Solving simple PDEs using the finite element method

・ロト < 団ト < 三ト < 三ト ・ 三 ・ のへの

FEM for simple PDEs: elliptic and parabolic linear PDEs

Second-order PDEs commonly arise in physical models. There are three archetypal second-order PDEs

() Elliptic PDEs, for example, Poisson's equation $\nabla^2 u + f = 0$

② Parabolic PDEs, for example, the heat equation $u_t = \nabla^2 u + f$

③ Hyperbolic PDEs, for example, the wave equation $u_{tt} = \nabla^2 u$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Second-order PDEs commonly arise in physical models. There are three archetypal second-order PDEs

9 Elliptic PDEs, for example, Poisson's equation $\nabla^2 u + f = 0$

② Parabolic PDEs, for example, the heat equation $u_t = \nabla^2 u + f$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

③ Hyperbolic PDEs, for example, the wave equation $u_{tt} = \nabla^2 u$

First, an abstract class defining a general linear elliptic PDE $\nabla \cdot D\nabla u = f$, where *D* is a matrix-valued function of position (the diffusion tensor):

AbstractLinearEllipticPde: Abs. method: GetDiffusionTensor(x) Abs. method: GetForceTerm(x)

MyEllipticPde: inherits from AbstractLinearEllipticPde Implemented method: GetDiffusionTensor(x) Implemented method: GetForceTerm(x)

For example $\nabla^2 u = 0$

LaplacesEquation: inherits from AbstractLinearEllipticPde Implemented method: GetDiffusionTensor(x) > return identity matrix Implemented method: GetForceTerm(x) > return zero

First, an abstract class defining a general linear elliptic PDE $\nabla \cdot D\nabla u = f$, where *D* is a matrix-valued function of position (the diffusion tensor):

AbstractLinearEllipticPde: Abs. method: GetDiffusionTensor(x) Abs. method: GetForceTerm(x)

MyEllipticPde: inherits from AbstractLinearEllipticPde Implemented method: GetDiffusionTensor(x) Implemented method: GetForceTerm(x)

For example $\nabla^2 u = 0$

LaplacesEquation: inherits from AbstractLinearEllipticPde Implemented method: GetDiffusionTensor(x) > return identity matrix Implemented method: GetForceTerm(x) > return zero

First, an abstract class defining a general linear elliptic PDE $\nabla \cdot D\nabla u = f$, where *D* is a matrix-valued function of position (the diffusion tensor):

```
AbstractLinearEllipticPde:
    Abs. method: GetDiffusionTensor(x)
    Abs. method: GetForceTerm(x)
```

MyEllipticPde: inherits from AbstractLinearEllipticPde Implemented method: GetDiffusionTensor(x) Implemented method: GetForceTerm(x)

For example $\nabla^2 u = 0$

LaplacesEquation: inherits from AbstractLinearEllipticPde Implemented method: GetDiffusionTensor(x) > return identity matrix Implemented method: GetForceTerm(x) > return zero

Next, an abstract class defining a general linear parabolic PDE

 $\alpha u_t = \nabla \cdot D \nabla u + f$

where α , D and f are functions of space and time.

```
AbstractLinearParabolicPde:
    Abs. method: GetDuDtCoefficientTerm(t,x)
    Abs. method: GetDiffusionTensor(t,x)
    Abs. method: GetForceTerm(t,x)
```

For example $u_t = \nabla^2 u$

HeatEquation: inherits from AbstractLinearParabolicPde
Implemented method: GetDuDtCoefficientTerm(t,x)
▷ return 1
Implemented method: GetDiffusionTensor(x)
▷ return identity matrix
Implemented method: GetForceTerm(x)
▷ return zero

Next, an abstract class defining a general linear parabolic PDE

```
\alpha u_t = \nabla \cdot D \nabla u + f
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where α , D and f are functions of space and time.

```
AbstractLinearParabolicPde:
```

```
Abs. method: GetDuDtCoefficientTerm(t,x)
Abs. method: GetDiffusionTensor(t,x)
Abs. method: GetForceTerm(t,x)
```

