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Abstract  
 
 

A performance prediction system (PACE – Performance Analysis Characterisation 

Environment) has been implemented to characterise the performance of C, Fortran and 

Mathematica codes. With the current increase in the popularity of the Java platform, 

PACE is being extended to characterise and predict distributed Java applications within 

dynamic heterogeneous environments. With the modern implementations of the Java 

Virtual Machine being able to carry out on-the-fly optimisations, Java methods are to be 

characterised as a control flow of bytecode blocks, rather than individual bytecodes. 

These bytecode blocks are then benchmarked to create a bank of predictive data for 

evaluating performance critical Java applications. This report describes the 

implementation of defining and monitoring these bytecode blocks and also evaluates the 

techniques that have been used. 
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Chapter 1  
Background and Motivation 
 

This chapter introduces the core idea of performance analysis for high 
performance computation on a Grid computing environment. It 
illustrates the framework of performance characterisation and how it 
leads to have the need to implement a Java bytecode monitor. 

 
The computing architectural landscape is changing. Resource pools that were once large, 

multi-processor supercomputing systems are being increasingly replaced by 

heterogeneous commodity PCs and complex powerful servers. These new architectural 

solutions, including the Internet computing model [10] and the grid computing [11, 12] 

paradigm, aim to create integrated computational and collaborative environments that 

provide technology and infrastructure support for the efficient use of remote high-end 

computing platforms. The notion of so-called grid computing or the use of a 

computational grid is applying the resources of many computers in a network to a single 

problem at the same time - usually to a scientific or technical problem that requires a 

great number of computer processing cycles or access to large amounts of data. A well-

known example of grid computing in the public domain is the ongoing SETI (Search for 

Extraterrestrial Intelligence) @Home project in which thousands of people are sharing 

the unused processor cycles of their PCs in the vast search for signs of "rational" signals 

from outer space. According to John Patrick, IBM's vice-president for Internet strategies, 

"the next big thing will be grid computing." 

 

The success of these architectures relies on the outcome of a number of important 

research areas; one of these – performance – is fundamental, as the uptake of these 

approaches relies on their ability to provide a steady and reliable source of capacity and 

capability computing power, particularly if they are to become the computing platforms 

of choice.  

 

The study of performance in relation to computer hardware and software has been a topic 

of much scrutiny for a number of years. It is likely that this topic will change to reflect 

the emergence of geographically dispersed networks of computing resources such as 
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grids. There will be an increased need for high performance resource allocation services 

and an additional requirement for increased system adaptability in order to respond to the 

variations in user demands and resource availability. Performance engineering in this 

context raises a number of important questions and one question of which the motivation 

of this project is based on. Its answer will impact on the utilisation and effectiveness of 

related performance services: 
 

How is this performance data obtained?  

 

Gathering performance data can be achieved by number of methods. Monitoring services 

provide records (libraries) of dynamic information such as resource usage or 

characteristics of application execution. This data can be used as a benchmark for 

anticipating the future performance behaviour of an application, a technique that can be 

used to extrapolate a wide range of predictive results [13]. Alternatively it is possible to 

extract data from an application through the evaluation of analytical models. While these 

have the advantage of deriving a priori performance data – the application need not be 

run before performance data can be collected – they are offset by the complexity of 

model generation. 

 

For the last 10 years the High Performance Systems Group has made significant 

contribution towards this field of research, namely a unique characterisation environment 

implemented with a toolkit PACE (Performance Analysis and Characterization 

Environment).  

 
1.1 PACE - Performance Analysis and Characterization Environment 
 
Performance Analysis and Characterization Environment (PACE) [7] provides a 

framework for developers to create detailed analytical performance models that can be 

used to predict the performance of their applications. It has been verified by the UK 

Defence Electronic Research Agency (DERA) that a predictive accuracy of less than 10% 

can be achieved using this technique. The system works by characterizing the application 

and the underlying hardware on which the application is to be run, and combining the 
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resulting models to derive predictive execution data. PACE provides the capability for 

the rapid calculation of performance estimates without sacrificing performance accuracy. 

PACE also offers a mechanism for evaluating performance scenarios – for example the 

scaling effect of increasing the number of processors – and the impact of modifying the 

mapping strategies (of process to processor) and underlying computational algorithms 

[9]. 

 

Details of the PACE toolkit can be seen in Figure 1.  

 

 
Figure 1 An outline of the PACE system including the application and platform (resource) 
modelling components and the parametric evaluation engine which combines the two 
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1.2 PACE Toolset Components 
 
The PACE toolset includes a range of components that assists a user to create models, 

visualize results, use pre-defined models from a library, and use information derived from 

existing application codes. The number of vital components of PACE are described 

briefly below. [6] 

 

• Evaluation Engine evaluates the current performance model, producing predictions 

of time, scaling, and resource usage.  

 

• Workbench provides a user-friendly interface to the components of PACE.  

 

• Source Code Analyzer assists the user in converting sequential source code into the 

CHIP3S performance language. The user directs this operation by specifying which 

code are associated with which sub-task elements. Currently this component enables 

C source to be input, using both parsing and profiling information. 

 

• Object browser assists the user to scan predefined model libraries of application 

kernels, parallelisation strategies (parallel templates), and hardware models. The user 

may also define new library models. 

 

• Object Editor assists the user to enter and review individual objects contained within 

the performance model.  

 

• Parametric visualization enables application and/or system parameters to be varied, 

and provides a means in which the results can be visualized. Currently supports single 

and dual parameter manipulation. 

 

• Trace visualization enables the visualization of a single prediction scenario. It 

provides time-space diagrams illustrating computation, communication and idle 

stages of processors. Currently, this analysis is provided by a trace data file link to the 

ParaGraph parallel monitoring system. 
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1.3 Model Characterisation Separation 
 
An important feature of this design is that the separation of application and platform 

models and there are independent tools for each. 

 

• Application Tools provide a means of capturing the performance aspects of an 

application and its “parallelisation” strategy. Static source code analysis forms the 

basis of this process, drawing on the control flow of the application, the frequency at 

which operations are performed, and the communication structure. The resulting 

performance specification language (PSL) scripts can be compiled to an application 

model. Although a large part of this process is automated, users can modify the 

performance scripts to account for data-dependent parameters and also utilise 

previously generated scripts stored in an object library. 

 

 
Figure 2 Application Model 

 
• Platform (Resource) Tools model the capabilities of the available computing 

resources. These tools use a hardware modelling and configuration language (HMCL) 

to define the performance of the underlying hardware. The platform tools contain a 

number of benchmarking programs that allow the performance of the CPU, network 

and memory components of a variety of hardware platforms to be measured. The 

HMCL scripts provide a resource model for each hardware component in the system, 

since these models are (currently) static, once a model has been created for a 

particular hardware, it can be archived and reused.  
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Figure 3 Platform (Resource) Model 

 
1.4 The Layered framework 
 
 
These models are created by describing an application’s performance in a 

characterization language called CHIP3S [9]. CHIP3S encompasses a layered framework 

for performance characterization, as seen in Figure 4(a) [5]. Each layer can contain a 

number of objects that describe specific performance-critical elements of an application: 

subtask objects describe sequential elements of an application; parallel templates describe 

the parallelisation strategy of, and communication between, these subtasks; hardware 

objects characterize the computational and inter-communication performance of 

hardware resources. This inherent separation between hardware and software components 

allows predictions of the same application on different hardware platforms a case of 

simply inter-changing the model’s hardware object as appropriate. 
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Figure 4 The Layered framework for performance characterisation: (a) The original PACE 
approach: (b) the revised transaction-based approach 

 
PACE provides tools to characterize the performance of C, Fortran and Mathematica 

codes. Once the application and hardware models have been built, they can be evaluated 

using the PACE Evaluation Engine. PACE allows: time predictions (for different 

systems, mapping strategies and algorithms) to be evaluated; the scalability of the 

application and resources to be explored; system resource usage to be predicted (network 

usage, computation, idle time etc), and predictive traces to be generated through the use 

of standard visualisation tools. 

 

Such subtasks characterizations within CHIP3S is achieved by using a tool called ‘capp’ 

that processes methods defined within C source code and outputs performance 

characterizations of these methods in the CHIP3S language. These characterizations are a 

parameterized control flow of a number of atomic instructions that map onto a set of 

common machine instructions. Another tool benchmarks these machine instructions for a 

given resource, providing a list of timings that are included within the resource’s 

associated hardware object. Evaluating a subtask to predict its performance involves 

essentially adding up all the timings for the machine instructions that are to be executed 

for a given application run.  
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1.5 Java World – an extension to PACE 
 
With the current increase in the popularity of the Java platform, as well as the interest in 

computational Grids within the high performance community, PACE is being extended to 

characterize and predict distributed Java applications within dynamic heterogeneous 

environments – known as JPACE. A new XML-based language [8] hence is being 

developed that uses a more flexible transaction-based approach to performance 

characterization; shown in Figure 4(ii). Applications are characterized as a number of 

transactions, or items of work, where their relation to each other is described within a 

transaction map. 

 

Taking the original method of performance characterization, it would seem to be 

equivalent, where characterizing Java methods is concerned, to create a control flow of 

Java bytecodes. Each bytecode could be benchmarked in the same way as machine 

instructions are in CHIP3S, the culmination of which would result in the prediction of a 

Java method’s performance, even though later on it has been discovered that due to on-

the-fly optimizations within modern implementations of the JVM that this is not the case.  

 

Figure 5 depicts a graphical description of the relationship between the benchmarked 

bytecode timings and the PACE system. 

 

 
Figure 5 Structure of performance evaluation process 
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Chapter 2  
Project’s Objectives and Specifications 
 

This chapter details the project’s objectives and its specifications. It 
establishes the methodologies and hypothesises of which this project is 
set about to implement and experiment. It also identifies the main 
programming tools that are utilised throughout this project. 

 
2.1 Methodologies 
 
By having this motivation as the milestone in the performance study, this project has then 

adapted this initiative and with early background research on the current grounding, two 

possible benchmark methodologies were specified for this project: 

 

• Timing analysis of Java bytecodes - An initiative that is brought up to investigate 

the implementation of benchmarking the Java Virtual Machine (JVM) Instruction 

Set, using the Java Assembler Interface called "Jasmin". It takes ASCII descriptions 

for Java classes, written in a assembler-like syntax and using the JVM instruction set. 

It converts them into binary Java class files suitable for loading into a JVM 

implementation. The initial idea is to benchmark single bytecode at a time by 

repetitively executing individual bytecode in multiples of 10s, 100s and 1000s, to 

enable JVM to monitor these bytecodes a technique so-called Application Response 

Measurement (ARM) [8] will be used to carry out timing analysis on that repetition. 

Further work could also be implemented to archive these timings across different 

architecture so that a readily available library of metric can be utilized to carry out 

performance prediction on Java programs.  
 

• Method prediction on Java Programs - A initiative that is brought up to investigate 

the implementation of predicting a Java program performance by monitoring the 

bytecode activity on a method level of the program source code. This initiative will 

utilize the ARM by running several unique Java method at source code level and 

timing these method using ARM "method call" transaction method and using a Java 

Parser, these method code can be then analysed at a bytecode level. This method can 

be looked at as a form of generation of simultaneous equations where by different 
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types of bytecodes will represent mathematical variables with the occurrences as its 

multiples. Once enough methods are analysed, these equations will be able to solve 

and timing of bytecode can then be looked at and further be used to predict future 

Java programs.  

 

2.2 Java’s Virtual Machine, Instruction Set and Assembler 
 

To understand the notion of utilising bytecode as a medium to benchmark Java 

applications running within some dynamic heterogeneous environments, it is necessary 

understand the details of this intermediary language. 

