
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. SCI. COMPUT. c© 2008 Society for Industrial and Applied Mathematics
Vol. 30, No. 4, pp. 2055–2083

DYNAMICAL SPATIAL WARPING: A NOVEL METHOD FOR THE
CONFORMATIONAL SAMPLING OF BIOPHYSICAL STRUCTURE∗

PETER MINARY† , MARK E. TUCKERMAN‡ , AND GLENN J. MARTYNA§

Abstract. The difficulties encountered in sampling of systems with rough energy landscapes
using present methodology significantly limit the impact of simulation on molecular biology, in par-
ticular protein folding and design. Here, we present a major methodological development based on
a promising new technique, the reference potential spatial warping algorithm (REPSWA) [Z. Zhu
et al., Phys. Rev. Lett., 88 (2002), pp. 100201–100204], and present applications to several realistic
systems. REPSWA works by introducing a variable transformation in the classical partition function
that reduces the volume of phase space associated with a priori known barrier regions while increas-
ing that associated with attractive basins. In this way, the partition function is preserved so that
enhanced sampling is achieved without the need for reweighting phase-space averages. Here, a new
class of transformations, designed to overcome the barriers induced by intermolecular/nonbonded
interactions, whose locations are not known a priori, is introduced. The new transformations are
designed to work in synergy with transformations originally introduced for overcoming intramolec-
ular barriers. The new transformation adapts to the fluctuating local environment and is able to
handle barriers that arise “on the fly.” Thus, the new method is referred to as dynamic contact
REPSWA (DC-REPSWA). In addition, combining hybrid Monte Carlo (HMC) with DC-REPSWA
allows more aggressive sampling to take place. The combined DC-REPSWA-HMC method and its
variants are shown to substantially enhance conformational sampling in long molecular chains com-
posed of interacting single beads and beads with branches. The latter topologies characterize the
united residue and united side chain representation of protein structures.
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1. Introduction. Monte Carlo (MC) and molecular dynamics (MD) atomistic
simulation methods have profoundly increased the understanding of nanoscale phe-
nomena in molecular biology. However, one of the challenges in computational molec-
ular biology is to develop techniques capable of determining the conformational equi-
libria of systems described by complex, multidimensional, rough energy landscapes
as the drive to advance investigations in systems biology moves forward. The term
“rough” indicates that energy surfaces have a large number of minima separated by
barriers, most of which are high compared to kBT , where T is the temperature and
kB is Boltzmann’s constant.

Following early work [9], the analytical all-atom energy function of an entire
biological molecule includes harmonic potentials that keep bonded atoms and an-
gles between neighboring bonds together, periodic potentials for torsion angles, and
Lennard–Jones and Coulomb potentials between nonbonded atoms. Extensive para-
metrization of such all-atom potential functions leads to modern all-atom force fields
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[1, 14] that are commonly used in computational chemistry for modeling nonreactive
chemical events. If the nonbonded terms in the original energy function [9] are re-
placed by knowledge-based potentials [24], the resulting energy function can be used
for structural prediction or refinement [23], which are among the most significant
challenges in computational biology.

As any large conformational rearrangement is due to changes in torsion angles,
algorithms that enhance sampling in torsion angle space hold the key to answering
some of the most difficult questions of computational molecular biology.

All the aforementioned potential functions can be termed “rough” with respect to
both Cartesian and torsion angle coordinates, and the primary difficulty that arises in
sampling these rough energy landscapes is the low probability of crossing the barriers
that separate important minima or basins of attraction on the surface over simulation
times that can be reached using current computational resources.

In order to alleviate these problems, several recently developed methods have
been proposed. The so-called puddle skimming [21] approach enhances conforma-
tional sampling via a simple linear modification of the energy landscape V (q). As a
result, the modified energy surface V �(q) is flooded up to an a priori chosen energy
value, the boosting energy, EB . The Boltzmann distribution on the original energy
surface can be obtained after proper reweighting of conformations obtained by sam-
pling on V �(q). Further improvement has been reached in puddle jumping [20] using
several distinct energy surfaces V �(q) with different boosting energies, so that high
and low energy regions are sampled with equal accuracy. Based on a concept sim-
ilar to such biasing potentials, hyperdynamics [27] accelerates the occurrence of a
sequence of events that would take place only on a time scale generally inaccessible
with conventional MD. In addition, sampling via MD could be further accelerated
by particle mass rescaling, which partially removes stiff high frequency motions so
that a larger time step can be used. While the above methods involve only simple
or no modifications of the potential energy surface V (q), popular methods based on
nonlinear modifications were also proposed. For example, in MC minimization [10]
or basin-hopping techniques [29], a modification Ṽ (q) = min{V (q)} leads to a simple
energy surface of interpenetrating staircases and plateaus that leaves the global mini-
mum and the relative importance of local minima unaltered. This simplified landscape
Ṽ (q) can be sampled more effectively because energy barriers between neighboring
energy basins are removed.

Two of the aforementioned methods, puddle skimming and puddle jumping, mod-
ify the partition function significantly and can only treat multiple barriers effec-
tively when EB, varied slowly from “off” to “on” within a replica exchange proto-
col (puddle skimming) or the sequence of boosting energies EB(1), EB(2), . . . , EB(n)
are chosen (puddle jumping) based on the topology of the energy surface which is
usually not known a priori. Furthermore, as the reweighting protocol of puddle skim-
ming/jumping uses simple averaging of the Boltzmann weight of the difference be-
tween the true and boosted potential, it fails for large dimensional systems. The
hyperdynamics method assumes that transition state theory can be applied and that
the systems traverses phase space via one barrier crossing event at a time; it has the
correct phase space weighting. Hyperdynamics has been successfully applied to im-
portant systems that admit such a simplified dynamics. However, introducing boosts
along many coordinates would lead to failure of the required reweighting procedure.
Finally, it is important to mention that the scope of any basin hoping approach is
only limited to locating local minima, and it is not capable of delivering information
about conformational probability distributions.
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Most recently, a novel and promising approach to addressing the conformational
sampling problem was introduced [31], in which nonlinear variable transformations
were employed to reformulate, exactly, the classical statistical mechanical configura-
tional partition function. Note that, unlike the previous linear transformation based
sampling methods [21, 20, 27], the reference potential spatial warping algorithm (REP-
SWA) could analytically eliminate all a priori known built-in torsional barriers present
in conventional atom force fields [1, 14]. However, similar to other sampling meth-
ods [21, 20], REPSWA transformations [31] were based on explicit knowledge of the
locations of the barriers on the potential energy surface, and improving the method
requires a scheme for eliminating barriers that arise from intermolecular or solvent
contacts.

Here, we present a substantial advance in the REPSWA approach to treating
conformation-dependent or contact barriers, i.e., barriers whose locations are not
known a priori but arise dynamically in the course of the sampling. The efficacy of
the new dynamic contact REPSWA (DC-REPSWA) lies in the fact that the transfor-
mations are, by construction, conformational or contact-dependent and adapt to the
changing local environment while still preserving the partition function. The computa-
tional cost of the method remains order N if only short-range nonbonded interactions
are considered. Applications to one-dimensional problems, simple and branched chain
molecules, and, finally, the folding of a model β-barrel protein are presented. In gen-
eral, a single DC-REPSWA trajectory is shown to sample the conformational space
with orders of magnitude greater efficiency than standard hybrid Monte Carlo (HMC)
[2] and an order of magnitude greater efficiency than another popular technique, par-
allel tempering (PT) [3, 15]. It is stressed that by combining DC-REPSWA with other
techniques such as PT [3, 15], puddle jumping [20], and basin-hopping [29], yet more
powerful approaches will result, by which the “ab initio” conformational search prob-
lem can potentially be solved. Finally, note that further supplementary information
is available on the method; however, all implementation details are outlined in this
paper.

2. One-dimensional example.

2.1. Analytical formulation. In order to illustrate the basic principle behind
the REPSWA technique, consider the simple example of a particle, with momentum
p, mass m, and coordinate x in a one-dimensional potential V (x) possessing various
energy minima separated by large energy barriers in the domain [ai, af ]. The canonical
partition function for this system is

Q(β) =
1

h

∫
dp

∫
dx exp

[
−β

[
p2

2m
+ V (x)

]]
,(2.1)

where h is Planck’s constant and β = 1/kBT . The spatial probability distribution
function P (x) = exp[−βV (x)]/Q(β) could, in principle, be sampled by MD using a
Hamiltonian, H = p2/2m + V (x), coupled to a thermostat or by MC. However, if
the barriers of V (x) are high compared to kBT , barrier crossing will be rare, and the
probability distribution will not be adequately sampled without resorting to extremely
long simulation lengths.

If we are solely interested in equilibrium properties, then we may exploit the fact
that x in (2.1) is just an integration variable and transform to a new variable u = f(x)
without altering the partition function. If f(x) is chosen such that a unique inverse
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x = f−1(u) = g(u) exists, then substituting the transformation into (2.1) gives

Q(β) =
1

h

∫
dp

∫
du exp

{
−β

[
p2

2m
+ Veff(u)

]}
,(2.2)

where Veff(u) = V (g(u)) − kBT ln(g′(u)) is an effective potential for u that results
from performing the transformation. The form of this effective potential suggests
that a reference potential Vref(x) can be exploited to effect the desired spatial warping.
Consider choosing a transformation of the form

u = f(x) = cx0 + c

∫ x

x0

dy exp [−βVref(y)] ,(2.3)

where c is a constant. Substituting (2.3) into (2.2) gives an effective potential of the
form Veff(u) = V (g(u))− Vref(g(u)). Thus, if Vref(x) is chosen to be equal to V (x) in
the nonlinear domain Dn = {x : x0 = ai ≤ x ≤ af}, corresponding to a barrier region
of V (x), and 0 for x �∈ Dn, then the difference potential V (g(u))−Vref(g(u)) to which u
is subject would have no barrier in Dn. Thus, conformational space can be easily and
efficiently sampled by thermostatted MD or HMC starting from H̃ = p2/2m+Veff(u)
as a Hamiltonian. Moreover, conformations obtained in “u-space” can be converted
back to physical conformations in “x-space” by inverting (2.3) to give x = g(u). In
addition, the reference potential is always chosen in such a way that the integrand
of (2.3) is always positive, so that (2.3) describes a strictly monotonically increasing
function. Thus, the inverse g(u) exists.

