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Abstract

In this paper we describe a graphical approach to formally specifying
temporally-ordered activity routines designed for calendar scheduling. We
introduce a workflow model OWorkflow, for constructing specifications of
long running empirical studies such as clinical trials in which observations
for gathering data are performed at strict specific times. These observa-
tions, either manually performed or automated, are often interleaved with
scientific procedures, and their descriptions are recorded in a calendar for
scheduling and monitoring to ensure each observation is carried out cor-
rectly at a specific time. We also describe a bidirectional transformation
between OWorkflow and a subset of Business Process Modelling Notation
(BPMN), by which graphical specification, simulation, automation and
formalisation are made possible.

1 Introduction

A typical long-running empirical study consists of a series of scientific proce-
dures interleaved with a set of observations performed over a period of time;
these observations may be manually performed or automated, and are usually
recorded in a calendar schedule.

An example of a long-running empirical study is a clinical trial, where ob-
servations, specifically case report form submissions, are performed at specific
points in the trial. In such examples, observations are interleaved with clini-
cal interventions on patients; precise descriptions of these observations are then
recorded in a patient study calendar similar to the one shown in Figure 1(a).
Currently study planners such as trial designers supply information about obser-
vations either textually or by inputting textual information and selecting options
on XML-based data entry forms [2], similar to the one shown in Figure 1(b).
However, the ordering constraints on observations and scientific procedures are
complex, and a precise specification of this information is time consuming and
prone to error. We believe the method of specification may be simplified and
improved by allowing specifications to be built formally and graphically, and
visualised as workflow instances.

Workflow instances are descriptions of a composition of activities, each of
which describes either a manual task or an application of a program. One of the
prominent applications of workflow technology is business processes modelling,
for which the Business Process Modelling Notation (BPMN) [11], adopted by
Object Management Group [10], has been used as a modelling language. Recent
research [12, 15, 13] has also allowed business processes modelled as BPMN
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Figure 1: (a) A screen shot of the patient study calendar [3], (b) XML-based
data entry forms [2]

diagrams to be translated into executable processes in the Business Process
Execution Language (WS-BPEL) [1], the “de facto” standard for web service
compositions. Furthermore, a relative timed semantics have been defined for
BPMN, in the languages of Communicating Sequential Processes (CSP) [16];
these allow BPMN diagrams to be interpreted without ambiguity. BPMN, being
a graphical language, lends itself to being used by domain specialists without
computing expertise.

This paper has two main contributions. Firstly, we introduce a generic
observation workflow model OWorkflow, an extension of the workflow model
implemented in the CancerGrid trial model [5], customised for modelling em-
pirical studies declaratively. Secondly, we describe bidirectional transformation
functions between OWorkflow and a subset of BPMN. While the transforma-
tion from BPMN to OWorkflow provides a medium for empirical studies to be
specified graphically as workflows, transforming OWorkflow to BPMN allows
graphical visualisation. Moreover, the BPMN descriptions of empirical stud-
ies may be translated into BPEL processes, whereby manual and automated
observations may be simulated and executed respectively, and both of which
can be monitored during the enactment of studies. Furthermore, BPMN has a
formal semantics and the transformation induces such behavioural semantics to
OWorkflow. This means empirical study plans can now be formally specified,
and interpreted without ambiguity.

The rest of this paper is structured as follows. Section 2 describes the ab-
stract syntax and the semantics of our workflow model OWorkflow. Here we
only describe the semantics informally, even though a formal semantics has
been defined via transformation to BPMN. Section 3 describes the syntax and
the semantics of a subset of the BPMN; the complete definition of its formal
semantics may be found in our other paper [16]. Section 4 details the bidirec-
tional transformation function between OWorkflow and the subset of BPMN
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by introducing BPMN constructs that are used as building blocks for mod-
elling OWorkflow. We have implemented both the syntax of our observational
workflow model and BPMN and the transformation functions in the functional
programming language Haskell 1. Section 5 discusses how this transformation
allows simulation and automation of empirical studies, and how formalisation
has assisted the transformation process. Section 6 discusses related work and
concludes this paper.

2 Abstract Syntax of Observational Workflow

In this section we describe the observation workflow model OWorkflow. This
model generalises the clinical trial workflow model defined in the CancerGrid
project [5]. Each workflow is a list of parameterised generic activity interde-
pendence sequence rules, where each rule models the dependency between the
prerequisite and the dependent observations. Figure 2 shows the abstract syn-
tax of OWorkflow. Each sequence rule is implemented using the Haskell tuple
type EventSequencing, which contains a single constructor Event and each
observational workflow hence is a collection of sequence rules.

type OWorkflow = [EventSequencing]

data EventSequencing =

Event ActId PreAct Condition Condition Obv [RepeatExp] Works

data ActId = START | STOP | NORMAL_STOP | ABNORMAL_STOP |

OtherId String

Figure 2: Abstract syntax of OWorkflow

Each sequence rule is identified by a unique name of type ActId from the first
argument of the constructor Event, and contains zero or more dependent obser-
vations. There are four reserved names of type ActId for identifying a start, a
generic termination, a successful termination and an unsuccessful termination of
a workflow execution. Each rule defines a structural composition of dependent

1http://www.haskell.org
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observations of type Maybe Obv, in the fifth argument of the sequence rule. (A
value of type Maybe a either contains a value of type a, or is empty.)

data Obv = ChoiceD [Obv] | ParD [Obv] | SeqD [Obv] | Da Act

type Act = (ActId,Duration,Duration,Condition,ActType)

We define a single dependent observation by the tuple type Act, whose first
component is a unique name from a set of names ActId distinct from those
which identify sequence rules. When performing dependent observations spec-
ified by each sequence rule, there exists a delay: a range with a minimum and
a maximum duration, specified by the second and third component of Act of
type Duration.

data Duration = UNBOUNDED | Dur String

Each duration records a string value in accordance with XML schema datatypes [17].
For example in a clinical trial, the follow-up observation should be made be-
tween two and three months after all observations associated with the end of
the treatment have been carried out. Each observation may either be a manual
or an automated observation, denoted by the fifth component ActType of Act.