 

The Java Virtual Machine (JVM) [2] is a platform-neutral runtime engine used to 

execute Java programs. During the execution of a Java program, the constituent 

instructions are not executed directly by the hardware provided by the architecture, 

instead an intermediary stage of bytecode interpretation is carried out by the Virtual 

Machine. 

 

JVM could be viewed as a “virtual” processor and hence machine instructions had been 

implemented for this engine. The JVM instruction set is relatively similar to a set for a 

real CPU. A Java virtual machine instruction therefore consists of an opcode specifying 

the operation to be performed, followed by zero or more operands embodying values to 

be operated upon.  

 

To utilise these bytecodes at a higher level, a tool is needed for constructing class files 

from textual description. For simplicity Jasmin is chosen, Jasmin is a Java Assembler. It 

takes ASCII descriptions for Java classes, written in a simple assembler-like syntax using 

the Java Virtual Machine instructions set. It converts them into binary Java class files 

suitable for loading into a Java interpreter. 
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Incidentally it should be noted that to execute Java methods, the execution engine retrieve 

and processes the corresponding bytecodes. Bytecode consists of a sequence of single 

byte opcodes, each of which identifies a specific operation to be carried out.  

e.g. the opcode 96 represents the instruction iadd, which adds two integers. 

Listing 1 and 2 give a brief description of instruction syntax used in Jasmin: 
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Listing 1 a brief description of instruction syntax used in Jasmin 
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Listing 2 a brief description of instruction syntax used in Jasmin (continued) 
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Other research work on Java bytecode analysis has also been considered. Such as a 

technical written by C. Herder and J. J. Dujmovic at San Francisco State University titled 

Frequency Analysis and Timing of Java Bytecodes [4] has been studied. To understand 

the characterization of Java workloads, bytecode execution times were measured. Their 

measured result were based on an Ultra Sparc workstation and SUN JDK 1.2.2. and since 

the testing machine architecture is similar to the machine that this project is based on, 

both results and implementation were very applicable towards this project. 

 

As library of Java bytecodes is to be benchmarked, there needs some information to bind 

the benchmark results with the application being benchmarked. The way that applications 

are characterised in Application Response Measurement (ARM) would provide the 

relevant information. 

 
2.3 XML Characterisation 
 
As JPACE being implemented, a new XML-based language has been developed to cater 

the transaction approach of characterisation to which JPACE has adopted for a more 

dynamic characterisation.  

 

This XML-based Transaction Definition Language (TDL) [8] is defined, which allows 

Java applications’ performance critical component to be semantically defined, is an 

integral part of the technique for automatically ARMing Java applications in accordance 

with the ARM 3.0 standard for Java. An application is instrumented with ARM method 

calls through a bytecode transformer prior to execution, providing ARM compliance 

while removing the necessity to modify (or even possess) the original Java source code.  

 

Figure 6 shows an example of a TDL XML file defining two transactions of type method 

source and line number for the jar file example2.jar. The first transaction has the user 

name admin associated with it, and defaults to failing if the method example2method 

contained within the example2class class throws an exception. Two metrics are also 

associated with the transaction. 
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Figure 6 An example of a TDL XML file 

 
Hence, the XML characterisation files of Java applications would be utilised as a 

template towards effective analysis of micro-benchmark timings. 

 

Now having decided the medium of which the performance benchmark will be based in, 

a set of programming languages for implementing benchmarking toolkit is to be chosen. 

 
2.4 Main programming languages in used 
 
Java(TM) 2 Runtime Environment (Java 2 SDK 1.4.1) 

 

This version of the virtual machine is installed and readily available at the Department of 

Computer Science. 

 

PERL – Practical Extraction and Report Language (v5.0, v5.6.1) 

 

This is the preferred script language for implementing toolkits mainly because by 

utilising functionalities heavily from C, sed, awk, and the Unix shells, Perl has become 

the language of choice for many I/O, file processing and management, process 

management, and system administration tasks. Since the process of bytecode monitoring 

requires certain amounts of ASCII files manipulation.  [3] 
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Jasmin – Java ASseMbler INterface (v1.05) 

 

Jasmin is a free Java assembler provided on the Internet. This is a tool for constructing 

class files from textual descriptions. These textual descriptions from classes are written in 

Java Virtual Machine instruction set which are converted into binary class files. 

Nevertheless, similarly to Jasmin there are also other Java assemblers available for free 

distribution, one such freeware is an assembler called Oolong and it was created with a 

counterpart i.e. a disassembler called Gnoloo, which in the course of this project became 

a very useful tool. [1] 

 

JNI - Java Native Interface 

 

The Java Native Interface (JNI) is the native programming interface for Java that is part 

of the JDK. By using the JNI, it ensures that the benchmarking technique is completely 

portable across all platforms. [18] 

 

The JNI allows Java code that runs within a Java Virtual Machine (VM) to operate with 

applications and libraries written in other languages, such as C, C++, and assembly. The 

use of this programming interface meant that some library functions from C such as the 

library time.h, which outputs system-clock time stamps has proved to be significantly 

helpful. 
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Chapter 3  
Design and Implementation (1st edition) 
 

This chapters illustrates the approach and techniques used to embark on 
the specifications and objectives set in previous chapter. 
 

The preliminary specification has hence set down the objective, which was to investigate 

this parallel notion of micro-benchmark and to implement a set of efficient micro-

benchmarking applications that will carry out performance prediction of Java programs in 

a form of bytecode analysis. Through early background research, it has been decided 

initially to investigate two possible ways of implementing these micro-benchmarks: 

  

1. Timing analysis of Java bytecodes 

2. Method prediction on Java Programs 

 

While investigating methods to develop the first type of benchmark, a number of 

difficulties have been encountered: 

 

1. Finding methods to calculate running time of individual bytecodes / multiple 

occurrences of a single bytecode to gain a fair timing of the bytecode being tested. 

 

2. Interpretation of the measured timings of bytecodes. 

 
3.1 Finding methods to calculate running time of bytecodes: 
 
When carrying out predictive measurement of testing bytecodes, it is very important that 

bytecode execution could utilize all the CPU or memory resources available, this means 

such as invoking a virtual timer, loading in background to measure execution times was 

not a justifiable option as it could consume CPU and memory resources and compromise 

the accuracy of predictive measurement, therefore it is more favourable to measure the 

execution time by finding the time difference of the starting (st) and stopping time (sp). 

There are a number of ways this could have been implemented with different degree of 

accuracy. The following approaches have been investigated: 
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1. Implement a non-Java program (C, Perl) and invoke the bytecodes sequences by 

calling the corresponding shell commands e.g. System("java test"). The method 

can be achieved by calculate the running time of the bytecode sequence without 

the repetition of the bytecode being tested and then apply the same technique to a 

sequence included with the bytecode being tested. 

 

2. Utilize System.currentTimeMillis() method [17], which returns the current time 

in milliseconds. By invoking the method before and after the repetitive bytecode 

sequence, the difference in these timings will be the time that takes to execute the 

testing bytecode repetition. The advantage of this method over the 

implementation of a non-Java program is that the time method is itself can be 

expressed in Java bytecode which means all it needs is to be assembled by Jasmin 

to construct class files. 

 

The disadvantages with these methods are: 

 

Method 1 would have certain overhead that induces inaccuracies. The accuracy of the 

timing should match the time that took to execute a single bytecode and hence 

implementing a non-Java program is not the best option. 

 

Method 2 could only produce any bytecode timings to the nearest millisecond, which 

means it would be also inaccurate for the order of timing that is needed. After several 

implementation of this method, it was noted that the timing should be in the order of 

nanoseconds. 

 

There was however another method, which has been utilized before, and it had been 

documented in the technical report of the timing analysis of Java bytecode [4] produced 

by J.J.Dujmovic at the San Francisco State University. Here is the motivation to consider 

this new approach. 
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" A method that executes the bytecode being measured in a controlled context was 

timed using a Java program and the Unix clock_gettime() system call, invoked 

through the Java Native Interface" 

 

3. Using the idea of Java Native Interface (JNI), a C programmed system 

command which is written to return the time accumulation from 1970 until now 

as a double value may then be invoked as a Java method before and after the 

repetitive bytecode sequence, the difference in these timings would be the time 

that takes to execute the testing bytecode repetition. This method is very similar to 

method 2 as it can be constructed in Java bytecodes and assembled by Jasmin into 

class files. The advantage it has over method 2 is that it invokes an external 

program (written in C), which returns timing in nanoseconds. This will increase 

accuracy of the testing. [18] 

   

With careful inspection of all three methods, it was reasonable as being supported by 

another related technical resource that method 3 (using JNI) should be implemented. 

Nevertheless, the related resources address the predictive measurement by using another 

assembly language Oolong; this is a Java assembler, which uses Jasmin syntax. It has 

been decided to execute Java bytecodes using the Java Assembler Interface Jasmin 

during specification [1]. Moreover since both Oolong and Jasmin are based on the JVM 

assembler (JASM), and tests showed they have only very slight syntax differences [2]. It 

had been decided to utilize both interfaces, As mentioned earlier, Oolong is accompanied 

by a disassembler interface called Gnoloo, which helped the process of implementing a 

bytecode file at a source-code level. (Gnoloo provide a better disassemble function than 

javap – class dumper for JDK). 

 

The motivation of this choice meant it was possible to create a Java bytecode-level 

program file to measure run time of individual bytecodes. The following is an breakdown 

to show the transformation of an earlier implementation of the benchmark file structure 

from the source code level (Java) to the bytecode level (Jasmin), note this only 

demonstrates how the Jasmin description of the benchmark file structure came about by 
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using assembler and disassembler of the Java Virtual Machine. The actual 

implementation for benchmarking is explained further in the report.  

 

 
Listing 3 pseudo-code to illustrate the layout of the benchmarking file at the java source-code level. 

 
Since the structure implemented in Java, by compiling its constituent .java source files 

into .class binary, then executing the Java disassembler Gnoloo on these binary files, the 

above extract could then be executed at the bytecode level using Jasmin: (note: “;” is the 

syntax to insert comment in Jasmin) 
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Listing 4 pseudo-code to illustrate the layout of the benchmarking file at the java bytecode level. 

 
Since JVM instruction set is a stacked based intermediary language that uses a local stack 

for its Java method [1], its instructions would involve the manipulation of one or more 

stack operation (push or pop). Hence this has allowed a Bytecode Prediction Template 

to be developed for benchmarking the instruction set. Diagram 1 defines units or 

components of the Bytecode Prediction Template. 
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Diagram 1 The Bytecode Prediction Template 

 
Since the instructions that were to be benchmarked would require either one or more 

elements to be resided on the top of the stack, which is local to the Java method that has 

been invoked in (e.g. astore_3) or values to be assigned to a local variable (e.g. aload_3) 

before they could be invoked, therefore the bytecode prediction template has been 

formally defined with the components shown above. 

3.2 From Template model to implementation 

As described earlier, the implementation of the template model could be written in 

Jasmin (Java Assembler). With such decision in mind, it is important to detail the 

meaning and the functionalities of each component prior discussing their physical 

connection with the toolkit that were implemented. 

 

3.3 Components’ detail 

• Initialisation bytecode sequence: -  

 

This component is defined to allow the implementation to initialise. These initialisations 

happen in all Java programs when they are compiled and executed. Whereas the 

conventional “source code to machine code” level will disguise such operation, when 

exercising at bytecode level, so-called Java object initialisation has to be invoked.  
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Below shows the bytecode implementation of this component.  

 
Listing 5  Bytecode implementation of the initialisation bytecode sequence. 