2.2. Numerical implementation. In order to evaluate the integral in (2.3),
exp[−βVref(x)] is expanded in terms of orthogonal polynomials; here, we use Legendre
polynomials Pl(x) which are orthogonal on [−1, 1] and satisfy the relation

(Pi, Pj) =

∫ 1

−1

Pi(x)Pj(x)dx =
2

2i + 1
δij ,(2.4)

where δij is 1 if i = j and 0 otherwise. Anticipating the application of the REPSWA
transformations to dihedral angles in long chain molecules, an expansion

exp
[
−βṼref(x;Np)

]
=

Np∑
l=0

ClPl(h(x))(2.5)

is employed, where h(x) is a linear transformation that maps Dn onto the interval
[−1, 1] and has the following form:

h(x) =

(
x− ai + af

2

)(
2

af − ai

)
.(2.6)

In (2.5) Np has a finite practical value between 64 and 96, and each coefficient Cl is
obtained via the orthogonality relation, (2.4), which gives

Cl =
1

(Pl, Pl)
(exp [−βVref ] , Pl) .(2.7)

It is not necessary to evaluate the above integral over the exponential of the true
reference potential analytically to determine Cl. It is sufficient to use an (Np+1)-point
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Gaussian quadrature integration, which is exact for polynomials of degree 2Np + 1:

Cl(Np) ≡
2l + 1

2

Np∑
k=0

wk exp [−βVref(xk)]Pl(yk),(2.8)

where (wk, yk : k = 0, . . . , Np) are the Gauss–Legendre weights and nodes and (xk =
h−1(yk) : k = 0, . . . , Np) are the Gauss–Legendre nodes mapped to Dn via inverting

the linear relation h(x). Here, C0 is adjusted to ensure that Ṽref(x;Np) is strictly real
valued. Note that the identity operator is defined exactly on the finite real space and
the finite function space, and that the set, the Np Legendre polynomials on the Np+1
Gaussian quadrature points, is said to form a discrete variable representation (DVR).
The above expansion leads to a transformation u = f̃(x), which also exactly preserves
the partition function. Given the expansion and a practically convenient basis size,
the transformation integral of (2.3) over Dn can be easily evaluated by applying the
recurrence relation P ′

n+1(x) − P ′
n−1(x) = (2n + 1)Pn(x) and by using the fact that

Pi(h(x0)) will vanish for all i. The transformation is given by

un(x;Np) = cx0 + c

∫ x

x0

dy exp
[
−βṼref(y)

]
= cx0 + c

Np∑
l=0

Cl

∫ x

x0

dy Pl(h(y))

= cx0 + cC0P0(x− x0) + c

Np∑
l=1

Cl

∫ x

x0

dy
1

h′(y)

P ′
l+1(h(y)) − P ′

l−1(h(y))

2l + 1
(2.9)

= cx0 + cC0P0(x− x0)

+ c

Np∑
l=1

(
Cl

2l + 1

)(
af − ai

2

)
(Pl+1(h(x)) − Pl−1(h(x))) .

In general, (2.3) is defined on the domain Dt = {x : bi ≤ x ≤ bf}, embedding
successively connected domains Dl1 = {x : bi ≤ x < ai}, Dn, and Dl2 = {x :
af < x ≤ bf}. Thus, u can be practically evaluated in the extended domain, Dt, by
considering all partitions individually:

ũ(x;Np) =

⎧⎪⎨
⎪⎩

cx, x ∈ Dl1 ,

un(x;Np), x ∈ Dn,

cx + c((af − ai)(C0 − 1)), x ∈ Dl2 .

(2.10)

In addition, c can be chosen based on a preferred boundary condition. For the case
of torsional dihedral transformations Dt = {x : 0 < x ≤ 2π}, and the boundary
condition is u(2π) = 2π, so that c = 2π/(2π + (af − ai)(C0 − 1)).

It is useful to illustrate the properties of the transformation on simple one-
dimensional systems. Figure 2.1(a) depicts the quartic double well potential

V (x) =
ε0
a4

[
x2 − a2

]2
,(2.11)

the reference potential Vref(x) and the nonlinear transformation u = f̃(x), defined
by (2.10). Here we have Dt = {x : −∞ ≤ x ≤ ∞}, Dn = {x : −1 ≤ x ≤ 1}, and
the scaling factor, c = 1. As expected, u changes very little in the barrier region. In
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Fig. 2.1. (a) Potential, V (x) = (ε0/a4)(x2 − a2)2, for the quartic double well with ε0 =
5 (solid black) along with the reference potential, Vref (x) (dashed red), and u(x) (dashed black)
defined by (2.10). Here bi = −∞, ai = −1, af = 1, and bf = ∞. (b) Periodic potential, V (x) =∑3

i=1 Wi cos(aix+di) (solid black), with {W1,W2,W3} = {−1.0, 0.2,−2.1}, {a1, a2, a3} = {1, 2, 3},
and d1 = d2 = d3 = π. The reference potential, Vref (dashed red), is shifted, so that Vref (ai) =
Vref (af ) = 0. u(x) (dashed black) is plotted in the domain defined by bi = 0, ai = π/3, af = 5π/3,

and bf = 2π. (c) Expanded reference potentials, Ṽref , for the quartic double well of (a) with different
choice of ε0 = 5, 7.5, 10, 16 and varying number of Legendre polynomials, Np = 16 (dashed) and
Np = 32 (long dashed). The original reference potential, Vref (x) (solid), is plotted, too. (d) Expanded

reference potentials, Ṽref , for the potential introduced in (b). Np = 32 (dashed) and Np = 24 (long
dashed). For comparison, the true reference potential, Vref (x) (solid), is depicted as well.

addition, a small change in u gives rise to a large change in x for high values of ε0,
so that a particle moving through the u-space spends little time in the barrier region.
Another example is illustrated in Figure 2.1(b), which is a periodic potential of the
form

V (x) =
3∑

i=1

Wi cos(ai x + di).(2.12)

Here, Dt = {x : 0 < x ≤ 2π} and Dn = {x : 1/3π ≤ x ≤ 5/3π}, so that c
is determined from the boundary condition u(2π) = 2π. Furthermore, in order to
ensure that Vref(x) is continuous over Dt, its definition in Dn is Vref(x) ← Vref + C,
where the constant C is chosen such that Vref(ai) = Vref(af ) = 0. Second, the

expanded reference potential Ṽref(x;Np) is compared to the true potential or Vref(x)
as a function of the number of Legendre polynomials, Np, and ε0 in Figures 2.1(c)
and 2.1(d). It must be emphasized that the partition function remains invariant even
at low polynomial orders even though Ṽref(x;Np) might not be a good approximation
to Vref(x).

Given the numerical implementation of the nonlinear transformation u = f̃(x),
u-space characterized by the effective potential Ṽeff(g(u)) can be efficiently explored
via various commonly used sampling or optimization methods such as MC, MC with
minimization, MD, and HMC algorithms. Most of these methods, however, require
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the calculation of the local gradients or forces:

Fu = −dVeff(g(u))

du
= − d

du
[V (g(u)) − Vref(g(u))](2.13)

= − d

d[g(u)]
[V (g(u)) − Vref(g(u))]

d[g(u)]

du
= −

[
dV (x)

dx
− dVref(x)

dx

] [
du(x)

dx

]−1

.

It can be shown how to obtain this quantity by exploiting the Legendre polynomial
basis defined over Dn:

F̃n
u (x;Np) = −

[
dũ(x;Np)

dx

]−1
[
dV (x)

dx
− dṼref(x;Np)

dx

]
(2.14)

=
1

c exp(−β Ṽref(x;Np))

⎡
⎣Fx −

d/dx
[
exp(−β Ṽref(x;Np))

]
β exp(−β Ṽref(x;Np))

⎤
⎦ .

Here, we have used the fact that Ṽref(x;Np) = −1/β ln exp(−β Ṽref(x;Np)). The
practical evaluation of (2.14) can be easily implemented by defining two functions,
exp beta Vref(x;Np) = exp(−β Ṽref(x;Np)) and exp beta Vref prime(x;Np)

= d/dx [exp(−β Ṽref(x;Np))], using the expansion in (2.5) and its analytical deriva-
tive, respectively. Note that the expansion is not valid outside Dn, and the extended
definition of the gradient should be used.

F̃u(x;Np) =

{
Fx/c, x ∈ Dl1 , Dl2 ,

F̃n
u (x;Np), x ∈ Dn.

(2.15)

It is clear from (2.15) that evaluating F̃u(x;Np) assumes the knowledge of dV (x)/dx,
which implies that every force calculation evaluated at a new position in u-space
should be preceded by an x = g̃(u) transformation executed by inverting the relation
defined by (2.10). Since the linear regions involving Dl1 and Dl2 are trivial, we now
show how to invert (2.10) over domain Dn. Assuming that the three variables u, x0,
and u0 are initially known and u0 ≡ ũ(x0, Np), u can be approximated as

u = u0 +
dũ(x;Np)

dx

∣∣∣∣
x=x0

(x− x0) +
1

2

d2ũ(x;Np)

dx2

∣∣∣∣
x=x0

(x− x0)
2 + · · ·

= u0 + exp(−β Ṽref(x0;Np)) (x− x0)(2.16)

+
1

2

d

dx
[exp(−β Ṽref(x;Np))]

∣∣∣∣
x=x0

(x− x0)
2 + · · · .

