
Solving PDEs

Solving simple PDEs using the finite element method

Solving PDEs

FEM for simple PDEs: elliptic and parabolic linear PDEs

Solving PDEs

PDEs

Second-order PDEs commonly arise in physical models. There are three
archetypal second-order PDEs

1 Elliptic PDEs, for example, Poisson’s equation ∇2u + f = 0

2 Parabolic PDEs, for example, the heat equation ut = ∇2u + f

3 Hyperbolic PDEs, for example, the wave equation utt = ∇2u

Solving PDEs

PDEs

Second-order PDEs commonly arise in physical models. There are three
archetypal second-order PDEs

1 Elliptic PDEs, for example, Poisson’s equation ∇2u + f = 0

2 Parabolic PDEs, for example, the heat equation ut = ∇2u + f

3 Hyperbolic PDEs, for example, the wave equation utt = ∇2u

Solving PDEs

Defining PDEs in an object oriented manner

First, an abstract class defining a general linear elliptic PDE ∇ · D∇u = f ,
where D is a matrix-valued function of position (the diffusion tensor):

AbstractLinearEllipticPde:
Abs. method: GetDiffusionTensor(x)

Abs. method: GetForceTerm(x)

MyEllipticPde: inherits from AbstractLinearEllipticPde

Implemented method: GetDiffusionTensor(x)

Implemented method: GetForceTerm(x)

For example ∇2u = 0

LaplacesEquation: inherits from AbstractLinearEllipticPde

Implemented method: GetDiffusionTensor(x)

B return identity matrix
Implemented method: GetForceTerm(x)

B return zero

Solving PDEs

Defining PDEs in an object oriented manner

First, an abstract class defining a general linear elliptic PDE ∇ · D∇u = f ,
where D is a matrix-valued function of position (the diffusion tensor):

AbstractLinearEllipticPde:
Abs. method: GetDiffusionTensor(x)

Abs. method: GetForceTerm(x)

MyEllipticPde: inherits from AbstractLinearEllipticPde

Implemented method: GetDiffusionTensor(x)

Implemented method: GetForceTerm(x)

For example ∇2u = 0

LaplacesEquation: inherits from AbstractLinearEllipticPde

Implemented method: GetDiffusionTensor(x)

B return identity matrix
Implemented method: GetForceTerm(x)

B return zero

Solving PDEs

Defining PDEs in an object oriented manner

First, an abstract class defining a general linear elliptic PDE ∇ · D∇u = f ,
where D is a matrix-valued function of position (the diffusion tensor):

AbstractLinearEllipticPde:
Abs. method: GetDiffusionTensor(x)

Abs. method: GetForceTerm(x)

MyEllipticPde: inherits from AbstractLinearEllipticPde

Implemented method: GetDiffusionTensor(x)

Implemented method: GetForceTerm(x)

For example ∇2u = 0

LaplacesEquation: inherits from AbstractLinearEllipticPde

Implemented method: GetDiffusionTensor(x)

B return identity matrix
Implemented method: GetForceTerm(x)

B return zero

Solving PDEs

Defining PDEs in an object oriented manner

Next, an abstract class defining a general linear parabolic PDE

αut = ∇ · D∇u + f

where α, D and f are functions of space and time.

AbstractLinearParabolicPde:
Abs. method: GetDuDtCoefficientTerm(t,x)

Abs. method: GetDiffusionTensor(t,x)

Abs. method: GetForceTerm(t,x)

For example ut = ∇2u

HeatEquation: inherits from AbstractLinearParabolicPde

Implemented method: GetDuDtCoefficientTerm(t,x)

B return 1
Implemented method: GetDiffusionTensor(x)

B return identity matrix
Implemented method: GetForceTerm(x)

B return zero

Solving PDEs

Defining PDEs in an object oriented manner

Next, an abstract class defining a general linear parabolic PDE

αut = ∇ · D∇u + f

where α, D and f are functions of space and time.