 
This component is static within the prediction template since all benchmarking processes 

are executed within the object ExeTime and requires the JNI library libtime.so hence 

almost certain that these bytecodes will be invoked. The only part of this component 

might be dynamically implemented is object variable definition and method definition for 

benchmarking bytecodes such as defining static variable for bytecode getstatic and 

defining a static method for bytecode invokestatic. 
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• Preparation Bytecode Sequence :-  
 
This is one of the dynamic components of the prediction template. It is defined to act as 

the initialisation for the measuring bytecode sequence. It should provide bytecode 

sequence so that it recreates the states of the both local stack and local variables 

syntactically correct prior the execution of the measuring bytecode sequence.   

 
• Measuring Bytecode Sequence :- 
 
This is also one of the dynamic components of the prediction template, this is where 

measuring bytecodes will be situated. There are a number of procedures that will be 

needed to be taken into account when building this component. 

 

1. Allocation of local stack elements. 

2. Defining local both local and global variables. 

3. Modify bytecodes into executable sequences ** 

4. Handling redundancy on local stacks. 

 

** Such modification is important for the success of any benchmarking sections. This is 

because even the majority of bytecodes do not take any argument, many of them not only 

requires preparation bytecode sequence, they also require a specification of an argument 

for themselves. Here are some examples: 

 

iload – to push an integer value onto the local stack, there is the need to specify local 

variables that has the integer value, i.e. iload <varnum>. 

 

getstatic – to get a value of static field, such bytecode requires the specification of a 

static field and it has a syntax of getstatic <field-spec> <descriptor>. 

 

For the duration of this project, this procedure of modification is carried out manually as 

the implementation for an automated modification is beyond the remit of this project.  

 

 29 



• Evaluation Bytecode Sequence :- 

 

This is the last component of the prediction template sequentially. It primary aim is to 

calculate the timing the measuring bytecode sequence takes to be executed and project 

the result according to the number of iteration to standard output to which it could then be 

collected. For parts of this component is dynamically implemented. Its structure in 

bytecode format is as follow: 

 

 
Listing 6  The bytecode implementation of the evaluation bytecode sequence. 
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Screen 1 shows a demonstration of an experiment for bytecode multianewarray which 

requires two arguments and the result is being projected onto standard output. 

 

 
Screen 1 benchmarking bytecode multianewarray 

 
The timings of the execution are given in nanoseconds 

 
3.4 Mechanics of the Bytecode Prediction Template 

Below is a diagram representation of how a bytecode is benchmarked mechanically, in 

this example bytecode aload_0 is used. 

 

This bytecode pushes an object from variable 0 onto the stack so there is a need to 

prepare the template before executing the benchmark. 
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Listing 7 shows how a bytecode is benchmarked mechanically. 

 
From the model to actual implementation it is vital to have the knowledge of the coding 

and syntax of the template implementation to enable to have a better understanding of 

how the Perl-written toolkits interact and hence perform their functionalities on the 

template implementation. The following are descriptions of how the Jasmin 

implementation of the template interacts with the toolkit written in Perl for processes 

such as insertion etc.  

 

 32 



1. Preparation Bytecode Sequence – the comment “Preparing testing” has been 

written in the Jasmin file as a marker to allow the toolkit to be able to identify the 

exact location to insert preparation bytecode sequences. The use of <> is to ensure 

the toolkit is able to parse the preparation code 

 

 ;Preparing testing  

 ;<preparation code 1…> 

 ;<preparation code 2…> 

;… 

 
2. Native Method Sequence – the comment “Begin Timing”  and “End Timing” 

signifies the beginning of the section that is static to the toolkit. Certain 

components of the Bytecode Prediction Template such as this one are consistent 

throughout benchmarking bytecodes due to their functionalities. Another one of 

these static component is Evaluation Bytecode Sequence. 

 

;Begin Timing 

 …Native method call 

 …… 

 

;End Timing 

… Native Method call 

… … 
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3. Measuring Bytecode Sequence – the comment “Testing area” signifies the 

beginning of measuring bytecode sequences. Similar to the preparation bytecode 

sequence, the use of <> is to ensure the toolkit is able to parse the measuring 

bytecode. 

 

;Testing area  

;<testing bytecode 1…> 

;< testing bytecode 2…   > 

;… 

 

4. Evaluation Bytecode Sequence – There are two areas of this component that 

interact with the toolkit. Throughout the benchmarking process, either increasing 

or decreasing the number of iteration is needed and hence the same number as the 

iteration must be provided to: 

 

a. Calculate the duration of a single measuring bytecode. 

 

;find single bytecode timing 

;<ldc2_w> 

;<ddiv> 

 

b. Be projected with the timings onto the standard output. 

 

;<include number of repetition ldc ", "> 

ldc ", 0 times, " 

 

In these cases the bytecodes above offers the areas in the template for toolkit 

interaction. 
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3.5 Toolkit Development 

To help in increasing the efficiency of the running of the testing process, the following 

toolkit written in Perl [3] have been implemented: 

 

 

�  create_j.pl  - to create the Jasmin file (.j) for a particular bytecode timing
sequence. 

 
Usage: -  ./create_j.pl <file|filename> <bytecode_name>  
 

This script requires the following files: 

 

bytecode_name.log - the template data file containing preparation bytecode sequence 

and measuring bytecode sequence.  

 
 

 
Screen 2 template data file for bytecode iload 

 
Highlighted area from Screen 2 depicts the content of the template data file for bytecode 

iload, notice the use of keyword such as prepare and test to identify where these 

bytecode will be inserted into the prediction template file to be benchmarked. 

 

ExeTime.j - the prediction template file containing the remaining components of the 

bytecode prediction template. This file is named ExeTime.j by default as throughout 

the benchmarking procedure, the bytecode prediction template is contained within the 

ExeTime class. Apart from being amalgamated with data from the template data file, this 

file is fixed as it contains coding that is required for all bytecode prediction. 
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Below is an extract of the create_j.pl. This shows the mechanism of how the script reads 

the data from the template data file. 

 

 
Listing 8  shows the mechanism of how the script reads the data from the template data file. 

 
Later on, the default prediction template file have incorporated onto the actual script to 

save time for file access. Screen 3 depicts the process of inserting these bytecodes. 

 

 
Screen 3 Inserting preparation bytecode sequence and measuring bytecode sequence. 

 
Also as it was decided to test each instruction for 1,10,100,1000 and 9000 occurrences, 

this was because the measurements of a single bytecode timing were in the range of 

nanoseconds, and because of this a small fluctuation of CPU resource allocation due to 

overheads (there would inevitably be background process running within the operating 

system). These uncertainties would magnify relative to a single bytecode execution time, 

therefore multiples of bytecode sequences were used and hence the set of timings 

obtained from each individual bytecode could then be used to make comparison of 
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accuracy and checks for optimisation and overhead induced by the virtual machine and 

the architecture. To allow these testing to be carried effectively (as each set of bytecode 

tests for a single bytecode would require the same template data file), the following two 

scripts are written to once again increase the speed of testing. 

 

 

�  increment_j.pl – takes integer N at shell prompt and inserts the testing
bytecode N times in the measuring bytecode sequence and N times the
corresponding preparation bytecode sequence. This is also the file of which
bytecode measurement would be carried out. 

 
Usage:- ./increment_j.pl <number_of _iteration> 
 

 
 

 
Screen 4 shows the standard output of the Execution of script increment_j.pl 

 
Screen 4 is an interface display of the script invocation for measuring a bytecode at 100 

occurrences: 

 

As described earlier on the use of <> to ensure the toolkit is able to parse both the 

preparation and measuring code. Listing 9 and 10 provides a more detail description and 

code extracts of how this script insert test bytecodes: 
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Listing 9 description and code extracts of how the script increment_j.pl insert test bytecodes 
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Listing 10 more description and code extracts of how the script increment_j.pl insert test bytecodes 
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This script interacts with all the scripts that were written previously and Screen 5 depicts 

the result this scripts generates onto standard output. 

 

 
Screen 5 The standard output of the benchmarking of bytecode istore. 

 
The screenshot clear illustrates that each bytecode is executed with interval iterations to 

sample how efficient the Java Virtual Machine processes the bytecodes and the duration 

of these individual bytecode against its repetition. Below is a technical description of how 

such a script is implemented to accommodate the other scripts and hence defines the 

toolkit. 

�  aver.pl - to further refine the testing procedure, any iterations of bytecode 

was a fair test and that timings do not have o
sequences would be tested 10 times and this was decided in making sure it 

verheads incurred by other 
programs running elsewhere on the operating system. This script helps to 
find an average of a particular bytecode sequences from the result.log 
(ASCII file). 1 

 
Usage:- ./aver.pl <measuring_bytecode> 
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Listing 11 a technical description of how such aver.pl is implemented to accommodate the other 
scripts and hence defines the toolkit. 
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3.6 Formal Evaluation 
 
As each bytecode would be tested for 1,10,100,1000 and 9000 iteration(s) sequence. The 

timing of a single bytecode (ot) would be calculated as: (measured in nanoseconds) 
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1 The
one bytecode time  = (stop-time - start-time)  / number of iteration 
 
  ot  = ( sp - st )  / N  
mentioned on earlier documentation, some bytecodes such as an integer load 

ation (iload), which manipulate the local stack by pushing an element or returning a 

e onto it. However, these would create inconsistency with the stack state for the rest 

e Java object and so to make sure no redundant value was left on the stack, the 

 would be popped by invoking the bytecode pop on every occurrence of such 

code in the measuring bytecode sequence and so the timing in general for this 

tion would be calculated by taking away the timings of the extra bytecode used in 

ving redundant value (et) : (also in nanoseconds) 1 

ot =  (  ( sp – st ) / N  )  -  et 

Interpretation of the measured timings of bytecodes: 

ell as part of the specification, it is important to confirm that the technique to 

hmark the performance of bytecodes is within an acceptable accuracy. It is therefore 

rtant to carry performance prediction on a small Java sequential program which 

de performance critical section to be benchmarked on. 

 prediction sessions of Java programs and hence matches the results against real-
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 timing of these extra bytecodes would be obtained by the same method as the others 



time analysis or previous results have been implemented during the course of the project. 

A Bubblesort algorithm program is used for carrying out these prediction sections. 

 

The main critical section of this algorithm is shown below. 
 

 
Listing 12 The Java Bubblesort algorithm kernel 

 
The bytecode constituents of these methods with their predictive timing are listed on the 

appendix repository. 

 

This is the sorting algorithm in the Bubblesort.java that contained two for loops and 

number of iterations for these loops depended on a.length, which is the length of the 

array that will be sorted in these methods.  
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The program initially set the size of the unsorted list to be a.length. The 1st loop (outer) 

takes (i = a.length-1) where i is the pointer for the outer loop, The inner loop of the 

iteration takes (j = a.length-i-2) for every i’th iteration where "i" is the variable allocated 

to the first for loop.  

 

To cater the randomness of the array, since not every loop would invoke the swap 

method, the probability of invoking swap method hence was decided to be 0.5. 

 

e.g. For a unsorted list size of 100  

 

�  number of outer loop iteration = 99 

�  number of inner loop iteration = 4950 

�  number of times invoking swap method = 2475  

 

Without the use of the evaluation engine in PACE, a more conventional method of 

summing up the number bytecode values with the number of times they are being 

invoked was implemented.  

