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We probe the stability and near-native energy landscape of protein fold
space using powerful conformational sampling methods together with
simple reduced models and statistical potentials. Fold space is represented
by a set of 280 protein domains spanning all topological classes and having
a wide range of lengths (33–300 residues) amino acid composition and
number of secondary structural elements. The degrees of freedom are taken
as the loop torsion angles. This choice preserves the native secondary
structure but allows the tertiary structure to change. The proteins are
represented by three-point per residue, three-dimensional models with
statistical potentials derived from a knowledge-based study of known
protein structures. When this space is sampled by a combination of parallel
tempering and equi-energyMonte Carlo, we find that the three-point model
captures the known stability of protein native structures with stable energy
basins that are near-native (all α: 4.77 Å, all β: 2.93 Å, α/β: 3.09 Å, α+β:
4.89 Å on average and within 6 Å for 71.41%, 92.85%, 94.29% and 64.28% for
all-α, all-β, α/β and α+β, classes, respectively). Denatured structures also
occur and these have interesting structural properties that shed light on the
different landscape characteristics of α and β folds. We find that α/β
proteins with alternating α and β segments (such as the β-barrel) are more
stable than proteins in other fold classes.
© 2007 Elsevier Ltd. All rights reserved.
Keywords: coarse-grained statistical potentials; protein fold space; near-
native energy landscape; multicanonical sampling; multidimensional
scaling
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Introduction

It has been long recognized that proteins are
assembled from globular compact substructures,
called domains, which are the basic units of folding,
function and evolution.1 During the last decade
there were several initiatives towards the compre-
hensive organization of structural domain informa-
tion into databases, which are accessible to the
scientific community. The first effort of this kind
was SCOP,2 which was later followed by CATH3

and DALI,4 each scheme having a unique way of
partitioning proteins into domains and classifying
the domains into a treelike hierarchy. At the top
level of SCOP, domains are clustered into folds on
the basis of topological similarity in the arrangement
ess:

arlo; PT, parallel
te Carlo.
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of their secondary structure elements. Based on
common function, sequences in a particular fold are
further grouped into superfamilies. Finally, at the
fundamental level, there are families where each
contains protein pairs with sequence similarity
above a threshold value (N30%). This picture clearly
indicates that many proteins with low sequence
similarity still share a similar three-dimensional
structure or possess a common fold. Accordingly,
the Protein Data Bank contains a much smaller
number of folds than sequences and the former can
be further classified into topological classes.5 Recent
studies on protein fold space were mainly focused
on either the structural completeness6–9 or the
similarity network of fold space.10 In addition,
lattice simulation studies were conducted to under-
stand how protein folds evolved.11,12 Most of these
recent works have implications only on the function
and evolution of single-domain protein structures,
but they do not address the energy landscape
properties of individual folds in a comparative
manner. Such studies would require simplified
protein models, so that a comprehensive study of
d.
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the space of all protein folds may be computation-
ally tractable.
Finding reliable simplified computational models

that provide realistic energy landscapes for indivi-
dual folds is one of the grand challenge problems in
computational molecular biophysics. If achieved, a
wide array of problems would be impacted. An
obvious application would be the prediction of
native structure from sequence using either an ab
initio approach,13–20 or homology-based prediction
using threading and fold recognition.21–23 With such
a model, the conformational rearrangement and
flexibility of native folds could be studied efficiently;
these latter properties are clearly related to protein
function.
The derivation of any simplified or reduced pro-

tein model24,25 rests on two foundations: the rep-
resentation of the structure and the choice of the
energy function. The former determines the attain-
able resolution for each residue, whereas the latter
determines the type of interactions between these
residues. Although independently chosen, the pro-
tein topology and corresponding energy functions
are interrelated and successful simplified models
must take advantage of the synergy between them.
One of the greatest advantages of statistical energy
functions based on knowledge from native struc-
tures,26–28 is that they can be easily combined with
any type of representation. In addition, unlike
physics-based force fields,29,30 knowledge-based
potentials implicitly incorporate environmental
effects such as solvation.
Simplified models greatly reduce the dimension-

ality compared to all-atom representations. Further
reduction in the number of degrees of freedom can
be achieved by only considering torsion angle
deformations of the protein chain. Use of torsion
angle coordinates allows conformational explora-
tion that keeps secondary structural elements
(α-helix, β-sheet) intact. By combining simplified
models, torsion angle degrees of freedom and rigid
secondary structures, three levels of dimensionality
reduction is attained. The validity of the diffusion–
collision model31 in protein folding and the current
accuracy32 of secondary structure prediction from
sequence both suggest that there may be a set of
essential coordinates that are responsible for tertiary
assembly of secondary structural elements. Conse-
quently, a successful protein model and its asso-
ciated energy function should adequately be able to
describe tertiary assembly based on the conforma-
tional stability and rearrangement of the native fold.
In spite of the three levels of dimensionality
reduction, the number of degrees of freedom for a
typical SCOP domain is still vast: effective sampling
is an essential requirement.
Commonly used methods for the exploration of

conformational space are molecular dynamics and
Monte Carlo (MC).33 The performance of these
methods is severely limited on rough energy land-
scapes due to the presence of large energy barriers
separating local energy basins. In order to overcome
this limitation, many alternative solutions have
been proposed including multiple time step inte-
grators to extend the time scale of molecular
dynamics simulations,34,35 transformation of the
potential energy surface to cut across high-energy
barriers,36–41 or the addition of auxiliary variables to
overcome barriers along extra dimensions.42–44

