
Towards A Unified Model for Workflow Processes

(extended abstract)

Peter Y.H. Wong

Oxford University Computing Laboratory

May 2006

1 Introduction

The emergence of workflow management systems offers supports for composing, coordinating and monitoring the execution
of human tasks and component services. One of the key challenges is to provide a formal semantics and the facility to
model, analyse and reason about workflow processes at both orchestration and choreography levels. This paper describes
the formalisation of van der Aalst et al.’s workflow patterns [12] using the process algebra CSP [5, 9], and examines a
case study of a real life business process. The modelling example in this paper captures both workflow orchestration and
choreography. Whereas workflow orchestrations represents a local, single participant viewpoint of the workflow model,
workflow choreography captures collaboration between processes involving multiple participants and elevates workflow
models to a global viewpoint where the primary concern is external, observable behaviour. The formalisation described
in this paper lays down the foundation for a unified model for workflow process specification, reasoning and verification.
The complete formalisation of workflow patterns can be found in a longer paper [15]; the complete formalisation of the
workflow choreography model will appear in a future publication.

2 Workflow Patterns

Workflow patterns, introduced by van der Aalst et al., are the “gold standard” for benchmarks of workflow languages [12].
These patterns range from simple constructs to complex routing primitives; their scope is limited to static control flow.

We model each control flow pattern in CSP. A basic workflow activity is defined as the CSP process SP(a, b). It is first
able to perform the event init .a. This represents an external trigger to the start of the activity a. After the trigger has
occurred, the event work .a, which represent activity a, will be ready to perform. After performing work .a, the process is
then ready to perform the event init .b which is the trigger or activity b defined in another process. The process P(a,X)
extends the above definition into a more generic process description.

SP(a, b) = init .a → work .a → init .b → STOP

P(a,X) = init .a → work .a → ||| b : X • init .b → STOP

The processes SP(a, b) and P(a, b) are the basic primitives of the formalism of all subsequent workflow models. In
general any process Q representing some workflow activities will have a corresponding process Q ′′ which has the execution
of its workflow activities internalised to avoid any external intervention. In this paper we present one of the workflow
pattern formalisations utilised in our business process case study. More detailed textual descriptions of the pattern can
be found in van der Aalst et al.’s original work [12]; the complete formalisation of all workflow patterns can be found in
the longer paper [15].

Multiple Instances with a priori Runtime Knowledge - In this pattern multiple instances of activity b are triggered
sequentially after activity a has completed execution. Two CSP events sig and done are introduced in the formalisation
of this pattern to record the number of instances of activity b being triggered at runtime and to record the number of
instances having completed execution respectively. Activity c is triggered after the determined number of instances of
activity b have completed execution. This pattern is modelled by the process RUNSEQ(a, b, c).

INIT (b) = init .b → (INIT (b) u SKIP) o
9 sig → done → SKIP

SET (a, b, c) = init .a → work .a → ((INIT (b) o
9 init .c → STOP) u init .c → STOP)

RUN (a, b) = init .a → (sig → work .a → init .b → done → STOP ||| RUN (a, b))

RUNSEQ ′′(a, b, c) = (SET ′′(a, b, c) |[{sig, init .b, done}]|RUN ′′(b,null)) |[{init .c}]| SP ′′(c, acts)

1

3 Case Study: Ticket Reservation System

This case study examines a business process of reserving and booking airline tickets, defined in an XML choreography
description language called Web Service Choreography Interface (WSCI) [13]. This example includes three participants:
a traveler, a travel agent and an airline reservation system, each described by a WSCI <interface> construct. This
section gives an overview of the orchestration of the traveler, and describes our approach to modelling the choreography
of the complete system. Each <action> defined in a WSCI interface is modelled as a CSP process in the form of a
workflow activity described in Section 2; in particular, we model each interface action by its action name, porttype and
operation and so an interface action a1 which performs an operation o1 from porttype p1 is modelled by a corresponding
CSP compound event a1.o1.p1.

Traveler’s Interface - In order to model the traveler’s orchestration, the pattern “Deferred Choice” is combined with
the “Exclusive Choice” pattern [15], and is defined by the process DC1(a, b, c).

INIT2(m,n) = (u x : m • init .x → STOP) 2 (2 x : n • init .x → STOP)

DC1(a, b, c) = init .a → work .a → INIT2(b, c)

Also the “Multiple Instances with a priori Runtime Knowledge” pattern described in Section 2 is generalised to allow
the invocation of parallel activities, and is defined below. Note processes INIT (b) and RUN (a, b) remain the same.