 

�  

 
Us

 
This

 

Run

oute

base

this 

 

 

evaluation.pl – takes an integer argument that will calculate the required
measurement. This script was implemented to accumulate all the bytecode
results in relation to each individual method of the sorting algorithm, which are
performance critical. This was carried out by scanning through bs.jPtran.xml,
which is an XML file used to characterise the BubbleSort.java under the
Evaluation Engine. 

age: ./evaluation.pl <number_of_unsorted_item> 
 script requires the following sequential programs and ASCII files: 

.java – This is a sequential Java application that is designed to return the number of 

r loop iteration, inner loop iteration and number of times invoking swap method 

d on the size of the unsorted array. Screen 6 shows the standard output values from 

application running with an array of 150 unsorted element  
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Screen 6  Execution of Run.java with an array of 150 unsorted element. 

 
BubbleSort.java – This is the testing application and it is used in conjunction with 

clock_gettime() to benchmarking the performance critical section of the sorting 

algorithms. This is appropriate as the benchmarking is carried at source-code level and 

the same C library function is used as to when benchmarking at bytecode level. Below is 

a benchmarking section of BubbleSort.java. 

 

 

 sort the uns

e sort and sw

 

 

 
This applicati

to

 

data.log – thi

th

 

 
double start = new ExeTime().displayTime(); 
sort.sort(); (critical section / sort & swap method are invoked) 
double stop = new ExeTime().displayTime(); 
e time it takes 

orted array using the Bubble Sort algorithm in nanoseconds. 

ituent bytecodes of  

ap algorithms. Screen 7 shows the content of data.log. 

on takes the unsorted array size as its argument and returns th

s ASCII file contains the benchmark timing of the const
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Screen 7 Content of data.log 

  
Listing 11 and 12 are the technical description of the logic of evaluation.pl: 
 

 
Listing 13 first step of the logic of evaluation.pl 
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Listing 14  the remaining technical description of the logic of evaluation.pl 
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The results of these calculations could be found in the appendix. During the course of this 

investigation, an assumption has been made: 

 

That the time difference of invoking same bytecodes that retrieve and assign values 

onto different variables local to the method could be neglected.  

 

e.g. iload_2 and iload_3 was assumed to have the same execution time. 

 

Furthering from these bytecodes running, an interesting observation was made on the 

timing measured with one bytecode iteration, some timings were negative and this was 

because when certain bytecodes have been executed, a redundant value or a redundant 

object reference might be left on top of the local stack and therefore pop was invoked 

after each occurrence of these kinds of bytecodes to ensure the program operates without 

the interference of the data manipulation from the testing bytecodes. 

 

Since the timing of pop has been recorded and so there might be some discrepancies in 

the measurement of bytecodes at different instance. It was thought that by just measuring 

one bytecode iteration might lead to a bigger inaccuracy. 
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3.8 Observation: 
 
The timing came from the evaluation script did not exactly match the time measured from 

the BubbleSort.java 's performance critical section. The reason although not obvious, it 

was understood that JVM would carry out optimisation and since the structure of the 

sorting algorithm meant that same bytecodes would have been invoked as many as the 

number of iterations (in fact for 100 elements in an unsorted list, 4950 iterations of the 

inner loop would be invoked). This meant that there is a need to investigate the 

discrepancies due from optimisation or otherwise. 

 

This could be one of the reason (and the same reason) as to why when individual 

bytecode was timed, one iteration took more time that an average of multiple iterations 

(e.g. 1000). 

 

Below is a list of points that is needed to be considered: 

 

�  Bytecode latency from invoking native method (calling C library). 

 

�  Effects of Hot Spot compiler or Java Optimisation. 

 

�  Speed difference between invoking same bytecodes that retrieve and assign values 

onto different variable.   
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Chapter 4  
Development 
 

This chapter formally discusses the observation after the initial analysis 
of the predicted execution time and measured execution time of the Java 
Bubblesort Algorithm kernel. It details the modern Java Hot Spot™ 
optimisation and techniques used to overcome the inaccuracy caused by 
this technology. 

 
4.1 Initial thoughts and experiments: 
 
These areas, which might have caused the inaccurate benchmark timings, were examined 

and consequently their significances in the accuracy of the timings were decided: 

 
4.2 Bytecode latency from invoking native method  
 
Below is a diagrammatic representation of the Java Native Interface [18] 
 

 
Figure 7 Digram depicts the mechanics of JNI 

 
 
 
From the diagram that latency could be caused by the “C side” where the clock_gettime() 

is executed. Below is the implementation of the Native Method, note the function of 

clock_gettime() function: 
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Listing 15 the implementation of the Java Native Method 

 
It could be seen the implementation has been written in the simplest format. Through 
further research it has been shown that the latency from native methods was insignificant 
and hence it could be neglected.  
 
4.3 The latency in variable assignment and retrieval 
 
When interpreting the results, the following assumption has been made: 

 

That the time difference of invoking same bytecodes that retrieve and assign values 

onto different variables local to the method could be neglected.  

 

This assumption might have led to the inaccuracy of benchmark timings. As formally 

described, each method invocation has its own set of local variables. Local variables hold 

the formal parameters for the method. Technically, it is thought by keeping more 

frequently used values in lower-numbered local variables may improve performance. To 

analyse this situation below is a diagram illustrates what might happen when a local 

method retrieves a value from a local variable. 
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Diagram 2 a diagramatic illustration of pushing a value from a local variable onto the local stack. 

 
This is a standard operation to retrieve X from local variable 3 and push it onto the local 
stack. This might look rather trivial but let’s illustrate a hypothetical situation: 
 

 
Diagram 3 a diagramatic illustration of pushing a value from a high-numbered local variable onto 
the local stack 

 
Now even though the probability that a method is to manipulate the local variable 65535 

is quite minimal, it is a good method to analyse the need to take the position of these 

local variables into account. If these positions are being mapped onto a hardware 

configuration then the time it takes to manipulate a lower-numbered variable should be 

less than a high-numbered variable mainly due to the physical position of these variables 

on the hardware registries. This is also a valid argument when viewing the Java Virtual 

Machine as a virtual processor. 

 

With the implementation of the characterisation XML file such that it has become 

inefficient to have to first identify which the exact local variable numbers are to be 

processed before carrying out bytecode benchmark. A good example is to compare such 

manipulation with the invocation of a bytecode instruction that manipulates an array 

structure, e.g. iaload. It would not be suitable to pinpoint the index of the array that this 

bytecode would be used in the application that is to be benchmarked as the index of the 

array is most likely to be dynamically allocated in the application depending the stages of 

execution. And yet it is important to know the index it has been assigned with bearing in 

mind the physical location of each element of the array. If the same analogy is applied 

back to the manipulation of local variable then such inadequacy it can be immediately 
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seen. Therefore to ensure future benchmarking is to be fair the following restriction has 

been imposed: 

 

When allocating variable numbers to variable manipulating bytecodes e.g. aload, it 

should be carried out systematically and consumed the lowest-numbered variable 

available first. 

 
4.4 The effects of Hot Spot compiler and Java Optimisation. 
 
Assumption:  

 

�  If optimisation was regular and predictable then theoretically by running single 

bytecode n occurrences in a sequence, n-1 occurrences of them will be 

optimised. 

 

This meant that if: 

 

 

 
Timing of one bytecode x (raw / as one occurrence): t 
Timing of n occurrences of bytecode x: s 
Timing of one bytecode x (optimised):  OT  =  (s-t)  /  (n-1) 

 

However, it was thought that due to the sophisticated implementation of the Java Virtual 

Machine, there are progressive optimisation within the compilation and execution of Java 

application, hence such assumption was not suitable for revised implementation. 
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4.5 Hot Spot Motivation 
 

In the past, most attempts to accelerate Java programming language performance have 

focused on applying compilation techniques developed for traditional languages. Just-in-

time (JIT) [21] compiler is an example that is essentially a fast traditional compiler that 

translates the Java technology bytecodes into native machine code on-the-fly. A JIT 

compiler runs on the end-user's machine and actually executes the bytecodes, compiling 

each method the first time it is executed. JIT compilations has included a selection of 

optimisation toolkits and they provide the following functionalities: 

 

1. Base JVM modifications - There are major changes introduced to improve the 

overall performance of the JIT compiler: a change in the object layout and the 

execution of the static initialiser. First the change in the object layout for both 

ordinary objects and array objects. This change allows direct access to instance fields 

simply by adding an extra offset to the object pointer, This is a great advantage in 

terms of code generation efficiency, since the array bound exception checking has to 

be done every time an array element is accessed. In terms of the execution of the 

static initialiser, the resolution of a class has been separated from the execution of its 

static initialiser, By separating the class resolution and the execution of its static 

initialisation, the JIT compiler has more opportunity to generate faster code, using 

run-time calls if necessary to run the static initialiser. 

 

2. Selective Compilation – Since JIT compilation occupies a part of the application run 

time; it is not necessarily beneficial to compile all the methods being invoked. For 

example, when a method is executed only once and does not contain any loops, the 

overall performance might be degraded if it is JIT-compiled. The cost of the JIT 

compilation needs to be offset by the performance gain achieved by running the 

native code in terms of both time and space. Therefore by adopting an appropriate 

way of identifying and choosing “hot” methods that deserve JIT compilation, it is 

expected to achieve high performance in running real applications as well as 

benchmarking programs. 
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Unfortunately, these kinds of compilations surface several subtle problems. [19] 

 

1. Since the compiler runs on the execution machine in "user time," this means that 

its compiling speed is severely constrained: if it is not very fast, then the user will 

perceive a significant delay in the start-up of a program or part of a program. This 

imposes a trade-off that makes it far more difficult to perform advanced 

optimisations, which usually slows down compilation performance significantly. 

 

2. With the problems imposed by Java Virtual Machine’s advanced functionalities 

such as garbage collection that causes more memory allocation overhead than the 

conventional C++, and the on-the-fly changes through the ability to perform 

dynamic loading of classes which hinders the performance of many types of 

global optimisation. These problems suggest that even if a JIT compiler had time 

to perform full optimisation, such optimisations are less effective for the Java 

programming language than for traditional languages like C and C++. 

 

This results in the incapability of conforming to any traditional compiler techniques to 

achieve advances in Java programming language performance. The Java HotSpot VM 

architecture addresses the Java programming language performance issues by using 

adaptive optimisation technology. 
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4.6 Hot Spot Detection 

Adaptive optimisation solves the problems of JIT compilation by taking advantage of an 

interesting property of most programs. Virtually all programs spend the vast majority of 

their time executing a small minority of their code; this is very much consistent with the 

idea in the initial design to concentrate in only performance critical section of sequential 

programs.  

 

Therefore, instead of compiling sequential programs method-by-method, just in time, 

which is the original intent of JIT compilation, the Java HotSpot VM runs the program 

immediately using an interpreter and analyses the code as it runs to detect the critical "hot 

spots" in the program. It then focuses the attention of a global native-code optimiser on 

the hot spots. By avoiding compilation of infrequently executed code (most of the 

program), the Java HotSpot compiler can devote much more attention to the 

performance-critical parts of the program, without necessarily increasing the overall 

compilation time. This hot-spot monitoring is continued dynamically as the program 

runs, so that it literally adapts its performance on-the-fly to the needs of the user. 

 

A subtle but important benefit of this approach is that by delaying compilation until after 

the code has already been executed for a while ("a while" in machine time, not user time), 

information can be gathered on the way the code is used, and then used to perform more 

intelligent optimisation. Also, the memory footprint is decreased. In addition to collecting 

information on hot spots in the program, other types of information are gathered, such as 

data on caller-callee relationships for "virtual" method invocations. 

 

Moreover, since the frequency of virtual method invocations in the Java programming 

language is an important optimisation bottleneck. Once the Java HotSpot adaptive 

optimiser has gathered information during execution about program hot spots, it not only 

compiles them into native code, but also performs extensive method inlining on that 

code. Inlining has become more important than before as inlining produces much larger 

blocks of code for the optimiser to work on, significantly increasing the effectiveness of 
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traditional compiler optimizations, and thus overcoming a major obstacle to increased 

Java programming language performance. 