While the above methods are mainly used for
equilibrium sampling at a given temperature, some
of them36–44 can be included in optimization proto-
cols that aim to find the global minimum conforma-
tion. In spite of the lack of general solutions to the
global minimum problem in high dimensions,
stochastic optimization can still be used to identify
possible optimal solutions, although without guar-
antee to find the global optimum of the underly-
ing energy function. Among the many popular
stochastic optimization algorithms, the most com-
monly used ones for conformational optimization
are simulated annealing,45 basin-hopping or MC
minimization,46–48 parallel tempering (PT),49 sto-
chastic tunneling,50 and more recently, equi-energy
Monte Carlo (EEMC).51,52 When any of these
methods is used in conformational exploration, the
stochastic optimization process effectively becomes
a fictitious dynamical process (with successively
visited conformations), which continues until either
a given computational resource has been spent (PT,
MC minimization, EEMC) or a terminating stable
conformation has been found (simulated annealing,
stochastic tunneling). In addition, among all the
above methods only PT and EEMC generate the
Boltzmann distribution in computationally feasible
cases: thus they can be termed sampling-based or
“canonical” stochastic optimization methods. In
both PT and EEMC, enhanced sampling is achieved
by employing an independent set of different
temperature replicas; thus they are also referred to
asmulticanonical samplingmethods. Although PT is
generally regarded as one of the most advanced and
widely used conformational sampling methods,
recent studies demonstrated the superior perfor-
mance of EEMC over PT in effectively reproducing
the canonical distribution of low-dimensional,
rough, analytical energy surfaces and also in locating
nativelike structures of a three-dimensional off-
lattice β-barrel model protein.52

In this work, the three-point (3-pt) per residue
simplified protein model is used with a knowledge-
based potential to explore the nature of the near-
native energy landscape and probe the conforma-
tional stability of a representative set of native SCOP
folds.53 Such exploration is performed using cano-
nical stochastic optimization in order to identify the
most dominant energy basins accessible from the
native state. In particular, we use a combination of
PT49 and EEMC51 to sample those torsion angle
degrees of freedom that are responsible for the
tertiary conformational change. High-temperature
unfolding simulations introduced by Daggett and
Levitt54 are commonly used to explore near-native
energy landscapes. While high-temperature unfold-
ing does not sample conformations from the Boltz-
mann distribution at room temperature, it provides a
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high-temperature but physically relevant unfolding
pathway. By contrast, PTand EEMC sample from the
correct Boltzmann distribution at the temperature of
interest, e.g., 300 K. With their much more efficient
exploration they also provide a more global view of
the landscape, but getting across energy barriers
could happen at high temperatures, so that most of
the kinetic information is lost.
Careful interpretation of sampled near-native

conformational basins not only should include any
assumption of any reaction coordinate, but also take
all aspects of structural information in the visited
conformations into account. In order to interpret the
sampled conformational space, multidimensional
scaling is used.55,56

In this study, the combination of dimensionality
reduction (torsion angle loops), a 3-pt per residue,
coarse-grained, knowledge-based model, and ad-
vanced multicanonical sampling protocols provide
robust exploration of the near-native conformational
space of SCOP domains, locating the most impor-
tant energy basins. We find that 3-pt protein models
represent native structures with an RMSD whose
average value is 3.92 Å, although there are char-
acteristic trends present among the different topo-
logical classes. In particular, β and α/β folds are
found to be more stable, whereas α and α+β folds
have many low-energy denatured states. This
analysis implies that the main differences are due
to fold topology as well as the weak and nonspecific
nature of α-helix–helix interactions.
Results

In order to characterize the accuracy of the
knowledge-based potentials in describing the repre-
sentative set of 280 protein folds, the energy land-
scape around the native structures has been
explored by performing extensive loop torsion
angle conformational sampling initiated from the
crystal structures of protein domains using the 3-pt
coarse-grained knowledge-based model. Detailed
information on the representative set, models,
corresponding loop torsion angle space and sam-
pling protocols can be found in the Methods section.

Sampling trajectories

Figure 1a illustrates the nature of the sampling
trajectories by plotting the RMSD variations from
the crystal structure in the lowest temperature
(T=300 K) Markov chain as a function of the MC
iteration steps for one representative fold from each
of the four main topological classes.
The 3-pt per residue potential not only stabilized

∼80% of all the studied folds, but introduced a rich
diversity of nativelike and partially denatured
energy basins. As a consequence, folds represented
by the 3-pt model are metastable, and the sampled
conformations are distributed among the dominant
energy basin attractors around the native state. Note
that the above characteristics are not present in
many commonly used simplified representations of
protein structures (Supplementary Data, Fig. 1).
Specifically, for the all-α protein d1ny9a_, conforma-
tional regions up to ∼15 Å RMSD from the crystal
structure are explored first, then a rich diversity of
conformational clusters are found in later stages of
the sampling trajectory. Although the sampling path
for a typical all-β protein, d1r75a_, starts with an
initial ∼10-Å unfolding event, it is followed by a less
eventful continuous deformation towards more
nativelike states. In this work, α/β proteins are
found to be more stable, as typified by the prog-
ression of sampling events of d1rvva_ in Fig. 1a.
Finally, the figure shows the sampling events of an
α+β protein, d1c4ka3, which is very rich in diverse
conformations involving structures 3 to 15 Å RMSD
from the native state.

Near-native energy landscape

In general we find that domains of the same
topological type possess a characteristic energy
landscape fingerprint that depends on the given
architectural fold class. Figure 1b illustrates these
landscapes in the form of energy versus RMSD plots
generated from the near-native sampling trajectories
of Fig. 1a. It is clear from the figure that the domi-
nant peaks in the RMSD distribution well describe
the notable energy basins. In addition, the layout
of nativelike (0–5 Å) and far-native (5–15 Å) favor-
able energy basins may carry information on con-
formational plasticity and the location of folding
intermediates. For the all-α d1ny9a_, the most
dominant energy basin was found at ∼5 Å, which
is followed by two slightly less populated basins at
∼7.5 and ∼8.5 Å and a far-native but still significant
basin at ∼12 Å. Contrary to the ordered layout of
the all-α-type energy landscape, the typical all-β
domain, d1r75a_, is more diffuse, but there are still
two well-populated energy basins. The stability of
α/β domains is illustrated by d1rvva_, which has a
dominant conformational cluster close to the crystal
structure at 2 Å and a less marked peak in the RMSD
distribution at ∼4 Å. The RMSD distribution for the
α+β domain d1c4ka3 is more similar to that of the
all-α domains with two well-separated and compar-
ably populated peaks.