AbstractLinearParabolicPde:
Abs. method: GetDuDtCoefficientTerm(t,x)

Abs. method: GetDiffusionTensor(t,x)

Abs. method: GetForceTerm(t,x)

For example ut = ∇2u

HeatEquation: inherits from AbstractLinearParabolicPde

Implemented method: GetDuDtCoefficientTerm(t,x)

B return 1
Implemented method: GetDiffusionTensor(x)

B return identity matrix
Implemented method: GetForceTerm(x)

B return zero

Solving PDEs

FEM for simple PDEs: introduction to FEM

Solving PDEs

The finite element method

Stages

1 Convert equation from strong form to weak form

2 Convert infinite-dimensional problem into a finite dimensional one

3 Set up the finite element linear system to be solved

Solving PDEs

Weak form of Poisson’s equation

Consider Poisson’s equation:
∇2u + f = 0

subject to boundary conditions

u = 0 on Γ1

∇u · n = g on Γ2

Weak form

Multiply by a test function v satisfying v = 0 on Γ1, and integrate:

v
“
∇2u

”
= −fvZ

Ω

v
“
∇2u

”
dV = −

Z
Ω

fv dVZ
∂Ω

v (∇u · n) dS −
Z

Ω

∇u ·∇v dV = −
Z

Ω

fv dVZ
Ω

∇u ·∇v dV =

Z
Ω

fv dV +

Z
Γ2

gv dS

Solving PDEs

Weak form of Poisson’s equation

Consider Poisson’s equation:
∇2u + f = 0

subject to boundary conditions

u = 0 on Γ1

∇u · n = g on Γ2

Weak form

Multiply by a test function v satisfying v = 0 on Γ1, and integrate:

v
“
∇2u

”
= −fvZ

Ω

v
“
∇2u

”
dV = −

Z
Ω

fv dVZ
∂Ω

v (∇u · n) dS −
Z

Ω

∇u ·∇v dV = −
Z

Ω

fv dVZ
Ω

∇u ·∇v dV =

Z
Ω

fv dV +

Z
Γ2

gv dS

Solving PDEs

Weak form of Poisson’s equation

Let V be the space of all differentiable functions on Ω (more precisely, V is the
Sobolev space H1(Ω)). Let

V0 = {v ∈ V : v = 0 on Γ1}

Weak form

Find u ∈ V0 satisfyingZ
Ω

∇u ·∇v dV =

Z
Ω

fv dV +

Z
Γ2

gv dS ∀v ∈ V0

Example

Solve d2u
dx2 = 1, u(0) = u(1) = 0 vs

Find differentiable u satisfying
u(0) = u(1) = 0 and:R 1

0
du
dx

dv
dx

dx = −
R 1

0
v dx for all

v s.t. v(0) = v(1) = 0

Solving PDEs

Weak form of Poisson’s equation

Let V be the space of all differentiable functions on Ω (more precisely, V is the
Sobolev space H1(Ω)). Let

V0 = {v ∈ V : v = 0 on Γ1}

Weak form

Find u ∈ V0 satisfyingZ
Ω

∇u ·∇v dV =

Z
Ω

fv dV +

Z
Γ2

gv dS ∀v ∈ V0

Example

Solve d2u
dx2 = 1, u(0) = u(1) = 0 vs

Find differentiable u satisfying
u(0) = u(1) = 0 and:R 1

0
du
dx

dv
dx

dx = −
R 1

0
v dx for all

v s.t. v(0) = v(1) = 0

Solving PDEs

Weak form of Poisson’s equation

Let V be the space of all differentiable functions on Ω (more precisely, V is the
Sobolev space H1(Ω)). Let