Here, exp(−β Ṽref(x;Np)) is strictly positive, and the sign of (x−x0) and (u−u0) will
always coincide since the relation ũ = ũ(x) is a strictly monotonically increasing func-
tion. Given this information, (2.16) could always be uniquely solved for (x−x0) or x.
Then (x0, u0) is replaced by (x, ũ(x,Np)), and (2.16) is solved again for a new x. This
iterative procedure is continued until |ũ(x,Np) − u| is smaller than some tolerance,
which is practically chosen to be ≈ 1000 ∗ εmachine. Again, in a practical implemen-
tation, only the functions exp beta Vref(x;Np) and exp beta Vref prime(x;Np) are
needed.
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3. Dynamic contact REPSWA. The aforementioned methodology is appro-
priate for treating those parts of the potential energy surface with a priori determined
barriers between specific conformations, e.g., those separating different values of a di-
hedral angle as was shown in [31]. These barriers are built into the potential energy
model and are therefore, in a sense, static. Another important set of barriers that
must be treated, however, are those that arise only when certain conformations are
accessed. These cannot be predicted a priori and hence, cannot be built into the
potential energy surface. An example of this type of barrier arises from nonbonded
interactions that dominate when a molecule accesses compact or globular conforma-
tions. In order to treat this type of barrier, an adaptive transformation scheme is
needed that is capable of sensing when such conformations are accessed. These trans-
formations will be more complex than the static transformations discussed above and
are referred to as dynamic contact (DC) transformations.

The DC-REPSWA transformation method can be illustrated with a generalized
example for transforming one dihedral in a system of atoms (r1, r2, r3, {rg1

, . . . , rgN }),
placed in a bath of monoatomic particles (s1, s2, . . . , sM ), and the major objective
is torsional sampling along the dihedral (r1, r2, r3, rgi) treating {rg1 , . . . , rgN } as a
rigid group. The transformation algorithm for this system builds on the simple static
method [31] by adding to the reference potential part of the intermolecular interaction:

Vref(φ̃
g1 ,Ω†) =

[
V p

tors(φ̃
g1) +

n∑
i=1

V s
tors(φ̃

g1 + δi)

]

+α

N∑
i=1

M∑
j=1

V reg
inter(|r̃gi(φ̃g1 ,Ω) − sj |)Sinter(|r̃gi(φ̃g1 ,Ω) − sj |),(3.1)

where the first term in brackets involves the primary torsion φ̃g1 and possibly cou-
pling to n secondary torsions formed from a subset of atoms in the group. The second
term represents the intermolecular contribution to the reference potential scaled by an
arbitrary parameter α. V reg

inter(r) is equal to the intermolecular potential Vinter(r) for
r > rcore and is a finite analytic function on the interval [0, rcore]. Replacing Vinter(r)
on [0, rcore] with an analytic function is necessary for the inversion of the transfor-
mation. The choice of rcore depends on the intermolecular potential; e.g., for all
Lennard–Jones-type pair interaction, 0.9 σ was used in this study. Sinter(x) is a switch-
ing function that cuts off the intermolecular contribution to the reference potential to
include only nearest neighbors. Ω and Ω† are sets of other coordinates in the system
whose components will be made explicit shortly. The important point is that the new
dependence of the reference potential on degrees of freedom other than φ leads to an
adaptive scheme capable of adjusting to changes in the conformation or in the local en-
vironment. The transformation will still scale as order N provided that the range of in-
termolecular interactions considered is finite, and will be efficient if the range is short.

In order to evaluate the reference potential Vref , a group of pseudoatoms {r̃g1 , . . . ,

r̃gN } is constructed from the spherical coordinates ξ̃ ≡ {(r̃g1 , θ̃g1 , φ̃g1), . . . , (r̃gN , θ̃gN ,

φ̃gN )} along a finite number of points in the whole domain (0, 2π] of the azimuthal
angle φ̃g1 using Gauss–Legendre nodes mapped to the interval. At each node, the in-
teractions between each r̃gi and all the neighboring atoms sj within a cutoff distance

specified by the switching function in (3.1) are calculated. In this construction, ξ̃ =
ξ̃(φ̃g1 | . . .) is made to be a function of only one dynamic variable, φ̃g1 , the primary di-
hedral angle, and the rest of the variables are obtained from static information. In par-
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ticular, φ̃gi = φ̃g1+δgi0 , i = 2, . . . , N , and (r̃gi , θ̃gi) = (rgi0 , θgi0 ), i = 1, . . . , N , where all
0-subscripted variables are evaluated from an ideal geometry. Such a choice relies on
the fact that commonly used biomolecular force fields [1, 14] contain stiff bonding and
bending interaction potentials so that a small deviation in the molecular bonds and
bends does not significantly alter the shape and magnitude of the dynamically chang-
ing torsional barriers. However, it is noted here that the above scheme is completely
general and is not restricted to the case when all atoms in the group are bonded to
r3. Thus, depending on the nature of topological relations within (r3, {rg1

, . . . , rgN }),
ξ̃ could be a function of as many dynamic variables as needed and at most 3N . Nev-
ertheless, keeping the computational cost modest requires the use of as many static
variables as possible. Based on ξ̃, {r̃g1

, . . . , r̃gN } is reconstructed using the local ref-
erence coordinate frame defined by the unit vectors eγ(r1, r2, r3), γ = x, y, z, and

the coordinate components (x̃gi(r̃
gi , θ̃gi , φ̃gi), ỹgi(r̃

gi , θ̃gi , φ̃gi), z̃gi(r̃
gi , θ̃gi , φgi)) of r̃gi

in this basis. Then the unique definition of r̃gi in R-space becomes

r̃gi = r3 + x̃gi ex(r1, r2, r3) + ỹgi ey(r1, r2, r3) + z̃gi ez(r1, r2, r3)

= r3 + r̃gi sin(θ̃gi)
[
cos(φ̃gi) ex + sin(φ̃gi) ey)

]
+ r̃gi cos(θ̃gi) ez.(3.2)

This definition makes explicit the components of the sets Ω and Ω†: Ω = {r1, r2, r3,
D( ξ̃ ) \ φ̃g1 | S( ξ̃ )}, where D(ξ̃) and S(ξ̃) refer to the subset of dynamic and static
variables of ξ̃, respectively. In addition, Ω† = {Ω, s1, s2, . . . , sM}. As described in
section 2.2, the reference potential should satisfy the relation Vref(ai) = Vref(af ) = 0,
where ai and af are the boundaries of Dn. In order to effectively ensure the latter,
the reference potential is shifted by an amount (1/2)[Vref(ai,Ω

†)+Vref(af ,Ω
†)] before

the switching function is applied:

Vref(φ̃
g1 ,Ω†)

∣∣∣
final

=

(
Vref(φ̃

g1 ,Ω†) − 1

2
[Vref(ai,Ω

†) + Vref(af ,Ω
†)]

)
S(φ̃g1).(3.3)

Here, S(φ̃g1) is a function that switches off the reference potential at the end points
φ̃g1 = {ai, af}. The switching function, chosen based on [30], belongs to the class C∞
and is applied on switching intervals [ai, ai+0.01(af −ai)] and [af −0.01(af −ai), af ].

By using Vref

(
φ,Ω†) in a nonlinear transformation φg1 → φg1

u defined by (2.3),
φg1
u becomes twofold dependent on Ω†:

φg1
u (Ω†) = c(Ω†)

∫ φg1

0

dφ exp
[
−β Vref

(
φ,Ω†)] ;

c(Ω†) =
2π

I(Ω†)
; I(Ω†) =

∫ 2π

0

dφ exp
[
−β Vref

(
φ,Ω†)] .(3.4)

In addition, ∂φg1
u /∂Ω† is obtained so that the corresponding force transformations for

Ω† variables can be realized:

∂φg1
u

∂Ω† (Ω†) =
∂

∂Ω†

[
c(Ω†)

∫ φg1

0

dφ exp
[
−β Vref

(
φ,Ω†)]]

= − φg1
u

I(Ω†)

∫ 2π

0

dφ
∂

∂Ω†
[
exp

[
−β Vref

(
φ,Ω†)]](3.5)

+
2π

I(Ω†)

∫ φg1

0

dφ
∂

∂Ω†
[
exp

[
−β Vref

(
φ,Ω†)]] .
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In practice, a numerical expansion of (2.5) is employed to evaluate the above deriva-
tives:

φ̃g1
u (Ω†, Np) = c̃

(
Ω†;Np

) ∫ φg1

0

dφ exp
[
−β Ṽref

(
φ,Ω†, Np

)]

=
2π

Ĩ (Ω†;Np)

Np∑
l=0

[
Cl

(
Ω†;Np

)] ∫ φg1

0

dφ Pl(h(φ)),

∂φ̃g1
u

∂Ω† (Ω†, Np) =
∂

∂Ω†

[
c̃
(
Ω†;Np

) ∫ φg1

0

dφ exp
[
−β Ṽref

(
φ,Ω†, Np

)]]

= − φ̃g1
u

Ĩ (Ω†;Np)

∫ 2π

0

dφ
∂

∂Ω†

⎡
⎣ Np∑

l=0

Cl

(
Ω†;Np

)
Pl(h(φ))

⎤
⎦

+
2π

Ĩ (Ω†;Np)

∫ φg1

0

dφ
∂

∂Ω†

⎡
⎣ Np∑

l=0

Cl

(
Ω†;Np

)
Pl(h(φ))

⎤
⎦(3.6)

= − φ̃g1
u

Ĩ (Ω†, Np)

Np∑
l=0

∂

∂Ω†
[
Cl

(
Ω†;Np

)] ∫ 2π

0

dφ Pl(h(φ))

+
2π

Ĩ (Ω†;Np)

Np∑
l=0

∂

∂Ω†
[
Cl

(
Ω†;Np

)] ∫ φg1

0

dφ Pl(h(φ)).