```
For example u_t = \nabla^2 u
```

HeatEquation: inherits from AbstractLinearParabolicPde
Implemented method: GetDuDtCoefficientTerm(t,x)
▷ return 1
Implemented method: GetDiffusionTensor(x)
▷ return identity matrix
Implemented method: GetForceTerm(x)
▷ return zero

FEM for simple PDEs: introduction to FEM

<□ > < @ > < E > < E > E のQ @

The finite element method

Stages

- Convert equation from strong form to weak form
- ② Convert infinite-dimensional problem into a finite dimensional one

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Set up the finite element linear system to be solved

Solving PDEs

Weak form of Poisson's equation

Consider Poisson's equation:

$$\nabla^2 \mathbf{u} + f = 0$$

subject to boundary conditions

$$\begin{aligned} \boldsymbol{u} &= \boldsymbol{0} & \text{on } \boldsymbol{\Gamma}_1 \\ \boldsymbol{\nabla} \boldsymbol{u} \cdot \boldsymbol{n} &= \boldsymbol{g} & \text{on } \boldsymbol{\Gamma}_2 \end{aligned}$$

Weak form

Multiply by a test function v satisfying v = 0 on Γ_1 , and integrate:

$$v \left(\nabla^2 u \right) = -fv$$

$$\int_{\Omega} v \left(\nabla^2 u \right) dV = -\int_{\Omega} fv \, dV$$

$$\int_{\partial \Omega} v \left(\nabla u \cdot \mathbf{n} \right) dS - \int_{\Omega} \nabla u \cdot \nabla v \, dV = -\int_{\Omega} fv \, dV$$

$$\int_{\Omega} \nabla u \cdot \nabla v \, dV = \int_{\Omega} fv \, dV + \int_{\Gamma_2} gv \, dS$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Weak form of Poisson's equation

Consider Poisson's equation:

$$\nabla^2 \mathbf{u} + f = \mathbf{0}$$

subject to boundary conditions

$$\begin{aligned} \boldsymbol{u} &= 0 & \text{on } \Gamma_1 \\ \boldsymbol{\nabla} \boldsymbol{u} \cdot \boldsymbol{n} &= \boldsymbol{g} & \text{on } \Gamma_2 \end{aligned}$$

Weak form

Multiply by a test function v satisfying v = 0 on Γ_1 , and integrate:

$$v\left(\nabla^{2}\boldsymbol{u}\right) = -fv$$

$$\int_{\Omega} v\left(\nabla^{2}\boldsymbol{u}\right) dV = -\int_{\Omega} fv dV$$

$$\int_{\partial\Omega} v\left(\nabla\boldsymbol{u}\cdot\mathbf{n}\right) dS - \int_{\Omega} \nabla\boldsymbol{u}\cdot\nabla v dV = -\int_{\Omega} fv dV$$

$$\int_{\Omega} \nabla\boldsymbol{u}\cdot\nabla v dV = \int_{\Omega} fv dV + \int_{\Gamma_{2}} gv dS$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

Solving PDEs

Weak form of Poisson's equation

Let \mathcal{V} be the space of all differentiable functions on Ω (more precisely, \mathcal{V} is the Sobolev space $H^1(\Omega)$). Let

$$\mathcal{V}_0 = \{ v \in \mathcal{V} : v = 0 \text{ on } \Gamma_1 \}$$

Example

Solve
$$\frac{d^2 u}{dx^2} = 1$$
, $u(0) = u(1) = 0$

Find differentiable *u* satisfying u(0) = u(1) = 0 and: $\int_0^1 \frac{du}{dx} \frac{dv}{dx} dx = -\int_0^1 v dx$ for all v s.t. v(0) = v(1) = 0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Weak form of Poisson's equation

Let \mathcal{V} be the space of all differentiable functions on Ω (more precisely, \mathcal{V} is the Sobolev space $H^1(\Omega)$). Let

$$\mathcal{V}_0 = \{ v \in \mathcal{V} : v = 0 \text{ on } \Gamma_1 \}$$

Example

Solve
$$\frac{d^2 u}{dx^2} = 1$$
, $u(0) = u(1) = 0$ V

Find differentiable *u* satisfying u(0) = u(1) = 0 and: $\int_0^1 \frac{du}{dx} \frac{dv}{dx} dx = -\int_0^1 v dx$ for all v s.t. v(0) = v(1) = 0

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Weak form of Poisson's equation

Let \mathcal{V} be the space of all differentiable functions on Ω (more precisely, \mathcal{V} is the Sobolev space $H^1(\Omega)$). Let

$$\mathcal{V}_0 = \{ v \in \mathcal{V} : v = 0 \text{ on } \Gamma_1 \}$$

VS

Example

Solve
$$\frac{d^2 u}{dx^2} = 1$$
, $u(0) = u(1) = 0$

Find differentiable *u* satisfying

$$u(0) = u(1) = 0$$
 and:
 $\int_0^1 \frac{du}{dx} \frac{dv}{dx} dx = -\int_0^1 v dx$ for all
v s.t. $v(0) = v(1) = 0$

Find $\textbf{\textit{u}} \in \mathcal{V}_0$ satisfying

$$\int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}V = \int_{\Omega} f v \, \mathrm{d}V + \int_{\Gamma_2} g v \, \mathrm{d}S \qquad \text{for all } v \in \mathcal{V}_0$$

Take

$$\mathcal{V}_0^h = \operatorname{span}\{\phi_1, \phi_2\}$$