Representative set of domains

In order to quantitatively compare and describe
the plasticity and stability of each of the 280 rep-
resentative folds, the three dominant energy basins
accessible to the search protocols are located based
on the RMSD distributions. The procedures for lo-
cating the RMS maxima are described in the
Methods section. Figure 1b shows the peak RMS
values obtained from the RMSD distribution; it is
clear from the figure that, at most, three dominant
peaks capturemany characteristics of the underlying
distributions. We characterize each domain by the
RMS values of dominant peaks, which correspond to
the most populated conformational clusters.



Fig. 1. (a) Variation of the RMSD of all Cα atoms from the native structure with the number of MC iteration steps for
four SCOP protein domains representing the four major structure classes: α (d1ny9a_), β (d1r75a_), α/β (d1rvva_) and
α+β (d1c4ka3). Domains are described with the 3-pt model. All trajectories started from the crystal structures and were
propagated for a total of 4,000,000 steps using an advanced combination of PT and EEMC methods. The simulation
explores the conformational space around the native structure with rapid and frequent transitions between states that
have very different RMSD values; at the end of the trajectories, the RMSD generally reaches values lower than 5 Å. (b) The
distribution of RMSD values from native distribution (continuous red curve) is plotted together with the energy values
obtained for sampled conformations (black dots) for d1ny9a_, d1r75a_, d1rvva_ and d1c4ka3, the same protein folds
shown in (a). The green arrows indicate the locations of (1) the most probable RMSD value (denoted RMSA and marked
with a dotted green arrow), (2) the second most probable RMSD value (denoted RMSB, dashed green arrow) and (3) the
third most probable RMSD value (denoted RMSC, continuous green arrow). In many cases, there is a clear separation of
clusters of conformations based on their energy and RMSD values (d1r75a_; an all-β fold is an exception). The most
probable cluster is often the closest to the native structure (i.e., RMSA is smaller than RMSB or RMSC).

923Probing Protein Fold Space with a Simplified Model



924 Probing Protein Fold Space with a Simplified Model
In Fig. 2a, the RMSD of the most denatured but
stable conformational energy basin [RMSmax=max
(RMSA,RMSB,RMSC)] is plotted as a function of the
domain size showing that there is no correlation
between the two quantities. For most of the cases
(192 out of 280 or 68.57%), RMSmax is below 6 Å and
the average expectation value 〈RMSmax〉 and stan-
dard deviation σ(RMSmax) are found to be 5.43 and
3.31 Å, respectively. In addition, there are significant
variations among the fold classes, with 〈RMSmax〉±
σ(RMSmax)=6.37±3.95, 4.67±3.22, 4.41±2.18 and
6.26±3.64 Å for all-α, all-β, α/β and α+β, respec-
Fig. 2. Variation of the basin RMSD from crystal
structure with the size of protein (Nseq). We show the
results for all 280 domains studied here: domains from α,
β, α/β and α+β topological classes are colored black, red,
green and blue, respectively. Here we consider the three
most probable basins for each protein, RMSA, RMSB and
RMSC (see Fig. 1b). In (a) we show the RMSD value of the
least nativelike of the top three dominant energy basins
[max(RMSA,RMSB,RMSC)] as a function of the number of
residues. One third of the domains (88 out of 280, 31.4%)
have RMSD values above 6 Å (dashed black horizontal
line). On average, α/β and β domains remain closer to the
native state than other classes of domains. Only 4.29% of
proteins have RMSD values below 2 Å (dashed black
horizontal line). Ninety percent of all-α, all-β, α/β and
α+β class domains are below thresholds of 12.7, 8.5, 6.9
and 12.0 Å, respectively. In (b) we show the RMSD value
of the most dominant energy basin (RMSA) as a function of
the number of residues. In this case, only 19.3% (54 out of
280) of the domains have RMSD values above 6 Å (dashed
black horizontal line) and almost all (66 out of 70 or 94.3%)
α/β domains are below the 6-Å line. Ninety percent of
all-α, all-β, α/β and α+β class domains are below thres-
holds of 9.1, 4.8, 5.0 and 9.2 Å, respectively.
tively. These numbers clearly indicate that all-α and
α+β domains have more low-energy denatured
states, whereas in all-β and especially α/β domains
all the stable states are more nativelike. In spite of
their low mean value, the standard deviation for all-
β proteins is close to average. This is because all-β
proteins tend to have either very low or very large
RMSmax values (see Fig. 2a). By contrast, the α/β
proteins have a low mean RMSmax and standard
deviation.
Figure 2b shows the location of the most domi-

nant energy basin, RMSA, as a function of the chain
length. Most of the domains (226 out of 280 or
80.71%) have RMSA less than 6 Å. The average
expectation value 〈RMSA〉 and standard deviation
σ(RMSmax) are found to be 3.92 and 2.39 Å, res-
pectively. Again, there are significant variations
among the fold classes, with 〈RMSA〉±σ(RMSA)=
4.77±2.87, 2.93±1.88, 3.09±1.31 and 4.89±3.08 Å for
all-α, all-β, α/β and α+β, respectively. While the
mean RMSA value is smallest for the all-β class, the
α/β class still has the smallest standard deviation.
The RMSAvalues of 90% of all-α, all-β, α/β and α+β
domains was found to be below 9.1, 4.8, 5.0 and
9.2 Å, respectively.
For 199 out of all 280 domains (71.1%), RMSA is

less than RMSmax, meaning that the more denatured
conformations are less populated. In 27 cases
(9.64%), RMSA is less but RMSmax is more than
6 Å, in addition (RMSmax−RMSA), at least 3 Å,
indicating that these domains are featured with both
stable highly denatured conformations and dom-
inantly populated nativelike states.
Figure 3a shows RMSmax as a function of frac-

tional α-helix content, pα. It is clear that domains
with pα content between 0.4 and 0.6 possess extra
stability, with most RMSmax values below 6.0 Å. This
finding does not depend on the fold class type.
Figure 3b shows the variation of RMSmax with the
relative terminal coil content. We find that domains
with high secondary structure content do not occur
below the dashed line RMSmax=37.5×pTC Å, where
pTC is the fraction of residues in the terminal loop
regions (there are 8 exceptions out of 280 or 2.86%).
Thus, stable nonnative orientations of the floppy
terminal loops set a lower bound to the most de-
natured RMSD value.