V0 = {v ∈ V : v = 0 on Γ1}

Weak form

Find u ∈ V0 satisfyingZ
Ω

∇u ·∇v dV =

Z
Ω

fv dV +

Z
Γ2

gv dS ∀v ∈ V0

Example

Solve d2u
dx2 = 1, u(0) = u(1) = 0 vs

Find differentiable u satisfying
u(0) = u(1) = 0 and:R 1

0
du
dx

dv
dx

dx = −
R 1

0
v dx for all

v s.t. v(0) = v(1) = 0

Solving PDEs

FEM discretisation

Find u ∈ V0 satisfyingZ
Ω

∇u ·∇v dV =

Z
Ω

fv dV +

Z
Γ2

gv dS for all v ∈ V0

Take
Vh

0 = span{φ1, φ2}

(where φ1, φ2 satisfy the Dirichlet boundary conditions), so

uh = αφ1 + βφ2

Linear system:» R
Ω

∇φ1 ·∇φ1 dV
R

Ω
∇φ1 ·∇φ2 dVR

Ω
∇φ2 ·∇φ1 dV

R
Ω

∇φ2 ·∇φ2 dV

– »
α
β

–
=

" R
Ω

f φ1 dV +
R

Γ2
gφ1 dSR

Ω
f φ2 dV +

R
Γ2

gφ2 dS

#

Solving PDEs

FEM discretisation

Find uh ∈ Vh
0 satisfyingZ

Ω

∇uh ·∇v dV =

Z
Ω

fv dV +

Z
Γ2

gv dS for all v ∈ Vh
0

Take
Vh

0 = span{φ1, φ2}

(where φ1, φ2 satisfy the Dirichlet boundary conditions), so

uh = αφ1 + βφ2

Linear system:» R
Ω

∇φ1 ·∇φ1 dV
R

Ω
∇φ1 ·∇φ2 dVR

Ω
∇φ2 ·∇φ1 dV

R
Ω

∇φ2 ·∇φ2 dV

– »
α
β

–
=

" R
Ω

f φ1 dV +
R

Γ2
gφ1 dSR

Ω
f φ2 dV +

R
Γ2

gφ2 dS

#

Solving PDEs

FEM discretisation

Find uh ∈ Vh
0 satisfyingZ

Ω

∇uh ·∇v dV =

Z
Ω

fv dV +

Z
Γ2

gv dS for all v ∈ Vh
0

Take
Vh

0 = span{φ1, φ2}

(where φ1, φ2 satisfy the Dirichlet boundary conditions), so

uh = αφ1 + βφ2

Linear system:» R
Ω

∇φ1 ·∇φ1 dV
R

Ω
∇φ1 ·∇φ2 dVR

Ω
∇φ2 ·∇φ1 dV

R
Ω

∇φ2 ·∇φ2 dV

– »
α
β

–
=

" R
Ω

f φ1 dV +
R

Γ2
gφ1 dSR

Ω
f φ2 dV +

R
Γ2

gφ2 dS

#

Solving PDEs

FEM discretisation

Find uh ∈ Vh
0 satisfyingZ

Ω

∇uh ·∇φj dV =

Z
Ω

f φj dV +

Z
Γ2

gφj dS for j = 1, 2

Take
Vh

0 = span{φ1, φ2}

(where φ1, φ2 satisfy the Dirichlet boundary conditions), so

uh = αφ1 + βφ2

Linear system:» R
Ω

∇φ1 ·∇φ1 dV
R

Ω
∇φ1 ·∇φ2 dVR

Ω
∇φ2 ·∇φ1 dV

R
Ω

∇φ2 ·∇φ2 dV

– »
α
β

–
=

" R
Ω

f φ1 dV +
R

Γ2
gφ1 dSR

Ω
f φ2 dV +

R
Γ2

gφ2 dS

#

Solving PDEs

FEM discretisation

Find uh ∈ Vh
0 satisfyingZ

Ω

∇uh ·∇φj dV =

Z
Ω

f φj dV +

Z
Γ2

gφj dS for j = 1, 2

Take
Vh

0 = span{φ1, φ2}

(where φ1, φ2 satisfy the Dirichlet boundary conditions), so

uh = αφ1 + βφ2

Linear system:» R
Ω

∇φ1 ·∇φ1 dV
R

Ω
∇φ1 ·∇φ2 dVR

Ω
∇φ2 ·∇φ1 dV

R
Ω

∇φ2 ·∇φ2 dV

– »
α
β

–
=

" R
Ω

f φ1 dV +
R

Γ2
gφ1 dSR

Ω
f φ2 dV +

R
Γ2

gφ2 dS

#

Solving PDEs

FEM discretisations

Take
Vh = span{φ1, φ2, . . . , φN}

(satisfying φj = 0 on Γ1) so

uh = α1φ1 + . . .+ αNφN

Let the stiffness matrix and RHS vector be given by

Kjk =

Z
Ω

∇φj ·∇φk dV

bj =

Z
Ω

f φj dV +

Z
Γ2

gφj dS

and solve

K

264 α1

...
αN

375 = b

Solving PDEs

Basis functions

Solving PDEs

FEM discretisations

Let

Kjk =

Z
Ω

∇φj ·∇φk dV stiffness matrix

Mjk =

Z
Ω

φjφk dV mass matrix

bj =

Z
Ω

f φj dV +

Z
Γ2

gφj dS

FEM discretisations

Laplace’s equation: ∇2u + f = 0 → KU = b

Heat equation:

