

Bytecode Monitoring of Java Programs

Author: Peter Wong

Supervisor: Stephen Jarvis

Content

Abstract 5
Keywords 5

Chapter 1 Background and Motivation 6

1.1 PACE – Performance Analysis and Characterisation Environment 6

1.2 PACE Toolset Components 9

1.3 Model Characterisation Separation 10

1.4 The Layered framework 11

1.5 Java World – an extension to PACE 13

Chapter 2 Project Objectives and Specification 14

2.1 Methodologies 14

2.2 Java’s Virtual Machine, Instruction Set and Assembler 15

2.3 XML Characterisation 19

2.4 Main programming languages in used 20

Chapter 3 Design and Implementation (1st edition) 22

3.1 Finding methods to calculate running times of bytecodes 22

3.2 From Template model to implementation 27

3.3 Component’s details 27

3.4 Mechanics of the Bytecode Prediction Template 31

3.5 Toolkit Development 35

3.6 Formal Evaluation 42

3.7 Interpretation of the measured timings of bytecodes 42

3.8 Observation 49

 2

Chapter 4 Development 50

4.1 Initial Thoughts and Experiments 50

4.2 Bytecode latency from invoking native method 50

4.3 The latency in variable assignment and retrieval 51

4.4 The effects of Hot Spot compiler and Java Optimisation. 53

4.5 Hot Spot motivation 54

4.6 Hot Spot detection 56

4.7 Dynamic de-optimisation 57

4.8 Developed Ideas 58

4.9 From ideas to Implementation 60

Chapter 5 Design and Implementation (2nd edition) 66

5.1 Bytecode Block Definition (Sequential Bytecode Block) 66

5.2 Benchmarking Bytecode Blocks 70

5.3 Implementation of benchmark toolkit (revised edition) 70

5.4 A Theoretical Hypothesis 70

5.5 Components of benchmark toolkit 71

5.6 Preliminary Results and Understanding 77

5.7 High Performance Application (Benchmarks) 81

5.8 Further refining the evaluation bytecode sequence 82

5.9 Negative Valuation 86

 3

Chapter 6 Result Evaluation 88

6.1 Fast Fourier Transform Benchmarks 90

6.2 Excessively Parallel Benchmarks 96

6.3 Other Benchmarks 100

Chapter 7 Conclusion 101

7.1 Summary 101

7.2 Limitation 105

7.3 Future Direction 106

Reference 108

Appendix On DISK

 4

Abstract

A performance prediction system (PACE – Performance Analysis Characterisation

Environment) has been implemented to characterise the performance of C, Fortran and

Mathematica codes. With the current increase in the popularity of the Java platform,

PACE is being extended to characterise and predict distributed Java applications within

dynamic heterogeneous environments. With the modern implementations of the Java

Virtual Machine being able to carry out on-the-fly optimisations, Java methods are to be

characterised as a control flow of bytecode blocks, rather than individual bytecodes.

These bytecode blocks are then benchmarked to create a bank of predictive data for

evaluating performance critical Java applications. This report describes the

implementation of defining and monitoring these bytecode blocks and also evaluates the

techniques that have been used.

Keywords: Java Virtual Machine

PACE

Hot Spot

Java Optimisation

Sequential Bytecode Blocks

Bytecode Prediction Template

 5

Chapter 1
Background and Motivation

This chapter introduces the core idea of performance analysis for high
performance computation on a Grid computing environment. It
illustrates the framework of performance characterisation and how it
leads to have the need to implement a Java bytecode monitor.

The computing architectural landscape is changing. Resource pools that were once large,

multi-processor supercomputing systems are being increasingly replaced by

heterogeneous commodity PCs and complex powerful servers. These new architectural

solutions, including the Internet computing model [10] and the grid computing [11, 12]

paradigm, aim to create integrated computational and collaborative environments that

provide technology and infrastructure support for the efficient use of remote high-end

computing platforms. The notion of so-called grid computing or the use of a

computational grid is applying the resources of many computers in a network to a single

problem at the same time - usually to a scientific or technical problem that requires a

great number of computer processing cycles or access to large amounts of data. A well-

known example of grid computing in the public domain is the ongoing SETI (Search for

Extraterrestrial Intelligence) @Home project in which thousands of people are sharing

the unused processor cycles of their PCs in the vast search for signs of "rational" signals

from outer space. According to John Patrick, IBM's vice-president for Internet strategies,

"the next big thing will be grid computing."

The success of these architectures relies on the outcome of a number of important

research areas; one of these – performance – is fundamental, as the uptake of these

approaches relies on their ability to provide a steady and reliable source of capacity and

capability computing power, particularly if they are to become the computing platforms

of choice.

The study of performance in relation to computer hardware and software has been a topic

of much scrutiny for a number of years. It is likely that this topic will change to reflect

the emergence of geographically dispersed networks of computing resources such as

 6

grids. There will be an increased need for high performance resource allocation services

and an additional requirement for increased system adaptability in order to respond to the

variations in user demands and resource availability. Performance engineering in this

context raises a number of important questions and one question of which the motivation

of this project is based on. Its answer will impact on the utilisation and effectiveness of

related performance services:

How is this performance data obtained?

Gathering performance data can be achieved by number of methods. Monitoring services

provide records (libraries) of dynamic information such as resource usage or

characteristics of application execution. This data can be used as a benchmark for

anticipating the future performance behaviour of an application, a technique that can be

used to extrapolate a wide range of predictive results [13]. Alternatively it is possible to

extract data from an application through the evaluation of analytical models. While these

have the advantage of deriving a priori performance data – the application need not be

run before performance data can be collected – they are offset by the complexity of

model generation.

For the last 10 years the High Performance Systems Group has made significant

contribution towards this field of research, namely a unique characterisation environment

implemented with a toolkit PACE (Performance Analysis and Characterization

Environment).

1.1 PACE - Performance Analysis and Characterization Environment

Performance Analysis and Characterization Environment (PACE) [7] provides a

framework for developers to create detailed analytical performance models that can be

used to predict the performance of their applications. It has been verified by the UK

Defence Electronic Research Agency (DERA) that a predictive accuracy of less than 10%

can be achieved using this technique. The system works by characterizing the application

and the underlying hardware on which the application is to be run, and combining the

 7

resulting models to derive predictive execution data. PACE provides the capability for

the rapid calculation of performance estimates without sacrificing performance accuracy.

PACE also offers a mechanism for evaluating performance scenarios – for example the

scaling effect of increasing the number of processors – and the impact of modifying the

mapping strategies (of process to processor) and underlying computational algorithms

[9].

Details of the PACE toolkit can be seen in Figure 1.

Figure 1 An outline of the PACE system including the application and platform (resource)
modelling components and the parametric evaluation engine which combines the two

 8

1.2 PACE Toolset Components

The PACE toolset includes a range of components that assists a user to create models,

visualize results, use pre-defined models from a library, and use information derived from

existing application codes. The number of vital components of PACE are described

briefly below. [6]

• Evaluation Engine evaluates the current performance model, producing predictions

of time, scaling, and resource usage.

• Workbench provides a user-friendly interface to the components of PACE.

• Source Code Analyzer assists the user in converting sequential source code into the

CHIP3S performance language. The user directs this operation by specifying which

code are associated with which sub-task elements. Currently this component enables

C source to be input, using both parsing and profiling information.

• Object browser assists the user to scan predefined model libraries of application

kernels, parallelisation strategies (parallel templates), and hardware models. The user

may also define new library models.

• Object Editor assists the user to enter and review individual objects contained within

the performance model.

• Parametric visualization enables application and/or system parameters to be varied,

and provides a means in which the results can be visualized. Currently supports single

and dual parameter manipulation.

• Trace visualization enables the visualization of a single prediction scenario. It

provides time-space diagrams illustrating computation, communication and idle

stages of processors. Currently, this analysis is provided by a trace data file link to the

ParaGraph parallel monitoring system.

 9

1.3 Model Characterisation Separation

An important feature of this design is that the separation of application and platform

models and there are independent tools for each.

• Application Tools provide a means of capturing the performance aspects of an

application and its “parallelisation” strategy. Static source code analysis forms the

basis of this process, drawing on the control flow of the application, the frequency at

which operations are performed, and the communication structure. The resulting

performance specification language (PSL) scripts can be compiled to an application

model. Although a large part of this process is automated, users can modify the

performance scripts to account for data-dependent parameters and also utilise

previously generated scripts stored in an object library.

Figure 2 Application Model

• Platform (Resource) Tools model the capabilities of the available computing

resources. These tools use a hardware modelling and configuration language (HMCL)

to define the performance of the underlying hardware. The platform tools contain a

number of benchmarking programs that allow the performance of the CPU, network

and memory components of a variety of hardware platforms to be measured. The

HMCL scripts provide a resource model for each hardware component in the system,

since these models are (currently) static, once a model has been created for a

particular hardware, it can be archived and reused.

 10

Figure 3 Platform (Resource) Model

1.4 The Layered framework

These models are created by describing an application’s performance in a

characterization language called CHIP3S [9]. CHIP3S encompasses a layered framework

for performance characterization, as seen in Figure 4(a) [5]. Each layer can contain a

number of objects that describe specific performance-critical elements of an application:

subtask objects describe sequential elements of an application; parallel templates describe

the parallelisation strategy of, and communication between, these subtasks; hardware

objects characterize the computational and inter-communication performance of

hardware resources. This inherent separation between hardware and software components

allows predictions of the same application on different hardware platforms a case of

simply inter-changing the model’s hardware object as appropriate.

 11

Figure 4 The Layered framework for performance characterisation: (a) The original PACE
approach: (b) the revised transaction-based approach

PACE provides tools to characterize the performance of C, Fortran and Mathematica

codes. Once the application and hardware models have been built, they can be evaluated

using the PACE Evaluation Engine. PACE allows: time predictions (for different

systems, mapping strategies and algorithms) to be evaluated; the scalability of the

application and resources to be explored; system resource usage to be predicted (network

usage, computation, idle time etc), and predictive traces to be generated through the use

of standard visualisation tools.

Such subtasks characterizations within CHIP3S is achieved by using a tool called ‘capp’

that processes methods defined within C source code and outputs performance

characterizations of these methods in the CHIP3S language. These characterizations are a

parameterized control flow of a number of atomic instructions that map onto a set of

common machine instructions. Another tool benchmarks these machine instructions for a

given resource, providing a list of timings that are included within the resource’s

associated hardware object. Evaluating a subtask to predict its performance involves

essentially adding up all the timings for the machine instructions that are to be executed

for a given application run.

 12

1.5 Java World – an extension to PACE

With the current increase in the popularity of the Java platform, as well as the interest in

computational Grids within the high performance community, PACE is being extended to

characterize and predict distributed Java applications within dynamic heterogeneous

environments – known as JPACE. A new XML-based language [8] hence is being

developed that uses a more flexible transaction-based approach to performance

characterization; shown in Figure 4(ii). Applications are characterized as a number of

transactions, or items of work, where their relation to each other is described within a

transaction map.

Taking the original method of performance characterization, it would seem to be

equivalent, where characterizing Java methods is concerned, to create a control flow of

Java bytecodes. Each bytecode could be benchmarked in the same way as machine

instructions are in CHIP3S, the culmination of which would result in the prediction of a

Java method’s performance, even though later on it has been discovered that due to on-

the-fly optimizations within modern implementations of the JVM that this is not the case.

Figure 5 depicts a graphical description of the relationship between the benchmarked

bytecode timings and the PACE system.

Figure 5 Structure of performance evaluation process

 13

Chapter 2
Project’s Objectives and Specifications

This chapter details the project’s objectives and its specifications. It
establishes the methodologies and hypothesises of which this project is
set about to implement and experiment. It also identifies the main
programming tools that are utilised throughout this project.

2.1 Methodologies

By having this motivation as the milestone in the performance study, this project has then

adapted this initiative and with early background research on the current grounding, two

possible benchmark methodologies were specified for this project:

• Timing analysis of Java bytecodes - An initiative that is brought up to investigate

the implementation of benchmarking the Java Virtual Machine (JVM) Instruction

Set, using the Java Assembler Interface called "Jasmin". It takes ASCII descriptions

for Java classes, written in a assembler-like syntax and using the JVM instruction set.