(where ϕ_1, ϕ_2 satisfy the Dirichlet boundary conditions), so

$$u_h = \alpha \phi_1 + \beta \phi_2$$

Linear system:

 $\begin{bmatrix} \int_{\Omega} \nabla \phi_{1} \cdot \nabla \phi_{1} \, \mathrm{d}V & \int_{\Omega} \nabla \phi_{1} \cdot \nabla \phi_{2} \, \mathrm{d}V \\ \int_{\Omega} \nabla \phi_{2} \cdot \nabla \phi_{1} \, \mathrm{d}V & \int_{\Omega} \nabla \phi_{2} \cdot \nabla \phi_{2} \, \mathrm{d}V \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \int_{\Omega} f \phi_{1} \, \mathrm{d}V + \int_{\Gamma_{2}} g \phi_{1} \, \mathrm{d}S \\ \int_{\Omega} f \phi_{2} \, \mathrm{d}V + \int_{\Gamma_{2}} g \phi_{2} \, \mathrm{d}S \end{bmatrix}$

Find $u_h \in \mathcal{V}_0^h$ satisfying

$$\int_{\Omega} \nabla u_h \cdot \nabla v \, \mathrm{d} V = \int_{\Omega} f v \, \mathrm{d} V + \int_{\Gamma_2} g v \, \mathrm{d} S \quad \text{for all } v \in \mathcal{V}_0^h$$

Take

 $\mathcal{V}_0^h = \operatorname{span}\{\phi_1, \phi_2\}$

(where ϕ_1, ϕ_2 satisfy the Dirichlet boundary conditions), so

$$u_h = \alpha \phi_1 + \beta \phi_2$$

Linear system:

 $\begin{bmatrix} \int_{\Omega} \nabla \phi_{1} \cdot \nabla \phi_{1} \, \mathrm{d}V & \int_{\Omega} \nabla \phi_{1} \cdot \nabla \phi_{2} \, \mathrm{d}V \\ \int_{\Omega} \nabla \phi_{2} \cdot \nabla \phi_{1} \, \mathrm{d}V & \int_{\Omega} \nabla \phi_{2} \cdot \nabla \phi_{2} \, \mathrm{d}V \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \int_{\Omega} f \phi_{1} \, \mathrm{d}V + \int_{\Gamma_{2}} g \phi_{1} \, \mathrm{d}S \\ \int_{\Omega} f \phi_{2} \, \mathrm{d}V + \int_{\Gamma_{2}} g \phi_{2} \, \mathrm{d}S \end{bmatrix}$

Find $u_h \in \mathcal{V}_0^h$ satisfying

$$\int_{\Omega} \nabla u_h \cdot \nabla v \, \mathrm{d} V = \int_{\Omega} f v \, \mathrm{d} V + \int_{\Gamma_2} g v \, \mathrm{d} S \quad \text{for all } v \in \mathcal{V}_0^h$$

Take

$$\mathcal{V}_0^h = \operatorname{span}\{\phi_1, \phi_2\}$$

(where ϕ_1, ϕ_2 satisfy the Dirichlet boundary conditions), so

$$u_h = \alpha \phi_1 + \beta \phi_2$$

Linear system:

 $\begin{bmatrix} \int_{\Omega} \nabla \phi_1 \cdot \nabla \phi_1 \, \mathrm{d}V & \int_{\Omega} \nabla \phi_1 \cdot \nabla \phi_2 \, \mathrm{d}V \\ \int_{\Omega} \nabla \phi_2 \cdot \nabla \phi_1 \, \mathrm{d}V & \int_{\Omega} \nabla \phi_2 \cdot \nabla \phi_2 \, \mathrm{d}V \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \int_{\Omega} f \phi_1 \, \mathrm{d}V + \int_{\Gamma_2} g \phi_1 \, \mathrm{d}S \\ \int_{\Omega} f \phi_2 \, \mathrm{d}V + \int_{\Gamma_2} g \phi_2 \, \mathrm{d}S \end{bmatrix}$

Find $u_h \in \mathcal{V}_0^h$ satisfying

$$\int_{\Omega} \nabla u_h \cdot \nabla \phi_j \, \mathrm{d}V = \int_{\Omega} f \phi_j \, \mathrm{d}V + \int_{\Gamma_2} g \phi_j \, \mathrm{d}S \qquad \text{for } j = 1, 2$$

Take

$$\mathcal{V}_0^h = \operatorname{span}\{\phi_1, \phi_2\}$$

(where ϕ_1, ϕ_2 satisfy the Dirichlet boundary conditions), so

$$u_h = \alpha \phi_1 + \beta \phi_2$$

Linear system:

 $\begin{bmatrix} \int_{\Omega} \nabla \phi_1 \cdot \nabla \phi_1 \, \mathrm{d}V & \int_{\Omega} \nabla \phi_1 \cdot \nabla \phi_2 \, \mathrm{d}V \\ \int_{\Omega} \nabla \phi_2 \cdot \nabla \phi_1 \, \mathrm{d}V & \int_{\Omega} \nabla \phi_2 \cdot \nabla \phi_2 \, \mathrm{d}V \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \int_{\Omega} f \phi_1 \, \mathrm{d}V + \int_{\Gamma_2} g \phi_1 \, \mathrm{d}S \\ \int_{\Omega} f \phi_2 \, \mathrm{d}V + \int_{\Gamma_2} g \phi_2 \, \mathrm{d}S \end{bmatrix}$

Find $u_h \in \mathcal{V}_0^h$ satisfying

$$\int_{\Omega} \nabla u_h \cdot \nabla \phi_j \, \mathrm{d}V = \int_{\Omega} f \phi_j \, \mathrm{d}V + \int_{\Gamma_2} g \phi_j \, \mathrm{d}S \qquad \text{for } j = 1, 2$$

Take

$$\mathcal{V}_0^h = \operatorname{span}\{\phi_1, \phi_2\}$$

(where ϕ_1, ϕ_2 satisfy the Dirichlet boundary conditions), so

$$u_h = \alpha \phi_1 + \beta \phi_2$$

Linear system:

$$\begin{bmatrix} \int_{\Omega} \nabla \phi_{1} \cdot \nabla \phi_{1} \, \mathrm{d}V & \int_{\Omega} \nabla \phi_{1} \cdot \nabla \phi_{2} \, \mathrm{d}V \\ \int_{\Omega} \nabla \phi_{2} \cdot \nabla \phi_{1} \, \mathrm{d}V & \int_{\Omega} \nabla \phi_{2} \cdot \nabla \phi_{2} \, \mathrm{d}V \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \int_{\Omega} f \phi_{1} \, \mathrm{d}V + \int_{\Gamma_{2}} g \phi_{1} \, \mathrm{d}S \\ \int_{\Omega} f \phi_{2} \, \mathrm{d}V + \int_{\Gamma_{2}} g \phi_{2} \, \mathrm{d}S \end{bmatrix}$$