 

There are also other features that may concern the prediction of JVM instructions and one 

of the main features is Dynamic deoptimisation: 

 

4.7 Dynamic de-optimisation 

Although in lining is an important optimisation, it has traditionally been very difficult to 

perform for dynamic object-oriented languages like the Java programming language. 

Furthermore, while detecting hot spots and inlining the methods they invoke is difficult 

enough, it is still not sufficient to provide full Java programming language semantics. 

This is because programs written in the Java programming language cannot only change 

the patterns of method invocation on-the-fly, but can also dynamically load new Java 

code into a running program. 

 

At the bytecode level, the interpreter in Sun's Java Development Kit reference 

implementation does inline some simple methods, if the bytecode they contain fits into 

the space for method invocation or converts the calls to empty constructor methods to 

invokeignored_quick instruction. Such inlining is based on a form of global analysis. 

Dynamic loading significantly complicates inlining because it changes the global 

relationships in a program. A new Java class may contain new methods that need to be 

inlined in the appropriate places. So the Java HotSpot VM must be able to dynamically 

deoptimise (and then reoptimise if necessary) previously optimised hot spots, even during 

the execution of the code for the hot spot. Without this capability, general inlining cannot 

be safely performed on Java technology-based programs. 

 

Hot Spot Detection and other known enhanced optimisations meant that the previous 

notion in benchmarking implementation would not be accurate and it was vital to know 

how Hot-Spot detection mechanically structured so that the revised implementation of 

bytecode monitor can address prediction that is comparable to real-time execution. 
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There are also other well-known optimisations such as Just-In-Time (JIT) Compilation, 

which has been mentioned, that are necessary to be taken into account of. The current 

version of JIT includes a repository of set of common bytecode sequences (CBS). This 

notion has already been discussed and established in the Progress Report at the end of 

WK 10 Term 1. Unfortunately the detail of this repository is not known and hence rather 

than implementing CBS, another concept has been adopted instead 

 

4.8 Developed Ideas 
 

By detailing and locating areas that might constitute the inaccuracy of the benchmark 

timing, the following developed idea has been laid down: 

 

These observations suggested that more emphasis should be laid on JVM optimisation; 

some manipulations of results from the predictive measurement were carried out and with 

a better understanding of the optimisations from Java Just-In-Time and Hot-Spot 

compiler, it has become apparent that a new notion of analysis can be initiated. The 

motivation, similar to the idea of Method prediction on Java Programs, was instead of 

analysing Java bytecode individually in repetitions, the execution time of blocks of 

sequential bytecodes could be examined. These common sequences of bytecodes are 

optimised as a unit. 

 

Previously, it is because the optimisation of the JIT compiler is implemented by parsing 

blocks of common bytecode, therefore by analysing blocks of bytecodes that the logic of 

JIT optimisation can be extracted and processed, a database of common bytecode 

sequences can be created. Furthermore, gaining knowledge of this logic can also assist 

the analysis of the uncertainty within the execution time of bytecode that were obtained 

from previous experiments. However, the current release of JIT compiler of which its 

logic includes method inlining, base JVM modification and selective compilation is 

beyond the time frame of this project. Moreover it is not possible to obtain an accurate 

logical implementation of the JIT compiler due to business confidentiality and also the 
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machines, of which prediction experiments are conducted on favour the use of HotSpot 

Compilation technology over JIT. 

 

Consequently, with the current available resource and time limit, HotSpot Compilation 

and optimisation is taken into account for a revised design. 
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4.9 From ideas to Implementation  

To implement a new benchmark system with bytecode sequences rather than single 

bytecodes, first there is a need to understand how HotSpot optimisation works at the 

source code level. This can be done with illustrations of examples. [15] 

 

The following benchmark typifies a simple benchmark that doesn't benefit from HotSpot 

technology: 

 

 
Listing 16 A section of Java code being benchmarked (high level) 

 
As HotSpot compiler selectively converts Java bytecode dynamically into highly-

optimised machine instructions. The overhead for such a compiler is higher than for a 

JIT. It performs analysis on each application in order to identify the most frequently used 

areas. After the program’s "hot spots" have been identified, these sections of code are 

compiled and optimised. 
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The current implementation of HotSpot is designed for long-running applications. Most 

applications spend the majority of their time executing a small section of their code. 

These sections are known to be performance critical in the field of High performance 

computing. This paradigm is referred to as the 80/20 rule where, as a generalization, 

programs spend 80% of their time executing 20% of their code.  

 

HotSpot initially runs the Java application in interpretive mode while it analyses the 

application for "hot spots". This optimisation consists of compiling and in-lining critical 

methods to achieve optimal performance. After the "hot spots" have been identified and 

optimised, HotSpot will then switch from executing interpreted bytecodes to executing 

the corresponding compiled code. This analysis-and-optimisation impacts performance. 

Longer-running applications will benefit more from HotSpot optimisation because they 

run longer and will be executing the compiled code longer. These programs can afford 

the temporary performance impact associated with analysis and compilation. 

 

The crucial part for an accurate benchmark, which is efficient it is essential to understand 

how HotSpot converts from executing interpreted-bytecodes to compiled code.Whilst 

HotSpot detects performance critical areas and converts them into compiled code, the 

compiled version of the code is not invoked until the next time the method is called. 

Thus, if the method is only called once, such as from main(), then optimisation will not 

take place. This means that the program pays the price for analysis and optimisation that 

will never be used. 

 

Another issue that is needed to be accounted of is the performance loss that is caused by 

benchmarking small amounts of code for only very few iterations. This is because the 

benchmark would be finished before optimisation begins. Thus for short-term 

applications, the cost of using HotSpot technology is actually more of a performance 

detriment because it must analyze the application before compiling any code. However, 

real-world applications tend to not to be small applications, especially High performance 

application. 
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These consideration leads to a slightly different implementation of the benchmark that 

will take the advantage of HotSpot technology. 

 

 
Listing 17 Revised implementation of Java code for performance benchmark 

 
Note the HotSpot technology executes the interpreted version of the method several times 

before running the optimised version. 

 

From the run down description of how HotSpot optimisation could alter the performance 

a small extract of Java sequential application and the methodology that caters this 

technology, the same concept can also be applied to benchmarks at bytecode level. Below 

shows describe how the previous design should be changed to adapt HotSpot 

optimisation. 
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Listing 18 A model that has been adapted to include Hot Spot™ technology and  method level 
optimisation 

 

From above it became apparent immediately that the original structure, which 

benchmarks bytecodes inside a method that is to be called only once, namely main()did 

not allow optimisation to take place as the compiler would not be able to detect any 

HotSpot even if there are multiple instances of the same bytecode being executed 

consecutively under the same class. 

 

To effectively account for the effect of optimisation it is essential for the measuring 

bytecode sequence from the bytecode prediction template to be invoked within a 

separate method that is to be called from the main method. This can be thought to be 

similar to runTest() from the previous source code illustration. However whereas at 

source code level the whole method invocation is benchmarked, at bytecode level this is 

clearly not the case. Below is the revised model that had been decided when trying to 

compromise an optimal solution with the bytecode prediction template. 
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Listing 19 section 2 of the model that has been adapted to include Hot Spot™ technology and  
method level optimisation 
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Previous page illustrate the new bytecode prediction template, note the benchmark 

timestamp occurs inside the invoked method bench() and the iteration takes place outside 

the benchmark timestamp. The reason for the revised model to include these features is 

that to allow a firm compatibility with the original prediction template, which 

benchmarks multiple instances of the measuring bytecodes and extracts the timing for a 

single measuring bytecode sequence. This revised model instead, only ever benchmarks 

one instance of measuring bytecode sequence, and the evaluation sequence described will 

compare the timings from each iterative instance and outputs the data onto standard 

output accordingly.  
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Chapter 5  
Design and Implementation (2nd edition) 
 

Java Hot Spot™ technology allowed Java applications to be 
optimised on-the-fly and since Hot Spot detection is carried out 
at method level, a new design and implementation is realised 
and this chapter discusses the technique of this bytecode 
monitor and illustrates its technical details 

 
 

With the observation and insight gained from the initial implementations and results, it 

has been decided to revise the atomic unit of performance within the characterisation 

language, and such needs for Hot Spot compiler optimisations means that Java methods 

are now characterised as a control flow of bytecode blocks, rather than individual 

bytecodes. This is because it has been suggested that Hot Spot is likely to be a set of 

sequential instructions rather than one bytecode operation, since this is the case it is not 

necessary to benchmark individual bytecodes when optimisation only takes place with 

bytecode blocks. 

 

These bytecode blocks are then benchmarked, and it is their timings that are used when 

obtaining predictions. However, these timings vary depending on whether they have been 

optimised during execution, and so this is also taken into account during model 

evaluation. This is explained in more detail below. [5] 
 

5.1 Bytecode Block Definition (Sequential Bytecode Block) 
 

Currently, bytecode blocks are defined as sequences of bytecodes that do not contain any 

conditional branch instruction or method invocation opcodes. Below is an example of a 

bytecode block in the BubbleSort.java. It should illustrate some distinct features of the 

bytecode block definition (SBB). 
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Listing 20 shows some distinct features of the SBB 

 
**Conditional branch instruction and method invocation define the end of each SSB. 

Although method invocation is not conditional, it cannot be included as a part of another 

bytecode sequence. This is because in the revised version of the XML characterisation 

file for PACE, each method and object class are being characterised seperately. 

 

This means that bytecode blocks can be of varying sizes, from only one opcode to 

theoretically the maximum limit of the size of a method permitted by the 

JVMspecification1. A method that only contains a set computation without any loop or 

conditional statements and does not invoke any other methods will be characterised as 

one bytecode block. 

 

A tool similar to ‘capp’ has been developed that parses Java class files and outputs an 

XML-based performance characterisation of the appropriate bytecode. The tool uses a 

method very similar in approach to that of a class file decompiler, extrapolating ‘for’, 

‘while’, ‘if’, ‘switch’ etc. statements and characterising these as either ‘loop’ or 

‘case’ elements within the transaction. The model of such tool although being part of the 

characterization environment, its implementation is beyond the purpose of this report.  
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Method invocation opcodes are then characterised as to evaluate other characterised 

methods within the transaction. The bytecode that comprises the computation within and 

surrounding these elements are collated as bytecode blocks. 
 

Listing 1 and Figure 1 depicts the Java BubbleSort implementation and its revised 

characterisation. 

 
 

 
Listing 21 A Java Bubblesort Implementation. 

 
 
 

Listing 2 is an implementation in Java of a bubblesort kernel. When compiled using the 

Characterisation parser implemented as part of the evaluation engine of JPACE, the 

bytecode produced is shown on the left of Figure 1, and on the right is the resulting 

performance characterisation of the method after running the transaction characterisation 

tool. 
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Figure 8The definition of bytecode blocks from the Java bytecode of the compiled Bubblesort 
algorithm. 

 
Again, it should be noted that unconditional branch opcodes (‘goto’ for example) are 

included in bytecode blocks. The bytecode executed after the branch is also included 

within the same block until a conditional branch or method invocation opcode is found. 

Therefore, the bytecode block ‘sort()V:1’ from Figure 1 is defined as the first three 

opcodes of the method, as well as the opcodes starting from ‘iload_1’ (the opcode 

jumped to by the ‘goto’ opcode, also part of bytecode block ‘sort()V:6’) until the 

condition branch opcode at the end of the method (‘if_icmplt’). 
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5.2 Benchmarking Bytecode Blocks 
 
The kernel of the new evaluation engine from JPACE has been developed that parses an 

XML-based performance model and calculates a predicted execution graph from the 

model’s transactions and their relation to each other as described in the transaction map. 