Here, all tilde quantities refer to variables represented in the numerical expansion,
Np denotes the number of Legendre polynomials (section 2.2), and the expansion
coefficients and their gradients are defined as

Cl

(
Ω†;Np

)
=

2l + 1

2

Np∑
k=0

wk exp
[
−β Vref

(
xk,Ω

†) ] Pl(yk),

∂

∂Ω†
[
Cl

(
Ω†;Np

)]
=

2l + 1

2

Np∑
k=0

wk
∂

∂Ω†
[
exp

[
−β Vref

(
xk,Ω

†) ]] Pl(yk),(3.7)

where (wk, yk : k = 0, . . . , Np) are the Gauss–Legendre weights and nodes and
(xk = h−1(yk) : k = 0, . . . , Np) are the Gauss–Legendre nodes mapped to (0, 2π]
via inverting the linear relation h(x), which is defined in section 2.2. Furthermore,
the derivatives in (3.7) are available analytically as

∂

∂Ω†
[
exp

[
−β Vref

(
xk,Ω

†) ]]

= −β exp
[
−β Vref

(
xk,Ω

†) ] ∂

∂Ω†

⎡
⎣α N∑

i=1

M∑
j=1

TV S(|r̃gi(xk,Ω) − sj |)

⎤
⎦(3.8)

= −β exp
[
−β Vref

(
xk,Ω

†) ]α N∑
i=1

M∑
j=1

T ′
V S(|r̃gi(xk,Ω) − sj |)

×
[

r̃gi(xk,Ω) − sj
|r̃gi(xk,Ω) − sj |

]
·
[
∂r̃gi(xk,Ω)

∂Ω† − ∂sj
∂Ω†

]
,
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where TV S = V reg
inter Sinter is the product of two functions introduced in (3.1) and the

dependence on the reconstruction in the local reference frame (3.2) is explicitly taken
into account. Moreover,

∂r̃gi(xk,Ω)

∂Ω
=

r3

∂Ω
+ x̃gi

ex(r1, r2, r3)

∂Ω
+ ỹgi

ey(r1, r2, r3)

∂Ω
+ z̃gi

ez(r1, r2, r3)

∂Ω
,

∂r̃gi(xk,Ω)

∂Ω
= 0, Ω =

[
Ω† \ Ω

]
(3.9)

Equations (3.5)–(3.9) contain the steps for computing the derivatives ∂φg1
u /∂Ω†, which

are necessary for propagating the force components through the overall dynamic
group transformation scheme, which takes positions (r1, r2, r3, {rg1 , . . . , rgN }), forces
(f1, f2, f3, {fg1

, . . . , fgN }), and produces their U -space counterparts (u1,u2,u3, {ug1
,

. . . ,ugN }) and (g1,g2,g3, {gg1
, . . . ,ggN }), respectively. The algorithm proceeds as

follows: (0) r1, r2, r3, rg1 is assumed to be the primary dihedral; (i ↑) translate/rotate
the vectors in the group (rg1

, . . . , rgN ) individually into a coordinate frame in which
r3 is at the origin and r3 − r2 lies along the z-axis; (ii ↑) the group (rg1

, . . . , rgN )
is resolved into spherical coordinates (ri, θi, φi) : i ∈ {g1, . . . , gN}; (g ↑) atoms
are grouped; (iii) DC-REPSWA transformation is applied on the azimuthal angle,
φg1,g → φg1,g

u ; (g ↓) atoms are ungrouped; (ii ↓) step (ii ↑) is inverted; (i ↓) step (i ↑)
is inverted to construct the new pseudo-Cartesian frame (u1,u2,u3, {ug1

, . . . ,ugN })
with forces (g1,g2,g3, {gg1 , . . . ,ggN }). The above steps are explicitly illustrated in
Appendix A. Note that each primitive transformation step x → y is augmented by a
force transformation fx → fy, which in general can be illustrated via the following
example:

y = Λ(x), x = (x1, . . . ,xN ), y = (y1, . . . ,yN ),

fy = −∂V

∂y
= −∂V

∂x
· ∂x
∂y

= fx · ∂[ Λ−1(y)]

∂y
.(3.10)

Another important aspect of the algorithm is the appearance of the rotation matrix
R in steps (i ↑) and (i ↓). To obtain R, two unit vectors, e1 = (r3−r2)/||r3−r2|| and
e2 = (r1 − r2)/||r1 − r2||, are constructed first, then e1 and e2 are used to construct a
local coordinate frame spanned by three vectors, ez = e1, ey = (e1 × e2)/||e1 × e2||,
and ex = (ey × ez)/||ey × ez||. Given, ex, ey, and ez, R = (e′x, e

′
y, e

′
z)

′. Furthermore,
step (iii) is surrounded by (g ↑) and (g ↓) primitive steps, which are responsible
for the rigid transformation of the group and propagate the forces accordingly. The
scheme of Appendix A displays the grouping (g ↑), nonlinear transformation (iii),
and ungrouping (g ↓) steps. In (iii), only atoms participating in the primary dihedral
(r1, r2, r3, rg1) and all force components connected to the variable set Ω† are affected.
Again, the derivation of these force transformation steps strictly follows rules intro-
duced by (3.10). Following (iii), step (g ↓) translates the rotational effect of the
primary transformation to the group {rg2

, . . . , rgN }. Finally, steps (ii ↓) and (i ↓)
regenerate positions and forces into a Cartesian frame.

Note that the constant c in (3.4) becomes a function of Ω† and the effective
potential becomes Veff(U,Ω†) = V (R) − Vref(φ

g1,g,Ω†) + (1/β) ln[c(Ω†)]. Thus, the
transformed variables move on Ṽeff(U,Ω†;Np) = V (R)− Ṽ eff

ref (φg1,g,Ω†;Np), where the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2066 P. MINARY, M. E. TUCKERMAN, AND G. J. MARTYNA

last term is the applied numerical expansion controlled by the number of Legendre
polynomials, Np, and

Ṽ eff
ref (φg1,g,Ω†;Np) = Ṽref(φ

g1,g,Ω†;Np) −
1

β
ln
[
c̃(Ω†;Np)

]
,

Ṽref(φ
g1,g,Ω†;Np) = − 1

β
ln
[
exp

[
−β Ṽref

(
φg1,g,Ω†;Np

)]]

= − 1

β
ln

⎡
⎣ Np∑

l=0

Cl

(
Ω†;Np

)
Pl(h(φg1,g))

⎤
⎦ ,(3.11)

c̃(Ω†;Np) =
2π

Ĩ(Ω†;Np)
.

In order to evaluate the forces arising from the effective reference potential, V eff
ref , the

derivatives with respect to all components of Ω† must be evaluated:

∂Ṽ eff
ref (φ,Ω†;Np)

∂Ω† = − 1

β exp
[
−β Ṽref (φ,Ω†;Np)

] ∂

∂Ω†

[
exp

[
−β Ṽref

(
φ,Ω†;Np

)]]

− 1

β c̃(Ω†;Np)

∂c̃(Ω†;Np)

∂Ω†

= − 1

β exp
[
−β Ṽref (φ,Ω†;Np)

] Np∑
l=0

∂

∂Ω†
[
Cl

(
Ω†;Np

)]
Pl(h(φ))(3.12)

− 2π

β [Ĩ (Ω†;Np)]3

Np∑
l=0

∂

∂Ω†
[
Cl

(
Ω†;Np

)] ∫ 2π

0

dφ Pl(h(φ)).

In addition, the basic derivatives with respect to the torsional degrees of freedom are
also evaluated as

∂Ṽ eff
ref (φ,Ω†;Np)

∂φ
= − 1

β exp(−β Ṽref(φ,Ω†;Np))

∂

∂φ

[
exp(−β Ṽref(φ,Ω

†;Np))
]

= − 1

β exp(−β Ṽref(φ,Ω†;Np))

Np∑
l=0

Cl

(
Ω†;Np

)
Ṗl(h(φ)) ḣ(φ).(3.13)

In practice, the two contributions to the force transformation, which are connected to
step (iii), the nonlinear dihedral transformation, and V eff

ref , are computed separately,
which becomes a crucial implementation issue for handling complex systems. Thus,
in a general R → U , FR → FU transformation, where more than one torsional
dihedral is involved, all force components originating from V eff

ref must be present in
the R Cartesian space before (R,FR) → (U,FU) is executed, so that the reference
forces are already present in the R-space before any nonlinear transformation step is
performed.