It converts them into binary Java class files suitable for loading into a JVM

implementation. The initial idea is to benchmark single bytecode at a time by

repetitively executing individual bytecode in multiples of 10s, 100s and 1000s, to

enable JVM to monitor these bytecodes a technique so-called Application Response

Measurement (ARM) [8] will be used to carry out timing analysis on that repetition.

Further work could also be implemented to archive these timings across different

architecture so that a readily available library of metric can be utilized to carry out

performance prediction on Java programs.

• Method prediction on Java Programs - A initiative that is brought up to investigate

the implementation of predicting a Java program performance by monitoring the

bytecode activity on a method level of the program source code. This initiative will

utilize the ARM by running several unique Java method at source code level and

timing these method using ARM "method call" transaction method and using a Java

Parser, these method code can be then analysed at a bytecode level. This method can

be looked at as a form of generation of simultaneous equations where by different

 14

types of bytecodes will represent mathematical variables with the occurrences as its

multiples. Once enough methods are analysed, these equations will be able to solve

and timing of bytecode can then be looked at and further be used to predict future

Java programs.

2.2 Java’s Virtual Machine, Instruction Set and Assembler

To understand the notion of utilising bytecode as a medium to benchmark Java

applications running within some dynamic heterogeneous environments, it is necessary

understand the details of this intermediary language.

The Java Virtual Machine (JVM) [2] is a platform-neutral runtime engine used to

execute Java programs. During the execution of a Java program, the constituent

instructions are not executed directly by the hardware provided by the architecture,

instead an intermediary stage of bytecode interpretation is carried out by the Virtual

Machine.

JVM could be viewed as a “virtual” processor and hence machine instructions had been

implemented for this engine. The JVM instruction set is relatively similar to a set for a

real CPU. A Java virtual machine instruction therefore consists of an opcode specifying

the operation to be performed, followed by zero or more operands embodying values to

be operated upon.

To utilise these bytecodes at a higher level, a tool is needed for constructing class files

from textual description. For simplicity Jasmin is chosen, Jasmin is a Java Assembler. It

takes ASCII descriptions for Java classes, written in a simple assembler-like syntax using

the Java Virtual Machine instructions set. It converts them into binary Java class files

suitable for loading into a Java interpreter.

 15

Incidentally it should be noted that to execute Java methods, the execution engine retrieve

and processes the corresponding bytecodes. Bytecode consists of a sequence of single

byte opcodes, each of which identifies a specific operation to be carried out.

e.g. the opcode 96 represents the instruction iadd, which adds two integers.

Listing 1 and 2 give a brief description of instruction syntax used in Jasmin:

 16

Listing 1 a brief description of instruction syntax used in Jasmin

 17

Listing 2 a brief description of instruction syntax used in Jasmin (continued)

 18

Other research work on Java bytecode analysis has also been considered. Such as a

technical written by C. Herder and J. J. Dujmovic at San Francisco State University titled

Frequency Analysis and Timing of Java Bytecodes [4] has been studied. To understand

the characterization of Java workloads, bytecode execution times were measured. Their

measured result were based on an Ultra Sparc workstation and SUN JDK 1.2.2. and since

the testing machine architecture is similar to the machine that this project is based on,

both results and implementation were very applicable towards this project.

As library of Java bytecodes is to be benchmarked, there needs some information to bind

the benchmark results with the application being benchmarked. The way that applications

are characterised in Application Response Measurement (ARM) would provide the

relevant information.

2.3 XML Characterisation

As JPACE being implemented, a new XML-based language has been developed to cater

the transaction approach of characterisation to which JPACE has adopted for a more

dynamic characterisation.

This XML-based Transaction Definition Language (TDL) [8] is defined, which allows

Java applications’ performance critical component to be semantically defined, is an

integral part of the technique for automatically ARMing Java applications in accordance

with the ARM 3.0 standard for Java. An application is instrumented with ARM method

calls through a bytecode transformer prior to execution, providing ARM compliance

while removing the necessity to modify (or even possess) the original Java source code.

Figure 6 shows an example of a TDL XML file defining two transactions of type method

source and line number for the jar file example2.jar. The first transaction has the user

name admin associated with it, and defaults to failing if the method example2method

contained within the example2class class throws an exception. Two metrics are also

associated with the transaction.

 19

Figure 6 An example of a TDL XML file

Hence, the XML characterisation files of Java applications would be utilised as a

template towards effective analysis of micro-benchmark timings.

Now having decided the medium of which the performance benchmark will be based in,

a set of programming languages for implementing benchmarking toolkit is to be chosen.

2.4 Main programming languages in used

Java(TM) 2 Runtime Environment (Java 2 SDK 1.4.1)

This version of the virtual machine is installed and readily available at the Department of

Computer Science.

PERL – Practical Extraction and Report Language (v5.0, v5.6.1)

This is the preferred script language for implementing toolkits mainly because by

utilising functionalities heavily from C, sed, awk, and the Unix shells, Perl has become

the language of choice for many I/O, file processing and management, process

management, and system administration tasks. Since the process of bytecode monitoring

requires certain amounts of ASCII files manipulation. [3]

 20

Jasmin – Java ASseMbler INterface (v1.05)

Jasmin is a free Java assembler provided on the Internet. This is a tool for constructing

class files from textual descriptions. These textual descriptions from classes are written in

Java Virtual Machine instruction set which are converted into binary class files.

Nevertheless, similarly to Jasmin there are also other Java assemblers available for free

distribution, one such freeware is an assembler called Oolong and it was created with a

counterpart i.e. a disassembler called Gnoloo, which in the course of this project became

a very useful tool. [1]

JNI - Java Native Interface

The Java Native Interface (JNI) is the native programming interface for Java that is part

of the JDK. By using the JNI, it ensures that the benchmarking technique is completely

portable across all platforms. [18]

The JNI allows Java code that runs within a Java Virtual Machine (VM) to operate with

applications and libraries written in other languages, such as C, C++, and assembly. The

use of this programming interface meant that some library functions from C such as the

library time.h, which outputs system-clock time stamps has proved to be significantly

helpful.

 21

Chapter 3
Design and Implementation (1st edition)

This chapters illustrates the approach and techniques used to embark on
the specifications and objectives set in previous chapter.

The preliminary specification has hence set down the objective, which was to investigate

this parallel notion of micro-benchmark and to implement a set of efficient micro-

benchmarking applications that will carry out performance prediction of Java programs in

a form of bytecode analysis. Through early background research, it has been decided

initially to investigate two possible ways of implementing these micro-benchmarks:

1. Timing analysis of Java bytecodes

2. Method prediction on Java Programs

While investigating methods to develop the first type of benchmark, a number of

difficulties have been encountered:

1. Finding methods to calculate running time of individual bytecodes / multiple

occurrences of a single bytecode to gain a fair timing of the bytecode being tested.

2. Interpretation of the measured timings of bytecodes.

3.1 Finding methods to calculate running time of bytecodes:

When carrying out predictive measurement of testing bytecodes, it is very important that

bytecode execution could utilize all the CPU or memory resources available, this means

such as invoking a virtual timer, loading in background to measure execution times was

not a justifiable option as it could consume CPU and memory resources and compromise

the accuracy of predictive measurement, therefore it is more favourable to measure the

execution time by finding the time difference of the starting (st) and stopping time (sp).

There are a number of ways this could have been implemented with different degree of

accuracy. The following approaches have been investigated:

 22

1. Implement a non-Java program (C, Perl) and invoke the bytecodes sequences by

calling the corresponding shell commands e.g. System("java test"). The method

can be achieved by calculate the running time of the bytecode sequence without

the repetition of the bytecode being tested and then apply the same technique to a

sequence included with the bytecode being tested.

2. Utilize System.currentTimeMillis() method [17], which returns the current time

in milliseconds. By invoking the method before and after the repetitive bytecode

sequence, the difference in these timings will be the time that takes to execute the

testing bytecode repetition. The advantage of this method over the

implementation of a non-Java program is that the time method is itself can be

expressed in Java bytecode which means all it needs is to be assembled by Jasmin

to construct class files.

The disadvantages with these methods are:

Method 1 would have certain overhead that induces inaccuracies. The accuracy of the

timing should match the time that took to execute a single bytecode and hence

implementing a non-Java program is not the best option.

Method 2 could only produce any bytecode timings to the nearest millisecond, which

means it would be also inaccurate for the order of timing that is needed. After several

implementation of this method, it was noted that the timing should be in the order of

nanoseconds.

There was however another method, which has been utilized before, and it had been

documented in the technical report of the timing analysis of Java bytecode [4] produced

by J.J.Dujmovic at the San Francisco State University. Here is the motivation to consider

this new approach.

 23

" A method that executes the bytecode being measured in a controlled context was

timed using a Java program and the Unix clock_gettime() system call, invoked

through the Java Native Interface"

3. Using the idea of Java Native Interface (JNI), a C programmed system

command which is written to return the time accumulation from 1970 until now

as a double value may then be invoked as a Java method before and after the

repetitive bytecode sequence, the difference in these timings would be the time

that takes to execute the testing bytecode repetition. This method is very similar to

method 2 as it can be constructed in Java bytecodes and assembled by Jasmin into

class files. The advantage it has over method 2 is that it invokes an external

program (written in C), which returns timing in nanoseconds. This will increase

accuracy of the testing. [18]

With careful inspection of all three methods, it was reasonable as being supported by

another related technical resource that method 3 (using JNI) should be implemented.

Nevertheless, the related resources address the predictive measurement by using another

assembly language Oolong; this is a Java assembler, which uses Jasmin syntax. It has

been decided to execute Java bytecodes using the Java Assembler Interface Jasmin

during specification [1]. Moreover since both Oolong and Jasmin are based on the JVM

assembler (JASM), and tests showed they have only very slight syntax differences [2]. It

had been decided to utilize both interfaces, As mentioned earlier, Oolong is accompanied

by a disassembler interface called Gnoloo, which helped the process of implementing a

bytecode file at a source-code level. (Gnoloo provide a better disassemble function than

javap – class dumper for JDK).

The motivation of this choice meant it was possible to create a Java bytecode-level

program file to measure run time of individual bytecodes. The following is an breakdown

to show the transformation of an earlier implementation of the benchmark file structure

from the source code level (Java) to the bytecode level (Jasmin), note this only

demonstrates how the Jasmin description of the benchmark file structure came about by

 24

using assembler and disassembler of the Java Virtual Machine. The actual

implementation for benchmarking is explained further in the report.

Listing 3 pseudo-code to illustrate the layout of the benchmarking file at the java source-code level.

Since the structure implemented in Java, by compiling its constituent .java source files

into .class binary, then executing the Java disassembler Gnoloo on these binary files, the

above extract could then be executed at the bytecode level using Jasmin: (note: “;” is the

syntax to insert comment in Jasmin)

 25

Listing 4 pseudo-code to illustrate the layout of the benchmarking file at the java bytecode level.

Since JVM instruction set is a stacked based intermediary language that uses a local stack

for its Java method [1], its instructions would involve the manipulation of one or more

stack operation (push or pop). Hence this has allowed a Bytecode Prediction Template

to be developed for benchmarking the instruction set. Diagram 1 defines units or

components of the Bytecode Prediction Template.

 26

Diagram 1 The Bytecode Prediction Template

Since the instructions that were to be benchmarked would require either one or more

elements to be resided on the top of the stack, which is local to the Java method that has

been invoked in (e.g. astore_3) or values to be assigned to a local variable (e.g. aload_3)

before they could be invoked, therefore the bytecode prediction template has been

formally defined with the components shown above.

3.2 From Template model to implementation

As described earlier, the implementation of the template model could be written in

Jasmin (Java Assembler). With such decision in mind, it is important to detail the

meaning and the functionalities of each component prior discussing their physical

connection with the toolkit that were implemented.