The predicted response time obtained from a model’s evaluation is the culmination of the 

all the bytecode block timings multiplied to the number of times they were executed 

during the course of the application’s execution. 

 
5.3 Implementation of benchmark toolkit (revised edition)  
 
The benchmarking toolkit has been revised and re-developed to automate the process of 

benchmarking bytecode blocks on a given resource. A specific bytecode block is 

executed once, then twice, and so forth up to a total of 5000 iterations.  

 
5.4 A theoretical hypothesis 
 
Although research has been carried out on Hot Spot optimisation and this new 

implementation has been evolved to adapt to this technology, there is still considerable 

lack of information to pinpoint the relationship between the timing of a single bytecode 

or a sequential bytecode block and the number of iteration the benchmark measures at. 

Originally, it has thought without the optimisation this relationship would be linear. 

 
i.e. duration of n times of bytecode (sequence or unit) =  n x duration of one unit 
 
However, according to the previous benchmark implementation, there were 

inconsistencies with the bytecode benchmark-timings against the number of iterations. 

Each and every bytecode sequence or unit might associate with a function that 

varies according to the number of iterations. 

 
i.e. duration of n times of bytecode (sequence or unit) y =  fy(n)  
 
fy – parameterised function of the bytecode sequence or unit y. 
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This implies that the time to execute a bytecode unit is not proportional to the number of 

iteration it has been executed. Although this is based on assumption and historical data, it 

is a valid hypothesis to have been made when HotSpot optimisation is taken into account. 

 

With this hypothesis, the aim of this revised benchmarking technique is to determine a 

pattern of Hot Spot optimisation to enable the benchmarking of bytecodes to be more 

accurate and hence provide better prediction on the JPACE framework. 

  

5.5 Components of benchmark toolkit 
 
As it was previously mentioned that instead of timing individual bytecodes, units of 

sequential bytecode blocks (SBB) were benchmarked. This led to a variation of both the 

toolkit written in Perl script and the prediction template file itself. 

 

Due to this new concept, procedural sequence to carry out this benchmark process has 

been modified. 

 

Several new scripts have been implemented for this new concept:  

N.B. All scripts and directories are setup and run from  

$DIR = /dcs/00/csvee/private/research/work/cbs/  - variable $DIR could be changed to 

the necessary directory. 

 
 

xml_analyser.pl - extracts bytecodes from the characterisation xml into set of 
bytecode folders ready to be benchmarked. 
 
./xml_analyser.pl <filename> 
 
e.g. ./xml_analyser.pl fft   
This command parses fft.xml at $DIR/fft to output bytecode folders into 
fft/<bytecodeBlock> 
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As shown in previous chapters how characterisation files are constructed, below are some 

technical details of how to parse a revised version of the XML characterisation into an 

appropriate format for benchmarking: 

 

An extract of the revised version of BubbleSort characterisation file 

 

 
Listing 22 shows an extract of the revised version of BubbleSort characterisation file 

 
This is a typical SBB characterisation, it is important to note the characterisation of each 

method and object class shown; and to parse such block requires a formulated regular 

expression structures written in Perl script that captures each method characterisation 

with a XML file systematically. Below is the structure in pseudo-code: 

 
 

 

 

 

 
##Detect the start of a method characterisation 
$xml[$count] =~ m/<jPACE:bytecodeBlock\sid="/ 
 
 
 ##To parse bytecodes (denoted by %%) from <jPACE:OPCODE_%%/> ##
$line =~ s/\/>|\s//g; 
@bytecode = split(/<jPACE:OPCODE_/,$line); 
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Screen 8 shows an example of repository of SSB for a Java application 

 
This script parses a complete characterisation file into the Java application or Java object 

characterisation repository an example of which is shown in Screen 1. Within this 

repository, each Sequential Bytecode Block is parsed into its corresponding SBB 

template directories which consist of 

 

1. SBB template file – this is the file similar to the Template data file defined at 

previous implementation, but instead of detailing measuring bytecode sequence 

and preparation bytecode sequence; it would now contain the unmodified SBB. 

2. Prediction template file – this is the file ExeTime.j which is an object file that 

combines with the SBB template file completes the revised prediction template 

file. Below describes the technical detail of implementing this template file. 
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Listing 23 a section of the map of the template file written in Java bytecode. 
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Listing 24 a section of the map of the template file written in Java bytecode. 

 

A copy of this file will be situated in each template directory. The next procedure is to 

prepare the prediction template file. Whereas previously the template data file would 

have contained all the relevant information and the script ./create_j.pl  will implement the 

prediction template file, the revised version requires a manual process and editing the 

prediction template file to include the SBB and its corresponding preparation sequence. 

Note it is beyond the time limit of this project to automate the process of carrying out the 

editing of the prediction template file. Below shows an example of editing the prediction 

template file. Although so far only BubbleSort.java has been mentioned, there are also 
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other Java applications that have been characterised and benchmarked, one of this 

application is a Java implementation of the NAS Excessively Parallel benchmark, 

which generates pseudo-random numbers with a Gaussian probability distribution. This 

benchmark is an integral part of the Kernel benchmark of the DHPC Java Grande 

Benchmarks Suites (DHPC - Distributed and High-Performance Computing Group) 

 

 
Listing 25 SBB from the Excessively Parallel benchmarks characterisation 

  

 
Listing 26 An extract of prediction templates  with ep()V:5 SBB implemented into. 

 

After all the prediction template files are prepared for benchmarking, the next phase is to 

gather results from these SBBs. A script has been implemented to automate this process.  
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ate the whole process.  

cbs_iteration.pl – executes the prediction template files given a copy of the 
template file being situated in the same directory. 
 
./cbs_iteration.pl <result_file>** 
 
**A log file named <result_file> will be created with the benchmarked timing of the SBB in the 
prediction template file. 
 
 
e.g. ./cbs_iteration.pl result.log 

Since the first benchmark test is carried out on the Java Bubblesort algorithm 

implementation and the implementation only contains 7 SBB within the characterisation, 

therefore the script does not autom

 

This script works on each SBB for the following numbers of iterations  

 

From 0 – 100 at intervals of 5 iterations i.e. 5,10,15,20,...,95,100 

From 100 – 5000 at intervals of 10 iterations i.e. 110,120,130,...,4980,4990,5000 

From 5000 onwards at intervals of 100 iterations i.e. 5100,5200,5300, ...  

 
5
 
.6 Preliminary Results and Understanding 

Results of these benchmarked timings are gathered. Each log file, which contains the 

shortest running times of a sequential bytecode block collected from the some iterations 

ordered in ascending numerical order, is tabulated into graphical representation. 

 

Figure 4 shows the results of such benchmarking technique on one of the sequential 

bytecode block from the Bubblesort method as defined by the automated transaction 

characterisation tool (graphical results of all seven blocks of SBB are attached to the 

appendix). It can be seen from the graph that there is a clear point (at roughly 1000 

iterations) where the execution time of the bytecode block is significantly smaller than 

previously recorded, due to the fact that the hotspot compiler has chosen to optimise the 

block at this time. This value is used by the evaluation engine during a prediction in 
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choosing the appropriate response time for each bytecode block; if the bytecode block 

has been executed less than 1000 times so far during the course of the application then 

the higher average response time is used, otherwise it is the lower average response time. 

 

 

 
Graph 1 The response time of bytecode block BubbleSort/sort()V:1 from 1-5000 iterations as the 
result of the benchmarking tool. It can be seen that at roughly 1000 iterations the block is optimised 
by the Hotspot compiler. 

 
Up to this stage in development, by using the characterisation of the bubblesort algorithm 

shown earlier, and benchmarking the bytecode blocks on a given resource, the predicted 

and real execution time of the Bubblesort algorithm for varying data set sizes were 

obtained. Table 1 outlines these results. A percentage error of less than 30% is considered 

encouraging and a better understanding will help to ensure the elimination of this 

percentage error. 
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Table 1 A comparison between the predicted execution time obtained from the evaluation engine and 
the actual measured execution time of the bubblesort algorithm for varying data sets 

 

Throughout initial analysis of the result, there are also other interesting observations. One 

of them is the fluctuation of the results. These fluctuations may have been caused by 

background CPU overhead as the machines, which the benchmarks operate have included 

with other processes such as memory management and internal scheduling. In reality the 

application that has been benchmarked is usually run simultaneously with other processes 

within a high performance computational environment. Nevertheless these fluctuations 

although happen at a visually significant range, they conform to a consistent shape and 

this means that there are mathematical tools that can effectively reduce these fluctuations 

and since they are consistent it will not be detrimental to the accuracy of the results as 

earlier mentioned that the aim of this benchmarking session is to determine the patterns 

of optimisation and not the values. Since fluctuations are consistent and with the pattern 

of the graph. They suggest that there is an optimal value before optimisation begins and 

after optimisation begins. 

 

i.e.  no. of iteration n <= 1000  then the running time of a bytecode unit is x 

 no. of iteration n > 1000  then the running time of a bytecode unit is y 

 

Where there is always x and y, which are the running time of a sequential bytecode block 

without and with Hot Spot optimisation respectively, associated with a particular SBB. 

Therefore to refine the process of benchmarking, the next step is to identify these 

optimised and un-optimised running time. To compensate the fluctuation a statistical 

technique has been used. Since it is the average of the optimised and un-optimised values 

that are needed for performance prediction, the following technique is used: 
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To minimise this fluctuation error, it has been to decided to exclude the xth iteration 

of which the running time is greater than 1 x standard deviation of the average 

running time for one iteration. 

 

e.g. for 1000 iteration, the running time of a single SBB (T) is: 

 

 

 file that could lead to consistent inaccuracy, below is a diagram to 

lustrate this problem: 

 

Suppose: T= T1+ T2 + ... + T1000 / 1000 then… 
 

Toptimised = T1 + T2 + ... + Tx/ x 
 

where T1 , T2 , ..., Tx < T+ STDV(T) 
 

 
Also according the structure of the bytecode prediction template, there are other parts of 

the benchmark

il

 
Figure 9 The inaccuracy of benchmarking caused by the overlapping of the template components 
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Therefore to ensure the timings that are obtained are solely the running time of these 

sequential bytecode blocks, each the average running time for one iteration of SBB is 

bstracted by the average running time for one iteration of no bytecode. By doing this su

each average timing is exactly the SBB running time. 

 
5.7 High Performance Application (Benchmarks) 
 
Also as mentioned earlier, the Java Bubblesort implementation is used as it is much more 

simplistic than other real-time high performance application and it is good as an 

dicator. Hence the following highly computational applications have also been 

con

 

�  NAS Excessively Parallel benchmark (EP)  

oth are part of the kernel section of the Distributed and High Performance Computing 

to optimise the block. 

he results of each benchmark are stored in an XML-based resource object that is 

rent 

rchitectures. (depending on availability within the department, different machines which 

used to carry the benchmarking process) 

in

sidered [20]:  

�  2-D Fast Fourier Transform (FFT) 

 

B

Group (DHPC) Java Grande Benchmarks Suites 

 

To formally define, the aim of the next phase of benchmarking is to obtain a measure of 

the average unoptimised response time of the block, the average optimised response time, 

and the number of iterations at which the hotspot compiler decides 

T

accessed by the evaluation engine during performance prediction.  

