
A Process-Algebraic Approach to

Workflow Specification and Refinement

Peter Y.H. Wong and Jeremy Gibbons

Oxford University Computing Laboratory, United Kingdom
{peter.wong,jeremy.gibbons}@comlab.ox.ac.uk

Abstract. This paper describes a process-algebraic approach to spec-
ification and refinement of workflow processes. In particular, we model
both specification and implementation of workflows as CSP processes.
CSP’s behavioural models and their respective refinement relations not
only enable us to prove correctness properties of an individual work-
flow process against its behavioural specification but also allows us to
design and develop workflow processes compositionally. Moreover, cou-
pled with CSP is an industrial strength automated model checker FDR,
which allows behavioural properties of workflow models to be proved au-
tomatically. This paper details some CSP models of van der Aalst et al.’s
control flow workflow patterns, and illustrates behavioural specification
and refinement of workflow systems with a business process scenario.

1 Introduction

Since van der Aalst published his short note [18] comparing Petri nets and π-
calculus with respect to his workflow patterns [19], some attempts have been
made to express these patterns in π-calculus [12, 13] and its variants [11, 15]. In
this paper, we demonstrate how the process algebra CSP also can be applied to
model complex workflow systems; more importantly, we can exploit CSP’s no-
tion of process refinement [6, 14] to specify and compare these workflow systems.
Furthermore, CSP is supported by the automated model checker FDR [4], which
has been used extensively in industrial applications [10, 2]. The combination of
the mathematics of refinement and the model checker is crucial in the develop-
ment process of workflow systems, especially when designers do not want to be
concerned with the underlying mathematics. To complement the work described
in this paper, we have given a formal semantics for BPMN in CSP [23], allow-
ing workflow process designers to construct specifications using BPMN, and to
formally compare BPMN diagrams.

We first detail CSP models of some of van der Aalst et al.’s control flow
workflow patterns [19], which serve as “jigsaw” pieces for workflow construction.
We then present a case study of a business process to illustrate the composition
of some of the workflow pattern models and the use of process refinement in
specification and verification.

The rest of this paper is structured as follows. Section 2 gives a brief intro-
duction to CSP, its syntax and semantics. Section 3 describes the CSP models of

workflow patterns. Section 4 details the business process case study. Sections 5
and 6 discuss the related work and directions for future work respectively.

2 Communicating Sequential Processes

In CSP [6], a process is defined as a pattern of possible behaviour; a behaviour
consists of events which are atomic and synchronous between the environment
and the process. The environment in this case can be another process. Events
can be compound, constructed using ‘.’ the dot operator; often these compound
events behave as channels communicating data objects synchronously between
the process and the environment. For example a.b is a compound event which
communicates object b through channel a. Below is the grammar of a simplied
version of CSP in BNF.

P ,Q ::= P ||| Q | P |[A]| Q | P \ A | P 4 Q |

P 2 Q | P u Q | P o
9 Q | e → P | Skip | Stop

e ::= x | x .e

Process P ||| Q denotes the interleaved parallel composition of processes P

and Q . Process P |[A]| Q denotes the partial interleaving of processes P and Q

sharing events in set A. Process P \ A is obtained by hiding all occurrences of
events in set A from the environment of P . Process P 4 Q denotes a process
initially behaving as P , but which may be interrupted by Q . Process P 2 Q

denotes the external choice between processes P and Q ; the process is ready to
behave as either P or Q . Process P u Q denotes the internal choice between
processes P or Q , ready to behave at least one of P and Q but not necessarily
offer either of them. Process P o

9 Q denotes a process ready to behave as P ;
after P has successfully terminated, the process is ready to behave as Q . Our
syntactic notation for process sequential composition follows Davies’ style [3].
Process e → P denotes a process capable of performing event e, after which it
will behave like process P . The process Stop is a deadlocked process and the
process Skip is a successful termination. We write 2 a : { x0 . . . xi } • P(a) to
denote external choice over the set of processes {P(x0) . . .P(xi) } and similarly
for CSP operators u and |||.