3.3 Components’ detail

• Initialisation bytecode sequence: -

This component is defined to allow the implementation to initialise. These initialisations

happen in all Java programs when they are compiled and executed. Whereas the

conventional “source code to machine code” level will disguise such operation, when

exercising at bytecode level, so-called Java object initialisation has to be invoked.

 27

Below shows the bytecode implementation of this component.

Listing 5 Bytecode implementation of the initialisation bytecode sequence.

This component is static within the prediction template since all benchmarking processes

are executed within the object ExeTime and requires the JNI library libtime.so hence

almost certain that these bytecodes will be invoked. The only part of this component

might be dynamically implemented is object variable definition and method definition for

benchmarking bytecodes such as defining static variable for bytecode getstatic and

defining a static method for bytecode invokestatic.

 28

• Preparation Bytecode Sequence :-

This is one of the dynamic components of the prediction template. It is defined to act as

the initialisation for the measuring bytecode sequence. It should provide bytecode

sequence so that it recreates the states of the both local stack and local variables

syntactically correct prior the execution of the measuring bytecode sequence.

• Measuring Bytecode Sequence :-

This is also one of the dynamic components of the prediction template, this is where

measuring bytecodes will be situated. There are a number of procedures that will be

needed to be taken into account when building this component.

1. Allocation of local stack elements.

2. Defining local both local and global variables.

3. Modify bytecodes into executable sequences **

4. Handling redundancy on local stacks.

** Such modification is important for the success of any benchmarking sections. This is

because even the majority of bytecodes do not take any argument, many of them not only

requires preparation bytecode sequence, they also require a specification of an argument

for themselves. Here are some examples:

iload – to push an integer value onto the local stack, there is the need to specify local

variables that has the integer value, i.e. iload <varnum>.

getstatic – to get a value of static field, such bytecode requires the specification of a

static field and it has a syntax of getstatic <field-spec> <descriptor>.

For the duration of this project, this procedure of modification is carried out manually as

the implementation for an automated modification is beyond the remit of this project.

 29

• Evaluation Bytecode Sequence :-

This is the last component of the prediction template sequentially. It primary aim is to

calculate the timing the measuring bytecode sequence takes to be executed and project

the result according to the number of iteration to standard output to which it could then be

collected. For parts of this component is dynamically implemented. Its structure in

bytecode format is as follow:

Listing 6 The bytecode implementation of the evaluation bytecode sequence.

 30

Screen 1 shows a demonstration of an experiment for bytecode multianewarray which

requires two arguments and the result is being projected onto standard output.

Screen 1 benchmarking bytecode multianewarray

The timings of the execution are given in nanoseconds

3.4 Mechanics of the Bytecode Prediction Template

Below is a diagram representation of how a bytecode is benchmarked mechanically, in

this example bytecode aload_0 is used.

This bytecode pushes an object from variable 0 onto the stack so there is a need to

prepare the template before executing the benchmark.

 31

Listing 7 shows how a bytecode is benchmarked mechanically.

From the model to actual implementation it is vital to have the knowledge of the coding

and syntax of the template implementation to enable to have a better understanding of

how the Perl-written toolkits interact and hence perform their functionalities on the

template implementation. The following are descriptions of how the Jasmin

implementation of the template interacts with the toolkit written in Perl for processes

such as insertion etc.

 32

1. Preparation Bytecode Sequence – the comment “Preparing testing” has been

written in the Jasmin file as a marker to allow the toolkit to be able to identify the

exact location to insert preparation bytecode sequences. The use of <> is to ensure

the toolkit is able to parse the preparation code

 ;Preparing testing

 ;<preparation code 1…>

 ;<preparation code 2…>

;…

2. Native Method Sequence – the comment “Begin Timing” and “End Timing”

signifies the beginning of the section that is static to the toolkit. Certain

components of the Bytecode Prediction Template such as this one are consistent

throughout benchmarking bytecodes due to their functionalities. Another one of

these static component is Evaluation Bytecode Sequence.

;Begin Timing

 …Native method call

 ……

;End Timing

… Native Method call

… …

 33

3. Measuring Bytecode Sequence – the comment “Testing area” signifies the

beginning of measuring bytecode sequences. Similar to the preparation bytecode

sequence, the use of <> is to ensure the toolkit is able to parse the measuring

bytecode.

;Testing area

;<testing bytecode 1…>

;< testing bytecode 2… >

;…

4. Evaluation Bytecode Sequence – There are two areas of this component that

interact with the toolkit. Throughout the benchmarking process, either increasing

or decreasing the number of iteration is needed and hence the same number as the

iteration must be provided to:

a. Calculate the duration of a single measuring bytecode.

;find single bytecode timing

;<ldc2_w>

;<ddiv>

b. Be projected with the timings onto the standard output.

;<include number of repetition ldc ", ">

ldc ", 0 times, "

In these cases the bytecodes above offers the areas in the template for toolkit

interaction.

 34

3.5 Toolkit Development

To help in increasing the efficiency of the running of the testing process, the following

toolkit written in Perl [3] have been implemented:

� create_j.pl - to create the Jasmin file (.j) for a particular bytecode timing
sequence.

Usage: - ./create_j.pl <file|filename> <bytecode_name>

This script requires the following files:

bytecode_name.log - the template data file containing preparation bytecode sequence

and measuring bytecode sequence.

Screen 2 template data file for bytecode iload

Highlighted area from Screen 2 depicts the content of the template data file for bytecode

iload, notice the use of keyword such as prepare and test to identify where these

bytecode will be inserted into the prediction template file to be benchmarked.

ExeTime.j - the prediction template file containing the remaining components of the

bytecode prediction template. This file is named ExeTime.j by default as throughout

the benchmarking procedure, the bytecode prediction template is contained within the

ExeTime class. Apart from being amalgamated with data from the template data file, this

file is fixed as it contains coding that is required for all bytecode prediction.

 35

Below is an extract of the create_j.pl. This shows the mechanism of how the script reads

the data from the template data file.

Listing 8 shows the mechanism of how the script reads the data from the template data file.

Later on, the default prediction template file have incorporated onto the actual script to

save time for file access. Screen 3 depicts the process of inserting these bytecodes.

Screen 3 Inserting preparation bytecode sequence and measuring bytecode sequence.

Also as it was decided to test each instruction for 1,10,100,1000 and 9000 occurrences,

this was because the measurements of a single bytecode timing were in the range of

nanoseconds, and because of this a small fluctuation of CPU resource allocation due to

overheads (there would inevitably be background process running within the operating

system). These uncertainties would magnify relative to a single bytecode execution time,

therefore multiples of bytecode sequences were used and hence the set of timings

obtained from each individual bytecode could then be used to make comparison of

 36

accuracy and checks for optimisation and overhead induced by the virtual machine and

the architecture. To allow these testing to be carried effectively (as each set of bytecode

tests for a single bytecode would require the same template data file), the following two

scripts are written to once again increase the speed of testing.

� increment_j.pl – takes integer N at shell prompt and inserts the testing
bytecode N times in the measuring bytecode sequence and N times the
corresponding preparation bytecode sequence. This is also the file of which
bytecode measurement would be carried out.

Usage:- ./increment_j.pl <number_of _iteration>

Screen 4 shows the standard output of the Execution of script increment_j.pl

Screen 4 is an interface display of the script invocation for measuring a bytecode at 100

occurrences:

As described earlier on the use of <> to ensure the toolkit is able to parse both the

preparation and measuring code. Listing 9 and 10 provides a more detail description and

code extracts of how this script insert test bytecodes:

 37

Listing 9 description and code extracts of how the script increment_j.pl insert test bytecodes

 38

Listing 10 more description and code extracts of how the script increment_j.pl insert test bytecodes

 39

This script interacts with all the scripts that were written previously and Screen 5 depicts

the result this scripts generates onto standard output.

Screen 5 The standard output of the benchmarking of bytecode istore.

The screenshot clear illustrates that each bytecode is executed with interval iterations to

sample how efficient the Java Virtual Machine processes the bytecodes and the duration

of these individual bytecode against its repetition. Below is a technical description of how

such a script is implemented to accommodate the other scripts and hence defines the

toolkit.

� aver.pl - to further refine the testing procedure, any iterations of bytecode

was a fair test and that timings do not have o
sequences would be tested 10 times and this was decided in making sure it

verheads incurred by other
programs running elsewhere on the operating system. This script helps to
find an average of a particular bytecode sequences from the result.log
(ASCII file). 1

Usage:- ./aver.pl <measuring_bytecode>

 40

Listing 11 a technical description of how such aver.pl is implemented to accommodate the other
scripts and hence defines the toolkit.

 41

3.6 Formal Evaluation

As each bytecode would be tested for 1,10,100,1000 and 9000 iteration(s) sequence. The

timing of a single bytecode (ot) would be calculated as: (measured in nanoseconds)

As

oper

valu

of th

stack

byte

situa

remo

3.7

As w

benc

impo

inclu

Such

1 The
one bytecode time = (stop-time - start-time) / number of iteration

 ot = (sp - st) / N
mentioned on earlier documentation, some bytecodes such as an integer load

ation (iload), which manipulate the local stack by pushing an element or returning a

e onto it. However, these would create inconsistency with the stack state for the rest

e Java object and so to make sure no redundant value was left on the stack, the

 would be popped by invoking the bytecode pop on every occurrence of such

code in the measuring bytecode sequence and so the timing in general for this

tion would be calculated by taking away the timings of the extra bytecode used in

ving redundant value (et) : (also in nanoseconds) 1

ot = ((sp – st) / N) - et

Interpretation of the measured timings of bytecodes:

ell as part of the specification, it is important to confirm that the technique to

hmark the performance of bytecodes is within an acceptable accuracy. It is therefore

rtant to carry performance prediction on a small Java sequential program which

de performance critical section to be benchmarked on.

 prediction sessions of Java programs and hence matches the results against real-

42

 timing of these extra bytecodes would be obtained by the same method as the others

time analysis or previous results have been implemented during the course of the project.

A Bubblesort algorithm program is used for carrying out these prediction sections.

The main critical section of this algorithm is shown below.

Listing 12 The Java Bubblesort algorithm kernel

The bytecode constituents of these methods with their predictive timing are listed on the

appendix repository.

This is the sorting algorithm in the Bubblesort.java that contained two for loops and

number of iterations for these loops depended on a.length, which is the length of the

array that will be sorted in these methods.

 43

The program initially set the size of the unsorted list to be a.length. The 1st loop (outer)

takes (i = a.length-1) where i is the pointer for the outer loop, The inner loop of the

iteration takes (j = a.length-i-2) for every i’th iteration where "i" is the variable allocated

to the first for loop.

To cater the randomness of the array, since not every loop would invoke the swap

method, the probability of invoking swap method hence was decided to be 0.5.

e.g. For a unsorted list size of 100

� number of outer loop iteration = 99

� number of inner loop iteration = 4950

� number of times invoking swap method = 2475

Without the use of the evaluation engine in PACE, a more conventional method of

summing up the number bytecode values with the number of times they are being

invoked was implemented.

�

Us

This

Run

oute

base

this

evaluation.pl – takes an integer argument that will calculate the required
measurement. This script was implemented to accumulate all the bytecode
results in relation to each individual method of the sorting algorithm, which are
performance critical. This was carried out by scanning through bs.jPtran.xml,
which is an XML file used to characterise the BubbleSort.java under the
Evaluation Engine.

age: ./evaluation.pl <number_of_unsorted_item>
 script requires the following sequential programs and ASCII files:

.java – This is a sequential Java application that is designed to return the number of

r loop iteration, inner loop iteration and number of times invoking swap method

d on the size of the unsorted array. Screen 6 shows the standard output values from

application running with an array of 150 unsorted element

44

Screen 6 Execution of Run.java with an array of 150 unsorted element.