The key to using DC-REPSWA on any molecular system decomposed into tor-
sional transformation groups is to realize that while the Jacobian in multidimensional
spaces can be difficult to determine analytically, there are special cases where the
determinant of large matrices can be handled easily, e.g., an upper or lower triangular
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matrix, for which the Jacobian is simply the product of the diagonal elements. This is,
of course, perfectly suited to a torsional decomposition, as the barriers to motion are
formed as each group of atoms is added. Start with three base atoms. Upon adding
the first group, the first torsion is added; upon adding a second group, a second torsion
is added; etc., suggesting that a coordinate system change can be expressed in upper
triangular form. In addition, as forces are required in any MD or HMC method, the
upper/lower triangular form is already LU decomposed, and force computations can
be performed recursively. If the matrix is sparse, as occurs when only torsional bar-
riers are considered, then the computations required to perform DC-REPSWA are of
order N . The most important point here is that all torsional barriers can be removed
in order O(N)(!). The generalization of the dynamical transformation algorithm to an
arbitrary number of dihedrals is demonstrated in Appendix B. Note that attempting
to remove all torsional barriers in large molecular systems using metadynamics [8, 7],
guiding functions [32], and umbrella sampling [25, 26] would not be possible.

When large molecular chains with intermolecular/nonbonded interactions are
treated via DC-REPSWA, rather large motions will occur which result in stabil-
ity/acceptance problems. The molecule will essentially run into itself, yielding low
acceptance probabilities in HMC. In order to overcome the overly aggressive motion
induced by DC-REPSWA, it is sufficient to insert the identity transformation for ev-
ery 10 to 15 groups, i.e., leave a dihedral untransformed. It is then possible to change
the starting point of the DC-REPSWA transformation every 100–200 HMC moves so
that the identity transformation is used for different torsions at different points in the
simulation. For example, suppose torsions 4–14, 16–26, and so forth, are transformed
for 100 steps. Subsequently, one might transform torsions 6–16, 18–18, and so forth,
for the next 100 steps, using a random number generator to determine the starting
point for each set of transformations. In this way, large torquing/clashing motions
of the molecule are damped, but local sampling remains sufficient. We refer to this
method as staging, dynamic contact REPSWA (SDC-REPSWA). Another important
factor in the transformation is the scaling constant α defined in (3.1), which controls
the extent to which intermolecular interactions “remain” in U -space. In general, the
larger α, the better the sampling; however, α > 0.9 could cause contraction in the
attractive radius of important energy basins. Nevertheless, it should be noted that any
value of α will exactly preserve the partition function.

4. Results. The performance of the DC-REPWSA method is studied through
the consideration of a series of models of increasing difficulty and topological com-
plexity. First, DC-REPSWA is tested in its ability to reproduce the canonical dis-
tribution in a one-contact model system, where the original REPSWA [31] fails due
to the absence of intermolecular terms in the reference potential. This is followed
by full SDC-REPSWA simulations on molecular topologies with increasing complex-
ity such as chains of interacting single beads and beads with branches. The latter
topologies are becoming increasingly important in computational biology since they
characterize the united residue and united side chain (“coarse-grained”) descriptions
of protein structures. The above topological classes are studied using examples of
united- and all-atom alkanes, so that equilibrium observables could still be computed
even for long chains with many dihedrals. Finally, an application to the folding of an
off-lattice protein model is presented.

In all cases, the performance of SDC-REPSWA is benchmarked against both HMC
and the most widely used sampling method, PT or replica exchange [15, 13, 4]. For
both SDC-REPSWA and the individual replicas in PT, HMC was used as the “driver”
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algorithm. The basis of the comparison to PT is the number of time steps required to
achieve the corresponding sampling efficiency. The current computational overhead
of the DC-REPSWA transformation per step compared to a simple MD proposal step
is much less than an order of magnitude, and efforts are being made to reduce this
factor as much as possible.

4.1. DC/SDC-REPSWA and PT protocols. The DC-REPSWA method ap-
plied in the following examples employed a torsional space transformation with ai = 0,
af = 2π boundaries, and L = 64 Legendre polynomials, and unless otherwise stated,
a reference intermolecular scaling factor, α = 0.8 (cf. (3.1)) was used. SDC-REPSWA
was used with a staging length of 10. The PT protocol employed 10 replicas, each
within a temperature range of 300 K–1000 K and a replica exchange probability in
the range 0.05–0.2. In order to obtain the best performance for individual systems,
both the temperature ladder and the exchange probability were optimized within the
specified ranges. The HMC driver employed an MD proposal kernel with a time step
of 0.5 fs (DC/SDC-REPSWA) and 5.0 fs (PT, HMC).

4.2. A simplified model system with one contact. As a test of the dynamic
contact transformation method, a simple system with one dihedral is constructed in
which a four-atom chain (r1, r2, r3, r4) interacts with a single atom, r5, via a Lennard–
Jones potential specified by ε = 0.866 kJ·mol−1 and σ = 3.775 Å. The three base atoms
of the chain and the single atom are fixed at positions (r1, r2, r3) and r5, respectively,
and only r4 is allowed to move. The latter can be resolved into spherical coordinates
(r, θ, φ) so that the distribution of the dihedral angle can be computed by performing
a two-dimensional quadrature integral, P (φ) = 1/N

∫∞
0

dr
∫ π

0
dθ exp(−β V (r, θ, φ)),

where V (r, θ, φ) denotes the potential of the system and N is chosen such that∫ 2π

0
P (φ) dφ = 1. This distribution is also computed by HMC simulations carried

out using the original REPSWA [31], the new DC-REPSWA, and no transformations
over the dihedral angle (standard HMC).

In Figure 4.1, the dihedral angle φ is plotted versus simulation time for DC-
REPSWA, REPSWA, and the HMC methods. Figure 4.1 shows the distribution

Fig. 4.1. Top: Instantaneous value of the dihedral angle versus MC steps for the system of
section 4.2 using HMC, REPSWA, and DC-REPSWA methods. Bottom: Position distribution of
the dihedral angle produced by the above methods. All distributions are compared with the exact
distribution obtained from multidimensional numerical quadrature integral.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DYNAMICAL SPATIAL WARPING 2069

P (φ) of the dihedral angle for the three simulation methods along with the analytical
result. The interaction of the chain with the single atom significantly alters its con-
formation space, suggesting that even the original (static) REPSWA transformation
is not robust enough for efficient sampling. However, it can be seen that the dy-
namic transformation leads to a dramatic improvement in conformational sampling
efficiency over both the static and no transformation cases and is able to reproduce
the analytical distribution function. PT with different numbers of replicas was also
applied to the same system, and it was found that at least 10 replicas were needed to
reproduce the analytical distribution within the same number of MC iterations.

4.3. A chain of connected beads. As a representative of this topological
class, a recent united-atom alkane chain model [16] of chain length 50 was studied.
In Figure 4.2, the convergence of the dimensionless end-to-end distance is presented
for 3 × 106 step trajectories generated by three different methods, HMC, PT, and
SDC-REPSWA. It is evident that HMC does not converge at all, PT is close to
convergence on the “time scale” of the trajectory, and REPSWA is converged within
roughly 1/6th of the total run time. Thus, the speedup of SDC-REPSWA relative to
PT is a factor of 6 or a factor of 60 if the 10 replicas of PT are taken into account.
One inset of Figure 4.2 shows a 10 times longer PT trajectory and indicates that
on this time scale PT is truly converged. Finally, Figure 4.2 also compares a higher
dimensional observable, the end-to-end distributions for SDC-REPSWA, and long PT
and HMC trajectories. The comparisons demonstrate that the SDC-REPSWA is a
rigorous canonical sampling method with superior performance.

Fig. 4.2. Comparison is made for HMC, PT with 10 replicas, and SDC-REPSWA algorithms
in their sampling efficiency of the conformational space of the C50 united-atom alkane molecule
described by the Tra-PPE potential [16]. Top: Dimensionless end-to-end distance (black) and its
cumulative average (solid red) as a function of the MC steps. The expectation value (dashed red)
is indicated for each plot. The inset depicts a 10 times longer trajectory produced by applying the
PT algorithm. Bottom: Distribution (P (x)) of the end-to-end distance x, calculated from 30 × 106

step HMC (solid), PT (dashed), and 3 × 106 step SDC-REPSWA (dotted) trajectories. The inset
compares the distributions for 3 × 106 step PT (dashed) and SDC-REPSWA (dotted) trajectories.
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Fig. 4.3. Comparison is made for HMC, PT with 10 replicas, and SDC-REPSWA algorithms
in their sampling efficiency of the conformational space of the C50 all-atom alkane molecule de-
scribed by the CHARMM22 [14] potential. Top: N(i), number of barrier crossing events for each
torsional dihedral i, found in a 5 × 107 MC step trajectory. One crossing event of a dihedral angle
corresponds to any transition between gauche (φ = 60◦/300◦) and trans (φ = 180◦) conformers.
Middle: Ramachandran plot of the central dihedral angles (φ24, φ25). Bottom: Value of the central
dihedral (φ25) as a function of the MC steps.

4.4. A chain of beads with branches. Following the above example, the
SDC-REPSWA method was employed here on a representative of this topological
class, an all-atom alkane chain model [14] of chain length 50. A 5 × 107 length HMC
trajectory was generated for the different methods.

Figure 4.3 summarizes the comparison of the three methods. In terms of the
efficiency of dihedral sampling, PT constitutes a significant improvement over HMC;
however, this enhancement in sampling does not reach the central 20 dihedrals. In
the application of SDC-REPSWA, on the other hand, sampling improvement is more
uniformly distributed over all dihedrals. The lack of barrier crossing events in the
central dihedrals for PT is further demonstrated with the central Ramachandran
plots, which refer to the plots of the central dihedrals with respect to each other.
In addition, the time evolution of the central dihedrals clearly shows the differences
in the performance of the three methods. The quantitative improvement of SDC-
REPSWA over PT with 10 replicas can be measured by the 20 central dihedrals.
Here, the average numbers of barrier crossing events are 50 and 200 for PT and SDC-
REPSWA, respectively, leading to a factor 4 improvement. Again, if the number of
PT replicas is considered, this is an overall improvement of 40 for this quantity.