Figure 3: Abstract syntax of an observation group

Each composition of observations defines an observation group, as shown in
Figure 2. Figure 3 shows the abstract syntax of an observation group. Each
observation group structurally conforms to Kiepuszewski’s structure workflow
model [6, Section 4.1.3]. The following inductive definition of compositional
rules of an observation group follows from the definition of Obv:

1. If obv :: Act is a single observation, then Da obv :: Obv defines an
observation group and is structurally conforms the structure workflow
model, and it yields to completion when the observation identified by
obv has been made.

2. Let obv1,...,obvN :: Obv be observation groups; their sequential com-
position SeqD [obv1,...,obvN] :: Obv also defines an observation group
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and it structurally conforms the structure workflow model. Given an
observation group SeqD obvs :: Obv, we describe its semantics induc-
tively:

(a) The initial observation group is head obvs, its initial observation
may be performed when all observations associated with SeqD obvs’s
prerequisite rules have been made;

(b) For any observation group obvs!!nwhere n ranges over [1..(length
obvs - 1)], its observation may be performed when observations
from the group obv!!(n-1) have been made;

(c) SeqD obvs yields to completion when observations from the group
last obvs have been made.

3. Let obv1,...,obvN :: Obv be n observations groups, an application
of choice over them ChoiceD [obv1,...,obvN] :: Obv also defines an
observation group, it structurally conforms the structure workflow model,
and it yields to completion when observations from one of the observation
groups from the given list have been made;

4. Let obv1,...,obvN :: Obv be n observations groups, their parallel com-
position ParD [obv1,...,obvN] :: Obv also defines an observation group
and it structurally conforms the structure workflow model, the observation
from each of observation groups from the given list may be interleaved,
and the group yields to completion when observations from all of the ob-
servation groups from the given list have been made;

5. Nothing else defines an observation group.

Figure 4: Abstract syntax of a prerequisite rule group

Dependent observations are performed after the observations associated with
the prerequisite sequence rules, identified by the data type PreAct, are com-
pleted. For example in a clinical trial the follow-up observation should be made
after all observations associated with the end of the treatment have been carried
out. A prerequisite is a collection of names that identifies preceding sequence
rules, recorded in the second argument of Event. It is defined using the data
type PreAct; we call each collection a prerequisite rule group. Figure 4 shows
the abstract syntax of a prerequisite rule group.

data PreAct = All [PreAct] | OneOf [PreAct] | Pa ActId
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The constructor Pa defines a single prerequisite rule by its argument, which
yields to completion when all observations associated with the rule identified
by the argument are made. The branching constructor All denotes synchroni-
sation over its given list of prerequisite rule groups; this yields to completion
when observations from all of the prerequisite rules groups from the given list
have been made. The branching constructor OneOf denotes an exclusive merge
over its given list of prerequisite rules groups; this yields to completion when
observations from one of the prerequisite rules groups from the given list have
been made. Inductively we describe the compositional rules of a prerequisite
rule group:

1. If id :: ActId is a unique name that identifies a particular sequence
rule, then Pa id :: PreAct defines a prerequisite rule group;

2. If pa1,...,paN :: PreAct are n prerequisite rule groups, then the syn-
chronisation of them All [pa1,...,paN] :: PreAct also defines a pre-
requisite rule group;

3. If pa1,...,paN :: PreAct are n prerequisite rule groups, then their
exclusive merge OneOf [pa1,...,paN] :: PreAct also defines a pre-
requisite rule group;

4. Nothing else defines a prerequisite rule group

Each sequence rule also defines a list, possibly empty, of repeat clauses de-
scribed by the sixth argument, typed [RepeatEx], of Event. Each clause spec-
ifies the condition, the minimum and the maximum numbers of iterations and
the delay between iterations for the dependent observations of the sequence rule.
These clauses are evaluated sequentially over the list after one default iteration
of performing the rule’s dependent observations.

type RepeatExp = (Duration,Duration,Repeat,Repeat,Condition)

data Repeat = Rep Int | Any

Each clause, of type RepeatExp, contains a condition specified by the fifth com-
ponent of type Condition. Our definition of Condition extends the skip logic
used in the CancerGrid Workflow Model [5]. Specifically, its syntax captures
expressions in conjunctive normal form.

data Condition = None | Nondeter | And [Alter]

data Alter = Alt [SCondition]

type SCondition = (Range,Property)

data Range = Bound RangeBound RangeBound | Emu [String]

data RangeBound = Abdate Duration | Abdec Float | Abint Int |

Rldate Property Duration | Rldec Property Float |

Rlint Property Int

Each condition c :: Condition yields a boolean value and is either empty
(true), denoted by the nullary constructor None, nondeterministic denoted by
the nullary constructor Nondeter, or defined as the conjunction of clauses, each
of which is a disjunction of boolean conditions, of type SCondition. The type
SCondition is satisfied if the value of specified property (typed Property) falls
into the specified range (typed Range) at the time of evaluation. The specified
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property is a name that identifies a particular property in the domain of the
empirical study and this corresponds the local property to the whole BPMN
process [9, Section 8.6.1]. Note while our formal semantics of BPMN [16] al-
lows behavioural process-based specifications and corresponding verifications for
OWorkflow, it is at a level of abstraction in which we do not directly model the
value of each properties.

The range may be an enumeration of values via the constructor Emu, or
a closed interval of two numeric values via the constructor Range over two
arguments of type RangeBound, which may be absolute or relative to a property.

Given a list of repeat clauses res :: [RepeatExp] defined in some se-
quence rule sr, we may inductively define the evaluation of the repeat clauses:

1. The initial repeat clause is head res. It is evaluated after the default
iteration of sr’s dependent observations have completed, the condition
defined by the fifth component of head res is satisfied;

2. A given repeat clause terminates if either its maximum number of repe-
titions has been reached, or its minimum number of repetitions has been
reached and the condition is no longer satisfied;

3. For any clause res!!n where n ranges over [1..(length res - 1)], it
may be evaluated after the evaluation of the clause res!!(n-1) termi-
nates;

4. res terminates when last res terminates.

For example, the follow up sequence rule of a clinical trial might specify that
follow up observations should be made every three months for three times after
the default observations have been made, after which observations should be
performed every six months for four times.