▲□> <圖> < E> < E> E のQQ

Take

$$V_h = \operatorname{span}\{\phi_1, \phi_2, \dots, \phi_N\}$$

(satisfying $\phi_j = 0$ on Γ_1) so

$$u_h = \alpha_1 \phi_1 + \ldots + \alpha_N \phi_N$$

Let the stiffness matrix and RHS vector be given by

$$\begin{aligned} & \mathcal{K}_{jk} &= \int_{\Omega} \boldsymbol{\nabla} \phi_j \cdot \boldsymbol{\nabla} \phi_k \, \mathrm{d} V \\ & \boldsymbol{b}_j &= \int_{\Omega} f \phi_j \, \mathrm{d} V + \int_{\Gamma_2} \boldsymbol{g} \phi_j \, \mathrm{d} \boldsymbol{S} \end{aligned}$$

and solve

$$\mathcal{K}\begin{bmatrix}\alpha_1\\\vdots\\\alpha_N\end{bmatrix}=\mathbf{b}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Basis functions

Let

$$\begin{aligned} & \mathcal{K}_{jk} &= \int_{\Omega} \boldsymbol{\nabla} \phi_j \cdot \boldsymbol{\nabla} \phi_k \, \mathrm{d} \boldsymbol{V} & \text{stiffness matrix} \\ & \mathcal{M}_{jk} &= \int_{\Omega} \phi_j \phi_k \, \mathrm{d} \boldsymbol{V} & \text{mass matrix} \\ & \boldsymbol{b}_j &= \int_{\Omega} f \phi_j \, \mathrm{d} \boldsymbol{V} + \int_{\Gamma_2} \boldsymbol{g} \phi_j \, \mathrm{d} \boldsymbol{S} \end{aligned}$$

FEM discretisations

Laplace's equation: $\nabla^2 u + f = 0 \qquad \rightarrow \qquad K \mathbf{U} = \mathbf{b}$

Heat equation:

$$\frac{\partial u}{\partial t} = \nabla^2 u + f \qquad \rightarrow \qquad M \frac{\mathrm{d} \mathbf{U}}{\mathrm{d} t} + K \mathbf{U} = \mathbf{b}$$

Time-discretised heat equation:

 $\frac{u^{n+1}-u^n}{\Delta t} = \nabla^2 u^{n+1} + f^{n+1} \longrightarrow M\mathbf{U}^{n+1} + \Delta t \, K \mathbf{U}^{n+1} = M\mathbf{U}^n + \Delta t \, \mathbf{b}^{n+1}$

Anisotropic diffusion

Suppose we have an anisotropic diffusion tensor D (symmetric, positive definite), for example, in Poisson's equation:

$$abla \cdot (D \nabla \mathbf{u}) + f = 0$$

subject to boundary conditions

$$\begin{aligned} u &= 0 & \text{on } \Gamma_1 \\ (D \nabla u) \cdot \mathbf{n} &= g & \text{on } \Gamma_2 \end{aligned}$$

The weak form is: find $u \in \mathcal{V}_0$ satisfying

$$\int_{\Omega} (D\boldsymbol{\nabla} \boldsymbol{u}) \cdot \boldsymbol{\nabla} \boldsymbol{v} \, \mathrm{d} \boldsymbol{V} = \int_{\Omega} f \boldsymbol{v} \, \mathrm{d} \boldsymbol{V} + \int_{\Gamma_2} g \boldsymbol{v} \, \mathrm{d} \boldsymbol{S} \qquad \forall \boldsymbol{v} \in \mathcal{V}_0$$

and the only change in the FEM discretisation is that the stiffness matrix becomes

$$K_{jk} = \int_{\Omega} \boldsymbol{\nabla} \phi_j \cdot (D \boldsymbol{\nabla} \phi_k) \, \mathrm{d} V$$

Anisotropic diffusion

Suppose we have an anisotropic diffusion tensor D (symmetric, positive definite), for example, in Poisson's equation:

 $\nabla \cdot (D\boldsymbol{\nabla} \boldsymbol{u}) + f = 0$

subject to boundary conditions

$$\begin{aligned} u &= 0 & \text{on } \Gamma_1 \\ (D \nabla u) \cdot \mathbf{n} &= g & \text{on } \Gamma_2 \end{aligned}$$

The weak form is: find $u \in \mathcal{V}_0$ satisfying

$$\int_{\Omega} (D\boldsymbol{\nabla} \boldsymbol{u}) \cdot \boldsymbol{\nabla} \boldsymbol{v} \, \mathrm{d} \boldsymbol{V} = \int_{\Omega} f \boldsymbol{v} \, \mathrm{d} \boldsymbol{V} + \int_{\Gamma_2} g \boldsymbol{v} \, \mathrm{d} \boldsymbol{S} \qquad \forall \boldsymbol{v} \in \mathcal{V}_0$$

and the only change in the FEM discretisation is that the stiffness matrix becomes

$$K_{jk} = \int_{\Omega} \boldsymbol{\nabla} \phi_j \cdot (D \boldsymbol{\nabla} \phi_k) \, \mathrm{d} V$$

・ロト・西ト・モート ヨー シタク

In practice, rather using the basis functions in \mathcal{V}_0^h (i.e. bases satisfying $\phi_i = 0$ on Γ_1), we use \mathcal{V}^h , i.e. all the basis functions corresponding to all nodes in the mesh.

We then impose (any) Dirichlet boundary conditions by altering the appropriate rows of the linear system, for example, for $K\mathbf{U} = b$, if we want to impose $U_1 = c$