CSP has three denotational semantic models: traces (T), stable failures (F)
and failures-divergences (N) models, in order of increasing precision. In this
paper our process definitions are divergence-free, so we will concentrate on the
stable failures model. The traces model is insufficient because it does not record
the availability of events and hence only models what a process can do and
nothing about what it must do [14]. Notable is the semantic equivalence of
processes P 2 Q and P u Q under the traces model. Their trace semantics are
defined below where T [·] is a semantic function which maps a CSP expression to
its set of possible traces P(seq Σ) and Σ is the set of all possible events.

T [P 2 Q] = T [P u Q] = T [P] ∪ T [Q]

In order to distinguish these processes, it is necessary to record not only what a
process can do, but also what it can refuse to do. This information is preserved
in refusal sets, sets of events from which a process in a stable state can refuse
to communicate anything no matter how long it is offered. A (stable) failure

is a pair in which the first element is the trace of a process and the second is
a refusal set of the process after the given trace. Below is the stable failures
semantics of both choice operators where F [·] is a semantic function that maps
a CSP expression to its set of failures P(seqΣ × P Σ).

F [P 2 Q] = {ref : P Σ | (〈〉, ref) ∈ F [P] ∩ F [Q] • (〈〉, ref)}

∪ {tr : seqΣ; ref : P Σ | tr 6= 〈〉 ∧ (tr , ref) ∈ F [P] ∪ F [Q] • (tr , ref)}

F [P u Q] = F [P] ∪ F [Q]

Each CSP process hence is characterised by its pattern of behaviour; the
type of specification we are concerned with is termed behavioural specification.
In CSP’s behavioural models (T ,F and N) a specification R is expressed by
constructing the most non-deterministic process satisfying it, called the char-

acteristic process PR. Any process Q that satisfies specification R has to refine
PR; this is denoted by PR v Q . In the stable failures model, we say process Q

failure-refines process P if and only if every failure of Q is also a failure of P .

P vF Q ⇔ F [Q] ⊆ F [P]

Similarly, we say P is failure-equivalent to Q if and only if they have the
same set of failures.

P ≡F Q ⇔ P vF Q ∧Q vF P ⇔ F [P] = F [Q]

While traces only carries information about safety conditions, refinement
under the stable failures model allows one to make assertions about a system’s
safety and availability properties. These assertions can be automatically proved
using CSP’s model checker FDR [4]. FDR stands for “Failures-Divergence Refine-
ment”; Model checkers exhaustively explore the state space of a system, either
returning one or more counterexamples to a stated property or guaranteeing that
no counterexample exists. FDR is among the most powerful explicit exhaustive
finite-state exploration tools and has been used extensively in industrial appli-
cations [10, 2].

3 Patterns

Van der Aalst et al. introduced workflow patterns as the “gold standard” bench-
mark of workflow languages [19]. These patterns range from simple constructs
to complex routing primitives. Their scope is limited to static control flow.

We model each of these control flow patterns in CSP, adhering to the in-
terpretation of a process instance given by WfMC Reference Model [7] and van
der Aalst et al.’s description of workflow activity [19]. We define set A as the

set of workflow activities, and define set of compound events { n : A • init .n } as
the set of events representing workflow triggers and { n : A • work .n } as the set
of events representing the execution of workflow activities. We can then define
the CSP process P(a,X) where a,b,c,... range over A. This process models basic
workflow activity a. We use X ,Y ,... to range over PA.

P(a,X) = init .a → work .a → ||| b : X • init .b → Skip

The process description P(a,X) first performs the event init .a with the co-
operation of the environment. This event represents an external trigger to the
start of the activity a; after the trigger has occurred, the event work .a, which
represents some activity a, will be ready to perform. After work .a has occurred,
the process is ready to perform the set of events { b : X | init .b } which trigger
a set of workflow activities X ⊆ A. A workflow activity which only triggers one
subsequent activity can hence be defined.

