extends the capabilities
of current state-of-the-art incomplete approaches. We give up completeness to
achieve scalability. Our intention is to propose a method rivalling the speed of
current incomplete approaches but with a considerable increase in accuracy. To
do so, we introduce a stronger deadlock candidate definition, which allows the
analysis of both hereditary and non-hereditary deadlock-free systems, and we
bring the power of SAT checking to bear on a style of local analysis of systems
that reaches back decades. Our ambition is to have a deadlock checker which
can be used as a matter of course on systems developed by non-experts who do
not necessarily have any knowledge of established design patterns for deadlock
freedom, such as those previously proposed by both the authors.

For the systems tested, our strategy seems to provide a better compromise
between speed and accuracy. It appears to perform strongly in terms of speed when

ABP

N FDR3 SDD Pair FDR3por

3 0.05 0.09 0.04 0.05

4 0.06 0.09 0.04 0.05

5 0.05 0.11 0.04 0.05

10 0.06 0.12 0.04 0.06

15 0.07 0.14 0.04 0.07

30 0.06 0.21 0.05 0.44

50 0.16 0.29 0.05 0.12

SWP

N FDR3 SDD Pair FDR3c FDR3por

3 0.29 0.88 0.14 0.24 0.21

4 2.83 40.83 0.58 1.13 3.57

5 42.79 * 3.23 4.62 *

6 * * 18.38 25.25 *

7 * * * * *

8 * * * * *

9 * * * * *

Telephone

N FDR3 SDD Pair FDR3c FDR3por

3 * - 0.06 0.17 *

4 * - 0.11 2.93 *

5 * - 0.32 * *

6 * - 1.34 * *

7 * - 6.27 * *

8 * - 31.68 * *

9 * - * * *

Routing

N FDR3 SDD Pair FDR3c FDR3por

3 * 0.10 0.06 0.10 *

4 * 0.11 0.09 0.14 *

5 * 0.13 0.13 0.18 *

10 * 0.30 0.99 0.71 *

20 * 1.11 13.27 4.45 *

30 * 3.30 * 16.72 *

Phils

N FDR3 SDD Pair FDR3c FDR3por

3 0.06 0.13 0.05 0.08 0.07

4 0.07 0.13 0.05 0.09 0.07

5 0.07 0.13 0.05 0.09 0.07

10 122.15 0.13 0.06 0.14 0.42

25 * 0.17 0.08 0.40 *

50 * 0.23 0.13 1.64 *

100 * 0.36 0.31 15.83 *

Butler

N FDR3 SDD Pair FDR3c FDR3por

3 0.06 - 0.06 0.09 0.06

4 0.07 - 0.6 0.10 0.07

5 0.26 - 0.6 0.10 0.43

6 0.11 - 0.7 0.12 0.08

7 0.32 - 0.9 0.14 0.13

8 1.91 - 0.12 0.17 0.22

9 16.80 - 0.19 0.22 0.52
Table 3. Benchmark efficiency comparison. We measure in seconds the time taken to
check deadlock freedom for each system. * means that the methods has timed out; we
establish a time out of 40 seconds for checking each system. - means that the method is
unable to prove deadlock freedom for the system.

22

compared to SDD, compression and partial order techniques. As for accuracy,
our method is strictly more accurate than SDD, and in particular, it is able to
tackle non-hereditary deadlock-free system, a class of systems neglected by most
incomplete techniques. Nevertheless, our technique (and any other one that uses
local analysis) cannot prove deadlock freedom for systems in which this property
is guaranteed by some invariant on the global behaviour of systems.

As a future work, we plan to improve accuracy, without excessively damaging
speed, by proposing methods to efficiently calculate some global invariants. This
should not make our method complete, but it should enable the handling of
systems which are deadlock free by some global property of the system.