In practice, rather using the basis functions in \mathcal{V}_0^h (i.e. bases satisfying $\phi_i = 0$ on Γ_1), we use \mathcal{V}^h , i.e. all the basis functions corresponding to all nodes in the mesh.

We then impose (any) Dirichlet boundary conditions by altering the appropriate rows of the linear system, for example, for $K\mathbf{U} = b$, if we want to impose $U_1 = c$

$$\begin{bmatrix} K_{11} & K_{12} & \dots & K_{1N} \\ K_{21} & K_{22} & \dots & K_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ K_{N1} & K_{N2} & \dots & K_{NN} \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ \vdots \\ U_N \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_N \end{bmatrix}$$

In practice, rather using the basis functions in \mathcal{V}_0^h (i.e. bases satisfying $\phi_i = 0$ on Γ_1), we use \mathcal{V}^h , i.e. all the basis functions corresponding to all nodes in the mesh.

We then impose (any) Dirichlet boundary conditions by altering the appropriate rows of the linear system, for example, for $K\mathbf{U} = b$, if we want to impose $U_1 = c$

$$\begin{bmatrix} 1 & 0 & \dots & 0 \\ K_{21} & K_{22} & \dots & K_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ K_{N1} & K_{N2} & \dots & K_{NN} \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ \vdots \\ U_N \end{bmatrix} = \begin{bmatrix} c \\ b_2 \\ \vdots \\ b_N \end{bmatrix}$$

FEM stages

Solve:

$$abla \cdot (D \nabla u) + f = 0$$

subject to boundary conditions

$$u = u^*$$
 on Γ_1
 $(D \nabla u) \cdot \mathbf{n} = g$ on Γ_2

Set up the computational mesh and choose basis functions
Compute the matrix K and vector b:

$$\begin{array}{lll} \mathcal{K}_{jk} & = & \int_{\Omega} \boldsymbol{\nabla} \phi_j \cdot (\boldsymbol{D} \boldsymbol{\nabla} \phi_k) \, \mathrm{d} \boldsymbol{V} \\ \boldsymbol{b}_j & = & \int_{\Omega} f \phi_j \, \mathrm{d} \boldsymbol{V} + \int_{\Gamma_2} \boldsymbol{g} \phi_j \, \mathrm{d} \boldsymbol{S} \end{array}$$

Alter linear system KU = b to impose Dirichlet BCs
Solve linear system

FEM for simple PDEs: FEM details

Consider computing the mass matrix $M_{jk} = \int_{\Omega} \phi_j \phi_k \, \mathrm{d}V$, an N by N matrix say, and let's suppose (for clarity only) that we are in 2D. Also, assume we are using linear basis functions.

We **do not** write out the full basis functions explicitly in computing this integral. Instead: firstly, we break the integral down into an integral over elements:

$$M_{jk} = \sum_{\mathcal{K}} \int_{\mathcal{K}} \phi_j \phi_k \,\mathrm{d}V$$

Consider $\int_{\mathcal{K}} \phi_j \phi_k \, dV$. Key point: The only basis functions with are non-zero in the triangle are the 3 basis functions corresponding to the 3 nodes of the element.

Therefore: compute the **elemental contribution to the mass matrix**, a 3 by 3 matrix of the form $\int_{\mathcal{K}} \phi_j \phi_k \, dV$ for 3 choices of j and k only.

Consider computing the mass matrix $M_{jk} = \int_{\Omega} \phi_j \phi_k \, dV$, an N by N matrix say, and let's suppose (for clarity only) that we are in 2D. Also, assume we are using linear basis functions.

We **do not** write out the full basis functions explicitly in computing this integral. Instead: firstly, we break the integral down into an integral over elements:

$$M_{jk} = \sum_{\mathcal{K}} \int_{\mathcal{K}} \phi_j \phi_k \, \mathrm{d}V$$

Consider $\int_{\mathcal{K}} \phi_j \phi_k \, dV$. **Key point**: The only basis functions with are non-zero in the triangle are the 3 basis functions corresponding to the 3 nodes of the element.

Therefore: compute the **elemental contribution to the mass matrix**, a **3** by **3** matrix of the form $\int_{\mathcal{K}} \phi_j \phi_k \, \mathrm{d}V$ for *3 choices of j and k only*.

Consider computing the mass matrix $M_{jk} = \int_{\Omega} \phi_j \phi_k \, dV$, an N by N matrix say, and let's suppose (for clarity only) that we are in 2D. Also, assume we are using linear basis functions.

We **do not** write out the full basis functions explicitly in computing this integral. Instead: firstly, we break the integral down into an integral over elements:

$$M_{jk} = \sum_{\mathcal{K}} \int_{\mathcal{K}} \phi_j \phi_k \,\mathrm{d}V$$