Individual trajectories

In this section we carry out a detailed investiga-
tion of individual trajectories for domains with α
(all-α), β (all-β) and mixed α+β content (α+β).

All-α class

The representative sequence considered here is
a 94-residue protein domain (d1ny9a_) with five
helical segments joined together by loop regions.
Figure 4 shows several aspects of the near-native
sampling, where panels I–III contain the 2-D
projection of every 10,000th visited conformations
generated by GraphViz.57 In these panels, confor-



Fig. 3. (a) Variation of RSMD value of the least native-
like of the top three dominant energy basins [max(RMSi)]
for all 280 protein folds as a function of the alpha content,
defined as pα=nα/(nα+nβ), where there are nα residues in
the α-helix and nβ in the β-sheet. In medium alpha content
(0.4bpαb0.6), most domains have cRMS values below
6.0 Å (there are only four exceptions). In (b) we show how
the max(RMSi) varies with the fractional terminal coil
residue content, pTC (given by nTC/nseq, where nTC is the
number of residues before the first or after the last segment
of an α or β secondary structure). Of the 280 domains, 259
(92.5%) have few unstructured terminal residues (pTC
smaller than 0.15). In addition, as pTC increases, so does
the minimum RMSD of the most denatured basin from the
native structure. Exceptions to this rule are found below
the dashed guide line given by max(RMSi)=15/0.4pTC
and marked with a black dotted circle if they have lower
than 50% α and/or β content. Among the exceptions, only
eight domains with high α and/or β content were found.
Proteins from α, β, α/β and α+β topological classes are
colored black, red, green and blue, respectively.
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mations are colored according to their relative
energy values, RMSD from native state and history
along the sampling trajectory, respectively. We note
that the history of the sampling trajectory does not
relate to any physical folding or unfolding event;
neither does it carry any kinetic information at room
temperature: it only orders the conformations based
on their history of exploration. Right around the
crystal structure, conformations have relatively high
energy (panel I); they are clustered in the 1- to 3-Å
neighborhood of the native state and are visited only
in the initial stage of the trajectory (panel III). This
set of conformations mostly belongs to cluster A,
which is featured by representative conformation A
depicted in Fig. 4. According to panel III, the later
progress of the sampling path funnels into a set of
scattered conformations with 13 to 15 Å RMSD from
the native state (panel II) and with still relatively
high energy (panel I). The snapshot of structure B
from this region of the conformational space shows
that one helix is isolated and the rest of the helices
form a highly compact globular state. In the next
stages of sampling, clusterlike states of the con-
formational space, D and E, are reached. These
states are associated with a lower energy value.
Further sampling explores conformational clusters
E, D and F at ∼12.5, ∼8.6 and ∼5.0 Å away from the
native state. Finally, cluster G is located. It is very
clear from the figure that among these main
conformational clusters, cluster F has the most
nativelike characteristics, has the lowest energy
and is the most populated cluster. The conforma-
tional characteristics of the alternative clusters D, E
and G are well illustrated by the snapshots (Fig. 4).
The common pattern in each of these representative
conformations is the presence of parallel/anti-
parallel helix–helix interaction. In addition, struc-
ture D also contains stacking interaction between
helices with perpendicular orientation and has a
more compact character than structures E and G. As
a result, D is the second most energetically favorable
cluster (after cluster F). Interestingly, parallel and
perpendicular helix–helix interactions are also pre-
sent in the native state (N). It is clear that structures
with lower, more favorable energies are more
nativelike, validating the three-point energy func-
tion we use.
Since conformational clusters N and F are rela-

tively close to each other, it is natural to ask if a
simple conformational rearrangement can bring
structure N to F (or vice versa). From the snapshots,
such a rearrangement involves a relative rotation of
two parallel surfaces each defined by a pair of
parallel helices. Such a conformational rearrange-
ment is energetically unfavorable when the distance
between the surfaces is fixed. This is in agreement
with the near-native sampling, as there were no low-
energy conformations found close to the multi-
dimensional “line” between clusters N and F.

All-β class

Contrary to highly structured energy landscapes
that occur in the all-α class, typical β proteins show
more diffuse energy landscapes. Figure 5 presents
the example of a 108-residue protein domain,
d1r75a_, showing the 2-D mapping of the sampling
trajectory initiated from the crystal structure. Panels
I–III are created by the same sampling/analysis
protocols used in Fig. 4. Sampling of the conforma-
tional space starts with high-energy states within 0
to 8 Å RMSD of the crystal structure (panels I–III).
The snapshot of one of the initial conformations (A)
is shown in the figure. Towards the middle of the
path, conformations occupy a diffuse region be-
tween 3.8 and 6.0 Å RMSD from the native structure.