∂u

∂t
= ∇2u + f → M

dU

dt
+ KU = b

Time-discretised heat equation:

un+1 − un

∆t
= ∇2un+1 + f n+1 → MUn+1 + ∆t KUn+1 = MUn + ∆t bn+1

Solving PDEs

Anisotropic diffusion

Suppose we have an anisotropic diffusion tensor D (symmetric, positive
definite), for example, in Poisson’s equation:

∇ · (D∇u) + f = 0

subject to boundary conditions

u = 0 on Γ1

(D∇u) · n = g on Γ2

The weak form is: find u ∈ V0 satisfyingZ
Ω

(D∇u) ·∇v dV =

Z
Ω

fv dV +

Z
Γ2

gv dS ∀v ∈ V0

and the only change in the FEM discretisation is that the stiffness matrix
becomes

Kjk =

Z
Ω

∇φj · (D∇φk) dV

Solving PDEs

Anisotropic diffusion

Suppose we have an anisotropic diffusion tensor D (symmetric, positive
definite), for example, in Poisson’s equation:

∇ · (D∇u) + f = 0

subject to boundary conditions

u = 0 on Γ1

(D∇u) · n = g on Γ2

The weak form is: find u ∈ V0 satisfyingZ
Ω

(D∇u) ·∇v dV =

Z
Ω

fv dV +

Z
Γ2

gv dS ∀v ∈ V0

and the only change in the FEM discretisation is that the stiffness matrix
becomes

Kjk =

Z
Ω

∇φj · (D∇φk) dV

Solving PDEs

Implementing Dirichlet boundary conditions

In practice, rather using the basis functions in Vh
0 (i.e. bases satisfying φi = 0

on Γ1), we use Vh, i.e. all the basis functions corresponding to all nodes in the
mesh.

We then impose (any) Dirichlet boundary conditions by altering the appropriate
rows of the linear system, for example, for KU = b, if we want to impose
U1 = c 26664

K11 K12 . . . K1N

K21 K22 . . . K2N

...
...

. . .
...

KN1 KN2 . . . KNN

37775
26664

U1

U2

...
UN

37775 =

26664
b1

b2

...
bN

37775

Solving PDEs

Implementing Dirichlet boundary conditions

In practice, rather using the basis functions in Vh
0 (i.e. bases satisfying φi = 0

on Γ1), we use Vh, i.e. all the basis functions corresponding to all nodes in the
mesh.

We then impose (any) Dirichlet boundary conditions by altering the appropriate
rows of the linear system, for example, for KU = b, if we want to impose
U1 = c 26664

K11 K12 . . . K1N

K21 K22 . . . K2N

...
...

. . .
...

KN1 KN2 . . . KNN

37775
26664

U1

U2

...
UN

37775 =

26664
b1

b2

...
bN

37775

Solving PDEs

Implementing Dirichlet boundary conditions

In practice, rather using the basis functions in Vh
0 (i.e. bases satisfying φi = 0

on Γ1), we use Vh, i.e. all the basis functions corresponding to all nodes in the
mesh.

We then impose (any) Dirichlet boundary conditions by altering the appropriate
rows of the linear system, for example, for KU = b, if we want to impose
U1 = c 26664

1 0 . . . 0
K21 K22 . . . K2N

...
...

. . .
...

KN1 KN2 . . . KNN

37775
26664

U1

U2

...
UN

37775 =

26664
c
b2

...
bN

37775

Solving PDEs

FEM stages

Solve:
∇ · (D∇u) + f = 0

subject to boundary conditions

u = u∗ on Γ1

(D∇u) · n = g on Γ2

1 Set up the computational mesh and choose basis functions

2 Compute the matrix K and vector b:

Kjk =

Z
Ω

∇φj · (D∇φk) dV

bj =

Z
Ω

f φj dV +

Z
Γ2

gφj dS

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

Solving PDEs

FEM for simple PDEs: FEM details

Solving PDEs

Computing a finite element matrix/vector by assembly

Consider computing the mass matrix Mjk =
R

Ω
φjφk dV , an N by N matrix say,

and let’s suppose (for clarity only) that we are in 2D. Also, assume we are
using linear basis functions.

