MODELLING BY HIERARCHICAL NATURAL MOVES

Peter Minary Department of Computer Science Oxford University

Molecular Dynamics Day Department of Statistics, Oxford University 13th Jun, 2016

MODEL ATOMIC EFFECTS ON THE NANOSCALE

NUMBER OF DEGREES OF FREEDOM

- The Integral of Interest: A general system

$$\begin{array}{ll} \mathsf{Q}:(\Omega,\mathsf{E})\to\mathbb{R}\\ \mathsf{E}:\Omega\to\mathbb{R} \end{array} \quad \mathsf{Q}=\int_{\Omega} \cdots \int \mathsf{exp}(-\beta\mathsf{E}(\mathbf{x})) \; \mathsf{d}\mathbf{x} \end{array}$$

- A Case Study: A Helix Pair with 1000 atoms each
- Cartesian DoFs $\mathbf{X} \in \Omega \subset \mathbb{R}^n$ n = 6000
- Essential Moves

 $\mathbf{X} \in \mathbf{\Omega} \subset \mathbb{R}^m$ m = 6

SOLUTION: NMMC (Natural Move Monte Carlo)

THE PROBLEM

THE OUTLINE

- Natural Move Monte Carlo, Basic Concepts & the Algorithm
- In Silico Epigenetics, Nucleosome Positioning / Methylation
- Hierarchical Modeling of RNA Junctions & Nanotechnology
- Multi Scale Cryo-EM Refinement Against Single 2D Images

NATURAL MOVE MONTE CARLO

Minary, **P**., Levitt, M. Conformational Optimization with Natural Degrees of Freedom: A Novel Stochastic Chain Closure Algorithm. *Journal of Computational Biology* **17**(8), 993-1010 (2010).

NATURAL DEGREES OF FREEDOM FOR NUCLEIC ACIDS

- **D**_x Shift **D**_y Slide **D**_z Rise
- **τ** Tilt
- **ρ** Roll
- **ω** Twist
- S_x Shear
 S_y Stretch
 S_z Stagger
- κ Buckleπ Propellerσ Opening

NATURAL DEGREES OF FREEDOM FOR PROTEINS

- **k** Buckle
- **π** Propeller**σ** Opening
- У.

S_x

7

X

Moves break the chain!

RECURSIVE STOCHASTIC CLOSURE

RSC = DFC[SPC[SPC[...]]]

APPLICATIONS

NUCLEOSOME POSITIONING

Minary, **P**., Levitt, M. Training-free atomistic prediction of nucleosome occupancy. *PNAS* **117**, 6293-6298 (2014).

THE COMPUTATIONAL PIPELINE

NUCLEOSOME FORMATION ENERGY

IN VITRO EXPERIMENT

NUCLEOSOME POSITIONING SEQUENCES

Dyad

000000

0

74

Name	Length	Dyad	Name	Length
601	147	74	CAG	132
603	234	154	ΤΑΤΑ	126
605	231	132	CA	124
5S_rDNA	190	74	NoSecs	124
pGub	183	84	TGGA	123
Cβglobin	215	125	TGA	115
Mmsat	123	0	RRR	147
van der Heiid	en et al PNAS	S 109 E2514-E2	2522 (2012)	

QUERY SEQUENCE 5' --- 3' RRR 601 RRR 603 RRR 605 RRR 5SrDNA pGub ... 200 Cßglob pGub SrDNA **Mmsat** 603 605 CAG NoSe Z 100 ш ш 10 -100 -200 1000 2000 3000 4000 0 **Sequence Position (i)**

	601	603	605	5Sr	pGu	Cβg
L	147	234	231	190	183	215
D	74	154	132	92	104	125
dD	-10	-87	-18	6	7	-3

Mms	CAG	TAT	СА	NoS	TGG	TGA
123	132	126	124	124	123	115
N/A						
21	-32	9	11	9	-31	7

EPIGENETIC EFFECTS

Large Meso-Scale Assemblies (Nucleosome, Hetero/EuChromatin)

-200

0

1000

2000

Sequence Position (i)

NUCLEOSOME POSITIONING SEQUENCES-II

DNA METHYLATION

3000

4000

HIERARCHICAL NATURAL MOVE MONTE CARLO

Sim, A. S. L., Levitt, M., **Minary**, **P**. Modeling and Design by Hierarchical Natural Moves. *PNAS* **109**: 2890-2895 (2012).

HIERARCHICAL NATURAL MOVE MC

RNA 4-WAY JUNCTION

TESTING THE APPROACH / SOFTWARE

Distance Distributions

FRACTAL-LIKE RNA STRUCTURE

HIERARCHICAL NATURAL MOVE MC

HIERARCHY OF (SUB)SPACES

CRYO-EM REFINEMENT

Zhang, J., **Minary**, **P**., Levitt, M. Multi-Scale Natural Moves Refine Macromolecules Using Single Particle Electron Microscopy Projection Images. *PNAS* **109**, 9845-9850 (2012).

REFINEMENT AGAINST 2D IMAGES

Optimize Against

NOVEL 2D FITTING ENABLED BY NATURAL DOF

TRADITIONAL 3D FITTING DONE BY MD, NM

ORIENTATIONAL NATURAL MOVE MC

S: Segment X_s Χ, Xo L: Loop **O: Orientation** W $2.\min_{\boldsymbol{X}_{L}} \{\boldsymbol{E}\}$ $3.\min_{\boldsymbol{x}_o} \{\boldsymbol{E}\}$ 1.*X*_s ← Z **X** ← $\boldsymbol{p}_{acc} \leftarrow \exp\left[-\boldsymbol{\beta} \ \Delta \widetilde{\boldsymbol{E}}(\boldsymbol{X})\right]$ $\mathbf{X} = \mathbf{X}_{s} \cup \mathbf{X}_{l} \cup \mathbf{X}_{o}$

EXAMPLES

CRYO-EM REFINEMENT

MM-CHAPERONIN

EXAMPLES

MM-CHAPERONIN

I : initial projection; C : class average; R : refined projection; M : refined model

CONCLUSION

- In Silico Nucleosome Positioning using Structural Data
 - Training-free methods offer the study epigenetic effects

Hierarchical Modeling of RNA Junctions & Nanotechnology
 Explores the entire conformational space of RNA constructs

- Multi Scale Cryo-EM Refinement Against Single 2D Images
 - Eliminates data heterogeneity and preferred orientation issues

ACKNOWLEDGEMENTS

- Michael Levitt Robert W. and Vivian K. Cahill Professor in Cancer Research in the School of Medicine Professor, by courtesy, of Computer Science. **Stanford University**
- Adelene Sim
 Bioinformatics Institute, A*STAR, Singapore
- Junjie Zhang Department of Biochemistry and Biophysics, **Texas A&M University**

Methodologies Optimization a	a for MOSAICS
In Computational	http://www.cs.ox.ac.uk/mosaics
Studies	SOFTWARE APPLIED