The fluctuations in the dimensionless end-to-end distances were also compared.
As shown in Figure 4.4, the cumulative average of this quantity is converged within
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Fig. 4.4. Comparison is made for PT with 10 replicas and SDC-REPSWA algorithms in their
sampling efficiency of the conformational space of the C50 all-atom alkane molecule described by
the CHARMM22 [14] potential. Top: Dimensionless end-to-end distance (black), its cumulative
average (solid red), and the expectation value (dashed red) as a function of the MC steps for SDC-
REPSWA. Bottom: Dimensionless end-to-end distance (black) for PT. The inset depicts a 4 times
longer trajectory and shows the cumulative average (solid red) with the expectation value (dashed
red).

5 × 106 steps for SDC-REPSWA, whereas for PT convergence is incomplete even for
200×106 steps. Again, considering the 10 separate systems in PT, the overall speedup
in this measure is at least 4 × 10 = 40, which is the most substantial speedup for the
DC-REPSWA systems considered in this study.

4.5. An off-lattice β-sheet model protein. The last example is a simplified
united-residue off-lattice β-sheet protein model [5, 22] with 46 residues composed of
three different types: hydrophobic (B), hydrophilic (L), and neutral (N). A particu-
lar sequence of “amino acids,” in this case, B9N3(LB)4N3B9N3(LB)5L, is known to
fold into a β-barrel conformation. Recent studies [18, 28] have shown that this sys-
tem is characterized by a rough energy landscape. In addition, there is a minimal
thermodynamic driving force towards the global (free) energy minium, or “native,”
structure due to the presence of several attractive energy basins that are populated
with equally high probabilities (see [18]: “this system seeks only a general β barrel
structure”). Thus, this model protein serves as an excellent benchmark system for
sampling/optimization methods as an engine for efficiently locating the dominant en-
ergy basins characterized by the β-barrel motif. Note that, in contrast to the previous
alkane examples, we do not directly seek equilibrium properties for this system, al-
though these are certainly available. Algorithms with superior performance on the lat-
ter problem are expected to be instrumental in ab initio protein structure prediction.

In this example, three different methods, specifically, standard HMC, PT with
16 replicas, and SDC-REPSWA, are compared for their effectiveness in finding the
native conformation from an ensemble of random initial configurations, each being at
least 10Å root mean-square deviation (RMSD) from the “native” state.
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Fig. 4.5. Comparison is made for HMC (dashed), PT (dot-dashed) with 10 replicas, and
SDC-REPSWA (solid) algorithms in their sampling efficiency for the simplified united-residue off-
lattice β-sheet model protein [5, 22]. IP (x) =

∫ x
0 P (y)dy is the cumulative integral of the RMSD

distributions P (x) over structural ensembles, which were generated by 20 independent trajectories
initiated from random coil structures with at least 10 ÅRMSD distance from the native state. Here,
RMSD represents the average distance of each structure from a pool of native-like β-barrel motifs
and the distance of each structure from the global energy minimum structure (inset).

Each trajectory was generated at a temperature of T = 0.8Tf , where Tf is the
protein folding temperature. The 16 replicas of PT were distributed in a temperature
range of 0.5–4.4 Tf , and only trajectories from the T = 0.8Tf replica were considered
for statistics. The driver for each method was chosen to be HMC with a collective
(MD) proposal time step of Δt = 0.5 fs. When constructing the reference potential
of (3.1), the parameter α = 0.6 was used to leave some intermolecular interaction in
the U -space. This choice proved to be useful for striking a balance between energetic
and entropic barrier effects.

In ab initio protein structure prediction, one of the important properties of differ-
ent algorithms is their ability to move unfolded or randomly generated structures close
to the native state. Here, 20 106-step trajectories were generated with each method,
and based on these trajectories, nonequilibrium structural ensembles were created.
Then, the average RMSD distance of each structure present in structural ensembles
was calculated from a pool of native-like β-barrel motifs found by both PT and SDC-
REPSWA methods. Furthermore, the RMSD distance of each structure present in
structural ensembles was calculated from the global energy minimum. Based on this
data, RMSD distributions P (x) were obtained for all methods. Figure 4.5 depicts
the cumulative integral, IP (x) =

∫ x

0
P (y)dy, of the above distributions. Basically,

IP (x) = P (. ∈ Sx) is the probability that a visited structure is contained in the set

Sx = {s : 1/k
∑k

i=1 RMSD(s, sk) ≤ xÅ}, where RMSD(s, sk) is the RMSD distance
of a given structure s from one of the native-like β-barrel structures sk. According to
Figure 4.5, the probabilities that the different methods move the initial coil structure
within an average of 4Å RMSD from native-like β-barrel structures are 0.05, 0.30,
and 0.5 for HMC, 16-replica PT, and SDC-REPSWA, respectively. The analogue
probabilities for 1.5Å are 0.0, 0.07, and 0.2. Within this last range SDC-REPSWA
outperforms 16-replica PT by a factor of 3, or a factor of 16×3 = 48 if the number of
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PT replicas is taken into account. This improvement in locating native-like β-barrel
structures from random initial coil structures is consistent with the previous results.
Figure 4.5 also depicts the case with k = 1, s1 = sn, where sn is the global minimum
structure. Here, the analogue probabilities for the 1.5Å case are 0.0, 0.05, and 0.2,
respectively, so that SDC-REPSWA outperforms 16-replica PT by a factor of 4, or a
factor of 16 × 4 = 64 if the number of PT replicas is taken into account. This latter
case marks the improvement in locating the global minimum structure from random
initial coil structures.

In addition, it is important to note here that DC-REPSWA need not be viewed
entirely as an alternate approach but rather as one that can be combined with other
methods, such as PT, as a means of enhancing the efficiency of other approaches. The
combination of these methods is currently under development.

5. Conclusion. The development of conformational sampling algorithms capa-
ble of leading coarse-grained or atomistic simulation into the era of systems biology
research will require synergistic adaptation of many methods and concepts. If accom-
plished, equilibrium features of self-assembly, biological nanomachine activity, and
other large-scale biological processes could all potentially be treated in an atomistic
or coarse-grained fashion. However, significant challenges must be met, and success
is not yet entirely at hand.

Here, we have taken a significant step forward by introducing the SDC-REPSWA
approach, the implementation details of which were clearly laid out. The superior
performance of the method over PT/replica-exchange was demonstrated for a vari-
ety of systems with increasing topological complexity including a model protein. At
present, the SDC-REPSWA method is being embedded in our atomistic protein sim-
ulation code, PINY MD [17], to allow realistic folding experiments to be performed
in generalized-Born and Poisson–Boltzmann solvent. Success would quickly lead to
thorough atomistic applications in proteomics and systems biology.

6. Supplementary information. In this section, further information is pro-
vided about the DC-REPSWA-HMC method. In particular, the next subsections
provide additional details for the general comparison of DC-REPSWA and other state-
of-the-art sampling methods, the rate of convergence for one-dimensional systems,
some parameter details of the protein model used in this study.

6.1. DC-REPSWA and other methods. It is important to consider the dif-
ference between DC-REPSWA and other methods. First, consider the guiding poten-
tial or thermodynamic perturbation [32] technique which uses the identity

1 = exp[−βVref(x)] exp[βVref(x)],

Q =
1

h

∫
dpx

∫
dx exp[−βHeff(px, x)] exp[−βVref(x)],(6.1)

Heff(px, x) =
p2
x

2m
+ V (x) − Vref(x).

The sampling does not yield the correct probability distribution without an unbiasing
correction factor,

〈A(x)〉 =
〈A(x) exp[−βVref(x)]〉(Heff)

〈exp[−βVref(x)]〉(Heff)
,(6.2)
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a procedure that scales poorly with the number of degrees of freedom in Vref(x). This
is quite different from DC-RESPWA, which scales well with the number of degrees of
freedom, does not require an unbiasing factor, and involves a variable transformation
from x to u to introduce the reference potential. The umbrella sampling technique
[25, 26] behaves similarly. Many simulations using a modified potential energy surface

Q̃k =
1

h

∫
dpx

∫
dx exp[−βH

(k)
eff (px, x)],

H
(k)
eff (px, x) =

p2
x

2m
+ V (x) + V

(k)
bias(x)(6.3)

are performed. Since Q̃k �= Q, the equations

P̃k(x) ≡ exp[−β(V (x) + V
(k)
bias(x))]

Q̃k

,

P (x) ≡ exp[−βV (x)]

Q

=

∑
k P̃k(x) Q̃k

Q∑
j

Q̃j

Q exp[βV
(j)
bias(x)]

must be solved self-consistently for the weighting factors Q̃j/Q. This procedure,
again, scales unfavorably with the number of degrees of freedom in Vref(x) and does
not involve a change of variables as in DC-REPSWA.

Metadynamics [8, 7], like umbrella sampling and guiding functions, can be applied
only to a finite number of degrees of freedom. It uses a basis set expansion to describe
a low dimensional free energy surface (4–5 degrees of freedom) whose coefficients are
determined on the fly. The number basis set coefficients scale as Nd.