We do not write out the full basis functions explicitly in computing this
integral. Instead: firstly, we break the integral down into an integral over
elements:

Mjk =
X
K

Z
K
φjφk dV

Consider
R
K φjφk dV . Key point: The only basis functions with are non-zero in

the triangle are the 3 basis functions corresponding to the 3 nodes of the
element.

Therefore: compute the elemental contribution to the mass matrix, a 3 by 3
matrix of the form

R
K φjφk dV for 3 choices of j and k only.

Then add elemental contribution to full N by N mass matrix.

Solving PDEs

Computing a finite element matrix/vector by assembly

Consider computing the mass matrix Mjk =
R

Ω
φjφk dV , an N by N matrix say,

and let’s suppose (for clarity only) that we are in 2D. Also, assume we are
using linear basis functions.

We do not write out the full basis functions explicitly in computing this
integral. Instead: firstly, we break the integral down into an integral over
elements:

Mjk =
X
K

Z
K
φjφk dV

Consider
R
K φjφk dV . Key point: The only basis functions with are non-zero in

the triangle are the 3 basis functions corresponding to the 3 nodes of the
element.

Therefore: compute the elemental contribution to the mass matrix, a 3 by 3
matrix of the form

R
K φjφk dV for 3 choices of j and k only.

Then add elemental contribution to full N by N mass matrix.

Solving PDEs

Computing a finite element matrix/vector by assembly

Consider computing the mass matrix Mjk =
R

Ω
φjφk dV , an N by N matrix say,

and let’s suppose (for clarity only) that we are in 2D. Also, assume we are
using linear basis functions.

We do not write out the full basis functions explicitly in computing this
integral. Instead: firstly, we break the integral down into an integral over
elements:

Mjk =
X
K

Z
K
φjφk dV

Consider
R
K φjφk dV . Key point: The only basis functions with are non-zero in

the triangle are the 3 basis functions corresponding to the 3 nodes of the
element.

Therefore: compute the elemental contribution to the mass matrix, a 3 by 3
matrix of the form

R
K φjφk dV for 3 choices of j and k only.

Then add elemental contribution to full N by N mass matrix.

Solving PDEs

Computing a finite element matrix/vector by assembly

Consider computing the mass matrix Mjk =
R

Ω
φjφk dV , an N by N matrix say,

and let’s suppose (for clarity only) that we are in 2D. Also, assume we are
using linear basis functions.

We do not write out the full basis functions explicitly in computing this
integral. Instead: firstly, we break the integral down into an integral over
elements:

Mjk =
X
K

Z
K
φjφk dV

Consider
R
K φjφk dV . Key point: The only basis functions with are non-zero in

the triangle are the 3 basis functions corresponding to the 3 nodes of the
element.

Therefore: compute the elemental contribution to the mass matrix, a 3 by 3
matrix of the form

R
K φjφk dV for 3 choices of j and k only.

Then add elemental contribution to full N by N mass matrix.

Solving PDEs

Computing a finite element matrix/vector by assembly

Consider computing the mass matrix Mjk =
R

Ω
φjφk dV , an N by N matrix say,

and let’s suppose (for clarity only) that we are in 2D. Also, assume we are
using linear basis functions.

We do not write out the full basis functions explicitly in computing this
integral. Instead: firstly, we break the integral down into an integral over
elements:

Mjk =
X
K

Z
K
φjφk dV

Consider
R
K φjφk dV . Key point: The only basis functions with are non-zero in

the triangle are the 3 basis functions corresponding to the 3 nodes of the
element.

Therefore: compute the elemental contribution to the mass matrix, a 3 by 3
matrix of the form

R
K φjφk dV for 3 choices of j and k only.

Then add elemental contribution to full N by N mass matrix.

Solving PDEs

Computing an elemental contribution

We have reduced the problem to computing small matrices/vectors, for
example the 3 by 3 matrix Z

K
φjφk dV

where φj , φk are the 3 basis functions corresponding to the 3 nodes of the
mesh.