Each sequence rule might also include work units, recorded by the last argu-
ment of the constructor Event. Each work unit represents an empirical proce-
dure such as administering a medical treatment on a patient in a clinical trial.
In each sequence rule, the procedure defined by work units are interleaved with
the rule’s observations. Each collection of work units is defined by the data type
Works and is called work group.

data Works = ChoiceW [Works] | ParW [Works] | SeqW [Works] | Wk Work

The type Work records a unique name that identifies a particular empirical proce-
dure. Our definition of work group also structurally conforms to Kiepuszewski’s
structure workflow model, and both its abstract syntax and compositional rules
are similar to those of observation groups.

Finally the third and fourth arguments of a sequence rule are two condi-
tional statements, each of type Condition. While the third argument defines
the condition for enacting the sequence rule, the fourth argument defines the
condition for interrupting the enactment of the sequence rule.

3 Abstract Syntax of BPMN

In this Section we describe the syntax of our chosen subset of BPMN and in-
formally their semantics. For the purpose of specifying and simulating observa-
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Figure 5: States of BPMN diagram

tional workflow OWorkflow, our implementation of BPMN states captures only
a subset of the abstract syntax of BPMN defined in our other paper [16].

States in our subset of BPMN [11] can either be tasks, subprocesses, multiple
instances or control gateways, each linked by a normal sequence or an exception
sequence flow. A normal sequence flow can be either incoming to or outgoing
from a state and have associated guards; an exception sequence flow, depicted
by the state labelled task*, bpmn*, task** and bpmn**, represents an occurrence
of error within the state. A sequence of flows represents a specific control flow
instance of the business process. Figure 6 shows the abstract syntax of a BPMN
state, we describe each state using a Haskell data type State

Figure 6: Abstract syntax of BPMN state

data State = State Type [Transit] [Transit] [(Type,Transit)]

where its first argument, of type Type, records the type of state; second and
third arguments, both of type [Transit], records a list of incoming and out-
going transitions respectively. We use the type Transit to record each normal
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sequence and exception sequence flow, and it holds a pair of a boolean guard
Guard and a unique name, of type Line, that identifies that a line.

type Transition = (Guard,Line)

The fourth argument, of type [(Type,Transit)], records a list of pairs where
each pair records a particular type of exception and its outgoing transition.

We record each type of states by the type Type

data Type = Itime Time | Stime Time | Irule BCondition |

Agate | Xgate | Start | End Int | Abort Int |

Task TaskName TaskType| Bpmn BName BpmnType |

Miseq TaskName Int TaskType BCondition |

Miseqs BName Int BpmnType BCondition

where each type of state is presented graphically in Figure 5. In the figure, there
are two types of start states start and stime. A start state models the start of
the business process in the current scope by initiating its outgoing transition.
It has no incoming transition and only one outgoing transition. Its type is
implemented by the nullary constructor Start. The stime state is a variant
start state and it initiates its outgoing transition when a specified duration has
elapsed. This type of state is implemented by the constructor function Stime

and it takes an argument the duration of type Time,

data Time = NOBOUND | MkTime Direction Int Int Int Int Int Int

data Direction = Pve | Nve

where NOBOUND denotes an unspecified duration and the constructor MkTime

records a specific duration by its arguments, and it represents six-dimensional
space of the XML schema data type duration [17].

There are two types of end states end and abort. An end state models the
successful termination of an instance of the business process in the current scope
by initialisation of its incoming transition. It has only one incoming transition
with no outgoing transition. Its type is implemented by the constructor End

which takes a unique integer for identifying a particular end state. The abort
state is a variant end state and its models an unsuccessful termination, usu-
ally an error of an instance of the business process in the current scope. Its
type is implemented by the constructor Abort which takes a unique integer for
identifying a particular abort state.

Our subset of BPMN contains two types of decision state, xgate and agate.
Each of them has one or more incoming sequence flows and one or more outgo-
ing sequence flows. Their state types have been implemented by Haskell type
nullary constructors Xgate and Agate respectively. An xgate state is an exclu-
sive gateway, accepting one of its incoming flows and taking one of its outgoing
flows; the semantics of this gateway type can be described as an exclusive choice
and a simple merge. An agate state is a parallel gateway, which waits for all of
its incoming flows before initialising all of its outgoing flows.

A task state describes an atomic activity and it has a exactly one incoming
and one outgoing transitions. Its type is implemented by the Haskell constructor
Task and it takes two arguments recording a unique name for identifying the
activity and the task type for differentiating states that describes work units
from the rest. Note it is possible to introduce this property as BPMN is an
extensible notation [11, Section 7.1.3].
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data TaskType = StandardT | WorkT

A bpmn state describes a subprocess state. it is a business process by itself and
so it models a flow of BPMN states. Figure 5 depicts a collapsed subprocess
state where all internal details are hidden. this state has a exactly one incoming
and one outgoing transitions. Its type is implemented by the constructor Bpmn
and it takes two arguments recording a unique name for identifying a particu-
lar subprocess and the subprocess type BpmnType for differentiating subprocess
states modelling different parts of a sequence rules.

data BpmnType = SequenceB | ScopeB | DependentB | WorkB | RepeatB

Also in Figure 5 there are graphical notations labelled task*, bpmn*, task** and
bpmn**, which depict a task state and a subprocess state with an exception se-
quence flow, . As mentioned above, we describe exception sequence flows of a
state by the fourth argument of the constructor MkState. There are two types
of exception associated with task and subprocess states in our subset of BPMN
states. Both states task* and bpmn* are examples of states with a conditional
exception flow, we implement this type of exception flows by the constructor
Irule, which takes an argument specifying the condition to interrupt the ex-
ecution of the state. The states task** and bpmn**, on the other hand, are
examples of states with a exception flow of an expiration, we implement this
type of exception flows by the constructor Itime, which takes an argument
specifying the duration until expiration.