BubbleSort.java – This is the testing application and it is used in conjunction with

clock_gettime() to benchmarking the performance critical section of the sorting

algorithms. This is appropriate as the benchmarking is carried at source-code level and

the same C library function is used as to when benchmarking at bytecode level. Below is

a benchmarking section of BubbleSort.java.

 sort the uns

e sort and sw

This applicati

to

data.log – thi

th

double start = new ExeTime().displayTime();
sort.sort(); (critical section / sort & swap method are invoked)
double stop = new ExeTime().displayTime();
e time it takes

orted array using the Bubble Sort algorithm in nanoseconds.

ituent bytecodes of

ap algorithms. Screen 7 shows the content of data.log.

on takes the unsorted array size as its argument and returns th

s ASCII file contains the benchmark timing of the const

45

Screen 7 Content of data.log

Listing 11 and 12 are the technical description of the logic of evaluation.pl:

Listing 13 first step of the logic of evaluation.pl

 46

Listing 14 the remaining technical description of the logic of evaluation.pl

 47

The results of these calculations could be found in the appendix. During the course of this

investigation, an assumption has been made:

That the time difference of invoking same bytecodes that retrieve and assign values

onto different variables local to the method could be neglected.

e.g. iload_2 and iload_3 was assumed to have the same execution time.

Furthering from these bytecodes running, an interesting observation was made on the

timing measured with one bytecode iteration, some timings were negative and this was

because when certain bytecodes have been executed, a redundant value or a redundant

object reference might be left on top of the local stack and therefore pop was invoked

after each occurrence of these kinds of bytecodes to ensure the program operates without

the interference of the data manipulation from the testing bytecodes.

Since the timing of pop has been recorded and so there might be some discrepancies in

the measurement of bytecodes at different instance. It was thought that by just measuring

one bytecode iteration might lead to a bigger inaccuracy.

 48

3.8 Observation:

The timing came from the evaluation script did not exactly match the time measured from

the BubbleSort.java 's performance critical section. The reason although not obvious, it

was understood that JVM would carry out optimisation and since the structure of the

sorting algorithm meant that same bytecodes would have been invoked as many as the

number of iterations (in fact for 100 elements in an unsorted list, 4950 iterations of the

inner loop would be invoked). This meant that there is a need to investigate the

discrepancies due from optimisation or otherwise.

This could be one of the reason (and the same reason) as to why when individual

bytecode was timed, one iteration took more time that an average of multiple iterations

(e.g. 1000).

Below is a list of points that is needed to be considered:

� Bytecode latency from invoking native method (calling C library).

� Effects of Hot Spot compiler or Java Optimisation.

� Speed difference between invoking same bytecodes that retrieve and assign values

onto different variable.

 49

Chapter 4
Development

This chapter formally discusses the observation after the initial analysis
of the predicted execution time and measured execution time of the Java
Bubblesort Algorithm kernel. It details the modern Java Hot Spot™
optimisation and techniques used to overcome the inaccuracy caused by
this technology.

4.1 Initial thoughts and experiments:

These areas, which might have caused the inaccurate benchmark timings, were examined

and consequently their significances in the accuracy of the timings were decided:

4.2 Bytecode latency from invoking native method

Below is a diagrammatic representation of the Java Native Interface [18]

Figure 7 Digram depicts the mechanics of JNI

From the diagram that latency could be caused by the “C side” where the clock_gettime()

is executed. Below is the implementation of the Native Method, note the function of

clock_gettime() function:

 50

Listing 15 the implementation of the Java Native Method

It could be seen the implementation has been written in the simplest format. Through
further research it has been shown that the latency from native methods was insignificant
and hence it could be neglected.

4.3 The latency in variable assignment and retrieval

When interpreting the results, the following assumption has been made:

That the time difference of invoking same bytecodes that retrieve and assign values

onto different variables local to the method could be neglected.

This assumption might have led to the inaccuracy of benchmark timings. As formally

described, each method invocation has its own set of local variables. Local variables hold

the formal parameters for the method. Technically, it is thought by keeping more

frequently used values in lower-numbered local variables may improve performance. To

analyse this situation below is a diagram illustrates what might happen when a local

method retrieves a value from a local variable.

 51

Diagram 2 a diagramatic illustration of pushing a value from a local variable onto the local stack.

This is a standard operation to retrieve X from local variable 3 and push it onto the local
stack. This might look rather trivial but let’s illustrate a hypothetical situation:

Diagram 3 a diagramatic illustration of pushing a value from a high-numbered local variable onto
the local stack

Now even though the probability that a method is to manipulate the local variable 65535

is quite minimal, it is a good method to analyse the need to take the position of these

local variables into account. If these positions are being mapped onto a hardware

configuration then the time it takes to manipulate a lower-numbered variable should be

less than a high-numbered variable mainly due to the physical position of these variables

on the hardware registries. This is also a valid argument when viewing the Java Virtual

Machine as a virtual processor.

With the implementation of the characterisation XML file such that it has become

inefficient to have to first identify which the exact local variable numbers are to be

processed before carrying out bytecode benchmark. A good example is to compare such

manipulation with the invocation of a bytecode instruction that manipulates an array

structure, e.g. iaload. It would not be suitable to pinpoint the index of the array that this

bytecode would be used in the application that is to be benchmarked as the index of the

array is most likely to be dynamically allocated in the application depending the stages of

execution. And yet it is important to know the index it has been assigned with bearing in

mind the physical location of each element of the array. If the same analogy is applied

back to the manipulation of local variable then such inadequacy it can be immediately

 52

seen. Therefore to ensure future benchmarking is to be fair the following restriction has

been imposed:

When allocating variable numbers to variable manipulating bytecodes e.g. aload, it

should be carried out systematically and consumed the lowest-numbered variable

available first.

4.4 The effects of Hot Spot compiler and Java Optimisation.

Assumption:

� If optimisation was regular and predictable then theoretically by running single

bytecode n occurrences in a sequence, n-1 occurrences of them will be

optimised.

This meant that if:

Timing of one bytecode x (raw / as one occurrence): t
Timing of n occurrences of bytecode x: s
Timing of one bytecode x (optimised): OT = (s-t) / (n-1)

However, it was thought that due to the sophisticated implementation of the Java Virtual

Machine, there are progressive optimisation within the compilation and execution of Java

application, hence such assumption was not suitable for revised implementation.

 53

4.5 Hot Spot Motivation

In the past, most attempts to accelerate Java programming language performance have

focused on applying compilation techniques developed for traditional languages. Just-in-

time (JIT) [21] compiler is an example that is essentially a fast traditional compiler that

translates the Java technology bytecodes into native machine code on-the-fly. A JIT

compiler runs on the end-user's machine and actually executes the bytecodes, compiling

each method the first time it is executed. JIT compilations has included a selection of

optimisation toolkits and they provide the following functionalities:

1. Base JVM modifications - There are major changes introduced to improve the

overall performance of the JIT compiler: a change in the object layout and the

execution of the static initialiser. First the change in the object layout for both

ordinary objects and array objects. This change allows direct access to instance fields

simply by adding an extra offset to the object pointer, This is a great advantage in

terms of code generation efficiency, since the array bound exception checking has to

be done every time an array element is accessed. In terms of the execution of the

static initialiser, the resolution of a class has been separated from the execution of its

static initialiser, By separating the class resolution and the execution of its static

initialisation, the JIT compiler has more opportunity to generate faster code, using

run-time calls if necessary to run the static initialiser.

2. Selective Compilation – Since JIT compilation occupies a part of the application run

time; it is not necessarily beneficial to compile all the methods being invoked. For

example, when a method is executed only once and does not contain any loops, the

overall performance might be degraded if it is JIT-compiled. The cost of the JIT

compilation needs to be offset by the performance gain achieved by running the

native code in terms of both time and space. Therefore by adopting an appropriate

way of identifying and choosing “hot” methods that deserve JIT compilation, it is

expected to achieve high performance in running real applications as well as

benchmarking programs.

 54

Unfortunately, these kinds of compilations surface several subtle problems. [19]

1. Since the compiler runs on the execution machine in "user time," this means that

its compiling speed is severely constrained: if it is not very fast, then the user will

perceive a significant delay in the start-up of a program or part of a program. This

imposes a trade-off that makes it far more difficult to perform advanced

optimisations, which usually slows down compilation performance significantly.

2. With the problems imposed by Java Virtual Machine’s advanced functionalities

such as garbage collection that causes more memory allocation overhead than the

conventional C++, and the on-the-fly changes through the ability to perform

dynamic loading of classes which hinders the performance of many types of

global optimisation. These problems suggest that even if a JIT compiler had time

to perform full optimisation, such optimisations are less effective for the Java

programming language than for traditional languages like C and C++.

This results in the incapability of conforming to any traditional compiler techniques to

achieve advances in Java programming language performance. The Java HotSpot VM

architecture addresses the Java programming language performance issues by using

adaptive optimisation technology.

 55

4.6 Hot Spot Detection

Adaptive optimisation solves the problems of JIT compilation by taking advantage of an

interesting property of most programs. Virtually all programs spend the vast majority of

their time executing a small minority of their code; this is very much consistent with the

idea in the initial design to concentrate in only performance critical section of sequential

programs.

Therefore, instead of compiling sequential programs method-by-method, just in time,

which is the original intent of JIT compilation, the Java HotSpot VM runs the program

immediately using an interpreter and analyses the code as it runs to detect the critical "hot

spots" in the program. It then focuses the attention of a global native-code optimiser on

the hot spots. By avoiding compilation of infrequently executed code (most of the

program), the Java HotSpot compiler can devote much more attention to the

performance-critical parts of the program, without necessarily increasing the overall

compilation time. This hot-spot monitoring is continued dynamically as the program

runs, so that it literally adapts its performance on-the-fly to the needs of the user.

A subtle but important benefit of this approach is that by delaying compilation until after

the code has already been executed for a while ("a while" in machine time, not user time),

information can be gathered on the way the code is used, and then used to perform more

intelligent optimisation. Also, the memory footprint is decreased. In addition to collecting

information on hot spots in the program, other types of information are gathered, such as

data on caller-callee relationships for "virtual" method invocations.

Moreover, since the frequency of virtual method invocations in the Java programming

language is an important optimisation bottleneck. Once the Java HotSpot adaptive

optimiser has gathered information during execution about program hot spots, it not only

compiles them into native code, but also performs extensive method inlining on that

code. Inlining has become more important than before as inlining produces much larger

blocks of code for the optimiser to work on, significantly increasing the effectiveness of

 56

traditional compiler optimizations, and thus overcoming a major obstacle to increased

Java programming language performance.

There are also other features that may concern the prediction of JVM instructions and one

of the main features is Dynamic deoptimisation:

4.7 Dynamic de-optimisation

Although in lining is an important optimisation, it has traditionally been very difficult to

perform for dynamic object-oriented languages like the Java programming language.

Furthermore, while detecting hot spots and inlining the methods they invoke is difficult

enough, it is still not sufficient to provide full Java programming language semantics.

This is because programs written in the Java programming language cannot only change

the patterns of method invocation on-the-fly, but can also dynamically load new Java

code into a running program.

At the bytecode level, the interpreter in Sun's Java Development Kit reference

implementation does inline some simple methods, if the bytecode they contain fits into

the space for method invocation or converts the calls to empty constructor methods to

invokeignored_quick instruction. Such inlining is based on a form of global analysis.

Dynamic loading significantly complicates inlining because it changes the global

relationships in a program. A new Java class may contain new methods that need to be

inlined in the appropriate places. So the Java HotSpot VM must be able to dynamically

deoptimise (and then reoptimise if necessary) previously optimised hot spots, even during

the execution of the code for the hot spot. Without this capability, general inlining cannot

be safely performed on Java technology-based programs.

Hot Spot Detection and other known enhanced optimisations meant that the previous

notion in benchmarking implementation would not be accurate and it was vital to know

how Hot-Spot detection mechanically structured so that the revised implementation of

bytecode monitor can address prediction that is comparable to real-time execution.