Fig. 4. Two-dimensional projection of the high-dimensional conformational space of a typical all-α fold trajectory
(d1ny9a_) in which the dots mark the positions of each structure as a function of x and y measured in angstroms. The
projection was generated by using the open-source program GRAPHVIZ57 with an all-to-all RMSD distance matrix
derived from 400 structures sampled every 10,000th step along the trajectory. The native conformation is marked with N
and various clusters of similar conformations are marked by letters from A to G. In panel I, conformations are colored by
their energy. We ensure uniform use of all colors by sorting the structures by the energy and linearly mapping the rank of
each structure on the color scale (the minimum andmaximum energy values are indicated). In panel II, conformations are
colored by their RMSD distance from the native structure; the clear progression from blue to red in each of the four
directions (up, down, right, left) as points are further from the native conformation verifies the accuracy of our
dimensional reduction. In panel III, conformations are colored by the step number along the sampling trajectory. Since the
most significant fraction of the trajectory and are located in some smaller clusters, a normalized square color-bar-time step
mapping is used in order to avoid the accumulation of multiple colors in narrow clusters. The latter nonlinear monotonic
scaling improves visualization of the progress along the trajectory. The single-headed arrows between clusters point
towards the lower energy cluster. In the right-hand panel, we show snapshots of typical conformations that represent the
clusters shown in panels I, II and III. For each molecular structure we show in parenthesis the RMSD from native in
angstroms and the total energy in kilocalories per mole. The conformation with the lowest energy (see F) is enclosed in a
red box.
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The later region has lower energy than the rest of the
conformational space (panel I). The lowest energy
conformation (B) visited in the trajectory is shown in
the figure and is compared to the near-native state
(N) in three different orientations. The comparison
of energies and conformations for B, A and N again
shows that low-energy conformations tend to be
nativelike.

α+β class

Figure 6 presents the sampling trajectory of two
α+β folds, represented by a large-domain d1c4ka3
with 161 residues and a smaller 55-residue domain
(d1div_2), respectively. Panels I–III are constructed
with the same methods used for Figs. 4 and 5. Based
on the occurrence of smeared, diffusive patterns in
the 2-D projected conformational distribution, α+β
domains can be classified as being between all-α and
all-β domains. The individual sampling trajectory of
d1c4ka3 walks through high-energy states 0 to 3 Å
RMSD from the crystal structure before settling
down to three conformational clusters. The most
denatured of these clusters (A) is about 15 Å from
the native state and characterized with conforma-
tions having a compact “α+β” core region with the



Fig. 5. The same type of two-dimensional projection of conformational space used in Fig. 4 for a typical all-β fold
trajectory (d1r75a_). In this case, conformational space has a more diffuse character. We demarcate by the letters N, A
and B three regions of the conformational space representing the near-native states, the first quarter of the run and
the final sixth of the trajectory. The left-hand panels, which are like those in Fig. 4, show how the conformation has a
high energy at first and moves though much of the space before settling down close to the native structure in lowest
energy basin B. The lowest energy conformation of the whole trajectory belongs to basin B and then a conformation
for basin A is chosen as the lowest energy conformation among the top 2.5% most denatured ones. The
conformations associated with each basin and the native is shown in three different orientations to facilitate
comparison to the native state. Each snapshot is shown with its RMSD values in angstroms and the total energy in
kilocalories per mole.
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rest of the sequence partially unfolded. These types
of denatured states could correspond to folding
intermediates with α+β-type nucleation sites. The
two most energetically favorable clusters are A and
B; B is the free-energy minimum, with an average
RMSD of 4.9 Å from native state.
Figure 6 also depicts the sampling trajectory for a

significantly smaller, 55-residue domain, d1div_2.
Panel I shows that there are initial high-energy
conformations near the crystal structure. The sam-
pling path then explores three conformational
clusters with high energy; one of the most denatured
clusters, A, contains conformations with a compact
β-core. Finally, the three major conformational
clusters, B, C and D, are located. Here D is the
most energetically favorable and most nativelike
cluster, with a conformation close to the native state.
Again, many conformational clusters are located
and the most nativelike was found to have the
lowest free energy.
Discussion

The use of multicanonical sampling methods in
the exploration of near-native energy landscape of
proteins provides advantages to alternative ap-
proaches such as high-temperature unfolding.54 In
unfolding simulations, the temperature cannot be
chosen arbitrarily high since the main objective is to
infer folding paths at physiological temperatures.
On the other hand, if the native state is kinetically
trapped, very high temperature simulations are
needed to produce unfolding events on a sufficiently
rapid time scale. In multicanonical methods,49,51
there is no obvious restriction on the temperature of
the most thermally activated system allowing the
investigation of very stable native states. Another
advantage of multicanonical methods is that the
replica of interest (300 K) samples conformations
according to the Boltzmann distribution at 300 K,
whereas in unfolding simulations the visited con-



Fig. 6. The same two-dimensional projection of conformational space used in Fig. 4 but now for two α+β domains,
d1c4ka3, which has 161 residues, and d1div_2, which is much smaller with 55 residues. In the case of d1c4ka3, the two
major conformational clusters are marked by A and B according to the order they were visited. The MC step subplot in
panel III shows how the initially visited conformations (green nodes) transform into orange and then finally red
exploration paths (the single-headed arrows between clusters point towards lower energy ones; the double-headed
arrows between clusters indicate their similar energy). The snapshots of the conformations show that the sampling path
passes through a very unfolded state (basin A) before locating a near-native, low-energy conformation in basin B (framed
in red). In the case of d1div_2, there are four major conformational clusters denoted A to D in the order visited. The
representative conformations for each cluster are depicted. The snapshots of the conformations show that the simulation
passes through very unfolded states (basins A and C) before locating a near-native, low-energy conformation in basin D
(framed in red).
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formations are sampled at a higher temperature. In
spite of all the advantages, one clear limitation of
multicanonical methods is their limited ability to
provide direct kinetic information (knowledge of the
free-energy landscape does allow all kinetic path-
ways to be inferred). Multicanonical methods are
not only viable alternatives to explore the near-
native energy landscape of proteins, but could be
combined with unfolding simulations in a synergic
way. For example, if a multicanonical method
locates conformational clusters A, B and C, unfold-
ing simulations at different temperatures could be
used to probe the energy landscape around each
cluster and along a path between them.
The use of simplified protein models together with