Each task and subprocess may also be defined as multiple instances. The
miseq state type represents serial multiple instances, where the specified task is
repeated in sequence. This has been implemented by the Haskell type construc-
tor Miseq, and it takes four arguments, recording a unique name that identifies
the task to be repeated, the maximum number of repetition of the specified
task, the task type and condition to be evaluated before the task begins. We
have implemented the type BCondition to record a conditional statement,

data BCondition = And [Clause] | SgB Clause | NoCond

data Clauses = Or [Literal] | SgC Literal

data Literal = Gt Quantity Quantity | Lt Quantity Quantity |

El Quantity Quantity | Ne Quantity Quantity

where each statement is a propositional statement in conjunctive normal form.
Each data value of type BCondition may be defined using either the constructor
And, which defines a conjunction over a list of clauses, each of type Clause, the
constructor SgB, which defines a single clause, or the nullary constructor NoCond,
which defines no condition and is a tautology. The type Clause is defined using
either the constructor And, which defines a disjunction of literals, each of type
Literal or the constructor SgC, which defines a single literal. The type Literal
defines binary numerical equalities and inequalities using constructors Gt, Lt,
El and Ne for greater than, less than, equal and not equal respectively over a
pair of numerical quantities, each of type Quantity, of the same numerical type.

data Quantity = Pty Property | Rge Range

data Property = Nm String VType

data VType = EmT | InT | FlT | TiT

data Range = Emv [String] | Inv Int Int | Flv Float Float |

Tiv Time Time
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Each quantity defines either a unique name that identifies a property of type
Property associated with a particular state, a closed interval of numerals and
durations or an enumeration of values. The type miseqs is the subprocess coun-
terpart of miseq. Its type is implemented by the constructor Miseqs.

The graphical notation pool in Figure 5 forms the outermost container for a
single business processes; only one process instance is allowed at any one time.

Figure 7: Abstract syntax of BPMN diagram

Figure 7 shows the abstract syntax of a BPMN diagram, where each diagram
is a collection of StateSet. Below is the corresponding data type StateSet in
Haskell.

data StateSet = Atomic [State] | SubProcess State [StateSet]

type BPMN = [(CName,[StateSet])]

Each StateSet defines either a list of non-subprocess states by the constructor
Atomic, or a subprocess state by the constructor SubProcess, which records the
type and sequence flows of the subprocess states by its first argument, and the
subprocess’s constituent states by its second arguments, of type [StateSet]. A
BPMN diagram hence is a list of pairs, each records the states of a single local
composition diagram, typed [StateSet], and the name that identifies it. We
assume states of each BPMN diagram are well-formed [16], and introduce the
notion of well-formedness to the representation of BPMN diagrams to facilitate
our transformation process by the following definition

Definition 1 Given a representation of some BPMN diagram bp, it is well-

formed if for each local composition diagram comp in [ lc | (n,lc) <- bp

], its non-subprocess states are recorded in head comp and are well-formed, and
all its subprocess states are recorded in tail comp and they are also well-formed.

We hence identify each BPMN diagram within a collaboration diagram [16] by
a unique name, of type CName and we therefore defines a BPMN diagram using
the type BPMN, which is a list of pairs of name and its corresponding BPMN
diagram.

4 Transformation

In this section we describe the bidirectional transformation between observa-
tion workflows of type OWorkflow and their corresponding subset of BPMN dia-
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grams. Specifically we have implemented a total function transforming OWorkflow
to BPMN and its inverse, a partial function transforming a subset of BPMN to
OWorkflow.

w2b :: OWorkflow -> BPMN

b2w :: BPMN -> OWorkflow

Here we explain the functions informally. We initially describe transformation
between a single sequence rule to its corresponding BPMN subprocess state by
explaining the transformation over each of the components that makes up the
7-tuple of a sequence rule. We describe the transformation of individual compo-
nents by introducing some building blocks in BPMN, which may be mapped to
those components. We then describe the notion of scoping, the transformation
rules of Prerequisite, and composition of sequence rules to model a complete
observation workflow.

4.1 Observation

Figure 8 shows an expanded BPMN subprocess state depicting a single depen-
dent observation, of type Act. According to the behavioural semantics of an
observation, an observation may be performed after a delay ranging from the
minimum to the maximum duration, provided that its associated condition is
satisfied. The delay range is graphically modelled by first modelling minimum
duration as the stime state (timer start event), and then modelling the duration
ranges from the elapse of the minimum duration to the maximum duration using
a task state which halts for an unknown duration, with an expiration exception
flow, of which the expiry duration is the difference between maximum and mini-
mum durations of the delay. We use a xgate (exclusive choice) decision gateway
state for accepting either the task state’s outgoing transition or its expiration
exception flow.

Figure 8: A BPMN subprocess state depicting a single observation.

The decision gateway is then followed by a task state, which models the
actual observation itself and is identified by applying the function idToTName

to the identifier of the observation being mapped.

idToTName :: ActId -> TaskName

An end state follows immediately for terminating the execution of the sub-
process. The subprocess itself has one incoming and one outgoing transition,
denoted as the outermost incoming and outgoing transitions respectively. We
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have implemented the function mkAct to automate the transformation from the
subprocess state modelling an observation of type Obv, encapsulating a single
observation of type Act via the constructor function Da.

mkAct :: StateSet -> Obv

mkAct (SubProcess s st) = Da ((getDNme st),(getMaxT st),(getMinT st),

(getCond (SubProcess s st)))

where the function getDNme takes a list of states of a subprocess state describ-
ing a dependent observation and returns. the identifier of that observation;
functions getMaxT and getMinT each takes the same argument as getDNme and
returns the maximum and minimum delay, of type Duration respectively. The
function getCond takes the subprocess state, together with its constituent states
and returns a skip logic condition [5].

We have also implemented the function mkDpt to transform a single obser-
vation, of type Obv to a BPMN subprocess modelling that observation,

mkDpt :: Act -> Line -> ([StateSet],Line)

mkDpt (id,min,max,cond) ln =

([ (SubProcess (MkState (Bpmn (idToBName id) SequenceB)

[(True,ln)] [(True,nl)] (mkExp cond) 0) sts) ], nl)

where (sts,nl) = mkdIntern (id,min,max) (inLine ln)

where the function idToBName maps the name of an observation to a unique
name for identifying the subprocess, the function mkExp maps a condition to a
set of exception flows and the function mkdIntern maps the three components
of an observation to its corresponding subprocess’s constituent states. Note
the function mkDpt also takes a fresh line name of type Line for defining the
transitions of the subprocess states and returns another fresh line name for
constructing other parts of the diagram. The function inLine takes a used line
name and returns a fresh one, and the default guard for both BPMN normal
and exception sequence flow is True.