 57

There are also other well-known optimisations such as Just-In-Time (JIT) Compilation,

which has been mentioned, that are necessary to be taken into account of. The current

version of JIT includes a repository of set of common bytecode sequences (CBS). This

notion has already been discussed and established in the Progress Report at the end of

WK 10 Term 1. Unfortunately the detail of this repository is not known and hence rather

than implementing CBS, another concept has been adopted instead

4.8 Developed Ideas

By detailing and locating areas that might constitute the inaccuracy of the benchmark

timing, the following developed idea has been laid down:

These observations suggested that more emphasis should be laid on JVM optimisation;

some manipulations of results from the predictive measurement were carried out and with

a better understanding of the optimisations from Java Just-In-Time and Hot-Spot

compiler, it has become apparent that a new notion of analysis can be initiated. The

motivation, similar to the idea of Method prediction on Java Programs, was instead of

analysing Java bytecode individually in repetitions, the execution time of blocks of

sequential bytecodes could be examined. These common sequences of bytecodes are

optimised as a unit.

Previously, it is because the optimisation of the JIT compiler is implemented by parsing

blocks of common bytecode, therefore by analysing blocks of bytecodes that the logic of

JIT optimisation can be extracted and processed, a database of common bytecode

sequences can be created. Furthermore, gaining knowledge of this logic can also assist

the analysis of the uncertainty within the execution time of bytecode that were obtained

from previous experiments. However, the current release of JIT compiler of which its

logic includes method inlining, base JVM modification and selective compilation is

beyond the time frame of this project. Moreover it is not possible to obtain an accurate

logical implementation of the JIT compiler due to business confidentiality and also the

 58

machines, of which prediction experiments are conducted on favour the use of HotSpot

Compilation technology over JIT.

Consequently, with the current available resource and time limit, HotSpot Compilation

and optimisation is taken into account for a revised design.

 59

4.9 From ideas to Implementation

To implement a new benchmark system with bytecode sequences rather than single

bytecodes, first there is a need to understand how HotSpot optimisation works at the

source code level. This can be done with illustrations of examples. [15]

The following benchmark typifies a simple benchmark that doesn't benefit from HotSpot

technology:

Listing 16 A section of Java code being benchmarked (high level)

As HotSpot compiler selectively converts Java bytecode dynamically into highly-

optimised machine instructions. The overhead for such a compiler is higher than for a

JIT. It performs analysis on each application in order to identify the most frequently used

areas. After the program’s "hot spots" have been identified, these sections of code are

compiled and optimised.

 60

The current implementation of HotSpot is designed for long-running applications. Most

applications spend the majority of their time executing a small section of their code.

These sections are known to be performance critical in the field of High performance

computing. This paradigm is referred to as the 80/20 rule where, as a generalization,

programs spend 80% of their time executing 20% of their code.

HotSpot initially runs the Java application in interpretive mode while it analyses the

application for "hot spots". This optimisation consists of compiling and in-lining critical

methods to achieve optimal performance. After the "hot spots" have been identified and

optimised, HotSpot will then switch from executing interpreted bytecodes to executing

the corresponding compiled code. This analysis-and-optimisation impacts performance.

Longer-running applications will benefit more from HotSpot optimisation because they

run longer and will be executing the compiled code longer. These programs can afford

the temporary performance impact associated with analysis and compilation.

The crucial part for an accurate benchmark, which is efficient it is essential to understand

how HotSpot converts from executing interpreted-bytecodes to compiled code.Whilst

HotSpot detects performance critical areas and converts them into compiled code, the

compiled version of the code is not invoked until the next time the method is called.

Thus, if the method is only called once, such as from main(), then optimisation will not

take place. This means that the program pays the price for analysis and optimisation that

will never be used.

Another issue that is needed to be accounted of is the performance loss that is caused by

benchmarking small amounts of code for only very few iterations. This is because the

benchmark would be finished before optimisation begins. Thus for short-term

applications, the cost of using HotSpot technology is actually more of a performance

detriment because it must analyze the application before compiling any code. However,

real-world applications tend to not to be small applications, especially High performance

application.

 61

These consideration leads to a slightly different implementation of the benchmark that

will take the advantage of HotSpot technology.

Listing 17 Revised implementation of Java code for performance benchmark

Note the HotSpot technology executes the interpreted version of the method several times

before running the optimised version.

From the run down description of how HotSpot optimisation could alter the performance

a small extract of Java sequential application and the methodology that caters this

technology, the same concept can also be applied to benchmarks at bytecode level. Below

shows describe how the previous design should be changed to adapt HotSpot

optimisation.

 62

Listing 18 A model that has been adapted to include Hot Spot™ technology and method level
optimisation

From above it became apparent immediately that the original structure, which

benchmarks bytecodes inside a method that is to be called only once, namely main()did

not allow optimisation to take place as the compiler would not be able to detect any

HotSpot even if there are multiple instances of the same bytecode being executed

consecutively under the same class.

To effectively account for the effect of optimisation it is essential for the measuring

bytecode sequence from the bytecode prediction template to be invoked within a

separate method that is to be called from the main method. This can be thought to be

similar to runTest() from the previous source code illustration. However whereas at

source code level the whole method invocation is benchmarked, at bytecode level this is

clearly not the case. Below is the revised model that had been decided when trying to

compromise an optimal solution with the bytecode prediction template.

 63

Listing 19 section 2 of the model that has been adapted to include Hot Spot™ technology and
method level optimisation

 64

Previous page illustrate the new bytecode prediction template, note the benchmark

timestamp occurs inside the invoked method bench() and the iteration takes place outside

the benchmark timestamp. The reason for the revised model to include these features is

that to allow a firm compatibility with the original prediction template, which

benchmarks multiple instances of the measuring bytecodes and extracts the timing for a

single measuring bytecode sequence. This revised model instead, only ever benchmarks

one instance of measuring bytecode sequence, and the evaluation sequence described will

compare the timings from each iterative instance and outputs the data onto standard

output accordingly.

 65

Chapter 5
Design and Implementation (2nd edition)

Java Hot Spot™ technology allowed Java applications to be
optimised on-the-fly and since Hot Spot detection is carried out
at method level, a new design and implementation is realised
and this chapter discusses the technique of this bytecode
monitor and illustrates its technical details

With the observation and insight gained from the initial implementations and results, it

has been decided to revise the atomic unit of performance within the characterisation

language, and such needs for Hot Spot compiler optimisations means that Java methods

are now characterised as a control flow of bytecode blocks, rather than individual

bytecodes. This is because it has been suggested that Hot Spot is likely to be a set of

sequential instructions rather than one bytecode operation, since this is the case it is not

necessary to benchmark individual bytecodes when optimisation only takes place with

bytecode blocks.

These bytecode blocks are then benchmarked, and it is their timings that are used when

obtaining predictions. However, these timings vary depending on whether they have been

optimised during execution, and so this is also taken into account during model

evaluation. This is explained in more detail below. [5]

5.1 Bytecode Block Definition (Sequential Bytecode Block)

Currently, bytecode blocks are defined as sequences of bytecodes that do not contain any

conditional branch instruction or method invocation opcodes. Below is an example of a

bytecode block in the BubbleSort.java. It should illustrate some distinct features of the

bytecode block definition (SBB).

 66

Listing 20 shows some distinct features of the SBB

**Conditional branch instruction and method invocation define the end of each SSB.

Although method invocation is not conditional, it cannot be included as a part of another

bytecode sequence. This is because in the revised version of the XML characterisation

file for PACE, each method and object class are being characterised seperately.

This means that bytecode blocks can be of varying sizes, from only one opcode to

theoretically the maximum limit of the size of a method permitted by the

JVMspecification1. A method that only contains a set computation without any loop or

conditional statements and does not invoke any other methods will be characterised as

one bytecode block.

A tool similar to ‘capp’ has been developed that parses Java class files and outputs an

XML-based performance characterisation of the appropriate bytecode. The tool uses a

method very similar in approach to that of a class file decompiler, extrapolating ‘for’,

‘while’, ‘if’, ‘switch’ etc. statements and characterising these as either ‘loop’ or

‘case’ elements within the transaction. The model of such tool although being part of the

characterization environment, its implementation is beyond the purpose of this report.

 67

Method invocation opcodes are then characterised as to evaluate other characterised

methods within the transaction. The bytecode that comprises the computation within and

surrounding these elements are collated as bytecode blocks.

Listing 1 and Figure 1 depicts the Java BubbleSort implementation and its revised

characterisation.

Listing 21 A Java Bubblesort Implementation.

Listing 2 is an implementation in Java of a bubblesort kernel. When compiled using the

Characterisation parser implemented as part of the evaluation engine of JPACE, the

bytecode produced is shown on the left of Figure 1, and on the right is the resulting

performance characterisation of the method after running the transaction characterisation

tool.

 68

Figure 8The definition of bytecode blocks from the Java bytecode of the compiled Bubblesort
algorithm.

Again, it should be noted that unconditional branch opcodes (‘goto’ for example) are

included in bytecode blocks. The bytecode executed after the branch is also included

within the same block until a conditional branch or method invocation opcode is found.

Therefore, the bytecode block ‘sort()V:1’ from Figure 1 is defined as the first three

opcodes of the method, as well as the opcodes starting from ‘iload_1’ (the opcode

jumped to by the ‘goto’ opcode, also part of bytecode block ‘sort()V:6’) until the

condition branch opcode at the end of the method (‘if_icmplt’).

 69

5.2 Benchmarking Bytecode Blocks

The kernel of the new evaluation engine from JPACE has been developed that parses an

XML-based performance model and calculates a predicted execution graph from the

model’s transactions and their relation to each other as described in the transaction map.

The predicted response time obtained from a model’s evaluation is the culmination of the

all the bytecode block timings multiplied to the number of times they were executed

during the course of the application’s execution.

5.3 Implementation of benchmark toolkit (revised edition)

The benchmarking toolkit has been revised and re-developed to automate the process of

benchmarking bytecode blocks on a given resource. A specific bytecode block is

executed once, then twice, and so forth up to a total of 5000 iterations.

5.4 A theoretical hypothesis

Although research has been carried out on Hot Spot optimisation and this new

implementation has been evolved to adapt to this technology, there is still considerable

lack of information to pinpoint the relationship between the timing of a single bytecode

or a sequential bytecode block and the number of iteration the benchmark measures at.

Originally, it has thought without the optimisation this relationship would be linear.

i.e. duration of n times of bytecode (sequence or unit) = n x duration of one unit

However, according to the previous benchmark implementation, there were

inconsistencies with the bytecode benchmark-timings against the number of iterations.

Each and every bytecode sequence or unit might associate with a function that

varies according to the number of iterations.

i.e. duration of n times of bytecode (sequence or unit) y = fy(n)

fy – parameterised function of the bytecode sequence or unit y.

 70

This implies that the time to execute a bytecode unit is not proportional to the number of

iteration it has been executed. Although this is based on assumption and historical data, it

is a valid hypothesis to have been made when HotSpot optimisation is taken into account.

With this hypothesis, the aim of this revised benchmarking technique is to determine a

pattern of Hot Spot optimisation to enable the benchmarking of bytecodes to be more

accurate and hence provide better prediction on the JPACE framework.

5.5 Components of benchmark toolkit

As it was previously mentioned that instead of timing individual bytecodes, units of

sequential bytecode blocks (SBB) were benchmarked. This led to a variation of both the

toolkit written in Perl script and the prediction template file itself.

Due to this new concept, procedural sequence to carry out this benchmark process has

been modified.

Several new scripts have been implemented for this new concept:

N.B. All scripts and directories are setup and run from

$DIR = /dcs/00/csvee/private/research/work/cbs/ - variable $DIR could be changed to

the necessary directory.

xml_analyser.pl - extracts bytecodes from the characterisation xml into set of
bytecode folders ready to be benchmarked.