SP(a, b) = P(a, {b})

Each CSP description of the workflow pattern represents an abstracted view
of a workflow process. In this paper we only concern ourselves with the modelling
of flow of control between activities and external to them. Each CSP process Q

modelling some workflow activities hence has a corresponding process Q ′ which
has the execution of its workflow activities internalised via the hiding operation.

Q
′ = Q \ {|work |}

The hiding operation reflects independent execution of individual workflow
activities and allows us to model workflow processes with different levels of ab-
straction. As these workflow models are refined, more implementation details
about individual activities might be added such as their internal data flow infor-
mation. We use the event init .acts to denote a general trigger for the workflow
activity acts which is outside the scope of the workflow process in which init .acts

occurs. It represents the completion of the relevant activities defined with the
process. We use the event init .null to denote a general trigger to some workflow
activity null that is outside the scope of the workflow process in which init .null

occurs and null is ignored.
The rest of this section is devoted to a detailed description of the CSP model

of these patterns based on the definitions above and the semantics of CSP.
Due to page restriction, we have only included in this paper the CSP model
of the workflow patterns which are relevant in the subsequent case study. A
complete presentation of the CSP models of workflow patterns can be sought
elsewhere [22].

3.1 Basic Control Flow Patterns

In this section the workflow patterns capture the basic control flows of workflow
activities. They form the basis of more advanced patterns.

Sequence - An activity b in the workflow process is triggered after the com-
pletion of the activity a. This pattern is modelled by the CSP process SEQ(S)

where S is a non empty sequence of activities to be executed sequentially. For ex-
ample, in the example given, S would be 〈a, b〉. (The symbol a denotes sequence
concatenation.)

SEQ(〈〉) = Skip

SEQ(〈s〉) = SP(x , acts)

SEQ(〈s, t〉a S) = SP(s, t) |[{init .t}]| SEQ(〈t〉 a S)

Parallel Split (AND-split) - Both activities b and c are triggered after the
completion of the activity a. The execution of b and c is concurrent. This pattern
can be modelled by the CSP process ASP(a,X) where a is some activity; set
X ⊆ A is a non empty set of activities to be triggered in parallel after a has
completed; in the example given, X would be {b, c}.

ASP(a,X) = P(a,X) |[{ k : X • init .k }]| ||| k : X • SP(k , acts)

Synchronisation (AND-join) - An activity a is triggered after both activities
b and c have completed execution, The execution of b and c is concurrent. This
pattern may be modelled by the CSP process AJP(X , y) where X ⊆ A is a non
empty set of concurrent activities. In the example given, X would be {b, c}.

AJP(X , a) = ||| k : X • SP(k , a) |[{init .a}]| SP(a, acts)

Exclusive Choice (XOR-split) - Either activities b or c is triggered after the
completion of the activity a. The choice between b and c is internally (demoni-
cally) nondeterministic since such decision is part of the implementation detail.
This pattern is modelled by the CSP process XS (a,X) where in the example
given, X is {b, c}.

XS (a,X) =

let XSP(a,X) = init .a → work .a → u k : X • init .k → Skip

within XSP(a,X) |[{ k : X • init .k }]|2 k : X • SP(k , acts)

3.2 Multiple Instance Patterns

These patterns allow an activity in a workflow process to have more than one
running, active instance at the same time. In our process descriptions we model
a maximum of N instances of an activity running in any workflow process where
N ranges over the strictly positive naturals N1. We define events trig , done and
ntrig to denote the triggering, the completion and the cancelling of activity in-
stances.

In this section we first define some CSP processes common to all multiple
instance patterns described this paper. Each multiple instance pattern triggers

multiple instances of some activity. We define process SR(a, n) to model the
triggering of n out of N instances of activity a.

SR(a, n) = (||| k : {1 . . n} • init .a → done → Skip) o
9 (||| k : {1 . . N − n} • end → Skip)

We define process RP1(a) to model the N instances of activity a; standard
CSP does not allow unbounded nondeterminism, as its semantics raises deep
issues.