4.2 Groups

Each sequence rule contains zero or more observations and work units. Whereas
the transformation of a single observation has been described in Section 4.1, each
work unit is modelled as a task state, of which the name that identifies the task
is obtained by applying the function workToTask on the unique identifier of the
work unit. Conversely, the function taskToWork is defined to map a task state
name to the unique name of the work unit it models. One or more observations
compose into an observation group, which has been defined inductively in Sec-
tion 2. Similarly one or more work units compose into a work group. Due to the
conformity of both types of compositions to the structured workflow model [6]
as mentioned in Section 2, we have generalised the notion of group and here we
describe the transformation between a group and its corresponding BPMN sub-
process state, which may be applied to both observation group and work group.

Semantically a group describes the control flow of a collection of activities,
Figure 9 shows a BPMN subprocess state describing an observation group, which
is a collection of observations. In the figure each individual observation is mod-
elled by a collapsed subprocess state to maintain the hierarchical structure of
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Figure 9: A BPMN subprocess state depicting an observation group.

the BPMN diagram. Specifically the figure depicts a BPMN subprocess state
describing an observation group defined by the constructor ParD over a list of
two observations, each by the constructor Da. Figure 10, on the other hand,
shows a BPMN subprocess state describing a work group, specifically the fig-
ure depicts a BPMN subprocess state describing a work group defined by the
constructor ParW over a list of two work units, each by the constructor Wk. We

Figure 10: A BPMN subprocess state depicting a work group.

describe informally the transformation rules for a group as follows:

1. Given group go defined by the constructor over a single activity sa, specif-
ically Da applied over a single observation for an observation group and Wk

applied over a single work unit for a work group respectively, we transform
sa according the type of the activity, for an observation, the transforma-
tion rule has been described in Section 4.1, and a work unit is simply
represented by a task state, of which the task name is defined by applying
workToTask to the name of the work unit. We use sa’s outermost in-
coming and outgoing transitions as go’s outermost incoming and outgoing
transitions.

2. Given a group go defined by some parallel constructor over a list of n
groups, specifically ParD and ParW applied over a list of observation groups
and work groups respectively, where n ≥ 1, the corresponding BPMN
states are two agate decision gateways. One of which has one incoming
transition, denoted as the go’s outermost incoming transition, and n out-
going transitions, each matching the outermost incoming transition from
one of the n groups, and the other one has n incoming transitions, each
matching the outermost outgoing transition from one of the n groups, and
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one outgoing transitions, denoted as the go’s outermost outgoing transi-
tion. The transformation of the n groups are defined recursively.

3. Given group go defined by some choice constructor over a list of n groups,
specifically ChoiceD and ChoiceW applied over a list of observation groups
and work groups respectively, where n ≥ 1, the corresponding BPMN
states are two xgate decision gateways where their transitions are defined
similarly to the above rule, and the transformation of the n groups are
defined recursively.

4. Given an observation group go defined by the sequential constructor over a
list of n groups, specifically SeqD and SeqW over a list of observation groups
and work groups respectively, where n ≥ 1, the outermost outgoing tran-
sition of each group is matched by the outermost incoming transition of
its next group. The outermost incoming transition of the first group de-
fines the outermost incoming transition of go, and the outermost outgoing
transition of the last group defines the outermost outgoing transition of
go.

We have implemented the function getObv to transform the subprocess state
describing an observation group to an observation group of type Obv.

getObv :: StateSet -> Obv

getInv :: StateSet -> Works

Similarly, we have implemented the function getInv to transform a work group
of type Works. Conversely, we have implemented the function extObv to trans-
form an observation group of type Obv to a subprocess state describing that
group,

extObv :: Line -> Obv -> ([StateSet],Line)

extObv ln (ChoiceD dpts) = extDptM Xgate ln dpts

extObv ln (ParD dpts) = extDptM Agate ln dpts

extObv ln (Da act) = if (elem (fst4 act) specialId)

then ([],ln) else mkDpt act ln

extObv ln (SeqD dpts) = ((concat.fst) seqs,(last.snd) seqs)

where seqs = (unzip . extDptS ln) dpts

where the function extDptM takes a list of observation groups and constructs
the required decision gateways and recursively transforms a list of observation
groups according to Rules 2 and 3 described above; the function mkDpt has been
described in Section 4.1 and the function extDptS recursively transform a list of
observation groups taken from the argument of the constructor SeqD according
to rule 4. A corresponding function has been implemented for work groups.

4.3 Repeat Clauses

This section describes informally the transformation between a list of repeat
clauses, each of type RepeatExp, and its corresponding BPMN subprocess state.
Figure 11 shows a BPMN subprocess modelling a single repeat clause. According
to the semantics of a repeat clause, each repeat clause in a sequence rule repeats
all dependent observations defined in that rule; the number of repetitions from
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each clause ranges between a minimum and a maximum value, and there is a
delay, ranging between a minimum and a maximum duration, before each repeti-
tion can start. We model the delay range of a repeat clause graphically according
to the transformation rules defined for a single observation in Section 4.1.

Figure 11: A BPMN subprocess state depicting a repeat clause.

We model each repeated observations as a subprocess state according the
transformation of groups in Section 4.2. An end state follows immediately for
terminating the execution of the subprocess. The subprocess, which defines
the repeat clause, is a multiple instance miseqs state, and it has one incoming
and one outgoing transition, denoted as the outermost incoming and outgoing
transitions respectively. The multiple instance subprocess state is implemented
by the Haskell type Miseqs which takes an integer value to specify the maximum
number of repetitions and a condition to specify the conjunction of the minimum
number of repetitions required and the clause’s conditional statement. Below
shows an example of how to model the clause’s repetition range and conditional
statement,

rep01 = Miseqs "Treatment" 2 RepeatB (And [cond01,cond02])

con01 = Sgl (Lt (Pty (Nm "LoopCounter" InT)) (Rge (Inv 5 10)))

con02 = Sgl (Eq (Pty (Nm "Abnormal Blood Count" EmT))

(Rge (Emv ["VHigh","VLow"])))

where the state type rep01 records information about a repetitive observation
during a study of an effect of a medical intervention. It contains a conjunction of
two conditions. Condition cond01, is satisfied if the current number of repetition
is less than a value randomly chosen over the closed interval [5..10], and
Condition cond02 is satisfied if the abnormal blood count of the patient is
either very high or very low.