 

Since these are realistic applications and their characterisations contain a lot more SBBs 

and they are more complex to be benchmarked. Therefore another set of toolkit has been 

developed to carry out all the procedure mentioned so far and the benchmark of all SBBs 

within an object characterisation will be carried out automatically. Furthermore, the 

toolkit will create five separate resources (five sessions) for all SBBs of both high 

performance application. These benchmarks have been carried out across diffe

a

have the same hardware configuration are 
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Hostname: budweiser.dcs.warwick.ac.uk  

60MHz 

perating System: SunOS 5.8 

 VM (build 1.4.1) / (build 1.4.0) 

ck.ac.uk  

.40GHz 

perating System: Linux kernel 2.4 

 (build 1.4.1) 

rwick.ac.uk  

01.393 MHz 

perating System: Linux kernel 2.4 

s for JVM 1.4.0 

ptimisation does not realise until 1500th iteration. Therefore the toolkit that carries out 

 issue. 

Processor: UltraSPARC®-IIi 3

Memory Size: 131072 KB 

O

JVM Version: Java HotSpot™ Client

 

Hostname: mscs.dcs.warwi

Processor: Intel® Pentium® 4 CPU 2

Memory Size: 531404 KB 

O

JVM Version: Java HotSpot™ Client VM

 

Hostname: labvista.dcs.wa

Processor: Intel® Pentium® 3 i686 8

Memory Size: 125244 KB 

O

JVM Version: Java HotSpot™ Client VM (build 1.4.1) 

 

Preliminary result shows that due to different machines configurations and JVM 

versions, Hot Spot optimisation takes place at different iteration. With a more updated 

version JVM 1.4.1 the optimisation realises at 1000th iteration wherea

o

the renew-methodology of benchmarking SBB also caters for this

 
5.8 Further refining the evaluation bytecode sequence 
 
There are also re-development of the prediction template file to cater reduce the duration 

of benchmarking since such as FFT application contains over 70 sequential bytecode 

lock within its characterisation. This means that trying to utilise the original method of 

benchmarking will be slow and inefficient. 

 

b
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To compensate for a more efficient benchmark, instead of comparing the benchmark time 

for every iteration within the method bench(), the benchmark time of every iteration 

will be outputted to standard output.  

 

Below illustrates how the 3rd edition of the Benchmarking toolkit will use this further 

refined prediction template to benchmark high performance applications. 

 

batch.pl - executes the prediction template files in the bytecodes folder in a pre-
defined manner to obtain benchmark timings. 
 
./batch.pl <VM_version> <directory> <output_file>*** 
 
***A directory <directory>/dum is to be created for the script’s temporary use. 
 
 
e.g. ./batch.pl 1.4.1 fft fft/result/result.log 
 
This command executes the prediction template file in JVM 1.4.1, benchmark
jasmin files in the folder fft/<bytecodeBlock> and output the timings to
fft/result/result.log 
 

Depending on what the <VM_version> is the following will show the most efficient 

strategy with the refined template file together with the toolkit implementation 

 

Note: these are logic models that define the mechanics of the toolkits rather than the 

actual implementation 
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If it is JVM 1.4.1 then since optimisation realises at 1000th iteration the script will… 

 

1. Executes template file (ExeTime.j) for iteration 1, … ,1000  ten times 

 

result_1000.log will contains 10000 un-optimised timing for that particular SBB 

Note an argument 1000 means collect benchmark times for iteration 1 to 1000 

 

for($i=0; $i<10; $i++) { 

 system(“java ExeTime 1000 >> result_1000.log”); 

} 

 

2. Executes template file for iteration 1,…,6000 twice 

 

result_6000.log will contains 10000 optimised timing for that particular SBB 

Note an argument 6000 means collect benchmark times for iteration 1 to 6000 

 

for($i=0; $i<2; $i++) { 

 system(“java ExeTime 6000 >> result_6000.log”); 

} 

 

The toolkit only extracts timings from 1001…6000 iterations and since the 

benchmark is executed twice it also extracts from 7001 to 12000 since the second set 

of results is appended onto the same file. This is done by the following conditional 

statements. 

 

if ( ($count > 1000) && ($count < 6001) ) || ($count > 7000) {  

 collect… 

} 

 

This means in terms of benchmarking for optimisation and for non-optimisation, 

the averages are taken out of 10000 results. 
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A similar procedure is applied when benchmarking on JVM 1.4.0 

 

For 1.4.0, the toolkit will still be collecting results for iteration 1,…, 6000. This occasion 

the script will run the template file for iteration 1,…, 1500 nine times. This means there 

will be 9000 un-optimised timings and by running the template file for iteration 1,…, 

6000 and extracts only the timings for iteration 1501,…,6000 and for iteration 

7500,…,1200 (two sets of results are appended onto the same ASCII file.) there will be 

9000 optimised timings. 

 

Next is to calculate the standard deviation of the data set (results) 

 

Below is a Perl subroutine of the standard deviation implementation that the toolkit 

utilises: 

 

 
Listing 27 a Perl subroutine for standard deviation 
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5.9 Negative valuation 
 

When calculating the running time of each SBBs by taking away the running time of no-

bytecode template file, there are instances, which result in computing negative values. 

Although it seems to be illogical theoretically, in practice since the resource of its 

computational environment is ever changing such as CPU cycle availabilities and 

memory caching mechanism being occupied by system processes running at background, 

fluctuations as seen previously occurs, therefore the standard deviation procedure is also 

used partially to eliminate this problem. Moreover, there are other measures taken to 

avoid negative valuation. These measures are the following: 

 

�  Only attempt to eliminate negative values if the sequential bytecode blocks consist of 

more than 4 bytecodes, this is because as the running time of a bytecode is 

comparatively short and although the time stamps were registered in nanoseconds, the 

resolution of the system clock is not small enough for the time stamp to be registered 

for accurate readings of the running time of less than four-bytecode units. Therefore 

by avoiding negative valuation will not have significant effect on the final result and 

moreover it will lead to inefficiency. 

 

�  If sequential bytecode blocks consist more than 4 bytecodes and negative valuation is 

realised, then attempt no more than 10 times in trying to obtain positive valuation as 

10 attempts is the limit that has been decided to prevent detrimental effect on the  

performance of the benchmarking process. 

 

Having discussed the technique and logical model for obtaining the optimised and un-

optimised timings of each SBB, Screen 3 shows the content of one of the output file from 

the toolkit. Note the two distinct columns of un-optimised and optimised timing 

respectively, also the negative valuation at places of which SBBs consist less than 4 

bytecodes 
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Screen 10 Default format of the <output_file> 
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Chapter 6  
Result Evaluation 
 

This chapter illustrates the experiment with the Java Grande 
Benchmark Suites and evaluates the comparison and scalability between 
the predicted execution times of those benchmarks using 
characterisation SBBs and their measured execution times. 

 

The objective to implement these toolkits is to establish a framework for an efficient and 

accurate bytecode monitors. To ensure this framework meets its specification, below is a 

short description of a script that has been developed to parse SBB timings into a 

formatted repository so that it can be evaluated against evaluation engine’s application 

prediction at real time. 

 

 
Figure 1 is shows an example of the directory structure of the repository that will situate 

data to be collected and compared by JPACE’s evaluation engine. 
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Figure 11 The directory structure of the result repository which resources timing are to be stored 

before being parsed by the evaluation engine. 

The resource timings are then parsed into another XML characterisation file used by the 

evaluation engine. Figure 2 shows an extract of the XML file of which resource timings 

are parsed into. 
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Figure 12 an extract of the XML characterisation file of which resource timings are parsed into. 

 

Below are some results gathered by comparing between the predicted execution time 

obtained from the evaluation engine and the actual measured execution time of the FFT 

(Fast Fourier Transform) and EP (Excessively Parallel) benchmarks for varying data sets.  

 

6.1 Fast Fourier Transform Benchmarks 
 

Fast Fourier Transform – this benchmark performs a forward transform of a three-

dimensional dataset. This kernel exercises complex arithmetic, shuffling, non-constant 

memory references and trigonometric functions. This is a CPU intensive benchmark 

working at the kernel level. It is commonly used in scientific computations which is a 

targeted area to utilise the Grid environment. 

 

Each graph below corresponds to the table with the same number e.g. graph 1 

corresponds to table 1. 
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Table 2 shows the percentage error % of the predicted time against the actual running time on 
budweiser.dcs.warwick.ac.uk 

 

 

Graph 2 Predicted execution time and measured execution time comparison of the Fast Fourier 

Transform benchmark on machine budweiser.dcs.warwick.ac.uk 
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The sizes of the datasets are chosen to be powers of two as and this illustrates an 

exponential growth with the execution time, both predicted and measured. Although the 

sequential bytecode blocks are benchmarked to the nearest of nanoseconds, the execution 

time of the application that is characterised is more than one second and hence results are 

shown in seconds. The percentage in Table 1 shows all but one error is larger than 30% 

and this is encouraging especially when the datasets quite vary in size. In general if the 

average percentage errors from all the datasets are less than 30% then it can be classified 

as accurate since these predicted timings are used in conjunction with historic data within 

the performance characterisation environment of PACE. These historic data will certainly 

refine the accuracy. Moreover percentage errors that are more than 30% comes from the 

timings of datasets that are relatively small and when uncertainties in a dynamic 

computation environment arises that are independent to the size of the dataset then this 

uncertainty or error will be seen as significant. Fortunately the prediction technique that 

has been developed targets distributed applications in Grid environment and this suggests 

that the duration of these applications will allow this level of uncertainty that will be seen 

as insignificant. Table 2, which shows the percentage errors of the predicted time against 

the actual running time on labvista.dcs.warwick.ac.uk, again demonstrates the decrease of 

percentage error as the size of datasets increases and shows the insignificance of the 

uncertainty as the execution time increases. 
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Table 3 shows the percentage error % of the predicted time against the actual running time on 
labvista.dcs.warwick.ac.uk 

 

Graph 3 Predicted execution time and measured execution time comparison of the Fast Fourier 
Transform benchmark on machine labvista.dcs.warwick.ac.uk 
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In graph 2, which corresponds to the values in table 2, again suggests the proportionality 

of the predicted execution time against the measured execution time and the general 

decrease in the percentage error as the execution time increases. 

 

 

 
Table 4 shows the percentage error % of the predicted time against the actual running time on 
mscs.dcs.warwick.ac.uk 
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Graph 4 Predicted execution time and measured execution time comparison of the Fast Fourier 
Transform benchmark on machine mscs.dcs.warwick.ac.uk 

 

Table 3 shows the percentage error % of the predicted time against the actual running 

time on mscs.dcs.warwick.ac.uk. In this table there is a percentage error, which is over 

100% with a small dataset, at first this might seem to be as a sign of significant 

uncertainty. However this situation occurs when the predicted time is over 100% larger 

than the measured execution time and experiments show that a significant difference 

between the predicted time and the measured time only occurs when the execution time is 

small. As the machine hosted at mscs.dcs.warwick.ac.uk provides a much efficient 

computational environment in terms of processor’s power and memory availability, in 

general the execution time of the FFT benchmark on this environment is smaller relative 

to the other machines hosted at labvista.dcs.warwick.ac.uk and 

budweiser.dcs.warwick.ac.uk, the percentage will generally be relatively larger but in 

terms of scalability, the prediction technique and its timing provided a good estimate 

across these hardware architecture and computational environments, as shown by the 

similarity in the curvature of the scalability graphs in graph 1, 2 and 3. 

 

 95 



Clearly the pattern shown the benchmarked timings of the sequential bytecode blocks are 

accurate enough to allow the percentage error to drop well below 30%. A similar pattern 

can be observed for the comparison of the Excessively Parallel benchmarks shown in 

below.   