Consider $\int_{\mathcal{K}} \phi_j \phi_k \, dV$. Key point: The only basis functions with are non-zero in the triangle are the 3 basis functions corresponding to the 3 nodes of the element.

Therefore: compute the **elemental contribution to the mass matrix**, a **3** by **3** matrix of the form $\int_{\mathcal{K}} \phi_j \phi_k \, \mathrm{d}V$ for *3 choices of j and k only*.

Consider computing the mass matrix $M_{jk} = \int_{\Omega} \phi_j \phi_k \, dV$, an N by N matrix say, and let's suppose (for clarity only) that we are in 2D. Also, assume we are using linear basis functions.

We **do not** write out the full basis functions explicitly in computing this integral. Instead: firstly, we break the integral down into an integral over elements:

$$M_{jk} = \sum_{\mathcal{K}} \int_{\mathcal{K}} \phi_j \phi_k \,\mathrm{d}V$$

Consider $\int_{\mathcal{K}} \phi_j \phi_k \, dV$. Key point: The only basis functions with are non-zero in the triangle are the 3 basis functions corresponding to the 3 nodes of the element.

Therefore: compute the **elemental contribution to the mass matrix**, a 3 by 3 matrix of the form $\int_{\mathcal{K}} \phi_j \phi_k \, dV$ for 3 choices of j and k only.

Consider computing the mass matrix $M_{jk} = \int_{\Omega} \phi_j \phi_k \, dV$, an N by N matrix say, and let's suppose (for clarity only) that we are in 2D. Also, assume we are using linear basis functions.

We **do not** write out the full basis functions explicitly in computing this integral. Instead: firstly, we break the integral down into an integral over elements:

$$M_{jk} = \sum_{\mathcal{K}} \int_{\mathcal{K}} \phi_j \phi_k \,\mathrm{d}V$$

Consider $\int_{\mathcal{K}} \phi_j \phi_k \, dV$. **Key point**: The only basis functions with are non-zero in the triangle are the 3 basis functions corresponding to the 3 nodes of the element.

Therefore: compute the **elemental contribution to the mass matrix**, a 3 by 3 matrix of the form $\int_{\mathcal{K}} \phi_j \phi_k \, dV$ for 3 choices of j and k only.

We have reduced the problem to computing small matrices/vectors, for example the 3 by 3 matrix

 $\int_{\mathcal{K}} \phi_j \phi_k \, \mathrm{d}V$ where ϕ_j , ϕ_k are the 3 basis functions corresponding to the 3 nodes of the mesh.

Next, map to the **reference triangle** (also known as the canonical triangle), \mathcal{K}_{ref} , the triangle with nodes (0,0), (0,1), (1,0).

The basis functions on the reference triangle are easy to write down

$$egin{array}{rcl} N_1(\xi,\eta) &=& 1-\xi-\eta \ N_2(\xi,\eta) &=& \xi \ N_3(\xi,\eta) &=& \eta \end{array}$$

We now need to be able to compute

$$\int_{\mathcal{K}} \phi_j \phi_k \, \mathrm{d} x \mathrm{d} y = \int_{\mathcal{K}_{\mathrm{ref}}} N_j N_k \, \mathrm{det} \, J \, \mathrm{d} \xi \mathrm{d} \eta$$

where J is the Jacobian of the mapping from the true element to the canonical element.

J is also required if $\nabla \phi_i$ is needed (for example, in computing the stiffness matrix), since $\nabla \phi_i = J \nabla_{\xi} N_i$.

Consider the mapping from an element with nodes x_1 , x_2 , x_3 , to the canonical element. The inverse mapping can in fact be easily written down using the basis functions.

$$\mathbf{x}(\xi,\eta) = \sum_{j=1}^{3} \mathbf{x}_j N_j(\xi,\eta)$$

from which it is easy to show that J is the following function of nodal positions

$$J = \operatorname{inv} \begin{bmatrix} x_2 - x_1 & x_3 - x_1 \\ y_2 - y_1 & y_3 - y_1 \end{bmatrix}$$

We now need to be able to compute

$$\int_{\mathcal{K}} \phi_j \phi_k \, \mathrm{d} x \mathrm{d} y = \int_{\mathcal{K}_{\mathrm{ref}}} N_j N_k \, \mathrm{det} \, J \, \mathrm{d} \xi \mathrm{d} \eta$$

where J is the Jacobian of the mapping from the true element to the canonical element.

J is also required if $\nabla \phi_i$ is needed (for example, in computing the stiffness matrix), since $\nabla \phi_i = J \nabla_{\xi} N_i$.

Consider the mapping from an element with nodes x_1 , x_2 , x_3 , to the canonical element. The inverse mapping can in fact be easily written down using the basis functions.

$$\mathbf{x}(\xi,\eta) = \sum_{j=1}^{3} \mathbf{x}_{j} N_{j}(\xi,\eta)$$