./xml_analyser.pl <filename>

e.g. ./xml_analyser.pl fft
This command parses fft.xml at $DIR/fft to output bytecode folders into
fft/<bytecodeBlock>

 71

As shown in previous chapters how characterisation files are constructed, below are some

technical details of how to parse a revised version of the XML characterisation into an

appropriate format for benchmarking:

An extract of the revised version of BubbleSort characterisation file

Listing 22 shows an extract of the revised version of BubbleSort characterisation file

This is a typical SBB characterisation, it is important to note the characterisation of each

method and object class shown; and to parse such block requires a formulated regular

expression structures written in Perl script that captures each method characterisation

with a XML file systematically. Below is the structure in pseudo-code:

##Detect the start of a method characterisation
$xml[$count] =~ m/<jPACE:bytecodeBlock\sid="/

 ##To parse bytecodes (denoted by %%) from <jPACE:OPCODE_%%/> ##
$line =~ s/\/>|\s//g;
@bytecode = split(/<jPACE:OPCODE_/,$line);

72

Screen 8 shows an example of repository of SSB for a Java application

This script parses a complete characterisation file into the Java application or Java object

characterisation repository an example of which is shown in Screen 1. Within this

repository, each Sequential Bytecode Block is parsed into its corresponding SBB

template directories which consist of

1. SBB template file – this is the file similar to the Template data file defined at

previous implementation, but instead of detailing measuring bytecode sequence

and preparation bytecode sequence; it would now contain the unmodified SBB.

2. Prediction template file – this is the file ExeTime.j which is an object file that

combines with the SBB template file completes the revised prediction template

file. Below describes the technical detail of implementing this template file.

 73

Listing 23 a section of the map of the template file written in Java bytecode.

 74

Listing 24 a section of the map of the template file written in Java bytecode.

A copy of this file will be situated in each template directory. The next procedure is to

prepare the prediction template file. Whereas previously the template data file would

have contained all the relevant information and the script ./create_j.pl will implement the

prediction template file, the revised version requires a manual process and editing the

prediction template file to include the SBB and its corresponding preparation sequence.

Note it is beyond the time limit of this project to automate the process of carrying out the

editing of the prediction template file. Below shows an example of editing the prediction

template file. Although so far only BubbleSort.java has been mentioned, there are also

 75

other Java applications that have been characterised and benchmarked, one of this

application is a Java implementation of the NAS Excessively Parallel benchmark,

which generates pseudo-random numbers with a Gaussian probability distribution. This

benchmark is an integral part of the Kernel benchmark of the DHPC Java Grande

Benchmarks Suites (DHPC - Distributed and High-Performance Computing Group)

Listing 25 SBB from the Excessively Parallel benchmarks characterisation

Listing 26 An extract of prediction templates with ep()V:5 SBB implemented into.

After all the prediction template files are prepared for benchmarking, the next phase is to

gather results from these SBBs. A script has been implemented to automate this process.

 76

ate the whole process.

cbs_iteration.pl – executes the prediction template files given a copy of the
template file being situated in the same directory.

./cbs_iteration.pl <result_file>**

**A log file named <result_file> will be created with the benchmarked timing of the SBB in the
prediction template file.

e.g. ./cbs_iteration.pl result.log

Since the first benchmark test is carried out on the Java Bubblesort algorithm

implementation and the implementation only contains 7 SBB within the characterisation,

therefore the script does not autom

This script works on each SBB for the following numbers of iterations

From 0 – 100 at intervals of 5 iterations i.e. 5,10,15,20,...,95,100

From 100 – 5000 at intervals of 10 iterations i.e. 110,120,130,...,4980,4990,5000

From 5000 onwards at intervals of 100 iterations i.e. 5100,5200,5300, ...

5

.6 Preliminary Results and Understanding

Results of these benchmarked timings are gathered. Each log file, which contains the

shortest running times of a sequential bytecode block collected from the some iterations

ordered in ascending numerical order, is tabulated into graphical representation.

Figure 4 shows the results of such benchmarking technique on one of the sequential

bytecode block from the Bubblesort method as defined by the automated transaction

characterisation tool (graphical results of all seven blocks of SBB are attached to the

appendix). It can be seen from the graph that there is a clear point (at roughly 1000

iterations) where the execution time of the bytecode block is significantly smaller than

previously recorded, due to the fact that the hotspot compiler has chosen to optimise the

block at this time. This value is used by the evaluation engine during a prediction in

 77

choosing the appropriate response time for each bytecode block; if the bytecode block

has been executed less than 1000 times so far during the course of the application then

the higher average response time is used, otherwise it is the lower average response time.

Graph 1 The response time of bytecode block BubbleSort/sort()V:1 from 1-5000 iterations as the
result of the benchmarking tool. It can be seen that at roughly 1000 iterations the block is optimised
by the Hotspot compiler.

Up to this stage in development, by using the characterisation of the bubblesort algorithm

shown earlier, and benchmarking the bytecode blocks on a given resource, the predicted

and real execution time of the Bubblesort algorithm for varying data set sizes were

obtained. Table 1 outlines these results. A percentage error of less than 30% is considered

encouraging and a better understanding will help to ensure the elimination of this

percentage error.

 78

Table 1 A comparison between the predicted execution time obtained from the evaluation engine and
the actual measured execution time of the bubblesort algorithm for varying data sets

Throughout initial analysis of the result, there are also other interesting observations. One

of them is the fluctuation of the results. These fluctuations may have been caused by

background CPU overhead as the machines, which the benchmarks operate have included

with other processes such as memory management and internal scheduling. In reality the

application that has been benchmarked is usually run simultaneously with other processes

within a high performance computational environment. Nevertheless these fluctuations

although happen at a visually significant range, they conform to a consistent shape and

this means that there are mathematical tools that can effectively reduce these fluctuations

and since they are consistent it will not be detrimental to the accuracy of the results as

earlier mentioned that the aim of this benchmarking session is to determine the patterns

of optimisation and not the values. Since fluctuations are consistent and with the pattern

of the graph. They suggest that there is an optimal value before optimisation begins and

after optimisation begins.

i.e. no. of iteration n <= 1000 then the running time of a bytecode unit is x

 no. of iteration n > 1000 then the running time of a bytecode unit is y

Where there is always x and y, which are the running time of a sequential bytecode block

without and with Hot Spot optimisation respectively, associated with a particular SBB.

Therefore to refine the process of benchmarking, the next step is to identify these

optimised and un-optimised running time. To compensate the fluctuation a statistical

technique has been used. Since it is the average of the optimised and un-optimised values

that are needed for performance prediction, the following technique is used:

 79

To minimise this fluctuation error, it has been to decided to exclude the xth iteration

of which the running time is greater than 1 x standard deviation of the average

running time for one iteration.

e.g. for 1000 iteration, the running time of a single SBB (T) is:

 file that could lead to consistent inaccuracy, below is a diagram to

lustrate this problem:

Suppose: T= T1+ T2 + ... + T1000 / 1000 then…

Toptimised = T1 + T2 + ... + Tx/ x

where T1 , T2 , ..., Tx < T+ STDV(T)

Also according the structure of the bytecode prediction template, there are other parts of

the benchmark

il

Figure 9 The inaccuracy of benchmarking caused by the overlapping of the template components

 80

Therefore to ensure the timings that are obtained are solely the running time of these

sequential bytecode blocks, each the average running time for one iteration of SBB is

bstracted by the average running time for one iteration of no bytecode. By doing this su

each average timing is exactly the SBB running time.

5.7 High Performance Application (Benchmarks)

Also as mentioned earlier, the Java Bubblesort implementation is used as it is much more

simplistic than other real-time high performance application and it is good as an

dicator. Hence the following highly computational applications have also been

con

� NAS Excessively Parallel benchmark (EP)

oth are part of the kernel section of the Distributed and High Performance Computing

to optimise the block.

he results of each benchmark are stored in an XML-based resource object that is

rent

rchitectures. (depending on availability within the department, different machines which

used to carry the benchmarking process)

in

sidered [20]:

� 2-D Fast Fourier Transform (FFT)

B

Group (DHPC) Java Grande Benchmarks Suites

To formally define, the aim of the next phase of benchmarking is to obtain a measure of

the average unoptimised response time of the block, the average optimised response time,

and the number of iterations at which the hotspot compiler decides

T

accessed by the evaluation engine during performance prediction.

Since these are realistic applications and their characterisations contain a lot more SBBs

and they are more complex to be benchmarked. Therefore another set of toolkit has been

developed to carry out all the procedure mentioned so far and the benchmark of all SBBs

within an object characterisation will be carried out automatically. Furthermore, the

toolkit will create five separate resources (five sessions) for all SBBs of both high

performance application. These benchmarks have been carried out across diffe

a

have the same hardware configuration are

 81

Hostname: budweiser.dcs.warwick.ac.uk

60MHz

perating System: SunOS 5.8

 VM (build 1.4.1) / (build 1.4.0)

ck.ac.uk

.40GHz

perating System: Linux kernel 2.4

 (build 1.4.1)

rwick.ac.uk

01.393 MHz

perating System: Linux kernel 2.4

s for JVM 1.4.0

ptimisation does not realise until 1500th iteration. Therefore the toolkit that carries out

 issue.

Processor: UltraSPARC®-IIi 3

Memory Size: 131072 KB

O

JVM Version: Java HotSpot™ Client

Hostname: mscs.dcs.warwi

Processor: Intel® Pentium® 4 CPU 2

Memory Size: 531404 KB

O

JVM Version: Java HotSpot™ Client VM

Hostname: labvista.dcs.wa

Processor: Intel® Pentium® 3 i686 8

Memory Size: 125244 KB

O

JVM Version: Java HotSpot™ Client VM (build 1.4.1)

Preliminary result shows that due to different machines configurations and JVM

versions, Hot Spot optimisation takes place at different iteration. With a more updated

version JVM 1.4.1 the optimisation realises at 1000th iteration wherea

o

the renew-methodology of benchmarking SBB also caters for this

5.8 Further refining the evaluation bytecode sequence

There are also re-development of the prediction template file to cater reduce the duration

of benchmarking since such as FFT application contains over 70 sequential bytecode

lock within its characterisation. This means that trying to utilise the original method of

benchmarking will be slow and inefficient.

b

 82

To compensate for a more efficient benchmark, instead of comparing the benchmark time

for every iteration within the method bench(), the benchmark time of every iteration

will be outputted to standard output.

Below illustrates how the 3rd edition of the Benchmarking toolkit will use this further

refined prediction template to benchmark high performance applications.

batch.pl - executes the prediction template files in the bytecodes folder in a pre-
defined manner to obtain benchmark timings.

./batch.pl <VM_version> <directory> <output_file>***

***A directory <directory>/dum is to be created for the script’s temporary use.

e.g. ./batch.pl 1.4.1 fft fft/result/result.log

This command executes the prediction template file in JVM 1.4.1, benchmark
jasmin files in the folder fft/<bytecodeBlock> and output the timings to
fft/result/result.log

Depending on what the <VM_version> is the following will show the most efficient

strategy with the refined template file together with the toolkit implementation

Note: these are logic models that define the mechanics of the toolkits rather than the

actual implementation

 83

If it is JVM 1.4.1 then since optimisation realises at 1000th iteration the script will…

1. Executes template file (ExeTime.j) for iteration 1, … ,1000 ten times

result_1000.log will contains 10000 un-optimised timing for that particular SBB

Note an argument 1000 means collect benchmark times for iteration 1 to 1000

for($i=0; $i<10; $i++) {

 system(“java ExeTime 1000 >> result_1000.log”);

}

2. Executes template file for iteration 1,…,6000 twice

result_6000.log will contains 10000 optimised timing for that particular SBB

Note an argument 6000 means collect benchmark times for iteration 1 to 6000

for($i=0; $i<2; $i++) {

 system(“java ExeTime 6000 >> result_6000.log”);

}

The toolkit only extracts timings from 1001…6000 iterations and since the

benchmark is executed twice it also extracts from 7001 to 12000 since the second set

of results is appended onto the same file. This is done by the following conditional

statements.

if (($count > 1000) && ($count < 6001)) || ($count > 7000) {

 collect…

}

This means in terms of benchmarking for optimisation and for non-optimisation,

the averages are taken out of 10000 results.