SET2(a, b,X) = init .a → work .a → ((INIT (b) o
9 u c : X • init .c → STOP) u (u c : X • init .c → STOP))

In this interface the traveler can order a trip by setting up an itinerary for airline tickets; this is modelled by the process
ORDER. She may then change her itinerary many times or cancel the itinerary, as modelled by processes CHITIN and
CAITIN respectively. Thereafter she can reserve the seats, as modelled by the process RTICKET . After the reservation
she can proceed with the booking, or the reservation may be cancelled due to expiry; these are modelled by processes
BOOK and TIME respectively. After she has booked her ticket, the travel agent and the airline will send her the tickets
and statement, modelled by the processes TICKET and STATE respectively. The CSP process TRAVEL models the
complete orchestration of the traveler.

ORDER = SR′′(Aordertrip.tta.ordertrip,Achangeitinerary.tta.changeitinerary ,

{Acancelitinerary.tta.cancelitinerary,Areservetickets .tta.reservetickets})

CHITIN = RUN ′′(Achangeitinerary.tta.changeitinerary,null)

CAITIN = SP ′′(Acancelitinerary.tta.cancelitinerary, itin)

RTICKET = DC1′′(Areservetickets .tta.reservetickets ,

{Acancelreservation.tta.requestcancellation,Abooktickets .tta.booktickets},

{Areservationtimedout .tta.acceptcancellation})

CANRES = SP ′′(Acancelreservation.tta.requestcancellation,

Aacceptcancellation.tta.acceptcancellation)[init .acts ← init .fault]

BOOK = P ′′(Abooktickets .tta.booktickets ,

{Areceivetickets .ta.receivetickets ,Areceivestatement .tta.receivestatement})

TIME = SP ′′(Areservationtimedout .tta.acceptcancellation, fault)

TICKET = SP ′′(Areceivetickets .ta.receivetickets , acts)

STATE = SP ′′(Areceivestatement .tta.receivestatement , acts)

TRAVEL =
let

switch1 = {init .Areservetickets .tta.reservetickets , init .Acancelitinerary.tta.cancelitinerary}
switch2 = {init .Acancelreservation.tta.requestcancellation,

init .Abooktickets .tta.booktickets , init .Areservationtimedout .tta.acceptcancellation}
receive = {init .Areceivetickets .ta.receivetickets , init .Areceivestatement .tta.receivestatement}

within
((ORDER |[{init .Achangeitinerary.tta.changeitinerary, done}]| CHITIN) |[switch1]|
((CAITIN ||| RTICKET) |[switch2]| ((TIME ||| (CANRES ||| BOOK))
|[receive]| (TICKET ||| STATE))))

2

Modelling Choreography - Apart from traveler process, the choreography of the complete airline tickets reservation
business process also includes the airline reservation system and the travel agent processs, both of which are modelled as
processes AIRLINE and AGENT respectively. In this paper we describe our approach to model this choreography.

The WSCI definition describes a multi-participant view of the overall message exchange by means of the global model
(<model>). A global model describes the choreography between participants defined by <interface> constructs via
<connect> constructs. Each <connect> defines the message flow between a pair of operations performed by two different
participants, hence indicating which operations from which participants should exchange messages.

Based on the WSCI global model of the ticket reservation system, the collaboration of the three participants is
modelled by the CSP process MODEL where the set CONNECT is the set of pairs of WSCI operations modelled as a
set of pairs of CSP events. The complete choreography, defined as the process GLOBAL, is modelled by composing the
three participant processes and the process MODEL in parallel.

MODEL = 2(a, b) : CONNECT • init .a → init .b → MODEL
INTER = AIRLINE |[{init .fault}]| (TRAVEL |[{init .itin, init .fault}]| AGENT)
START = start → init .Aordertrip.tta.ordertrip → STOP
ABORT = init .fault → init .throw → STOP 2 init .itin → init .throw → STOP
END = init .throw → cancel → STOP
SUCC = init .acts → init .acts → init .acts → init .acts → complete → STOP
GLOBAL = START |[startSet]| ((INTER |[interface]|MODEL) 4 END) |[endSet]| (ABORT ||| SUCC))

Since the process GLOBAL describes precisely the complete dynamic control flow of the choreography, by using
refinement [9], we can formally make assertions about properties which the business process must satisfy. One such
assertion is deadlock freedom upto the point of performing either the event complete or cancel and is expressed as the
following failures refinement where Σ is the set of all possible events.

SPEC vF GLOBAL \ hide
SPEC = start → (complete u cancel)
hide = Σ \ {start , complete, cancel}

Assertions made using refinements can be formally verified using the CSP model checker FDR [2]. Note the CSP
model given in this paper is simplified to illustrate our approach to modelling choreography. We have excluded the
application of constraints by parallel compositions as conjunction [9] for avoiding unwanted deadlock, and the reduction
of the model’s state by piece-wise abstraction which leverages on the monotonicity and compositionality of refinement.