loop torsion angle flexibility is essential for efficient
exploration of conformational space that is neces-
sary if a large number of energy landscapes are to be
investigated. In native proteins, most of the con-
formational flexibility comes from loop segments,
justifying our approximation of secondary structure
elements as rigid bodies. This combination of rigid
secondary structure with multicanonical sampling
has enabled our exploration of the near-native
energy landscape for all the 280 representative fold
domains with the 3-pt per residue simplified
representation.
The fictitious pathway generated by the current

sampling protocols does not carry kinetic informa-
tion; however, as the conformational transitions
sampled must occur in at least one of the different
temperatures replicas, any two visited conforma-
tions must be connected kinetically at the highest
temperature. This improved sampling comes at a
price: the higher the temperature of the most
thermally activated replica, the less the information
that is preserved about kinetics at the temperature of
interest. Nevertheless, for each representative
domain, the goals of the sampling protocol include
(a) canonical exploration initiated from the native
structure and (b) stochastic optimization to locate
the most energetically favorable clusters of struc-
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tures encircling the native state. We prefer the cano-
nical rather than the alternative stochastic optimiza-
tion algorithms of simulated annealing, which only
locates one conformation, and basin-hopping, which
samples a transformed energy surface. Interestingly,
when applied together with knowledge-based
potentials, the present stochastic optimization
approach is even further justified, since the under-
lying energy function has the character of free
energy. In addition, tests on highly structured small
proteins (b70 residues and b60 flexible loop torsion
angles) (in preparation) show that a simulation
starting from a completely unfolded state finds the
same dominant energy basins. Investigation at this
level is computationally prohibitive for our 280
domains, which were primarily chosen to represent
protein fold space. Due to the limited kinetic infor-
mation provided by our multicanonical MC sam-
pling, the order with which conformational clusters
(low-energy basins) are visited along the sampling
path is not significant and could be different for
different choices of random numbers.
The 3-pt model used here is characterized with a

rich variety of stable nativelike or partially dena-
tured energy basins. The basins could be biologically
important in that (1) proteins need conformational
flexibility for function, and (2) stable partially dena-
tured states could serve as intermediates between
the native state and the unfolded ensemble.
Further analysis of the 3-pt results was based on

the location of the three most dominant energy
basins. For those domains, where the RMSD of the
most populated cluster (RMSA) was more than 6 Å
from the native state, we visually examined sampled
conformations. We find six main causes, which
include (a) long terminal loop regions in the native
structure; (b) long intermediate loop segments; (c)
presence of nonnative compact regions in the
favored conformations, which often correlates with
the formation of isolated substructures; (d) presence
of relatively isolated compact super-secondary
structures in the native structure; (e) biased relative
orientation of small helices close to large, flat β
sheets; and (f) isolated secondary structure elements
favored in native loop regions. It is important to note
that while there was no correlation between the
number of nonstructured residues (not in α-helix or
β-strand) and the RMSA value, the distribution of
nonstructured residues along the sequence had a
more pronounced effect on stability [see reason (2)
above].
Another outstanding question is whether there are

any plausible explanations for the different stability
properties of different fold classes. We find that
contacts in all-α domains are weaker and less
specific than contacts in all-β domains (see Supple-
mentary Fig. 2). Thus, contrary to all-β domains, all-
α domains can easily reorganize into partially
denatured, stable and compact tertiary arrange-
ments. In addition, the RMSA for 90 % of all-α and
all-β domains is below 9.1 and 4.8 Å, respectively.
The detailed all-atom description of polypeptides
also supports our observations in that since contacts
between rigid β-strands have great strength and
sharp orientation dependence due to hydrogen
bond formation; in all-α proteins the H bonds
occur within the helix and weaker van der Waals
interactions govern the interhelix packing.
Unlike the α+β domains, α/β domains rarely

contain contiguous α-helical secondary segments
due to the alternation of α and β segments along the
chain. Furthermore, large-scale motion of α-helical
segments in α/β domains is restricted by the strong
interactions between consecutive β-strands that lock
in the α-helix they surround. This is in agreement
with our findings that α+β domains denature to a
larger extent than α/β domains (〈RMSA〉α+β=
4.89 Å, 〈RMSA〉α/β=3.09 Å) and the RMSA for
90 % of α+β and α/β domains was found below
9.2 and 5.0 Å, respectively.
While all-β domains are found to denature to a

slightly lesser extent than α/β domains (〈RMSA〉α/β=
3.09 Å, 〈RMSA〉all-β=2.93 Å), all-β domains have
more variations in their stability [σ(RMSA)α/β=
1.31 Å, σ(RMSA)all-β=1.88 Å]. Consequently, all-β
folds have slightly stronger stabilizing native con-
tacts than α/β but a denaturing all-β fold is less
likely to find a near-native stable tertiary arrange-
ment due to the strict orientation requirement of
contacts between rigid β-strands. On the other hand,
the broken β-strand–strand contacts in α/β domains
can be locally stabilized by orientational indepen-
dent helix–helix interactions.
Another interesting correlation was discovered

between the RMSD of the most denatured energy
basin and the α-helical content (pα): for domains
with pα values between 0.4 and 0.6, most of the
denatured clusters were not further than 6.0 Å away
from native. This was generally true and did not
depend on the fold class.
Conformational plasticity of the chains studied

