FEM for simple PDEs: Object-oriented implementation (introduction)



Template classes (C++)

C++ allows you to do:

template<int DIM>
class Node

{
}

// use DIM in some way

from which the compiler creates different versions of the class, depending on
which values of DIM is used. This is an alternative to having a member
variable mDimension inside the class.
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C++ allows you to do:

template<int DIM>
class Node

{
}

// use DIM in some way

from which the compiler creates different versions of the class, depending on
which values of DIM is used. This is an alternative to having a member
variable mDimension inside the class.

Usage:
Node<3> 3d_node;
Node<2> 2d_node;

This kind of code would generally a compile error (which is good):
Node<3> node;

Mesh<2> mesh;

mesh.AddNode (node) ;



The procedural approach
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FEM for simple PDEs: Object-oriented implementation (general ideas)

Note that in the following:

o We consider one possible approach - the appropriate design will depend
fundamentally on the precise nature of the solver required (eg, a solver for
a particular equation versus a general solver of several)

@ Related to Chaste design but heavily simplified

@ Purple represents an abstract class/method, red represents a concrete
class or implemented method, blue represents a self-contained class (no
inheritance).

@ Important members or methods of the classes will be given, but obvious
extra methods will be omitted, such as Get/Set methods




Object-oriented design

What are the self-contained ‘concepts’ (objects) that form the overall
simulation code, and what functionality should each of these objects have?



Geometry

Node
Member var: mLocation
> a vector

Element
Member var: mNodes
> (Pointers to) the 3 nodes (assuming a 2d simulation) of this

element
Method: ComputeJacobian()
Method: ComputeJacobianDeterminant ()
SurfaceElement

Member var: mNodes
> (Pointers to) the 2 nodes of this element
> Also has corresponding methods to the Jacobian methods above



Geometry - using templates

Node<SPACE_DIM>
Member var: mLocation
> a vector of length SPACE_DIM

Element<ELEM_DIM,SPACE_DIM>
Member var: mNodes
> (Pointers to) the nodes of this element
Method: ComputeJacobian() etc, depending on dimensions



Geometry - using templates

Node<SPACE_DIM>
Member var: mLocation
> a vector of length SPACE_DIM

Element<ELEM_DIM,SPACE_DIM>
Member var: mNodes
> (Pointers to) the nodes of this element
Method: ComputeJacobian() etc, depending on dimensions

Then:
o Element<2,2> represents a volume element

o Element<1,2> represents a surface element




Geometry

Mesh<DIM>
mNodes

> a list of Node<DIM> objects
mElements

> a list of Element<DIM,DIM> objects
mBoundaryElements

> a list of surface elements (Element<DIM-1,DIM>) on the boundary
mBoundaryNodeIndices

Note:

@ There are other possibilities (nodes knowing whether they are a boundary
node, for example)

@ Here, boundary nodes/elements represent the entire boundary—‘mesh’
concept is self-contained and not dependent on PDE problem being solved.




Basis functions

If solving a problem with piece-wise linear basis functions:

LinearBasisFunction<ELEM_DIM>
GetValues(xi)
> x1 is a vector of size ELEM_DIM, and this function returns the
vector [Ni(£), .., No(€)] = [61(x(€)), .., dn(x())]
GetTransformedDerivatives(xi, J)
> similarly, returns vector with entries V ¢; = JV ¢ N;



Basis functions

If solving a problem with piece-wise linear basis functions:

LinearBasisFunction<ELEM_DIM>
GetValues(xi)
> x1 is a vector of size ELEM_DIM, and this function returns the
vector [Ni(£), .., No(€)] = [61(x(€)), .., dn(x())]
GetTransformedDerivatives(xi, J)
> similarly, returns vector with entries V ¢; = JV ¢ N;

There are again other possibilities, eg. just having GetDerivatives(xi) and
having calling code deal with multiplication by J, or doing:

AbstractBasisFunction<ELEM_DIM>:
GetValues(xi)
GetTransformedDerivatives(xi, J)

and then having LinearBasisFunction and QuadraticBasisFunction



Boundary conditions

@ There are various ways this could be implemented
o Key point: the implementation requires that

o Dirichlet BCs be defined at boundary nodes
o Neumann BCs be defined on boundary elements (ie element interiors)