Next, map to the reference triangle (also known as the canonical triangle),
Kref, the triangle with nodes (0, 0), (0, 1), (1, 0).

The basis functions on the reference triangle are easy to write down

N1(ξ, η) = 1− ξ − η
N2(ξ, η) = ξ

N3(ξ, η) = η

Solving PDEs

Computing an elemental contribution

We now need to be able to computeZ
K
φjφk dxdy =

Z
Kref

NjNk det J dξdη

where J is the Jacobian of the mapping from the true element to the canonical
element.

J is also required if ∇φi is needed (for example, in computing the stiffness
matrix), since ∇φi = J∇ξNi .

Consider the mapping from an element with nodes x1, x2, x3, to the canonical
element. The inverse mapping can in fact be easily written down using the
basis functions.

x(ξ, η) =
3X

j=1

xjNj(ξ, η)

from which it is easy to show that J is the following function of nodal positions

J = inv

»
x2 − x1 x3 − x1

y2 − y1 y3 − y1

–

Solving PDEs

Computing an elemental contribution

We now need to be able to computeZ
K
φjφk dxdy =

Z
Kref

NjNk det J dξdη

where J is the Jacobian of the mapping from the true element to the canonical
element.

J is also required if ∇φi is needed (for example, in computing the stiffness
matrix), since ∇φi = J∇ξNi .

Consider the mapping from an element with nodes x1, x2, x3, to the canonical
element. The inverse mapping can in fact be easily written down using the
basis functions.

x(ξ, η) =
3X

j=1

xjNj(ξ, η)

from which it is easy to show that J is the following function of nodal positions

J = inv

»
x2 − x1 x3 − x1

y2 − y1 y3 − y1

–

Solving PDEs

Computing an elemental contribution

We now need to be able to computeZ
K
φjφk dxdy =

Z
Kref

NjNk det J dξdη

where J is the Jacobian of the mapping from the true element to the canonical
element.

J is also required if ∇φi is needed (for example, in computing the stiffness
matrix), since ∇φi = J∇ξNi .

Consider the mapping from an element with nodes x1, x2, x3, to the canonical
element. The inverse mapping can in fact be easily written down using the
basis functions.

x(ξ, η) =
3X

j=1

xjNj(ξ, η)

from which it is easy to show that J is the following function of nodal positions

J = inv

»
x2 − x1 x3 − x1

y2 − y1 y3 − y1

–

Solving PDEs

Computing an elemental contribution - the general case

Suppose we want to computeZ
K
F(x , y , u, φ1, φ2, φ3,∇φ1,∇φ2,∇φ3) dxdy

We map to the reference element:Z
Kref

F(x , y , u, φ1, φ2, φ3,∇φ1,∇φ2,∇φ3) det J dξdη

and then use numerical quadrature, which means f just has to be evaluated
at the quadrature points.

Solving PDEs

FEM stages - full algorithm

Solve:
∇ · (D∇u) + f = 0

subject to boundary conditions

u = u∗ on Γ1

(D∇u) · n = g on Γ2

1 Set up the computational mesh and choose basis functions

2 Compute the matrix K and vector b:

Kjk =

Z
Ω

∇φj · (D∇φk) dV

bj =

Z
Ω

f φj dV +

Z
Γ2

gφj dS

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

Solving PDEs

FEM stages - full algorithm

Write

bj =

Z
Ω

f φj dV +

Z
Γ2

gφj dS

as b = bvol + bsurf

1 Set up the computational mesh and choose basis functions
2 Compute the matrix K and vector b:

1 Loop over elements, for each compute the elemental contributions Kelem

and bvol
elem (3 by 3 matrix and 3-vector)
For this, need to compute Jacobian J for this element, and loop over quadrature
points

2 Add Kelem and bvol
elem to K and bvol appropriately

3 Loop over surface-elements on Γ2, for each compute the elemental
contribution bsurf

elem (a 2-vector).
Similar to integrals over elements, again use quadrature

4 Add bsurf
elem to bsurf appropriately

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

Solving PDEs

FEM stages - full algorithm

Write

bj =

Z
Ω

f φj dV +

Z
Γ2

gφj dS

as b = bvol + bsurf

1 Set up the computational mesh and choose basis functions
2 Compute the matrix K and vector b:

1 Loop over elements, for each compute the elemental contributions Kelem

and bvol
elem (3 by 3 matrix and 3-vector)
For this, need to compute Jacobian J for this element, and loop over quadrature
points