here was also revealed by focusing on the distribu-
tion of energy basins around the crystal structure.
For some domains, the distributions were found to
be diffuse, while others were surrounded by well-
isolated energy basins. The presence of diffuse
landscapes correlated with the following three
factors: (1) continuous deformation of loop ele-
ments, while preserving the relative arrangement of
helices and sheets; (2) realignment of β-strands in a
β-sheet; (3) rearrangement of compact and distantly
isolated super-secondary structural elements. Do-
mains contributing to factor (1) could belong to any
topological class, but usually possess long loops
(d1ig3a2, d1o50a1). Domains with factor (2) are
mostly in the all-β (d1r75a_) or α+β (d1hdma2)
classes. A good example for factor (3) is provided by
d1el6a_, where continuous deformation of two
compact super-secondary substructures occurs. In
addition, factor (3) may occur due to the lack of
long-range interaction effects, which is the case for
most knowledge-based potentials.
The general layout of near-native conformations is

clearly captured by the 2-D scaling applied to rep-
resentative conformations. Combining 2-D maps
with color representations of conformational prop-
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erties such as energy, RMSD and history of explora-
tion provided a particularly good way to visualize
near-native energy landscapes. Such conformational
“maps” not only characterize how proteins ap-
proach the native state in a folding process, but also
determine the properties of the native state and as
such strongly relate to protein function. For exam-
ple, proteins, which undergo large, function-related
conformational changes, must possess more plasti-
city (even in loop torsion angle space, as the
secondary structure of functioning proteins remains
intact) at physiological conditions, and this property
must be imprinted on the corresponding near-native
energy landscape. While we characterize proteins
with the 3-pt representation, our analysis and
visualization tools can be directly used for any
conformational space in any representation.
†http://astral.berkeley.edu/
Conclusions

In spite of the recent advances made in the
development of novel sampling and optimization
algorithms, the huge dimensionality of all-atom
descriptions still limit the in silico investigations of
large biomolecular systems. There is clearly an
increasing interest in approaches that foster the
synergetic combination of new concepts and meth-
ods to overcome severe computational obstacles as
the field rapidly progresses towards proteomics and
system biology.
Our findings suggest there are realistic yet

computationally tractable protein representations
that, when combined with state-of-the-art sampling
protocols, enable studies to be conducted on families
of proteins. Here the term “realistic” embodies
several properties, such as transferability across a
large number of structures without knowing the
native contacts, differences in the near-native prop-
erties of distinct folds and sufficient conformational
flexibility (a necessary requirement for protein
function). In spite of the unique near-native energy
landscape associated with each fold, several com-
mon patterns were discovered. Close similarity be-
tween the number residues being in α orβ secondary
structures (pα ∼0.5) generally correlated with extra
stability. Thus, the three-point knowledge-based
potential favored all proteins that were equally rich
in both α and β secondary structural elements. In
addition, a large number of unstructured terminal
residues were generally found to be the main cause
of large deviations from the native state.
The strength and specificity of native contacts

among rigid secondary structure segments deter-
mines the stability and near-native energy landscape
associated with the tertiary structure of each fold.
Our findings imply that distinct stability properties
of the different fold classes are due to the strength
and orientational specificity of interactions between
β-strands as opposed to weak, nonspecific interac-
tions between α-helices.
Thorough investigation of some representative

near-native energy landscapes from α-, β- and α+β-
fold classes were performed by mapping a fraction
of visited conformations onto a 2-D space. Here, the
simultaneous monitoring of various properties of
conformational nodes lead to a novel analysis
towards the detailed visualization of conformational
energy landscapes. The conformational distribution
revealed that helically rich α-proteins have energy
landscapes with many isolated energy basins, some
of them belonging to globally rearranged α-helical
segments. On the contrary, highly structured β-
proteins were found to have diffuse energy land-
scapes that only allowed for the local rearrangement
of underlying β-strands.
Altogether, our findings imply that the current

knowledge-based 3-pt per residue representation
captures some of the most important features of all-
atom force fields (including specific hydrogen
bonds). Thus, it provides a realistic picture of the
forces shaping tertiary-structure assembly in protein
fold space. Consequently, the introduction of the
present simplified energy/scoring function could
potentially impact many diverse fields such as ab
initio structure prediction, threading, fold recogni-
tion, study of large protein motion, protein–protein
interactions among many others. In addition, the
low-energy and compact nonnative conformations
we found from fold space domains could open up
new avenues in the large-scale design of new folds
or entire fold spaces. Finally, our tertiary sampling
protocols combined with the current knowledge-
based potential are clearly powerful enough to
become an integral element of a hierarchical
structure-prediction protocol.
Methods

Protein structures

We randomly selected domains from 795 protein folds
in SCOP-1.71 database,2,58,59 covering the four major
topological classes, all-α, all-β, α/β and α+β folds. The 70
single-chain domains selected from each class have a
range of lengths between 0 and 300 residues and an
irregular secondary structure loop content of maximum
60%. Altogether, we studied 280 folds, more than one-
third of all known folds (∼35%). In addition, our 280 folds
cover ∼45% of all folds and ∼75% of all α/β folds in our
feature subset (up to 300 residues with maximum 60% coil
residue content). The domain structures were obtained
from the ASTRAL† database.53,60,61

Models

The 3-pt knowledge-based model follows on previous
work (the list of 4500 known protein structures used is
available as supplementary information).62 The three
atoms used for each residue are the Cα atom, the carbonyl
oxygen atom and a single side-chain atom chosen to rep-
resent the center of mass of the side chain. The particular
side-chain atom used for a particular type of residue is

http://astral.berkeley.edu/
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taken as the atom that is most commonly closest to the
actual center of mass of the side chain in known proteins.
In this way we can use the knowledge-based energy
functions derived for all-atom potentials and easily
change the number of atoms used in the representation.
The all-atom version of our force field has been extensively
tested against commonly used physics-based all-atom
potentials.6 These three atoms have distinct types in
different amino acids, so that the total number of atom
types is 59, since Gly does not have a side chain.
Since only torsion angle degrees of freedom are

considered for the 3-pt knowledge-based potential,
intramolecular bonding or bending terms were not
needed. To introduce additional flexibility into the
model, no torsion angle potentials were used. We use
two torsion angles per residue defined as Cα–O–Cα–O and
O–Cα–O–Cα.