Last, consider the PT method [4, 19]. Many simulations at different inverse
temperatures, βj = 1/[kBTj ] using

Qj =
1

h

∫
dpx

∫
dx exp[−βjH(px, x)],

H(px, x) =
p2
x

2m
+ V (x),(6.4)

are run simultaneously. MC exchange moves (switching of inverse temperatures) are
attempted periodically. Acceptance depends exponentially on [ΔβjmΔEmj ], where
ΔEmj is the energy difference between system m and system j, and Δβjm is the
associated inverse temperature difference. Since ΔEmj grows with N , this requires
increasing fine-grained sampling of β to accept moves, and the method scales like
N2 provided that the system is away from a phase transition, where the scaling is
substantially worse [6]. Note, however, that several important modifications to PT
have been introduced [12, 11] that help improve the scaling with system size and its
overall performance.
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Fig. 6.1. Comparing the performance of HMC, PT, and REPSWA to sample from a one-
dimensional canonical distribution based on the double well potential, V (x) = ε0/a4(x2 − a2)2 with
ε0 = 10. Top: Analytical (solid) is compared with the numerical distributions generated with vary-
ing number of replicas (PT), K = 5 (dashed), K = 10 (long dashed), and Legendre polynomials
(REPSWA), L = 24 (dashed), L = 32 (long dashed). Middle: Position as a function of iteration
steps for K = 5 replicas (PT) and L = 24 Legendre polynomials (REPSWA). Bottom: Convergence
to the analytical distribution as a function of the iteration steps. Varying number of replicas (PT)
and Legendre polynomials (REPSWA) are considered. For PT, K = 5 (dashed) and K = 10 (long
dashed). For REPSWA, L = 24 (dashed) and L = 32 (long dashed).

Certainly, PT and umbrella sampling are useful techniques. Indeed, these can
be combined with DC-REPSWA and other algorithms such as metadynamics to form
yet more powerful approaches of still greater efficiency. Here, however, it is useful to
consider the efficiency of DC-RESPWA alone in comparison to standard HMC and PT
so that its benefits can be clearly distinguished from those of supporting techniques.

6.2. The rate of convergence: A one-dimensional study. The efficiency
of REPSWA for the quartic double well (2.11) with a barrier height of ε0 = 10kT is
compared to PT and HMC with a varying number of Legendre polynomials used to
describe the reference potential. In particular, PT has been performed with different
numbers of replicas. In each case 105 iterations were generated with an integration
step of 0.1. Results presented in Figure 6.1 indicate that while MD is hopelessly
inefficient, PT is reasonable, and REPSWA is highly efficient. The convergence Γt[P ]
of the probability distribution is given by

Γt[P ] =
1

Nbins

Nbins∑
i=1

|P (xi, t) − Ptrue(xi)| ,(6.5)
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where P (x, t) is the computed distribution at time t in the simulation, Ptrue(x) is the
true distribution, Nbins is the number of bins used to accumulate the distribution,
and xi is the value of x in the ith bin. Fewer polynomials are required than might
be expected. The “wiggles” induced by a small basis set simply need to be made
smaller than kBT . However, this is a case where the barrier is quite simple to identify
and an analytical treatment that removes it essentially exactly would be expected to
prevail.

6.3. Parameters used for the off-lattice β-sheet model protein. The sim-
plified united-residue off-lattice β-sheet protein model [5, 22] has 46 pseudoatoms rep-
resenting residues of three different types: hydrophobic (B), hydrophilic (L), and neu-
tral (N). The potential energy contains bonding, bending, torsional, and nonbonded
interactions:

V =
46∑
i=2

kbond
2

(di − σ)2 +

46∑
i=3

kbend
2

(θi − θ0)
2

+

46∑
i=4

[A(1 + cosφ) + B(1 + cos 3φ)]

+

46∑
i=1, j≥+3

VXY (rij) X,Y = B,L, or N.(6.6)

Here, kbond = 1000εH Å−2, σ = 1 Å; kbend = 20εH rad−2, θ0 = 105◦, and the
torsional potentials are of two types: if the dihedral angles involve two or more neutral
residues, A = 0, B = 0.2εH (flexible angles); otherwise A = B = 1.2εH (rigid
angles). The nonbonded interactions are bead pair specific and are given by VBB =
4ε[(σ/rij)

12 − (σ/rij)
6], VLX = (8/3)εH [(σ/rij)

12 + (σ/rij)
6] for X = B or L, and

VNX = 4ε[(σ/rij)
12] with X = B,L, or N .

Appendix A. Here, the dynamic contact REPSWA or DC-REPSWA trans-
formation method is illustrated with an example for a system of atoms (r1, r2, r3,
{rg1 , . . . , rgN }) placed in a bath of monoatomic particles (s1, s2, . . . , sM ), where all
the atoms {rg1 , . . . , rgN } are transformed as a rigid group around the primary di-
hedral (r1, r2, r3, rg1). As a result of these algorithmic steps, the initial positions
(r1, r2, r3, {rg1 , . . . , rgN }) and the corresponding forces (f1, f2, f3, {fg1 , . . . , fgN }) are
transformed into (u1,u2,u3, {ug1 , . . . ,ugN }) and (g1,g2,g3, {gg1 , . . . ,ggN }), respec-
tively, defined in a new pseudo-Cartesian frame. These steps are called the positional
R → U and force FR → FU transformation steps. Note that the transformation also
affects the force components of the bath atoms (fs1, fs2, . . . , fsM ); however, neither
the bath atoms nor their force components are considered to be transformed, and they
still remain in R- and FR-spaces. As discussed in the text, the nonlinear transfor-
mation depends on certain variables Ω and Ω†, which are explicitly indicated in step
(iii) (see also main text in section 5).
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(i ↑)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1; r′1 = r1

r2; r′2 = r2

r3; r′3 = r3

rg1
; r′g1

= rg1
− r3

.

.

rgN ; r′gN = rgN − r3

f1; f ′1 = f1

f2; f ′2 = f2

f3; f ′3 = f3 +

N∑
k=1

fgk

fg1 ; f ′g1
= fg1

.

.
fgN ; f ′gN = fgN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ri1 = r′1
ri2 = r′2
ri3 = r′3
rig1

= R(r′1, r
′
2, r

′
3)r

′
g1

.

rigN = R(r′1, r
′
2, r

′
3)r

′
gN

f i1 = f ′1 +

N∑
k=1

f ′gk · ∂[ RT (ri1, r
i
2, r

i
3) · rigk ]/∂ri1

f i2 = f ′2 +

N∑
k=1

f ′gk · ∂[ RT (ri1, r
i
2, r

i
3) · rigk ]/∂ri2

f i3 = f ′3 +

N∑
k=1

f ′gk · ∂[ RT (ri1, r
i
2, r

i
3) · rigk ]/∂ri3

f ig1
= RT (r′1, r

′
2, r

′
3) · f ′g1

.

f igN = RT (r′1, r
′
2, r

′
3) · f ′gN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(ii ↑)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

rii1 = ri1

rii2 = ri2

rii3 = ri3

f ii1 = f i1

f ii2 = f i2

f ii3 = f i3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rig1
(rig1,x, r

i
g1,y, r

i
g1,z) ⇒ riig1

(rg1 , θg1 , φg1)

.

rigN (rigN ,x, r
i
gN ,y, r

i
gN ,z) ⇒ riigN (rgN , θgN , φgN )

f ig1
(f i

g1,x, f
i
g1,y, f

i
g1,z) ⇒ f iig1

(fg1
r , fg1

θ , fg1

φ )

.

f igN (f i
gN ,x, f

i
gN ,y, f

i
gN ,z) ⇒ f iigN (fgN

r , fgN
θ , fgN

φ )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(g ↑) − (iii) − (g ↓)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

riig1
(rg1 , θg1 , φg1)

riig2
(rg2 , θg2 , φg2)

.

riigN (rgN , θgN , φgN )

f iig1
(fg1

r , fg1

θ , fg1

φ )

f iig2
(fg2

r , fg2

θ , fg2

φ )

.

f iigN (fgN
r , fgN

θ , fgN
φ )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rii,gg1
(rg1 , θg1 , φg1,g) : φg1,g = φg1

rii,gg2
(rg2 , θg2 , φg2,g) : φg2,g = φg2 − φg1

.

rii,ggN (rgN , θgN , φgN ,g) : φgN ,g = φgN − φg1

f ii,gg1
(fg1

r , fg1

θ , fg1,g
φ ) : fg1,g

φ = fg1

φ +

N∑
k=2

fgk
φ

f ii,gg2
(fg2

r , fg2

θ , fg2,g
φ ) : fg2,g

φ = fg2

φ

.

f ii,ggN (fgN
r , fgN

θ , fgN ,g
φ ) : fgN ,g

φ = fgN
φ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎣

uii,g
g1,x = rii,gg1,x = rg1

uii,g
g1,y = rii,gg1,y = θg1

uii,g
g1,z = φg1,g

u (φg1,g)

⎤
⎥⎥⎦

uii,g
g2

= rii,gg2

.

uii,g
gN = rii,ggN⎡
⎢⎢⎣

gii,gg1,x = f ii,g
g1,x = fg1

r

gii,gg1,y = f ii,g
g1,y = fg1

θ

gii,gg1,z = fg1,g
φu

⎤
⎥⎥⎦

gii,g
g2

= f ii,gg2

.

gii,g
gN = f ii,ggN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎣

uii
1 = rii1

uii
2 = rii2

uii
3 = rii3

⎤
⎥⎥⎦ (Ω) Ω†

s1 = s1

.

sM = sM

fg1,g
φu

= fg1,g
φ [∂φg1,g

u /∂φg1,g]−1

⎡
⎢⎢⎣

gii
1 = f ii1 − fg1,g

φu
[∂φg1,g

u /∂r1]

gii
2 = f ii2 − fg1,g

φu
[∂φg1,g

u /∂r2]

gii
3 = f ii3 − fg1,g

φu
[∂φg1,g

u /∂r3]

⎤
⎥⎥⎦ (Ω)

fs1 ← fs1 − fg1,g
φu

[∂φg1,g
u /∂s1]

.