RP1(a) = ||| k : {1 . . N } • (SP(a, null) [init .null ← done] 2 end → Skip)

Multiple Instances with a priori Design Time Knowledge - In this pat-
tern multiple instances of activity b are triggered after activity a has completed
execution. The number of instances is known at design time which means static
within the model. Once all instances are completed, activity c is triggered. This
pattern is modelled by the CSP process DES (a, n, b, c) where n is the number of
instances of activity b determined at design time. Process DP(a, n, b, c) sets the
number of instances of activity b before execution.

DES (a, n, b, c) =

let DP(a, n, b, c) = init .a → work .a → SR(b, n) o
9 init .c → Skip

within DP(a, n, b, c) |[{init .b, end , done}]| RP1(b)) \ {end , done}

|[{init .c}]| SP(c, acts)

Multiple Instances with a priori Runtime Knowledge - The semantics of
this pattern is somewhat ambiguous as it offers two patterns of behaviour. Ac-
cording to van der Aalst et al.’s original work [19], multiple instances of activities
may be triggered in parallel with the correct synchronisation or the execution of
these activities may be routed sequentially. In this paper, both cases are consid-
ered. Note in CSP b & P denotes the conditional expression if b thenP elseStop.

First case: we define CSP process PAR(a, b, c) to model multiple instances of
activity b being triggered in parallel after activity a has completed execution.
Activity c is triggered after instances of activity b have completed execution.
The number of instances is not determined until runtime.

SR1(a, b, c) =

let IT1(a, n) = exec → (n ≥ N & SR(a, n) 2 n < N & IT1(a,n + 1) u SR(a, n))

within init .a → work .a → (IT1(b, 1) o
9 init .c → Skip u SR(b, 0) o

9 init .c → Skip)

PAR(a, b, c) = (SR1(a, b, c) |[{init .y , end , done}]| RP1(y)) \ {exec, done, end}

|[{init .z}]| SP(z , acts)

Second case: we define process SR21(a, n) to model sequential triggering of
n instances of activity a. Process IT21(a, n) models a non-deterministic counter
deciding upto N instances of a to be triggered.

SR21(a, n) =

let SR(a, n) = (n = 0) & Skip 2 n > 0 & init .a → done → SR(a,n − 1)

within (||| k : {1 . . N − n} • end → Skip) o
9 SR(x , n)

IT21(a, n) =

exec → (n ≥ N & SR21(a, n) 2 n < N & IT21(a, n + 1) u SR21(a, n))

We model the second case by defining the process MSEQ(a, b, c).

SR2(a, b, c) = init .a → work .a → (IT21(b, 1) o
9 init .c → Skip

u SR(b, 0) o
9 init .c → Skip)

MSEQ(a, b, c) = (SR2(a, b, c) |[{init .b, end , done}]| RP1(b)) \ {exec, done, end}

|[{init .c}]| SP(c, acts)

It is easy to see that the sequential triggering of multiple instances, defined
by the CSP model MSEQ ′(a, b, c), failure-refines the parallel triggering defined
by the model PAR′(a, b, c).

PAR
′(a, b, c) vF MSEQ

′(a, b, c)

Multiple Instances without a priori Runtime Knowledge - This is a gen-
eralisation of the pattern “Multiple Instances with a priori Runtime Knowledge”.
After the completion of activity a, some instances of activity b are triggered. The
number of instances is not decided at runtime, rather it is decided during the ex-
ecution of instances. Activity c will only be triggered after all triggered instances
of activity b have completed execution. We define the CSP process NPAR(a, b, c)

to model this pattern.