 

6.2 Excessively Parallel Benchmarks 
 

NAS Excessively Parallel benchmarks – This is one of the Java versions of the NAS 

(NASA Advanced Supercomputing Division) benchmarks, implemented by the DHPC 

(Distributed and High Performance Computing) Group. Its core function is to generate a 

pseudo-random numbers with a Gaussian probability distribution. The datasets are 

chosen and illustrated as powers of two for the convenience in terms of the binary 

operation within a computational environment. Graphs and tables are organised in a 

similar fashion to the FFT benchmarks experiments’ results. 

 

 

Table 5 shows the percentage error % of the predicted time against the actual running time on 
budweiser.dcs.warwick.ac.uk (Excessively Parallel) 
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Graph 5 Predicted execution time and measured execution time comparison of the Fast Fourier 
Transform benchmark on machine budweiser.dcs.warwick.ac.uk  (Excessively Parallel) 

 

 

Table 6 shows the percentage error % of the predicted time against the actual running time on 
labvista.dcs.warwick.ac.uk (Excessively Parallel) 
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Graph 6 Predicted execution time and measured execution time comparison of the Fast Fourier 
Transform benchmark on machine labvista.dcs.warwick.ac.uk  (Excessively Parallel) 

 

 

Table 7 shows the percentage error % of the predicted time against the actual running time on 
mscs.dcs.warwick.ac.uk (Excessively Parallel) 
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Graph 7 Predicted execution time and measured execution time comparison of the Fast Fourier 
Transform benchmark on machine mscs.dcs.warwick.ac.uk  (Excessively Parallel) 

 

The Excessively Parallel benchmark illustrates a different relationship to the Fast Fourier 

Transform benchmarks. This is mainly the case with the variation of the percentage errors 

even across different computational environments. By observing the graphical 

representation of the results (graph 4, 5, 6) it could be seen the relationship between the 

measured execution time and the predicted execution time collected at machine 

budweiser.dcs.warwick.ac.uk is more inconsistent in comparison with timings collected 

at machine labvista.dcs.warwick.ac.uk and mscs.dcs.warwick.ac.uk. This difference is 

clearly due to hardware configuration as the former machine has a different processing 

unit and has been installed with a different operating system to the latter two machines. 

Also since labvista.dcs.warwick.ac.uk and mscs.dcs.warwick.ac.uk offer a more efficient 

computational environment, to carry out experiments on small datasets would have given 

unrepresentative results and hence notably only larger datasets are examined with these 

two machines. Focusing on the latter two machines the percentage errors shown on table 

5 and 6 are relatively small and consistent and this suggests a proportionality relationship 
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in between the uncertainty and the length of the execution time. In the experiments on 

labvista.dcs.warwick.ac.uk, a general percentage error of around 2 to 5% shown on table 

5 also suggests the methodology that has incorporated the optimisation by Hot Spot 

technology is acceptable. 

 

6.3 Other Benchmarks 
 

To ensure the observations made are fair and accurate, other benchmarks within the Java 

Grande Benchmarks Suites have also been taken into consideration. These benchmarks 

operate across a collection of machines and this collection can be referred as cluster, 

which has also been the forefront topology for high performance computing and there 

experiments could suggest vital information for high performance Grid systems. These 

benchmarks are briefly described below: 

 

�  Sparse Matrix Multiplication (SMM) - This uses an unstructured sparse matrix 

stored in compressed-row format with a prescribed sparsity structure. This kernel 

exercises indirection addressing and non-regular memory references. A N x N 

sparse matrix is used for 200 iterations. 

 

�  IDEA encryption algorithm benchmarks (Crypt) - Crypt performs IDEA 

(International Data Encryption Algorithm) encryption and decryption on an array 

of N bytes. Performance units are bytes per second. Bit/byte operation intensive. 

[22] 
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Chapter 7  
Conclusion 
 

This chapter summarises the objective, specification and methodologies 
imposed in this project and evaluates the success, limitation and the 
future direction of this work. 

 

7.1 Summary 
 

With the emergence of grid computing, being able to intelligently allocate resource on a 

grid system to high performance computational application has been the key issue in high 

performance computing. To make resource allocations and high-level scheduling 

possible, management systems must be able to obtain characterisation information of 

these applications and this information must be supplied efficiently and with fair 

accuracy. One domain of the characterisation is the predicted application’s execution 

time and as Java has become a popular programming medium. 

 

This report has illustrated and discussed techniques of supplying predicted execution time 

by monitoring of Java bytecodes and also has documented the developmental stages of 

implementing this technique.  

 

To conclude this report, the following is a summary of the developmental stages. 

 

 Through these developmental stages the following two methodologies were considered: 

 

�  Timing analysis of Java bytecodes 

�  Method prediction on Java Programs 

 

The following is an overview of the methodology used for the Timing analysis of Java 

bytecodes: 

 

1. Extracts individual bytecodes from programs 
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2. Collect the running time of repetitions of an individual bytecode, hence finding 

the average running time of a single bytecode. 

3. Accumulate averages of all bytecodes to calculate the average predictive running 

time of the program 

 

To efficiently implement this system, a systematic component-based framework has been 

developed, namely the Bytecode Prediction Template. It primarily consists of the 

following components: 

 

�  Initialisation bytecode sequence 

�  Preparation bytecode sequence  

�  Native method sequence (start time)  

�  Measuring bytecode sequence  

�  Native method sequence (end time)  

�  Evaluation bytecode sequence 

 

Such a component-based template allows the benchmark process to be clearly described 

and it also means that further refinement is a lot more convenient. To utilise this template 

efficiently a collection of toolkits written in Perl has been developed. These toolkits has 

been explained in detail at the first design and implementation chapter. A Java 

Bubblesort algorithm kernel has been used to experiment the accuracy of this 

methodology. 

 

The preliminary results show that… 

 

The timing predicted by the first design and implementation did not exactly match 

the time measured from the BubbleSort.java 's performance critical section. 

 

Observation suggested: 

 

�  Bytecode latency from invoking native method (calling C library). 
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�  Speed difference between invoking same bytecodes that retrieve and assign values 

onto different variable.  

�  Effects of Just-in-Time compilation and Java Hot-Spot Optimisation. 

 

Through the further development and understanding of Java optimisation a new 

methodology has developed which also utilises the Bytecode Prediction Template. 

This new methodology employs a new bytecode unit called Sequential Bytecode Block 

(SBB) which can be defined as: 

 

�  Sequences of bytecodes that do not contain any conditional branch instruction or 

method invocation bytecodes. 

 

�  The size of each blocks is limited the size of a method permitted by the JVM 

specification. 

 

Another collection of toolkits which is explained in the report have been developed to 

incorporate the functionalities of the Bytecode Prediction Template and SBB.  

 

By monitoring the Bubblesort kernel characterisation SBBs, new observations were made 

and they were 

 

�  Depending on JVM and the resource the environment has, optimisation takes 

place at a specific iteration… 

 

�  Although individual benchmark session should be within a static resource, in 

reality resources such as CPU, memory changes at real time dynamically… 

 

�  Due to the ever-changing resource environment, fluctuations occur. 

 

These observations have suggested the following modified hypothesis and formulation to 

cater these fluctuation and uncertainty: 
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To minimise this fluctuation error, it has been to decided to exclude the xth iteration 

of which the running time is greater than 1x standard deviation of the average 

running time of one iteration. 

 

To ensure this hypothesis is accurate and fair, several benchmarks from the Java Grande 

Benchmark Suite were experimented and notably the following two benchmarks have 

been studied in detail: 

 

�  NAS Excessively Parallel benchmark (EP)  

�  3-D Fast Fourier Transform (FFT) 

 

Results by incorporating the new hypothesis are encouraging, although the relationship 

between the predicted and measured execution time varied across different computational 

environments (three different hardware-configured machines were used in this 

experiment), when the timings were tabulated onto some scalability graphs, the general 

curvature of the results suggests uncertainties due to fluctuation and hardware overhead 

were minimised and that the general percentage error between the predicted and the 

measured execution times is a lot lower than 30% and in some cases this error has been 

minimised to less than 1%. These results confirm with sufficient confidence that a 

suitable bytecode monitoring technique has been devised for distributed Java 

applications within dynamic heterogeneous environments for the current release of 

Java Virtual Machine and Java Hot Spot optimisation technology. 
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7.2 Limitation and Future Improvement 
 

The following points detail the limitation of the Java bytecode monitor specified and 

described in this report. It should be noted that these points were not attended throughout 

the duration of project period due to the limit of time availability, technical knowledge 

and resources availability. 

 

�  Effects of Just-In-Time compilation – the main issue of characterising Java 

methods into sequential bytecode blocks is that it takes bytecode block out of the role 

of Just-In-Time (JIT) compilation, as the granularity of this technology is at least at 

the method level. This means inaccuracy might occur if JIT was utilised during the 

execution of any high performance Java application. This technology also encourages 

method in-lining (this is also the case with Hot Spot compilation), this leads the 

individual methods being effectively “merged” together and the course of this process 

may result in some SBB being removed and the characterisation model in this case 

will not bear the true characterisation. 

 

�  Automate the modification of prediction template for all Java bytecodes – due to 

the time availability the implementation to automate the insertion measuring bytecode 

sequence into the template file was not possible. This means that even though the 

theoretical base of this monitor is correct, in practice to enable the toolkit to work on 

real life high performance applications such as ones used in an e-business or an e-

science environment will still not be ideal as these applications are relatively much 

larger and their characterisations will contain a lot more sequential bytecode blocks 

than the benchmarks of which this project’s bytecode monitor is tested on. To 

manually implementing each SBB onto the template files is not an efficient procedure 

for carrying bytecode prediction in a PACE environment, as predictive data should be 

available as quickly as possible.  

 

�  Continuous development in Java Optimisation – although the implemented 

bytecode monitor caters the Hot Spot technology, it is static in terms of other 
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optimisation such as with Just-In-Time compilation and this is due to the fact that 

these optimisation techniques and environments change very regularly. Such as the 

condition of Hot Spot detection and the heuristic for in lining are all subject to change 

and re-evaluation. For this characterisation needs to be a lot more dynamic and 

generically defined as with constant updating with virtual machines version means 

dramatic change in the mechanics of their optimisation and this can severely affect 

the accuracy of predicting application running time via bytecode monitors. Moreover 

these changes might focus a lot at a higher level granularity, mainly method level  

 

7.3 Future Direction 
 

As the results of these limitations, further research is highly recommended and areas of 

further work include: 

 

�  Semantic definition - The theory of meta-programming suggests a more dynamic 

approach is needed at the middleware level. A more semantically as well as 

syntactically defined intermediary /definition language can be evolved at this 

middleware level for high performance applications, especially in the 

performance-prediction domain. The motivation behind this idea came about from 

the area of Workflow management and its language for Workflow process 

definition. By evolving a middleware language focusing on a performance 

prediction domain, we can organise prediction entities in a more precise and 

meaningful way at a conceptual level, eg. the notions of subtasks and transactions 

can be defined as semantic entities but as the same time being able to be utilised 

at conceptual levels for more investigative work. Furthermore the introduction of 

a semantic implementation of such a language meant that future prediction work 

could be included with other metrics that relate to quality of services or workflow 

management, for example. This will not only allow a much more convenient way 

of designing and developing performance toolkit, but will also reinforce the ethos 

of GRID computing.  
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�  Automation and accuracy - By refining the method of ARM (Application 

Response Measurement), the notion of a transaction mapping can be made more 

dynamic, and have the functionality of not just benchmarking sequential code but 

also of benchmarking multiples of applications based on other important metrics 

such as quality of service and workflow algorithms. Furthermore, if accuracy and 

automation can be enforced, then there is potentially a chance to look at the speed 

and transparency of prediction. 
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