Selecting conformations and clustering

In order to obtain the structures presented on Figs. 4–6,
we used a very simple clustering approach.63,64 Based on
the representative conformations (400) from sampling
trajectories, we evaluated the all-to-all RMSD distance
matrix. Then, using an initial RMSD cutoffΔ, the structure
with the largest number of neighbors marked the top
cluster. In the next step, the top cluster (structure and its
neighbors) is eliminated and the procedure is continued
until all structures are distributed among clusters. Here, Δ
is chosen based on the RMSD distribution (e.g., for
d1ny9a_, Δ=1.5 Å is used). The conformations plotted
on the figures are the lowest energy conformations of
individual clusters. In case of the diffuse conformational
distribution of all-β domain d1r75a_, slight changes of Δ
resulted on different top clusters. Therefore, on Fig. 5 we
only indicate the final lowest energy conformation and the
lowest energy conformation found among the top 2.5%
most denatured structures.
Conformational sampling

Multiple-temperature Markov chains

The robust sampling methods employed here include
PT49 and EEMC.51 Both methods employ a sequence of
Markov chains, X(0), X(1), …, X(K), ordered with increasing
temperatures, T0bT1b…bTK. As a result, conformational
exchanges between adjacent-temperature Markov chains,
conformations that are isolated by high-energy barriers
(permeable at TK, but not at T0), are visited at T0. In PT,
such exchanges take place between the instantly visited
conformations of adjacent-temperature chains. In EEMC,
such exchanges take place between an instantly visited
conformation and an “equal-energy” conformation ob-
tained from the sampling history of the neighboring
higher temperature chain. Here, two conformations R1
and R2 have equal energy if EibE(R1), E(R2)bEi+1, where
an energy ladder {Ei, i=0,1,…,K} is chosen a priori51 and
an initial approximation of the minimum attainable
energy (E0) of a given molecular system enables the
construction of the energy ladder for a given conforma-
tional sampling problem.52 Thus, EEMC allows ex-
changes between two conformations having similar
energy, so that it can also connect low-energy basins
that are separated by large-energy barriers. Note that by
varying the type of the exchange (PT or EEMC), the two
types of adjacent-temperature replica swaps can be
mixed on the fly.
It has been clearly shown52 that EEMC beats PT in
locating multiple-energy basins of noisy, low-dimen-
sional, synthetic energy surfaces that include an off-lattice
model protein.65,66 Additional tests revealed that optimal
performance across many different high-dimensional
problems is achieved with PT, but EEMC still has the
beneficial property of potentially connecting distant-
energy basins. As the present study aims to explore dif-
ferent energy surfaces in a comparative manner (uni-
formly effective sampling is essential), we use a novel
method that combines EEMC and PT and is called EEMC
enhanced PT (see below).
Definition of target space, sampling protocols

To accelerate the canonical exploration of conforma-
tional space, we only vary the loop torsion angles between
regular secondary structure elements (the definition of coil
residues are obtained from native structures using
STRIDE67). For the 3-pt per residue model, there are two
torsion angle degrees of freedom for each residue,
resulting in dimensionality, Nd,=2×Nlr (Nlr is the total
number of loop residues andNd is less when there are loop
residues at the start or end of the chain). The individual
Markov chains X(i), with temperatures Ti, are propagated
inNd dimensional torsion angle space using a multivariate
Gaussian: Xk+1(

(i)∼Nd (Xk(
(i),τi

2In), and a proposed step
size of the ith-order chain is taken to be H i ¼ c

ffiffiffiffiffiffiffiffi
Ti=l

p
,

where l is the number of amino acids and c is optimized so
that the acceptance ratio of the isolated Markov chains is
about 0.4. Applying this proposal step size, we achieve a
uniform acceptance ratio across different temperatures
and proteins with various lengths.
For each domain, sampling is improved by using nine

replicas with temperatures ranging from 300 to 900 K. We
run trajectories by performing an initial 200,000 MC steps
starting from the native state for each of the individual
replicas without any multicanonical exchange. This
equilibration is followed by a multicanonical production
run of 4,000,000 MC steps to collect the statistics used in
this study (this number of steps was found to be adequate
to locate the most attractive near-native energy basins).
For each chain, the probability of a torsion angle change
was set to pMC=1−pexch, where pexch, the probability of
adjacent temperature replica exchange, was set to 0.05.
The latter exchange was performed following either PT49

or EEMC51 and the type of the exchange was sequentially
changed along the trajectory; every 1000 steps of PT was
followed by 200 steps of EEMC. For EEMC, E0 (see above)
was approximated from a short preliminary sampling
with PT. Although the focus of the present work is the
effective exploration (stochastic optimization) of near-
native low-energy minima, the new protocol was rigor-
ously tested to reproduce the analytical distribution of the
synthetic one-dimensional rough energy landscapes used
in previous studies.52 Furthermore, some trajectories were
regenerated using distinct pseudorandom sequences
(different initial random number seed) and no significant
differences were found between the visited conforma-
tional clusters.
Locating the maxima of RMSD distributions

In order to locate the three most dominant energy basins
found for each protein, we use the distribution of RMSD
obtained from near-native sampling. The three numbers
are found by executing the following steps: (1) Find all the
RMS values, where the distribution has a maximum value.
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(2) Set RMSA, as the RMSD of the global maximum, RMSB
as the next and RMSC as the third highest maxima. (3) If
two maxima are closer than 0.5 Å, merge them and add
one more maximum to the list.

Software

All cartoons of protein structures were generated by
PyMol‡ using all-atom reconstructed protein models
obtained using MAXSPROUT.68 Multidimensional scaling
was used by employing the algorithm of Kamada and
Kawai,69 which is implemented into the open source
program GraphViz.57 All sampling trajectories have been
generated by the Palo Alto Sampler§.
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