A list of repeat clauses is therefore transformed iteratively over each clause
starting from head of the list, similar to the transformation of a group for some
sequential constructor described in the Rule 4 in Section 4.2. Figure 12 shows
a BPMN subprocess state representing a list of two repeat clauses. Individual
repeat clause is shown as collapsed subprocess state.

Figure 12: A BPMN subprocess state depicting a list of two repeat clauses.
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4.4 Sequence Rules

We have so far described the transformation rules for repeat clauses, obser-
vation and work groups, constituting the fifth, sixth and seventh elements of
a sequence rule’s 7-tuple. In this section we apply these transformation rules
and detail the transformation of a complete sequence rule. Figure 13 shows a

Figure 13: A BPMN subprocess representing a single sequence rule.

BPMN subprocess state representing a single sequence rule. The subprocess
state is defined by three other subprocess states, collapsed in the figure, which
model observations, work units and repeat clauses defined in the sequence rule.
A sequence rule is enacted by first performing all its observations once, mod-
elled by the subprocess observation block, after which the list of repeat clauses,
modelled by the subprocess state repeat clauses is evaluated. As explained in
Section 2, work units are empirical procedures and their executions are inter-
leaved with their corresponding observations, hence we use an agate decision
gateway state to initialise both observations and work units. We do not con-
strain how work units are interleaved with observations as our current workflow
model focuses on the specification of observations, therefore it solely depends
on the study planners. Note if no work unit is defined in the sequence rule, the
corresponding subprocess will not have agate states and will be represented by
a sequential composition of the observation block and repeat clauses states.

Finally we associate a conditional exception sequence flow with each subpro-
cess state to model the enacting and the interrupting conditions of the sequence
rule. where the type Irule takes a disjunction, translated into conjunctive
normal form, of the two conditions, where the enacting condition is conjoined
with the atomic proposition status == ready, signifying the state is ready to
be enacted, and the interrupting condition is conjoined with the proposition
status == completing, signifying the state has been enacted. For example, in a
clinical trial a sequence rule may be defined for administering a new drug on a
patient, where insulin level of the patient is to be monitored before and during
the treatment. The following two conditions might have been specified,

start = Ands [Ors [(Emu ["Normal"],"Insulin Levels")]]

terminating = Ands [Ors [(Emu ["Low"],"Insulin Levels")]]

where the sequence rule may be carried out if enact is satisfied and the enact-
ment must be aborted if interrupt is satisfied.

The following shows the translation these conditions into appropriate con-
junctive normal form, where the statement condS is satisfied either both the
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state is ready to be enacted and insulin level is not normal or both the state is
being enacted and insulin level is low.

cA = El (Pty (Nm "this.status" EmT)) (Rge (Emv ["Ready"]))

cB = Ne (Pty (Nm "Insulin Level" EmT)) (Rge (Emv ["Normal"]))

cC = El (Pty (Nm "this.status" EmT)) (Rge (Emv ["Completing"]))

cD = El (Pty (Nm "Insulin Level" EmT)) (Rge (Emv ["Low"]))

condS = And [Or [cA,cC],Or [cA,cD],Or [cB,cC],Or [cB,cD]]

Both cA and cC are propositions of the state’s status, and both cB and cB are
proposition translated from the two conditional statements above.

4.5 Scopes and Prerequisites

An observation workflow, of type OWorkflow, is a list of sequence rules connected
according to each rule’s prerequisite. Figure 14 shows a single observation work-
flow modelled as a BPMN diagram. It consists three sequence rules and one

Figure 14: A BPMN diagram describing a single observation workflow.

collapsed scoping subprocess state. The expanded version of the scoping sub-
process state is shown in Figure 15, where there are two subprocess states, each

Figure 15: A BPMN scoping subprocess state.

modelling a sequence rule. Scoping is an extension of prerequisite and it ensures
correct dependencies can be constructed between sequence rules.

Prerequisite is a collection of names that identifies preceding sequence rules,
and is recorded in the second element of each sequence rule. Here we describe
the translation rules to build dependencies between sequence rules according
to their prerequisite. First we describe the derivation, the application and the
associated functions of a sequence paths list.
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A sequence paths list, of type [[ActId]], contains a list of syntactic path
from the start of the workflow enactment to a termination via one or more
sequence rules, each identified by its rule name. We have implemented the
function preList to derive the sequence paths list.

preList :: [EventSequencing] -> [ActId] -> PreAct -> [[ActId]]

preList es ans (Pa START) = [[START]++ans]

preList es ans (OneOf pas) = concatMap (preList es ans) pas

preList es ans (All pas) = concatMap (preList es ans) pas

preList es ans (Pa a) =

preList es ([a]++ans) ((getPr.head) (filter (equalNm a) es))

For example consider the following simple observation workflow,

[Event (Id "SEQ1") (Pa START),

Event (Id "SEQ2") (Pa (Id "SEQ1")),

Event (Id "SEQ3") (Pa (Id "SEQ1")),

Event (Id "SEQ4") (Pa (Id "SEQ2")),

Event (Id "SEQ5") (Pa (Id "SEQ2")),

Event (Id "SEQ6") (OneOf [Pa (Id "SEQ4"),Pa (Id "SEQ5")]),

Event (Id "SEQ7") (All [Pa (Id "SEQ3"),Pa (Id "SEQ6")]),

Event NORMAL_STOP (Pa (Id "SEQ7"))]

where we have only shown each rule’s name and its prerequisite, its correspond-
ing sequence paths list are derived as follows with three sequence paths leading
from the start to a termination of the workflow.

[[START,Id "SEQ1",Id "SEQ3",Id "SEQ7"],

[START,Id "SEQ1",Id "SEQ2",Id "SEQ4",Id "SEQ6",Id "SEQ7"],

[START,Id "SEQ1",Id "SEQ2",Id "SEQ5",Id "SEQ6",Id "SEQ7"]]

Each sequence rule is connected to its preceding rules via prerequisite, we
begin constructing the dependencies by recursively evaluating the prerequisite
of each rule starting from the rule, of which the identifier immediately precedes
termination in the sequence paths list, in the above example the starting rule is
identified by the name SEQ7. The evaluation follows sequence paths list until it
reaches the beginning of the list, the reserved name START, which identifies the
start of the workflow.