SR31(a, n) = ||| k : {1 . . N − n} • end → Skip

IT31(a, n) = n ≥ N & Skip

2 n < N & (init .a → done → IT31(a, n + 1)) u SR31(a, n)

SR3(a, b, c) = init .a → work .a → (IT31(b, 0) o
9 init .c → Skip

u SR31(b, 0) o
9 init .c → Skip)

NPAR(a, b, c) = (SR3(a, b, c) |[{init .b, end , done}]| RP1(b)) \ {exec, done, end}

|[{init .c}]| SP(c, acts)

3.3 State Based Patterns

This type of pattern captures external decisions at certain “states” within a
workflow process. In previous patterns decisions on branching and looping are
made a-priori and their semantics has been represented by the CSP internal
choice operator. However, it is possible that these decisions are offered to the
environment.

Deferred Choice - This is similar to “Multi-choice” pattern formalised above
in which either or both activities b or c will be triggered after activity a has
completed execution. However, in this pattern the choice is made by the envi-
ronment. The semantics of this behaviour can be expressed by the CSP external
choice operator. This pattern is modelled by the CSP process DEF (a,X) where
X = {b, c}.

DEF (a,X) = let

DC (a,X) = init .a → work .a →2 y : X • init .y → Skip

within

DC (a,X) |[{ y : X • init .y }]|2 y : X • SP(y , acts)

4 Case Study

In this section we study a realistic complex business process of a traveller re-
serving and booking airline tickets, adapted from the Web Service Choreography
Interface (WSCI) specification [20]. A BPMN (Business Process Modelling No-
tation) diagram of the airline ticket reservation workflow is shown in Figure 1.

Fig. 1. Making an airline ticket reservation

4.1 Airline Ticket Reservation

We observe that the traveller can initiate the business process by ordering a trip.
She may change her travel itinerary or cancel it. She may make a reservation
with her chosen itinerary and before she confirms her booking she may at any
time cancel her reservation or be notified of a cancellation by the airline due to
the reservation period elapsing. After the traveller has confirmed her booking,
she will receive the booked tickets and the statement for them.

The textual description given in the previous paragraph is somewhat am-
biguous and a graphical representation like Figure 1 becomes difficult to read as

the complexity of the control flow of the business process increases. Furthermore
both of these specifications lack a formal semantics and hence do not support
checking behavioural properties like deadlock and livelock freedom at the im-
plementation level. By modelling such business process in a process algebra like
CSP, we can explore properties such as deadlock freedom by proving assertion
(1). The notion of process refinement allows us to prove such assertion by model
checking if P refines the characteristic process of the property we are interested
in proving. For deadlock freedom we can model check the refinement assertion
(2) where DF = u x : Σ • x → DF is the most non-deterministic deadlock-free
process.

∀ tr : T (P) • (tr , Σ) /∈ F(P) (1)

DF vF P (2)

We now turn to the definition of the CSP model for this workflow process. We
use TL to denote the CSP process describing control flow of the workflow model
and define the set Wtl as the set of workflow activities performed by TL. The
set Stl is defined as the set of CSP processes to represent the states of control
flow of the workflow model.

Wtl = {order , change, cancelit , reserve, cancelres, timeout , accept , book , ticket , statemt}

Stl = {ORDER,CHANGE ,CANCEL,RESERVE , CANRES ,ACCEPT ,BOOK ,TIME ,

TICKET ,STATE}

We use the events start , complete and fail to denote the start, the completion
and the abortion of the business process. We define αTL as the set of all events
performed by process TL. We use the event init .fault to denote a fault has oc-
curred and to represent an unsuccessful completion of the business process. We
use the event init .succ to denote a successful completion of the business process;
we use init .fault to denote an occurrence of cancellation during reservation; we
use init .itinfault to denote an occurrence of cancellation before reservation. The
events init .null and init .acts denote the triggering of out of scope activities as
defined in Section 3.