from which it is easy to show that J is the following function of nodal positions

$$J = \operatorname{inv} \begin{bmatrix} x_2 - x_1 & x_3 - x_1 \\ y_2 - y_1 & y_3 - y_1 \end{bmatrix}$$

We now need to be able to compute

$$\int_{\mathcal{K}} \phi_j \phi_k \, \mathrm{d} x \mathrm{d} y = \int_{\mathcal{K}_{\mathrm{ref}}} N_j N_k \, \mathrm{det} \, J \, \mathrm{d} \xi \mathrm{d} \eta$$

where J is the Jacobian of the mapping from the true element to the canonical element.

J is also required if $\nabla \phi_i$ is needed (for example, in computing the stiffness matrix), since $\nabla \phi_i = J \nabla_{\xi} N_i$.

Consider the mapping from an element with nodes x_1 , x_2 , x_3 , to the canonical element. The inverse mapping can in fact be easily written down using the basis functions.

$$\mathbf{x}(\xi,\eta) = \sum_{j=1}^{3} \mathbf{x}_{j} N_{j}(\xi,\eta)$$

from which it is easy to show that J is the following function of nodal positions

$$J = \text{inv} \begin{bmatrix} x_2 - x_1 & x_3 - x_1 \\ y_2 - y_1 & y_3 - y_1 \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Computing an elemental contribution - the general case

Suppose we want to compute

$$\int_{\mathcal{K}} \mathcal{F}(\mathbf{x}, \mathbf{y}, \mathbf{u}, \phi_1, \phi_2, \phi_3, \nabla \phi_1, \nabla \phi_2, \nabla \phi_3) \, \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{y}$$

We map to the reference element:

$$\int_{\mathcal{K}_{ref}} \mathcal{F}(x, y, u, \phi_1, \phi_2, \phi_3, \nabla \phi_1, \nabla \phi_2, \nabla \phi_3) \det J \, \mathrm{d}\xi \mathrm{d}\eta$$

and then use **numerical quadrature**, which means f just has to be evaluated at the quadrature points.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Solve:

$$abla \cdot (D \nabla u) + f = 0$$

subject to boundary conditions

$$u = u^*$$
 on Γ_1
 $(D \nabla u) \cdot \mathbf{n} = g$ on Γ_2

Set up the computational mesh and choose basis functions
Compute the matrix K and vector b:

$$\begin{array}{lll} \mathcal{K}_{jk} & = & \int_{\Omega} \boldsymbol{\nabla} \phi_j \cdot (\boldsymbol{D} \boldsymbol{\nabla} \phi_k) \, \mathrm{d} \boldsymbol{V} \\ \boldsymbol{b}_j & = & \int_{\Omega} f \phi_j \, \mathrm{d} \boldsymbol{V} + \int_{\Gamma_2} \boldsymbol{g} \phi_j \, \mathrm{d} \boldsymbol{S} \end{array}$$

Alter linear system KU = b to impose Dirichlet BCs
Solve linear system

Write

$$b_j = \int_\Omega f \phi_j \,\mathrm{d}V + \int_{\Gamma_2} g \phi_j \,\mathrm{d}S$$

- Set up the computational mesh and choose basis functions
- Occupie the matrix K and vector b:
 - Loop over elements, for each compute the elemental contributions K_{elem} and b_{elem} (3 by 3 matrix and 3-vector)
 - For this, need to compute Jacobian J for this element, and loop over quadrature points
 - ② Add $K_{
 m elem}$ and ${f b}_{
 m elem}^{
 m vol}$ to K and ${f b}^{
 m vol}$ appropriately
 - Loop over surface-elements on Γ₂, for each compute the elemental contribution b^{surf}_{elem} (a 2-vector).
 - Add **b**^{surf} to **b**^{surf} appropriately
- Alter linear system $K\mathbf{U} = \mathbf{b}$ to impose Dirichlet BCs
- Solve linear system

Write

$$b_j = \int_\Omega f \phi_j \,\mathrm{d}V + \int_{\Gamma_2} g \phi_j \,\mathrm{d}S$$

- Set up the computational mesh and choose basis functions
- Occupie the matrix K and vector b:
 - Loop over elements, for each compute the elemental contributions K_{elem} and b^{vol}_{elem} (3 by 3 matrix and 3-vector)
 - For this, need to compute Jacobian J for this element, and loop over quadrature points
 - ② Add $K_{
 m elem}$ and ${f b}_{
 m elem}^{
 m vol}$ to K and ${f b}^{
 m vol}$ appropriately
 - Loop over surface-elements on Γ₂, for each compute the elemental contribution b^{auf}_{elem} (a 2-vector).
 - Add **b**^{surf} to **b**^{surf} appropriately
- Alter linear system $K\mathbf{U} = \mathbf{b}$ to impose Dirichlet BCs
- Solve linear system

Write

$$b_j = \int_{\Omega} f \phi_j \,\mathrm{d}V + \int_{\Gamma_2} g \phi_j \,\mathrm{d}S$$

- Set up the computational mesh and choose basis functions
- Occupie the matrix K and vector b:
 - Loop over elements, for each compute the elemental contributions K_{elem} and b_{elem} (3 by 3 matrix and 3-vector)
 - $\bullet\,$ For this, need to compute Jacobian J for this element, and loop over quadrature points
 - ② Add $K_{
 m elem}$ and ${f b}_{
 m elem}^{
 m vol}$ to K and ${f b}^{
 m vol}$ appropriately
 - Loop over surface-elements on Γ₂, for each compute the elemental contribution b^{surf}_{alem} (a 2-vector).
 - Similar to integrals over elements, again use quadrature
 - Add b^{surf} to b^{surf} appropriately
- Alter linear system $K\mathbf{U} = \mathbf{b}$ to impose Dirichlet BCs
- Solve linear system

Write

$$b_j = \int_{\Omega} f \phi_j \,\mathrm{d}V + \int_{\Gamma_2} g \phi_j \,\mathrm{d}S$$

- Set up the computational mesh and choose basis functions
- Output the matrix K and vector b:
 - Loop over elements, for each compute the elemental contributions K_{elem} and b_{elem} (3 by 3 matrix and 3-vector)
 - $\bullet\,$ For this, need to compute Jacobian J for this element, and loop over quadrature points
 - **2** Add K_{elem} and $\mathbf{b}_{\text{elem}}^{\text{vol}}$ to K and \mathbf{b}^{vol} appropriately
 - Loop over surface-elements on Γ₂, for each compute the elemental contribution b^{surf}_{elem} (a 2-vector).
 - Similar to integrals over elements, again use quadrati
 - Add b^{surf}_{elem} to b^{surf} appropriately
- Alter linear system KU = b to impose Dirichlet BCs
- Solve linear system

Write

$$b_j = \int_\Omega f \phi_j \,\mathrm{d}V + \int_{\Gamma_2} g \phi_j \,\mathrm{d}S$$

as $\mathbf{b} = \mathbf{b}^{\text{vol}} + \mathbf{b}^{\text{surf}}$

Set up the computational mesh and choose basis functions

Occupie the matrix K and vector b:

- Loop over elements, for each compute the elemental contributions K_{elem} and b_{elem} (3 by 3 matrix and 3-vector)
 - $\bullet\,$ For this, need to compute Jacobian J for this element, and loop over quadrature points
- **2** Add K_{elem} and $\mathbf{b}_{\text{elem}}^{\text{vol}}$ to K and \mathbf{b}^{vol} appropriately
- Loop over surface-elements on Γ₂, for each compute the elemental contribution b^{surf}_{alem} (a 2-vector).
 - Similar to integrals over elements, again use quadrature

Add b^{surf} to b^{surf} appropriately

• Alter linear system $K\mathbf{U} = \mathbf{b}$ to impose Dirichlet BCs

Solve linear system

Write

$$b_j = \int_{\Omega} f \phi_j \, \mathrm{d}V + \int_{\Gamma_2} g \phi_j \, \mathrm{d}S$$

as $\mathbf{b} = \mathbf{b}^{\text{vol}} + \mathbf{b}^{\text{surf}}$

Set up the computational mesh and choose basis functions

Output the matrix K and vector b:

- Loop over elements, for each compute the elemental contributions K_{elem} and b_{elem} (3 by 3 matrix and 3-vector)
 - $\bullet\,$ For this, need to compute Jacobian J for this element, and loop over quadrature points
- **2** Add K_{elem} and $\mathbf{b}_{\text{elem}}^{\text{vol}}$ to K and \mathbf{b}^{vol} appropriately
- **3** Loop over surface-elements on Γ_2 , for each compute the elemental contribution \mathbf{b}_{elem}^{surf} (a 2-vector).
 - Similar to integrals over elements, again use quadrature
- (a) Add \mathbf{b}_{elem}^{surf} to \mathbf{b}^{surf} appropriately
- Alter linear system KU = b to impose Dirichlet BCs

Solve linear system

Write

$$b_j = \int_\Omega f \phi_j \,\mathrm{d}V + \int_{\Gamma_2} g \phi_j \,\mathrm{d}S$$

as $\mathbf{b} = \mathbf{b}^{\text{vol}} + \mathbf{b}^{\text{surf}}$

Set up the computational mesh and choose basis functions

Output the matrix K and vector b:

- Loop over elements, for each compute the elemental contributions K_{elem} and b_{elem} (3 by 3 matrix and 3-vector)
 - $\bullet\,$ For this, need to compute Jacobian J for this element, and loop over quadrature points
- **2** Add K_{elem} and $\mathbf{b}_{\text{elem}}^{\text{vol}}$ to K and \mathbf{b}^{vol} appropriately
- Loop over surface-elements on Γ₂, for each compute the elemental contribution b^{surf}_{elem} (a 2-vector).
 - Similar to integrals over elements, again use quadrature
- (a) Add \mathbf{b}_{elem}^{surf} to \mathbf{b}^{surf} appropriately
- **(a)** Alter linear system $K\mathbf{U} = \mathbf{b}$ to impose Dirichlet BCs

Solve linear system