 84

A similar procedure is applied when benchmarking on JVM 1.4.0

For 1.4.0, the toolkit will still be collecting results for iteration 1,…, 6000. This occasion

the script will run the template file for iteration 1,…, 1500 nine times. This means there

will be 9000 un-optimised timings and by running the template file for iteration 1,…,

6000 and extracts only the timings for iteration 1501,…,6000 and for iteration

7500,…,1200 (two sets of results are appended onto the same ASCII file.) there will be

9000 optimised timings.

Next is to calculate the standard deviation of the data set (results)

Below is a Perl subroutine of the standard deviation implementation that the toolkit

utilises:

Listing 27 a Perl subroutine for standard deviation

 85

5.9 Negative valuation

When calculating the running time of each SBBs by taking away the running time of no-

bytecode template file, there are instances, which result in computing negative values.

Although it seems to be illogical theoretically, in practice since the resource of its

computational environment is ever changing such as CPU cycle availabilities and

memory caching mechanism being occupied by system processes running at background,

fluctuations as seen previously occurs, therefore the standard deviation procedure is also

used partially to eliminate this problem. Moreover, there are other measures taken to

avoid negative valuation. These measures are the following:

� Only attempt to eliminate negative values if the sequential bytecode blocks consist of

more than 4 bytecodes, this is because as the running time of a bytecode is

comparatively short and although the time stamps were registered in nanoseconds, the

resolution of the system clock is not small enough for the time stamp to be registered

for accurate readings of the running time of less than four-bytecode units. Therefore

by avoiding negative valuation will not have significant effect on the final result and

moreover it will lead to inefficiency.

� If sequential bytecode blocks consist more than 4 bytecodes and negative valuation is

realised, then attempt no more than 10 times in trying to obtain positive valuation as

10 attempts is the limit that has been decided to prevent detrimental effect on the

performance of the benchmarking process.

Having discussed the technique and logical model for obtaining the optimised and un-

optimised timings of each SBB, Screen 3 shows the content of one of the output file from

the toolkit. Note the two distinct columns of un-optimised and optimised timing

respectively, also the negative valuation at places of which SBBs consist less than 4

bytecodes

 86

Screen 10 Default format of the <output_file>

 87

Chapter 6
Result Evaluation

This chapter illustrates the experiment with the Java Grande
Benchmark Suites and evaluates the comparison and scalability between
the predicted execution times of those benchmarks using
characterisation SBBs and their measured execution times.

The objective to implement these toolkits is to establish a framework for an efficient and

accurate bytecode monitors. To ensure this framework meets its specification, below is a

short description of a script that has been developed to parse SBB timings into a

formatted repository so that it can be evaluated against evaluation engine’s application

prediction at real time.

Figure 1 is shows an example of the directory structure of the repository that will situate

data to be collected and compared by JPACE’s evaluation engine.

 88

Figure 11 The directory structure of the result repository which resources timing are to be stored

before being parsed by the evaluation engine.

The resource timings are then parsed into another XML characterisation file used by the

evaluation engine. Figure 2 shows an extract of the XML file of which resource timings

are parsed into.

 89

Figure 12 an extract of the XML characterisation file of which resource timings are parsed into.

Below are some results gathered by comparing between the predicted execution time

obtained from the evaluation engine and the actual measured execution time of the FFT

(Fast Fourier Transform) and EP (Excessively Parallel) benchmarks for varying data sets.

6.1 Fast Fourier Transform Benchmarks

Fast Fourier Transform – this benchmark performs a forward transform of a three-

dimensional dataset. This kernel exercises complex arithmetic, shuffling, non-constant

memory references and trigonometric functions. This is a CPU intensive benchmark

working at the kernel level. It is commonly used in scientific computations which is a

targeted area to utilise the Grid environment.

Each graph below corresponds to the table with the same number e.g. graph 1

corresponds to table 1.

 90

Table 2 shows the percentage error % of the predicted time against the actual running time on
budweiser.dcs.warwick.ac.uk

Graph 2 Predicted execution time and measured execution time comparison of the Fast Fourier

Transform benchmark on machine budweiser.dcs.warwick.ac.uk

 91

The sizes of the datasets are chosen to be powers of two as and this illustrates an

exponential growth with the execution time, both predicted and measured. Although the

sequential bytecode blocks are benchmarked to the nearest of nanoseconds, the execution

time of the application that is characterised is more than one second and hence results are

shown in seconds. The percentage in Table 1 shows all but one error is larger than 30%

and this is encouraging especially when the datasets quite vary in size. In general if the

average percentage errors from all the datasets are less than 30% then it can be classified

as accurate since these predicted timings are used in conjunction with historic data within

the performance characterisation environment of PACE. These historic data will certainly

refine the accuracy. Moreover percentage errors that are more than 30% comes from the

timings of datasets that are relatively small and when uncertainties in a dynamic

computation environment arises that are independent to the size of the dataset then this

uncertainty or error will be seen as significant. Fortunately the prediction technique that

has been developed targets distributed applications in Grid environment and this suggests

that the duration of these applications will allow this level of uncertainty that will be seen

as insignificant. Table 2, which shows the percentage errors of the predicted time against

the actual running time on labvista.dcs.warwick.ac.uk, again demonstrates the decrease of

percentage error as the size of datasets increases and shows the insignificance of the

uncertainty as the execution time increases.

 92

Table 3 shows the percentage error % of the predicted time against the actual running time on
labvista.dcs.warwick.ac.uk

Graph 3 Predicted execution time and measured execution time comparison of the Fast Fourier
Transform benchmark on machine labvista.dcs.warwick.ac.uk

 93

In graph 2, which corresponds to the values in table 2, again suggests the proportionality

of the predicted execution time against the measured execution time and the general

decrease in the percentage error as the execution time increases.

Table 4 shows the percentage error % of the predicted time against the actual running time on
mscs.dcs.warwick.ac.uk

 94

Graph 4 Predicted execution time and measured execution time comparison of the Fast Fourier
Transform benchmark on machine mscs.dcs.warwick.ac.uk

Table 3 shows the percentage error % of the predicted time against the actual running

time on mscs.dcs.warwick.ac.uk. In this table there is a percentage error, which is over

100% with a small dataset, at first this might seem to be as a sign of significant

uncertainty. However this situation occurs when the predicted time is over 100% larger

than the measured execution time and experiments show that a significant difference

between the predicted time and the measured time only occurs when the execution time is

small. As the machine hosted at mscs.dcs.warwick.ac.uk provides a much efficient

computational environment in terms of processor’s power and memory availability, in

general the execution time of the FFT benchmark on this environment is smaller relative

to the other machines hosted at labvista.dcs.warwick.ac.uk and

budweiser.dcs.warwick.ac.uk, the percentage will generally be relatively larger but in

terms of scalability, the prediction technique and its timing provided a good estimate

across these hardware architecture and computational environments, as shown by the

similarity in the curvature of the scalability graphs in graph 1, 2 and 3.

 95

Clearly the pattern shown the benchmarked timings of the sequential bytecode blocks are

accurate enough to allow the percentage error to drop well below 30%. A similar pattern

can be observed for the comparison of the Excessively Parallel benchmarks shown in

below.

6.2 Excessively Parallel Benchmarks

NAS Excessively Parallel benchmarks – This is one of the Java versions of the NAS

(NASA Advanced Supercomputing Division) benchmarks, implemented by the DHPC

(Distributed and High Performance Computing) Group. Its core function is to generate a

pseudo-random numbers with a Gaussian probability distribution. The datasets are

chosen and illustrated as powers of two for the convenience in terms of the binary

operation within a computational environment. Graphs and tables are organised in a

similar fashion to the FFT benchmarks experiments’ results.

Table 5 shows the percentage error % of the predicted time against the actual running time on
budweiser.dcs.warwick.ac.uk (Excessively Parallel)

 96

Graph 5 Predicted execution time and measured execution time comparison of the Fast Fourier
Transform benchmark on machine budweiser.dcs.warwick.ac.uk (Excessively Parallel)

Table 6 shows the percentage error % of the predicted time against the actual running time on
labvista.dcs.warwick.ac.uk (Excessively Parallel)

 97

Graph 6 Predicted execution time and measured execution time comparison of the Fast Fourier
Transform benchmark on machine labvista.dcs.warwick.ac.uk (Excessively Parallel)

Table 7 shows the percentage error % of the predicted time against the actual running time on
mscs.dcs.warwick.ac.uk (Excessively Parallel)

 98

Graph 7 Predicted execution time and measured execution time comparison of the Fast Fourier
Transform benchmark on machine mscs.dcs.warwick.ac.uk (Excessively Parallel)

The Excessively Parallel benchmark illustrates a different relationship to the Fast Fourier

Transform benchmarks. This is mainly the case with the variation of the percentage errors

even across different computational environments. By observing the graphical

representation of the results (graph 4, 5, 6) it could be seen the relationship between the

measured execution time and the predicted execution time collected at machine

budweiser.dcs.warwick.ac.uk is more inconsistent in comparison with timings collected

at machine labvista.dcs.warwick.ac.uk and mscs.dcs.warwick.ac.uk. This difference is

clearly due to hardware configuration as the former machine has a different processing

unit and has been installed with a different operating system to the latter two machines.

Also since labvista.dcs.warwick.ac.uk and mscs.dcs.warwick.ac.uk offer a more efficient

computational environment, to carry out experiments on small datasets would have given

unrepresentative results and hence notably only larger datasets are examined with these

two machines. Focusing on the latter two machines the percentage errors shown on table

5 and 6 are relatively small and consistent and this suggests a proportionality relationship

 99

in between the uncertainty and the length of the execution time. In the experiments on

labvista.dcs.warwick.ac.uk, a general percentage error of around 2 to 5% shown on table

5 also suggests the methodology that has incorporated the optimisation by Hot Spot

technology is acceptable.

6.3 Other Benchmarks

To ensure the observations made are fair and accurate, other benchmarks within the Java

Grande Benchmarks Suites have also been taken into consideration. These benchmarks

operate across a collection of machines and this collection can be referred as cluster,

which has also been the forefront topology for high performance computing and there

experiments could suggest vital information for high performance Grid systems. These

benchmarks are briefly described below:

� Sparse Matrix Multiplication (SMM) - This uses an unstructured sparse matrix

stored in compressed-row format with a prescribed sparsity structure. This kernel

exercises indirection addressing and non-regular memory references. A N x N

sparse matrix is used for 200 iterations.

� IDEA encryption algorithm benchmarks (Crypt) - Crypt performs IDEA

(International Data Encryption Algorithm) encryption and decryption on an array

of N bytes. Performance units are bytes per second. Bit/byte operation intensive.

[22]

 100

Chapter 7
Conclusion

This chapter summarises the objective, specification and methodologies
imposed in this project and evaluates the success, limitation and the
future direction of this work.

7.1 Summary

With the emergence of grid computing, being able to intelligently allocate resource on a

grid system to high performance computational application has been the key issue in high

performance computing. To make resource allocations and high-level scheduling

possible, management systems must be able to obtain characterisation information of

these applications and this information must be supplied efficiently and with fair

accuracy. One domain of the characterisation is the predicted application’s execution

time and as Java has become a popular programming medium.

This report has illustrated and discussed techniques of supplying predicted execution time

by monitoring of Java bytecodes and also has documented the developmental stages of

implementing this technique.

To conclude this report, the following is a summary of the developmental stages.

 Through these developmental stages the following two methodologies were considered:

� Timing analysis of Java bytecodes

� Method prediction on Java Programs

The following is an overview of the methodology used for the Timing analysis of Java

bytecodes:

1. Extracts individual bytecodes from programs

 101

2. Collect the running time of repetitions of an individual bytecode, hence finding

the average running time of a single bytecode.

3. Accumulate averages of all bytecodes to calculate the average predictive running

time of the program

To efficiently implement this system, a systematic component-based framework has been

developed, namely the Bytecode Prediction Template. It primarily consists of the

following components:

� Initialisation bytecode sequence

� Preparation bytecode sequence

� Native method sequence (start time)

� Measuring bytecode sequence

� Native method sequence (end time)

� Evaluation bytecode sequence

Such a component-based template allows the benchmark process to be clearly described

and it also means that further refinement is a lot more convenient. To utilise this template

efficiently a collection of toolkits written in Perl has been developed. These toolkits has

been explained in detail at the first design and implementation chapter. A Java

Bubblesort algorithm kernel has been used to experiment the accuracy of this

methodology.