fsM ← fsM − fg1,g
φu

[∂φg1,g
u /∂sM ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uii,g
g1

(rg1 , θg1 , φg1,g
u )

uii,g
g2

(rg2 , θg2 , φg2,g)

.

uii,g
gN (rgN , θgN , φgN ,g)

gii,g
g1

(fg1
r , fg1

θ , fg1,g
φu

)

gii,g
g2

(fg2
r , fg2

θ , fg2,g
φ )

.

gii,g
gN (fgN

r , fgN
θ , fgN ,g

φ )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uii
g1

(rg1 , θg1 , φg1
u ) : φg1

u = φg1,g

uii
g2

(rg2 , θg2 , φg2
u ) : φg2

u = φg2,g + φg1,g
u

.

uii
gN (rgN , θgN , φgN

u ) : φgN
u = φgN ,g

u + φg1,g
u

gii
g1

(fg1
r , fg1

θ , fg1

φu
) : fg1

φu
= fg1,g

φ −
N∑

k=2

fgk,g
φ

gii
g2

(fg2
r , fg2

θ , fg2

φu
) : fg2

φu
= fg2,g

φ

.

gii
gN (fgN

r , fgN
θ , fgN

φu
) : fgN

φu
= fgN ,g

φ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(ii ↓)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ui
1 = uii

1

ui
2 = uii

2

ui
3 = uii

3

gi
1 = gii

1

gi
2 = gii

2

gi
3 = gii

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uii
g1

(rg1 , θg1 , φg1
u ) ⇒ ui

g1
(ui

g1,x, u
i
g1,y, u

i
g1,z)

.

uii
gN (rgN , θgN , φgN

u ) ⇒ ui
gN (ui

gN ,x, u
i
gN ,y, u

i
gN ,z)

gii
g1

(fg1
r , fg1

θ , fg1

φu
) ⇒ gi

g1
(gig1,x, g

i
g1,y, g

i
g1,z)

.

gii
gN (fgN

r , fgN
θ , fgN

φu
) ⇒ gi

gN (gigN ,x, g
i
gN ,y, g

i
gN ,z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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(i ↓)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u′
1 = ui

1

u′
2 = ui

2

u′
3 = ui

3

u′
g1

= RT (ui
1,u

i
2,u

i
3) · ui

g1

.

u′
gN = RT (ui

1,u
i
2,u

i
3) · ui

gN

g′
1 = gi

1 +

N∑
k=1

gi
gk

· ∂[ R(u′
1,u

′
2,u

′
3) · u′

gk
]/∂u′

1

g′
2 = gi

2 +

N∑
k=1

gi
gk

· ∂[ R(u′
1,u

′
2,u

′
3) · u′

gk
]/∂u′

2

g′
3 = gi

3 +

N∑
k=1

gi
gk

· ∂[ R(u′
1,u

′
2,u

′
3) · u′

gk
]/∂u′

3

g′
g1

= R(ui
1,u

i
2,u

i
3) · gi

g1

.

g′
gN = R(ui

1,u
i
2,u

i
3) · gi

gN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1 = u′
1

u2 = u′
2

u3 = u′
3

ug1
= u′

g1
+ u′

3

.

.

ugN = u′
gN + u′

3

g1 = g′
1

g2 = g′
2

g3 = g′
3 −

N∑
k=1

g′
gk

gg1 = g′
g1

.

.

ggN = g′
gN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Appendix B. In order to illustrate the application of the DC-REPSWA trans-
formation to a general molecule with Nt torsional dihedrals, the molecule is topolog-
ically decomposed into transformation groups Υt(k), k = 1, . . . , Nt, where Υt(k) =
{rkg1

, . . . , rkgN }. Furthermore, each transformation group belongs to a dihedral group

defined as Υd(k) = {rk1 , rk2 , rk3 , {rkg1
, . . . , rkgN }}, and the individual levels denoted by

the index k are strictly ordered. Note that the topological decomposition does not
have to follow chemical connectivity; however, Υt(i) ∩ Υt(j) = ∅ is strictly imposed.
On the other hand, in most of the cases Υd(i) ∩ Υd(j) �= ∅. The action of the trans-
formation steps described in Appendix A are successively carried out on the dihedral
groups. The base atoms of the first level r1

1, r
1
2, r

1
3 are the reference atoms, which

always remain intact.
(R,FR) → (U,FU) [1*]

ΥU = { }
ΥR = {all atoms in the system}
for k ← Nt to 1

do Υd(k) ← (i ↑) [Υd(k)]
Υd(k) ← (ii ↑) [Υd(k)]
ΥU ← ΥU ∪ Υt(k)
ΥR ← ΥR \ Υt(k)
Υd(k) ← (g ↑) [Υd(k)]
Υd(k) ← (iii) [Υd(k)]

Ω† \ Ω = ΥR \ {rk1 , rk2 , rk3} [2*]
Υd(k) ← (g ↓) [Υd(k)]

endfor
for k ← 1 to Nt

do Υd(k) ← (ii ↓) [Υd(k)]
Υd(k) ← (i ↓) [Υd(k)]

endfor
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ΥU =
⋃Nt

k=1 Υt(k)

ΥR = {all atoms in the system} \
⋃Nt

k=1 Υt(k)

[1*]: forces originating from V eff
ref (3.13) are already present in R-space

[2*]: force field dependent, e.g., all atom: Ω† \ Ω = ΥR \ {rk2 , atoms bonded to
rk2}

U → R [1*]

ΥU =
⋃Nt

k=1 Υt(k)

ΥR = {all atoms in the system} \
⋃Nt

k=1 Υt(k)
for k ← Nt to 1

do Υd(k) ← (i ↑) [Υd(k)]
Υd(k) ← (ii ↑) [Υd(k)]

endfor
for k ← 1 to Nt

do Υd(k) ← (g ↑) [Υd(k)]
Υd(k) ← (iii)−1 [Υd(k)] [2*]

Ω† \ Ω = ΥR \ {rk1 , rk2 , rk3} [3*]
Υd(k) ← (g ↓) [Υd(k)]
ΥU ← ΥU \ Υt(k)
ΥR ← ΥR ∪ Υt(k)
Υd(k) ← (ii ↓) [Υd(k)]
Υd(k) ← (i ↓) [Υd(k)]

endfor
ΥU = { }
ΥR = {all atoms in the system}

[1*]: only position transformation no forces
[2*]: inverting one-dimensional torsional transform using (2.16)
[3*]: force field dependent, e.g., all atom: Ω† \ Ω = ΥR \ {rk2 , atoms bonded to

rk2}
Appendix C. Further implementation details for SDC-REPSWA. In

order to implement the staging dynamic contact or SDC-REPSWA algorithm, each
transformation group of Appendix B, Υt(k) = {rkg1

, . . . , rkgN }, is assigned a specific
label, and this is kept in a variable array Trans Type = {Trans Type(k) : k =
1, . . . , Nt} indicating the type of transformation performed on that particular group,
e.g., Trans Type(k) = {“dynamic,” “static,” “identity,”. . . }. In this appendix, it is
shown how to drive SDC-REPSWA with an HMC scheme.

HMC − SDC −REPSWA
R ← R0, FR ← FORCE(R)
FR ← FR + FRref

(R,U) → (FR,FU)
P (V ) ← PMaxwell−Boltzmann(T )
for k ← 1 to nstep

do STATE ← (R,U, FR, FU)
Hpre(U) ← Veff(U) + K(V )
(U, V ) ← integrate UV (U,FU, V )
U → R → [FR ← FORCE(R)]
FR ← FR + FRref

FR → FU
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V ← integrate V (FU, V )
Hpost(U) ← Veff(U) + K(V )
Pacc = MIN(1.0, exp(−(Hpost −Hpre)/(kB T )))
if Pacc > Rand Unif [0, 1]

if (k mod Nmod) == 0 [*]
Trans Type ← update
FR ← FR + FRref

(R,U) → (FR,FU)
P (V ) ← PMaxwell−Boltzmann(T )

endif
else

(R,U, FR, FU) ← STATE
P (V ) ← PMaxwell−Boltzmann(T )

endif
endfor

[*]:Nmod is the frequency of updating Trans Type

(U, V ) ← integrate UV (U,FU, V )
U = {u1, . . . ,uNatom}
V = {v1, . . . ,vNatom}
FU = {g1, . . . ,gNatom}

for i ← 1 to Natom

do vx[i] ← vx[i] + gx[i]/mass[i] dt/2
vy[i] ← vy[i] + gy[i]/mass[i] dt/2
vz[i] ← vz[i] + gz[i]/mass[i] dt/2

ux[i] ← vx[i] dt
uy[i] ← vy[i] dt
uz[i] ← vz[i] dt

endfor

V ← integrate V (FU, V )
V = {v1, . . . ,vNatom

}
FU = {g1, . . . ,gNatom}

for i ← 1 to Natom

do vx[i] ← vx[i] + gx[i]/mass[i] dt/2
vy[i] ← vy[i] + gy[i]/mass[i] dt/2
vz[i] ← vz[i] + gz[i]/mass[i] dt/2

endfor

Note, that due to the aggressive nature of the transformation, the system could
visit regions in U -space, where Pacc could become very small. In this case, it is
sufficient to leave U -space for a few steps and propagate the system further in R-
space using H(P,R) = K(P ) + V (R) for a while. In other words, at every step
there is a possibility of moving in R-space or in U -space based on Pacc(H(R)) or
Pacc(H(U)). In order to achieve maximum accuracy, optimization of the latter option
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should be further investigated. In addition, it is possible to mix U or R propagation
by monitoring the relation between Pacc(H(R)) and Pacc(H(U)) on the fly. The
efficiency of the latter approach is currently being tested.
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