When evaluating a prerequisite defined by one of the branching constructors,
OneOf or All, each branch is evaluated independently, therefore it is necessary to
derive the merging point of all the branches. we have implemented the function
mPoint over the sequence paths list to derive the merging point.

mPoint :: [[ActId]] -> ActId

mPoint pl = case find (com (pl \\ [shl])) (reverse shl) of

Just a -> a

Nothing -> OtherId ""

where shl = head (filter ckl pl)

sh = minimum (map length pl)

ckl l = (length l) == sh

com ps p = and (map (elem p) ps)
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A merge point essentially is the sequence rule identified by the rule name com-
mon to all sequence paths, therefore at any point of the evaluation a sequence
paths list may have only one merge point. As for the above example, the pre-
requisite of the rule SEQ7 is defined by the branching constructor All, and the
corresponding merging point is the rule identified by the name SEQ1.

Prerequisite may contain nested branches and when evaluating individual
branch, it is also necessary to derive a sublist of a sequence paths that asso-
ciates with the current path, this is because there may be different merging
point for a branch to be defined by another branching constructor. Therefor we
have implemented the function subList, which takes a list of rule names and a
sequence path list, and returns a sublist of sequence paths containing those rule
names from the list.

subList :: [ActId] -> [[ActId]] -> [[ActId]]

subList [] plist = plist

subList (i:ids) plist = subl ids (filter (elem i) plist)

where subl id pl = if (mPoint pl /= id) then pl

else map (reverse.(dropWhile (/=id)).reverse) pl

As for the above example, while the branches defined by the prerequisite of
the rule SEQ7 has a merging point identified by the rule name SEQ1, the path
of one of the branches contains the sequence rule SEQ6, which is defined by
another branching constructor OneOf. Its corresponding sublist of sequence
paths defined below and its merging point is SEQ2.

[[START,Id "SEQ1",Id "SEQ2",Id "SEQ4",Id "SEQ6"],

[START,Id "SEQ1",Id "SEQ2",Id "SEQ5",Id "SEQ6"]]

Having defined the derivation and application of a sequence path list, we now
describe the rules to construct dependencies. Given a list of sequence rules SR,
the list of corresponding subprocess states SP , to which SR are transformed,
and the corresponding sequence paths list SL, we evaluation the starting rule
of SR, the rule which immediately precedes termination, as follows:

1. Given a rule rl with a prerequisite defined by the constructor Pa over a
single rule name id , if id equals a merging point then we have reached the
end of a path and returns the connected BPMN states. Otherwise we find
rule rl2 in SR, identified by id and its corresponding subprocess state s2
in SP . we define the outgoing transition of the state s2 to be equal to the
incoming transition of the rl ’s corresponding state, we then continue to
evaluate rl2;

2. Given a rule rl with a prerequisite defined by the constructor All over a
list of rules ids , we define some scoping subprocess ss , consisting a start
state st , an end ed , two agate states, ag1 and ag2, and n sequential com-
positions of connected states rets , obtained by evaluating ids recursively
and where n is the length of ids . We define n incoming transitions for ag2
and n outgoing transitions for ag1. We connect each incoming transition
of ag2 to the outgoing transition of each sequential compositions rets , and
connect each outgoing transition of ag1 to the incoming transition of each
sequential compositions rets . The outgoing transition of ag2 connects to
ed and the incoming transition of ag1 connects to st ;
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3. Given a rule rl with a prerequisite defined by the constructor OneOf over
a list of rules ids , we define some scoping subprocess ss , consisting a start
state st , an end ed , two xgate states, xg1 and xg2, and n sequential com-
positions of connected states rets , obtained by evaluating ids recursively
and where n is the length of ids . The definition of transitions is similar
to the immediate above rule.

5 On Simulation, Automation and Formalisa-

tion

In this section we discuss briefly the application of business process manage-
ment technique to empirical studies. We describe informally, via a simple ex-
ample, how modelling empirical studies in BPMN allows their study plans to
be simulated and partially automated by translating the BPMN diagrams into
executable BPEL processes. We also discuss how modelling empirical studies
in BPMN has consequently induced a formal behavioural semantics upon our
observation workflow model and hence removed ambiguities in both the trans-
formations and interpretation of OWorkflow.

Figure 16: A BPMN diagram of a simplified clinical trial.

As useful as it is to visualise and formally specify a complete study plan, it
is also beneficial to validate the plan before its execution phase, especially if the
study has a long running duration, since it is undesirable to run into an error
three months into the study! One method of validating a study is by simulation.
When considering either simulating or automating a portion of a study, we as-
sume the observations specified in that portion can be appropriately simulated
or automated; an observation might define the action of recording a measure-
ment from a display interfacing with a software application or submitting a web
form to a web service for analysis.

Figure 16 shows a BPMN diagram of a simplified phase III chemotherapy
clinical trial, which contains two sets of concurrent interventions, each inter-
leaved with some observation consisting of submitting forms about specific med-
ical conditions of the patients. The following shows a simplified observation
group defined by the sequence rule, which is modelled by the observation block
subprocess in the figure, an expanded view of the subprocess is shown in Fig-
ure 17.
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Figure 17: A BPMN diagram of an observation block.