Acknowledgments

We are grateful to Jöel Ouaknine and James Worrell for many fruitful discussions
concerning this work. The first author is a CAPES Foundation scholarship holder
(Process no: 13201/13-1). The second and third authors are partially sponsored
by DARPA under agreement number FA8750-12-2-0247.

References

1. Pedro Antonino, A. W. Roscoe, and Thomas Gibson-Robinson. Experiment package,
2015. http://www.cs.ox.ac.uk/people/pedro.antonino/exp.zip.

2. Pedro Antonino, Augusto Sampaio, and Jim Woodcock. A refinement based strategy
for local deadlock analysis of networks of CSP processes. In FM, volume 8442 of
LNCS, pages 62–77, 2014.

3. Pedro R.G. Antonino, Marcel Medeiros Oliveira, Augusto C.A. Sampaio, Klaus E.
Kristensen, and Jeremy W. Bryans. Leadership election: An industrial SoS applica-
tion of compositional deadlock verification. In NFM, volume 8430 of LNCS, pages
31–45, 2014.

4. Paul C. Attie, Saddek Bensalem, Marius Bozga, Mohamad Jaber, Joseph Sifakis,
and Fadi A. Zaraket. An Abstract Framework for Deadlock Prevention in BIP.
In Formal Techniques for Distributed Systems, number 7892 in Lecture Notes in
Computer Science, pages 161–177. Springer, 2013.

5. Paul C. Attie and Hana Chockler. Efficiently verifiable conditions for deadlock-
freedom of large concurrent programs. In VMCAI, pages 465–481. Springer, 2005.

6. Gilles Audemard and Laurent Simon. Predicting Learnt Clauses Quality in Modern
SAT Solvers. IJCAI’09, pages 399–404, San Francisco, CA, USA, 2009.

7. Stephen D. Brookes and A. W. Roscoe. Deadlock analysis in networks of communi-
cating processes. Distributed Computing, 4:209–230, 1991.

8. Edward G. Coffman, Melanie Elphick, and Arie Shoshani. System deadlocks. ACM
Computing Surveys (CSUR), 3(2):67–78, 1971.

9. Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, and A.W.
Roscoe. FDR3 — A Modern Refinement Checker for CSP. In TACAS, volume
8413 of LNCS, pages 187–201, 2014.

10. Thomas Gibson-Robinson, Henri Hansen, A.W. Roscoe, and Xu Wang. Practical
partial order reduction for CSP. In NASA Formal Methods, volume 9058 of Lecture
Notes in Computer Science, pages 188–203. Springer International Publishing, 2015.

23

11. Patrice Godefroid and Pierre Wolper. Using partial orders for the efficient verifica-
tion of deadlock freedom and safety properties. Formal Methods in System Design,
2(2):149–164, 1993.

12. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
13. Christian Lambertz and Mila Majster-Cederbaum. Analyzing Component-Based

Systems on the Basis of Architectural Constraints. In Fundamentals of Software
Engineering, pages 64–79. Springer, April 2011.

14. Jeremy M. R. Martin. The Design and Construction of Deadlock-Free Concurrent
Systems. PhD thesis, University of Buckingham, 1996.

15. J.M.R. Martin and S.A. Jassim. An efficient technique for deadlock analysis of
large scale process networks. In FME ’97, pages 418–441, 1997.

16. Joël Ouaknine, Hristina Palikareva, A. W. Roscoe, and James Worrell. A static
analysis framework for livelock freedom in CSP. Logical Methods in Computer
Science, 9(3), 2013.

17. A. W. Roscoe and Naiem Dathi. The pursuit of deadlock freedom. Inf. Comput.,
75(3):289–327, 1987.

18. A. W. Roscoe, Paul H. B. Gardiner, Michael Goldsmith, J. R. Hulance, D. M.
Jackson, and J. B. Scattergood. Hierarchical compression for model-checking CSP

or how to check 1020 dining philosophers for deadlock. In TACAS, pages 133–152,
1995.

19. A.W. Roscoe. Understanding Concurrent Systems. Springer, 2010.

24