αTL = { a :Wtl • init .a,work .a }

∪{ start , complete, fail , init .null , init .acts, init .fault , init .itnfault , init .succ }

Here we specify some behavioural properties that the CSP process TL must
satisfy. These properties are specified by the following assertions (3)–(6). Prop-
erty (3) asserts TL to be a deadlock-free process; property (4) asserts that the
business process must issue tickets if a booking has been made; here,

HB = init .book → init .ticket → HB

Property (5) asserts that the business process either aborts due to cancella-
tion or completes successfully; here,

CSet = { cancelres, cancelit , timeout }

CC = (u x : CSet • init .x → fail → CC)

u complete → CC

Property (6) asserts that traveller can change her itinerary until she decides
to make her reservation or to cancel her itinerary; here,

ITIN = init .change → ITIN

u init .reserve → (complete → ITIN u fail → ITIN)

u init .cancelit → fail → ITIN

DF vF TL (3)

HB vF TL \ (Σ \ αHB) (4)

CC vF TL \ (Σ \ αCC) (5)

ITIN vF TL \ (Σ \ αITIN) (6)

By employing the CSP models of the workflow patterns described in Sec-
tion 3, we define each CSP process in Stl as shown in Figure 2. Processes
SR4(a, b,X) and DC1(a,X ,Y) are defined in Figure 3. Process SR4(a, b,X) is
a combination of the processes SR3(a, b, c) and XSP(a,X) defined in Section 3’s
Multiple Instances without a priori Runtime Knowledge and Exclusive Choice

patterns. Process DC1(a, X ,Y) is a combination of the processes XSP(a,X) and
DEF (a,X) defined in Section 3’s Exclusive Choice and Deferred Choice patterns.

ORDER = SR4′(order , change, {cancelit , reserve})

CHANGE = RP1′(change)

CANCEL = SP
′(cancelit , fault)

RESERVE = DC1′(reserve, {cancelres, book}, {timeout})

CANRES = SEQ
′(cancelres, accept)[init .acts ← init .fault]

BOOK = P
′(book , {ticket , statemt})

TIME = SP
′(timeout , fault)

TICKET = SP
′(ticket , succ)

STATE = SP
′(statemt , succ)

Fig. 2. The definition of CSP processes in Stl

Figure 4 is the definition of the CSP process TL which models the semantics
of the control flows of the airline ticket reservation business process model by
parallel composition of processes from set Stl .

SR4(a, b,X) = let SR41(a, X) = (IT31(a, 0) o
9 u b : X • init .b → Skip)

u (u b : X • init .b → Skip)

within init .a → work .a → SR41(b,X)

DC1(a,Y , Z) = let CHO(X ,Y) = u b : X • init .b → Skip

2 (2 c : Y • init .c → Skip)

within init .a → work .a → CHO(Y ,Z)

Fig. 3. The definition of processes SR4(x , y , X) and DC1(x , Y ,Z)

4.2 Composition and Refinement

Behavioural properties specified by assertions (3)–(6) can be readily checked
by asking the FDR model checker about refinement assertions. Alternatively
behavioural specifications can be composed to give a composite specification in
which many of the assertions can be proved under a single refinement check.
Property (7) asserts that the traveller may change her itinerary or cancellations
may happen, otherwise she must commit to her itinerary and completes her
transaction.

COMP = init .change → COMP

u (u x : CSet • init .x → fail → COMP)

u init .book → init .ticket → complete → COMP

COMP vF TL (Σ \ αCOMP) (7)

A CSP model of the business process like the one described in this paper can
be placed in parallel with CSP models of other business processes to describe
their collaboration where each business process interacts by communicating. The
term service choreography has been coined for such collaboration description. In
our airline ticket reservation example we can define a global business collabo-
ration protocol between the traveller’s workflow, the airline reservation system
and the travel agent models. We use process names AL and TA to denote the
control flow description of the airline reservation system and the travel agent
workflow models. An example collaboration between these business processes is
depicted as a BPMN diagram in Figure 5. In this paper we do not define AL and
TA, a complete description of their models can be found elsewhere [22].