2 Add Kelem and bvol
elem to K and bvol appropriately

3 Loop over surface-elements on Γ2, for each compute the elemental
contribution bsurf

elem (a 2-vector).
Similar to integrals over elements, again use quadrature

4 Add bsurf
elem to bsurf appropriately

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

Solving PDEs

FEM stages - full algorithm

Write

bj =

Z
Ω

f φj dV +

Z
Γ2

gφj dS

as b = bvol + bsurf

1 Set up the computational mesh and choose basis functions
2 Compute the matrix K and vector b:

1 Loop over elements, for each compute the elemental contributions Kelem

and bvol
elem (3 by 3 matrix and 3-vector)
For this, need to compute Jacobian J for this element, and loop over quadrature
points

2 Add Kelem and bvol
elem to K and bvol appropriately

3 Loop over surface-elements on Γ2, for each compute the elemental
contribution bsurf

elem (a 2-vector).
Similar to integrals over elements, again use quadrature

4 Add bsurf
elem to bsurf appropriately

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

Solving PDEs

FEM stages - full algorithm

Write

bj =

Z
Ω

f φj dV +

Z
Γ2

gφj dS

as b = bvol + bsurf

1 Set up the computational mesh and choose basis functions
2 Compute the matrix K and vector b:

1 Loop over elements, for each compute the elemental contributions Kelem

and bvol
elem (3 by 3 matrix and 3-vector)
For this, need to compute Jacobian J for this element, and loop over quadrature
points

2 Add Kelem and bvol
elem to K and bvol appropriately

3 Loop over surface-elements on Γ2, for each compute the elemental
contribution bsurf

elem (a 2-vector).
Similar to integrals over elements, again use quadrature

4 Add bsurf
elem to bsurf appropriately

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

Solving PDEs

FEM stages - full algorithm

Write

bj =

Z
Ω

f φj dV +

Z
Γ2

gφj dS

as b = bvol + bsurf

1 Set up the computational mesh and choose basis functions
2 Compute the matrix K and vector b:

1 Loop over elements, for each compute the elemental contributions Kelem

and bvol
elem (3 by 3 matrix and 3-vector)
For this, need to compute Jacobian J for this element, and loop over quadrature
points

2 Add Kelem and bvol
elem to K and bvol appropriately

3 Loop over surface-elements on Γ2, for each compute the elemental
contribution bsurf

elem (a 2-vector).
Similar to integrals over elements, again use quadrature

4 Add bsurf
elem to bsurf appropriately

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

Solving PDEs

FEM stages - full algorithm

Write

bj =

Z
Ω

f φj dV +

Z
Γ2

gφj dS

as b = bvol + bsurf

1 Set up the computational mesh and choose basis functions
2 Compute the matrix K and vector b:

1 Loop over elements, for each compute the elemental contributions Kelem

and bvol
elem (3 by 3 matrix and 3-vector)
For this, need to compute Jacobian J for this element, and loop over quadrature
points

2 Add Kelem and bvol
elem to K and bvol appropriately

3 Loop over surface-elements on Γ2, for each compute the elemental
contribution bsurf

elem (a 2-vector).
Similar to integrals over elements, again use quadrature

4 Add bsurf
elem to bsurf appropriately

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

Solving PDEs

FEM stages - full algorithm

Write

bj =

Z
Ω

f φj dV +

Z
Γ2

gφj dS

as b = bvol + bsurf

1 Set up the computational mesh and choose basis functions
2 Compute the matrix K and vector b:

1 Loop over elements, for each compute the elemental contributions Kelem

and bvol
elem (3 by 3 matrix and 3-vector)
For this, need to compute Jacobian J for this element, and loop over quadrature
points

2 Add Kelem and bvol
elem to K and bvol appropriately

3 Loop over surface-elements on Γ2, for each compute the elemental
contribution bsurf

elem (a 2-vector).
Similar to integrals over elements, again use quadrature

4 Add bsurf
elem to bsurf appropriately

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

	Solving simple PDEs using the finite element method