(SeqD [Da (Id "Hypertensity Report", Dur "P7D",Dur "P7D",None,Manual),

ChoiceD [Da (Id "Tumour Measurement Report", Dur "P1D",Dur "P1D",

Ands [Ors [(Emu ["low"],"blood pressure")]],Manual),

Da (Id "Toxicity Review", Dur "P1D",Dur "P1D",

Ands [Ors [(Emu ["high"],"blood pressure")]],Manual)]])

While submitting a report form is a manual task, due to the transformation,
it is possible to simulate this action by translating its corresponding BPMN
subprocess state into the corresponding sequence of BPEL activities,

<sequence>

<wait for="PT7M"><operation name="sendHypertensityReport">

<input message="hypertensityMessage" />

</operation></wait>

<switch>

<case condition="getVariableData(’blood pressure’) == high">

<wait for="PT1M"><operation name="sendToxicityReview">

<input message="toxicityMessage" />

</operation></wait>

</case>

<case condition="getVariableData(’blood pressure’) == low">

<wait for="PT1M"><operation name="sendTumourReport">

<input message="tumourMessage" />

</operation></wait>

</case>

</switch>

</sequence>

where each wait activity is an invocation upon the elapse of a specified duration.
Since the derived BPEL process is for simulation, we scale down the specified du-
ration of each observation. Note each invocation in a BPEL process is necessarily
of a web service; if the specified observation defines an action to invoke a web
service, e.g. uploading a web form, the translated BPEL operation will also be
invoking that web service, and otherwise, for simulation purposes, a “dummy”
web service could be used for merely receiving appropriate messages. Similarly,
partial automation is also possible by translating appropriate observations into
BPEL processes which may be executed during the execution phase of the study.

In recent work, a formal relative timed semantics have been given to BPMN
in the process algebra CSP [16]. By defining a transformation function between
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OWorkflow and BPMN, it has automatically induced a behavioural semantics
for OWorkflow. In this section we briefly describe two examples. In the first

Figure 18: A BPMN diagram of a variant of observation block in Figure 17.

example, we analyse a variation of the observation block in Figure 17, shown in
Figure 18. Here we show its corresponding the sequence rule.

(SeqD [Da (Id "Hypertensity Report", Dur "P7D",Dur "P7D",None,Manual),

ParD [Da (Id "Tumour Measurement Report", Dur "P1D",Dur "P3D",None,Manual),

Da (Id "Toxicity Review", Dur "P1D",Dur "P4D",None,Manual)]])

and also the definition of the repeat clauses.

[(T7D,T14D,4,4,None)]

We also shows the definition of the observation block and repeat clauses for the
second treatment.

SeqD [Da (Id "Dose Report", Dur "P1D",Dur "P2D",None,Manual)]

[(T14D,T21D,3,3,None)]

When a clinical trial protocol is designed, one might ensure certain behavioural
properties about the clinical design based on some oncological safety princi-
ples [4]. One property for this particular trial description is that

Each dose report is to be completed before no more than 2 tumour
measurement reports and toxicity reviews.

The formal semantics of BPMN in CSP [16] allows such property to be for-
malised as a process-based behavioural specification and allows a formal verifi-
cation of the clinical trial against this specification could then done by model
checking the following stable failures [14] refinement assertion

DR vvF
(PLAN \ (Σ \ αDR))

where DR is the process-based specification of the property in interest, PLAN
is the CSP process describing the semantics of the trial, in CSP we write Σ to
denote the set of all possible events and αP to denote the set of possible events
performed by P .

In the second example, we analyse the two different BPMN diagrams, shown
in Figure 19, modelling the same observation workflow described below, omitting
description of observations and work units.
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Figure 19: Two BPMN diagrams modelling semantically equivalent observation
workflow.

[Event (Id "SEQ1") (Pa START), Event (Id "SEQ2") (Pa (Id "SEQ1")),

Event (Id "SEQ3") (Pa (Id "SEQ1")),

Event NORMAL_STOP (All [Pa (Id "SEQ2"),Pa (Id "SEQ3")])]

Although applying the function w2b over this OWorkflow definition will yield
the diagram in Figure 19(a), one would like to know if applying the function b2w

over the two diagrams will yield the same OWorkflow definition. The formal
semantics of BPMN in CSP [16] allows us to show that these two diagrams are in
fact semantically equivalent, by model checking the following failures refinement
assertions:

PLAN 1 vF PLAN 2 ∧ PLAN 2 vF PLAN 1

where PLAN 1 and PLAN 2 are CSP processes describing the semantics of the
BPMN diagrams in Figure 19(a) and Figure 19(b) respectively. This simple
example leads to the following definition on scoping described in Section 4.5.

Definition 2 Given a BPMN diagram B describing some observation work-
flow, B is properly scoped if for all the scoping subprocess states SC defined
in B, the outgoing transition of the start state of each scoping state in SC
matches an incoming transition of a decision gateway state, agate or xgate,
and the incoming transition of the end state of each scoping state in sc matches
an outgoing transition of a decision gateway state.
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6 Conclusion

Specifications of long running empirical studies are complex; the production
of a complete specification can be time consuming and prone to error. We
have described a graphical method to assist this type of specification. We have
introduced an observation workflow model OWorkflow suitable for specifying
empirical studies, which then can be populated onto a calendar for scheduling,
and described bidirectional transformations, which allow empirical studies to
be constructed graphically using BPMN, and to be simulated and partially
automated as BPEL processes. The transformation also induces a behavioural
semantics upon OWorkflow, and we have described the use of the semantics to
formalise scoping in the transformation process.

To the best of our knowledge, this paper describes the first attempt to ap-
ply graphical workflow technology to empirical studies and calendar scheduling,
while large amounts of research have focused on the application of workflow
notations and implementations to “in silico” scientific experiments. Notable is
Ludäscher et al.’s Kepler System [7], in which such experiments are specified
as a workflow graphically and fully automated by interpreting the workflow
descriptions on a runtime engine. On the other hand we employ BPMN as a
graphical notation to specify and graphically visualise experiments and studies
that are typically long-running and in which automated tasks are often inter-
leaved with manual ones. Studies such as clinical trial would also include “in
vivo” intervention. Furthermore, our approach targets studies that are usually
recorded in a calendar schedule to assist administrators and managers. Simi-
larly, research effort has been directed towards effective planning of specific types
of long running empirical studies, namely clinical trials and guidelines. Notable
is Modgil and Hammond’s Design-a-Trial (DaT) [8]. DaT is a decision support
tool for critiquing the data supplied specifically for randomized controlled clin-
ical trial specification based on expert knowledge, and subsequently outputting
a protocol describing the trial. DaT includes a graphical trial planner, which
allows description of complex procedural contents of the trial. To ease to com-
plexity of protocol constructions, DaT uses macros, common plan (control flow)
constructs, to assist trial designers to construct trial specification.

Future work will include extending our observation workflow model for more
detail specifications of work units, such as temporal and procedural information,
thereby allowing study plans to be verified against specifications of the relation-
ship between work units and observations.
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