One effect that can be anticipated when composing complex process defini-
tions like TL in parallel is an exponential state explosion. For example given that

TLc =

let

final = {init .cancelres, init .book , init .timeout}

RECEIVE = TICKET ||| STATE

within

((ORDER |[{init .change, end , done}]| CHANGE) \ {end , done, exec})

|[{init .cancelit , init .reserve}]| (CANCEL 2 (RESERVE |[{ x : final • init .x }]|

(TIME 2 (CANRES 2 (BOOK |[{init .ticket , init .statemt}]| RECEIVE)))))

TL =

let

decision = {init .succ, init .fault , init .itinfault}

COM = start → init .order → Skip

FIN = init .succ → init .succ → complete → Skip

FAULT = init .fault → cancel → Skip 2 init .itinfault → cancel → Skip

within

(COM |[{init .order}]| (TLc |[decision]| (FIN 2 FAULT))) o
9 TL

Fig. 4. The definition of processes TL

i ranges over {1 . .N } for some positive integer N > 0, if each process Pi has just
two states, then the expression ||| i : {1 . . N } • Pi has 2N . By compositionality
and monotonicity of refinement, we can reduce individual component processes’
state space by abstracting them into sequential processes. For simplicity sup-
pose the process GB is the model of the choreography by composing individual
participating business process in parallel where X is a set of some events. We
denote sequential process by subscript s.

GB = (TA |[X]| AL) |[X]| TL

We abstract GB into process GBs then if the refinement assertions (8)–(10) hold,
by monotonicity of refinement we prove assertion (11).

GBs = (TAs |[X]| ALs) |[X]| TLs

ALs vF AL (8)

TLs vF TL (9)

TAs vF TA (10)

GBs vF GB (11)

if GBs refines some property defined by the characteristic process SPEC , by
transitivity of refinement we prove GB also refines SPEC .

SPEC vF GBs ∧ GBs vF GB ⇒ SPEC vF GB

Fig. 5. Airline Ticket Reservation Choreography

5 Related Work

Little research has been done to date into the application of CSP to workflow
specification and verification. We have recently defined a process semantics for
BPMN in CSP [23], which allows formal comparison between workflow processes
described in BPMN and encourages automated tool support for the notation.
The only other approach that has applied CSP in workflow process [16] did so
as an extension of abstract machine notation for process specification within the
domain of compositional information systems.

Other process algebras used to model workflow patterns include π-calculus [13]
and CCS [15], a subset of π-calculus. These formalisations did not focus on
process-based behavioural specification, and they did not demonstrate the appli-
cations of their models in workflow design. Moreover, the operational semantics
of π-calculus and CCS do not provide a refinement relation; we have demon-
strated in this paper that refinement is useful in the development of workflow
processes, because it allows formal comparisons between workflows. A similar
observation applies to the work of van der Aalst et al. [9, 17] using Petri nets.
Despite Puhlmann et al.’s advocacy of mobility in workflow modelling, our CSP
models suggest it is not necessary when modelling static control flow interactions.

However, it is still possible to introduce mobility into standard CSP semantics
if needed; an attempt has been made by Welch et al. [21].

Although Stefansen [15] mentioned a model checker called Zing which bears
some similarities with FDR, implementing a conformance checker based on stuck-
freedom [5], it is more discriminative and only resembles the CSP concept of
deadlock-freedom.

6 Conclusion

In this paper we described some CSP models of van der Aalst et al.’s workflow
patterns to construct workflow processes. We then modelled a realistic workflow
process by using models of workflow patterns and subsequently demonstrated the
use of process refinement for asserting behavioural properties about the work-
flow process. These properties were described by process-based specifications
defined in CSP and assertions were then proved automatically using the CSP
model checker FDR. Like any development of a complex system, the application
of refinement in workflow design means that development of a workflow design
into an implementation becomes incremental. Due to monotonicity and transi-
tivity of process refinement, it is possible to minimise exponential state explosion
when model checking complex process by abstracting its individual component
processes into corresponding sequential processes.

Future work will include the following:

– extend the CSP model described in this paper into a global domain, hence
allowing a unified treatment of workflow orchestration and choreography;

– augment our current CSP model with a well-defined exception and compen-
sation semantics, perhaps building on Butler’s compensating CSP [1];

– combine our CSP control flow model with a dataflow semantics to allow a
unified treatment of the semantics of workflow processes, perhaps building
on Josephs’ CSP dataflow model [8].