The preliminary results show that…

The timing predicted by the first design and implementation did not exactly match

the time measured from the BubbleSort.java 's performance critical section.

Observation suggested:

� Bytecode latency from invoking native method (calling C library).

 102

� Speed difference between invoking same bytecodes that retrieve and assign values

onto different variable.

� Effects of Just-in-Time compilation and Java Hot-Spot Optimisation.

Through the further development and understanding of Java optimisation a new

methodology has developed which also utilises the Bytecode Prediction Template.

This new methodology employs a new bytecode unit called Sequential Bytecode Block

(SBB) which can be defined as:

� Sequences of bytecodes that do not contain any conditional branch instruction or

method invocation bytecodes.

� The size of each blocks is limited the size of a method permitted by the JVM

specification.

Another collection of toolkits which is explained in the report have been developed to

incorporate the functionalities of the Bytecode Prediction Template and SBB.

By monitoring the Bubblesort kernel characterisation SBBs, new observations were made

and they were

� Depending on JVM and the resource the environment has, optimisation takes

place at a specific iteration…

� Although individual benchmark session should be within a static resource, in

reality resources such as CPU, memory changes at real time dynamically…

� Due to the ever-changing resource environment, fluctuations occur.

These observations have suggested the following modified hypothesis and formulation to

cater these fluctuation and uncertainty:

 103

To minimise this fluctuation error, it has been to decided to exclude the xth iteration

of which the running time is greater than 1x standard deviation of the average

running time of one iteration.

To ensure this hypothesis is accurate and fair, several benchmarks from the Java Grande

Benchmark Suite were experimented and notably the following two benchmarks have

been studied in detail:

� NAS Excessively Parallel benchmark (EP)

� 3-D Fast Fourier Transform (FFT)

Results by incorporating the new hypothesis are encouraging, although the relationship

between the predicted and measured execution time varied across different computational

environments (three different hardware-configured machines were used in this

experiment), when the timings were tabulated onto some scalability graphs, the general

curvature of the results suggests uncertainties due to fluctuation and hardware overhead

were minimised and that the general percentage error between the predicted and the

measured execution times is a lot lower than 30% and in some cases this error has been

minimised to less than 1%. These results confirm with sufficient confidence that a

suitable bytecode monitoring technique has been devised for distributed Java

applications within dynamic heterogeneous environments for the current release of

Java Virtual Machine and Java Hot Spot optimisation technology.

 104

7.2 Limitation and Future Improvement

The following points detail the limitation of the Java bytecode monitor specified and

described in this report. It should be noted that these points were not attended throughout

the duration of project period due to the limit of time availability, technical knowledge

and resources availability.

� Effects of Just-In-Time compilation – the main issue of characterising Java

methods into sequential bytecode blocks is that it takes bytecode block out of the role

of Just-In-Time (JIT) compilation, as the granularity of this technology is at least at

the method level. This means inaccuracy might occur if JIT was utilised during the

execution of any high performance Java application. This technology also encourages

method in-lining (this is also the case with Hot Spot compilation), this leads the

individual methods being effectively “merged” together and the course of this process

may result in some SBB being removed and the characterisation model in this case

will not bear the true characterisation.

� Automate the modification of prediction template for all Java bytecodes – due to

the time availability the implementation to automate the insertion measuring bytecode

sequence into the template file was not possible. This means that even though the

theoretical base of this monitor is correct, in practice to enable the toolkit to work on

real life high performance applications such as ones used in an e-business or an e-

science environment will still not be ideal as these applications are relatively much

larger and their characterisations will contain a lot more sequential bytecode blocks

than the benchmarks of which this project’s bytecode monitor is tested on. To

manually implementing each SBB onto the template files is not an efficient procedure

for carrying bytecode prediction in a PACE environment, as predictive data should be

available as quickly as possible.

� Continuous development in Java Optimisation – although the implemented

bytecode monitor caters the Hot Spot technology, it is static in terms of other

 105

optimisation such as with Just-In-Time compilation and this is due to the fact that

these optimisation techniques and environments change very regularly. Such as the

condition of Hot Spot detection and the heuristic for in lining are all subject to change

and re-evaluation. For this characterisation needs to be a lot more dynamic and

generically defined as with constant updating with virtual machines version means

dramatic change in the mechanics of their optimisation and this can severely affect

the accuracy of predicting application running time via bytecode monitors. Moreover

these changes might focus a lot at a higher level granularity, mainly method level

7.3 Future Direction

As the results of these limitations, further research is highly recommended and areas of

further work include:

� Semantic definition - The theory of meta-programming suggests a more dynamic

approach is needed at the middleware level. A more semantically as well as

syntactically defined intermediary /definition language can be evolved at this

middleware level for high performance applications, especially in the

performance-prediction domain. The motivation behind this idea came about from

the area of Workflow management and its language for Workflow process

definition. By evolving a middleware language focusing on a performance

prediction domain, we can organise prediction entities in a more precise and

meaningful way at a conceptual level, eg. the notions of subtasks and transactions

can be defined as semantic entities but as the same time being able to be utilised

at conceptual levels for more investigative work. Furthermore the introduction of

a semantic implementation of such a language meant that future prediction work

could be included with other metrics that relate to quality of services or workflow

management, for example. This will not only allow a much more convenient way

of designing and developing performance toolkit, but will also reinforce the ethos

of GRID computing.

 106

� Automation and accuracy - By refining the method of ARM (Application

Response Measurement), the notion of a transaction mapping can be made more

dynamic, and have the functionality of not just benchmarking sequential code but

also of benchmarking multiples of applications based on other important metrics

such as quality of service and workflow algorithms. Furthermore, if accuracy and

automation can be enforced, then there is potentially a chance to look at the speed

and transparency of prediction.

 107

Reference

[1] J, Meyer and Troy Downing, Java Virtual Machine, 1997

[2] J. Engel, Programming for Java™ Virtual Machine, 1999

[3] M. Schilli, Perl Power – A JumpStart Guide to Programming with Perl5, 1999

[4] C. Herder and J. J. Dujmovic, Frequency Analysis and Timing of Java Bytecodes,

pages 20-27

[5] J.D. Turner, P.Y. Wong, S.A. Jarvis, A Brief Overview of the Performance

Characterisation and Prediction of Java Applications

[6] S.A. Jarvis, D.P. Spooner, H.N. Lim Choi Keung, G.R. Nudd, Performance

Prediction and its use in Parallel and Distributed Computing Systems

[7] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C. Perry, J. S. Harper, and D.

V. Wilcox, PACE – A Toolset for the Performance Prediction of Parallel and

Distributed Systems.

[8] J. D. Turner, D. P. Spooner, J. Cao, S. A. Jarvis, D. N. Dillenberger and G. R.

Nudd, A Transaction Definition Language for Java Application Response

Measurement, pages 5-6

[9] E. Papaefstathiou, D.J. Kerbyson, G.R. Nudd, T.J. Atherton, An Overview of the

CHIP3S Performance Prediction Toolset for Parallel Systems, 8th ISCA Int. Conf

on Parallel and Distributed Computing Systems, Florida USA. 527–533 (1995).

 108

[10] W. McColl, Foundations of time-critical computing. 15th IFIP World Computer

Congress, Vienna and Budapest, 1998.

[11] I. Foster and C. Kesselman, The GRID: Blueprint for a New Computing

Infrastructure. Morgan-Kaufmann, 1998.

[12] W. Leinberger and V. Kumar, Information power grid : The new frontier in

parallel computing? IEEE Concurrency, 7(4), 1999.

[13] P. Dinda, Online prediction of the running time of tasks. Cluster Computing,

5(3):225–236, 2002. Computing Systems (IPDCS98), pages 104–111,

[14] High Performance Systems Group, University of Warwick

http://www.dcs.warwick.ac.uk/~hpsg/

[15] T.Spencer, Benchmarking on HotSpot™, Hewlett Packard Corporation

http://h21007.www2.hp.com/dspp/tech/tech_TechDocumentDetailPage_IDX/1,17

01,2022,00.html

[16] J. Hardwick. Java Micro benchmarks

http://www.cs.cmu.edu/~jch/java/benchmarks.html

[17] Java™ 2 Platform, Standard Edition, v 1.4.1 API Specification

http://java.sun.com/j2se/1.4.1/docs/api/

[18] Java Native Interface

http://java.sun.com/docs/books/tutorial/native1.1/index.html

[19] Java HotSpot™ Virtual Machine, Technical White Paper

http://java.sun.com/products/hotspot/docs/whitepaper/Java_HotSpot_WP_Final_4

_30_01.html

 109

http://www.dcs.warwick.ac.uk/~hpsg/
http://h21007.www2.hp.com/dspp/tech/tech_TechDocumentDetailPage_IDX/1,1701,2022,00.html
http://h21007.www2.hp.com/dspp/tech/tech_TechDocumentDetailPage_IDX/1,1701,2022,00.html
http://www.cs.cmu.edu/~jch/java/benchmarks.html
http://java.sun.com/j2se/1.4.1/docs/api/
http://java.sun.com/docs/books/tutorial/native1.1/index.html
http://java.sun.com/products/hotspot/docs/whitepaper/Java_HotSpot_WP_Final_4_30_01.html
http://java.sun.com/products/hotspot/docs/whitepaper/Java_HotSpot_WP_Final_4_30_01.html

[20] DHPC Java Grande Benchmarking

http://www.dhpc.adelaide.edu.au/projects/javagrande/benchmarks/

[21] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito, K. Ishizaki,

H. Komatsu, and T. Nakatani, Overview of the IBM Java™ Just-in-Time

Compiler

http://www.research.ibm.com/journal/sj/391/suganuma.html

[22] EPCC Java Grande Benchmarking

 http://www.epcc.ed.ac.uk/javagrande/index_1.html

 110

http://www.dhpc.adelaide.edu.au/projects/javagrande/benchmarks/
http://www.research.ibm.com/journal/sj/391/suganuma.html
http://www.epcc.ed.ac.uk/javagrande/index_1.html

	Content
	
	
	
	
	
	
	
	Abstract5
	Keywords5

	Reference108
	Appendix On DISK

	Abstract
	Chapter 1
	Background and Motivation
	1.2 PACE Toolset Components
	1.3 Model Characterisation Separation
	1.4 The Layered framework
	1.5 Java World – an extension to PACE
	2.2 Java’s Virtual Machine, Instruction Set and A
	
	3.1 Finding methods to calculate running time of bytecodes:

	3.2 From Template model to implementation
	3.3 Components’ detail
	3.4 Mechanics of the Bytecode Prediction Template
	3.5 Toolkit Development
	
	
	
	
	�
	3.6 Formal Evaluation

	Chapter 4
	Development

	4.2 Bytecode latency from invoking native method
	4.5 Hot Spot Motivation
	4.6 Hot Spot Detection
	4.7 Dynamic de-optimisation
	4.9 From ideas to Implementation

	Chapter 5
	Design and Implementation (2nd edition)
	
	
	
	
	
	Java Hot Spot™ technology allowed Java applicatio�

	5.1 Bytecode Block Definition (Sequential Bytecode Block)
	5.2 Benchmarking Bytecode Blocks
	
	
	
	
	
	
	5.4 A theoretical hypothesis

	5.5 Components of benchmark toolkit
	
	This script parses a complete characterisation file into the Java application or Java object characterisation repository an example of which is shown in Screen 1. Within this repository, each Sequential Bytecode Block is parsed into its corresponding SBB

	A copy of this file will be situated in each template directory. The next procedure is to prepare the prediction template file. Whereas previously the template data file would have contained all the relevant information and the script ./create_j.pl will

	5.6 Preliminary Results and Understanding
	
	
	5.9 Negative valuation

	Chapter 6
	Result Evaluation
	Chapter 7
	Conclusion
	7.2 Limitation and Future Improvement
	7.3 Future Direction
	Reference