4 Related Work

Currently little research has been done into the application of CSP to workflow specification. The only approach that has
applied CSP in workflow process [11] applied CSP as an extension of abstract machine notation for process specification
within the domain of compositional information systems.

Other process algebras used to model workflow patterns include π-calculus [8] and CCS [10], a subset of π-calculus.
These formalisations did not focus on formal verification and they did not demonstrate their applications. Moreover the
semantics of π-calculus and CCS do not provide a refinement relation, which we believe is crucial in formal specification
and verification. Despite Puhlmann et al.’s advocacy of mobility in workflow modelling, our CSP models suggest it is not
necessary when modelling static control flow interactions. However it is still possible to introduce mobility into standard
CSP semantics if needed, as shown by Welch et al. [14].

Whereas Puhlmann et al.’s formalisation is not oriented towards automated verification [8] and Stefansen’s can be
“cryptic” and is not machine-readable [10], we have implemented our CSP models using standard CSP syntax and it
is possible to translate our models directly into CSPM , the machine-readable dialect of CSP [9], for model checking.
Although Stefansen [10] mentioned a model checker called Zing which bears some similarities with FDR, implementing
a conformance checker based on stuck-freedom [4], it is more discriminative and only resembles the CSP concept of
deadlock-freedom.

In terms of workflow choreography, other process algebras used to reason about choreography included works from
Brogi et al. [1] and Foster et al. [3]. Brogi et al. applied CCS [7] to formalise WSCI and addressed issues such as the
definition of compatibility and replaceability tests between Web services. Foster et al. applied FSP notation and Message
Sequence Charts to reason about obligation policy of Web service choreographies defined in Web Service Choreography
Description Language (WS-CDL) [6].

3

5 Conclusion

This paper described a formal semantics for workflow specification by expressing workflow patterns as CSP processes and
an overview of a case study based on real life business processes choreography. Each participant within the choreography
is a complex workflow process. The formalisation of these workflow processes employed the CSP models of several
complex workflow patterns such as multiple instances, arbitrary cycle and state-based patterns. The resulted CSP model
is a complete model of dynamic control flow of the workflow choreography which can be used in formal verification and
subsequently model checked using FDR.

Future work will include investigating other choreography description languages such as WS-CDL [6] and developing a
“generic” unified model for workflow orchestration and choreography. We will also extend our present CSP model with a
formal exception and compensation handling mechanism. Furthermore, we will extend our model with dataflow semantics,
hence unifying the semantics of workflow processes in both business and scientific domains, including the clinical domain.

References

[1] A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo. Formalizing Web Services Choreographies. In Electronic Notes
in Theoretical Computer Science 105, pages 73–94, 2004.

[2] Formal Systems (Europe) Ltd. Failures-Divergences Refinement, FDR2 User Manual, 1998. www.fsel.com.

[3] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-Based Analysis of Obligations in Web Service Choreography.
In IEEE International Conference on Internet and Web Applications and Services, 2006.

[4] C. Fournet, T. Hoare, S. Rajamani, and J. Rehof. Stuck-Free Conformance. In Proceedings of 16th International
Conference on Computer Aided Verification, volume 3114 of Lecture Notes in Computer Science, pages 242–254, Jan.
2004.

[5] C. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[6] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon. Web Services Choreography Description Language
1.0, 2005. W3C Candidate Recommendation.

[7] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[8] F. Puhlmann and M. Weske. Using the π-Calculus for Formalizing Workflow Patterns. In BPM 2005, volume 3649
of Lecture Notes in Computer Science, pages 153–168. Springer-Verlag, 2005.

[9] A. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1998.

[10] C. Stefansen. SMAWL: A SMAll Workflow Language based on CCS. Technical Report TR-06-05, Harvard University,
Division of Engineering and Applied Sciences, Mar. 2005.

[11] S. Stupnikov, L. Kalinichenko, and J. Dong. Applying CSP-like Workflow Process Specifications for their Refinement
in AMN by Pre-existing Workflows. In Proceedings of the Sixth East-European Conference on Advances in Databases
and Information Systems (ADBIS’2002), Sept. 2002.

[12] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow Patterns. Distributed and Parallel
Databases, 14(3):5–51, July 2003.

[13] W3C. Web Service Choreography Interface (WSCI) 1.0, Nov. 2002. www.w3.org/TR/wsci/.

[14] P. Welch and F. Barnes. Mobile Barriers for occam-pi: Semantics, Implementation and Application. In Commu-
nicating Process Architectures 2005, volume 63 of Concurrent Systems Engineering Series, pages 289–316, Sept.
2005.

[15] P. Wong. A Process Algebraic Approach to Workflow Verification, 2006. Submitted for publication.

4