– automate the translation from workflow descriptions in BPMN to CSP pro-
cesses, based on our recent work on BPMN semantics [23].

7 Acknowledgements

We would like to thank anonymous referees for useful suggestions and comments.
This work is supported by a grant from Microsoft Research.

References

1. M. Butler, T. Hoare, and C. Ferreira. A trace semantics for long-running transac-
tions. In Proceedings of 25 Years of CSP, volume 3525 of LNCS, pages 133–150,
2005.

2. S. Creese. Industrial Strength CSP: Opportunities and Challenges in Model-
Checking. In Proceedings of 25 Years of CSP, volume 3525 of LNCS, page 292,
2005.

3. J. Davies. The CSP Package, Mar. 2001. ftp://ftp.comlab.ox.ac.uk/pub/CSP/

LaTeX/csp.sty.
4. Formal Systems (Europe) Ltd. Failures-Divergences Refinement, FDR2 User Man-

ual, 1998. www.fsel.com.
5. C. Fournet, T. Hoare, S. K. Rajamani, and J. Rehof. Stuck-Free Conformance.

In 16th International Conference on Computer Aided Verification, volume 3114 of
LNCS, pages 242–254, Jan. 2004.

6. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
7. D. Hollingsworth. The Workflow Reference Model. Technical Report WFMC-TC-

1003, Workflow Management Coalition, Jan. 1995.
8. M. Josephs. Models for Data-Flow Sequential Processes. In Proceedings of 25

Years of CSP, volume 3525 of LNCS, pages 85–97, 2005.
9. B. Kiepuszewski. Expressiveness and Suitability of languages for Control Flow

Modelling in Workflows. PhD thesis, Queensland University of Technology, Bris-
bane, Australia, 2002.

10. J. Lawrence. Practical Application of CSP and FDR to Software Design. In
Proceedings of 25 Years of CSP, volume 3525 of LNCS, pages 151–174, 2005.

11. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
12. R. Milner. Communicating and Mobile Systems: the π-calculus. Cambridge Uni-

versity Press, 1999.
13. F. Puhlmann and M. Weske. Using the π-Calculus for Formalizing Workflow Pat-

terns. In BPM 2005, volume 3649 of LNCS, pages 153–168. Springer-Verlag, 2005.
14. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1998.
15. C. Stefansen. SMAWL: A SMAll workflow language based on CCS. Technical

Report TR-06-05, Harvard University, Mar. 2005.
16. S. A. Stupnikov, L. A. Kalinichenko, and J. S. Dong. Applying CSP-like Workflow

Process Specifications for their Refinement in AMN by Pre-existing Workflows. In
Proceedings of ADBIS’2002, Sept. 2002.

17. W. M. P. van der Aalst. Verification of Workflow Nets. In ICATPN ’97: Proceedings

of the 18th International Conference on Application and Theory of Petri Nets,
pages 407–426, 1997.

18. W. M. P. van der Aalst. Pi Calculus Versus Petri Nets: Let Us Eat Humble Pie
Rather Than Further Inflate the Pi Hype. BPTrends, 3(5):1–11, May 2005.

19. W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(3):5–51, July 2003.

20. W3C. Web Service Choreography Interface 1.0, 2002. www.w3.org/TR/wsci/.
21. P. H. Welch and F. R. M. Barnes. Mobile Barriers for occam-pi: Semantics, Im-

plementation and Application. In Communicating Process Architectures 2005, vol-
ume 63 of Concurrent Systems Engineering Series, pages 289–316, Sept. 2005.

22. P. Y. H. Wong. Towards a unified model for workflow orchestration and choreog-
raphy, 2006. Transfer dissertation, Oxford University Computing Laboratory.

23. P. Y. H. Wong and J. Gibbons. A Process Semantics for BPMN, 2007. submitted
for publication.