BoundaryConditions<DIM>

mDirichletBoundaryNodes
mDirichletValues
mNeumannBoundaryElements
mNeumannValues

AddDirichletBoundaryCondition(node,dirichletBcValue)
AddNeumannBoundaryCondition(boundaryElement ,neumannBcValue)



A simple solver

Suppose we want to write a solver for Poisson's equation V2u = f for general
forcing terms f(x) and general boundary conditions. The solver class could be
self-contained, and look like:

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)
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PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:
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A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:
© Set up a LinearBasisFunction object
@ Set up stiffness matrix Kj; = fQ pid; AV

@ Loop over elements of mesh (“mesh.GetNumElements ()",
“mesh.GetElement (i)")

@ For each element set-up the elemental stiffness matrix — loop over
quadrature points, call element.GetJacobian() and
basis_func.GetValues(xi) etc

© Add elemental contribution to K

@ Similarly, loop over elements and assemble b/® = fQ fo;dV
© Loop over Neumann boundary elements (using boundaryConditions) and
assemble b = fr goidS

@ Alter the linear system KU = b"°! + b*"" to take the Dirichlet BCs into
account (using boundaryConditions again).

@ Solve the linear system




FEM for simple PDEs: Object-oriented implementation in Chaste
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Mesh classes in Chaste

Node<SPACE_DIM>
D> data includes: location, index, whether it is a boundary node

AbstractElement<ELEM_DIM,SPACE_DIM>
> Contains nodes, not necessarily tetrahedral
AbstractTetrahedralElement<ELEM_DIM, SPACE_DIM>
> Methods to calculate the jacobian, etc
Element<ELEM_DIM,SPACE_DIM>

AbstractMesh<ELEM_DIM,SPACE_DIM>

> Contains nodes but not elements
AbstractTetrahedralMesh<ELEM_DIM,SPACE_DIM>

> Contains elements, access methods, and lots of functionality
TetrahedralMesh<ELEM_DIM,SPACE_DIM> and
DistributedTetrahedralMesh<ELEM_DIM,SPACE_DIM>

There are also MutableMesh, Cylindrical2dMesh (both for cell-based
simulations), QuadraticMesh, and more..




Basis functions and BCC in Chaste

LinearBasisFunction defined as above, (just static methods), and similarly,
QuadraticBasisFunction (no inheritance).

BoundaryConditionsContainer
> Same as the ‘BoundaryConditions’ class outlined above.
> Contains Dirichlet nodes and corresponding BC values
> Contains Neumann boundary elements and corresponding BC
> Method for applying the Dirichlet BCs to a supplied linear system




Some discretisations Chaste is required to solve

Consider the discretised heat equation
(/Vl + At K) U™t = mu” + At pYoLn + At psur.n

which requires M, K, b""" and b"®" to be ‘assembled’
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Some discretisations Chaste is required to solve

Consider the discretised heat equation

(/Vl + At K) U™t = mu” + At pYoLn + At psur.n

bvol,n bsurf,n

which requires M, K, and to be ‘assembled’

The following is a discretisation that arises in cardiac electro-physiology
(M4 At K)V™™ = MV" + At MF" + Atc” + At d],pine

where
o F" represents nodal ionic currents
@ c” is a correction term that improves accuracy -~

@ dykinje is an integral over a 1D-sub-structure
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Solvers versus assemblers

The requirements of Chaste to solve a variety of problem (and using various
discretisations) suggest the following type of design:

Assembler classes

@ used to construct any ‘finite element’ matrix or vector, i.e. something that
requires a loop over elements (or surface-elements) etc, to be set up, such
as M, K etc.

Solver classes

o these use assemblers to set up a particular linear system, then solve it
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Assembler concept

Consider computing any of the following
M = [ oav
Q

Kik

/ V¢, DV dV
Q

b = /f¢jdv
Q

© Loop over elements, for each compute the elemental contributions Kelem
vol

of Meiem or bii., (3 by 3 matrices or 3-vector)

o For this, need to compute Jacobian J for this element, and loop over
quadrature points

@ Add Keem or Melem or bY2!  to full matrix appropriately




Assembler concept

In all cases we can write the integral over the element as

/ Fx,y, b1, b2, 63, Vo1, Vo, V) det J dedy
K

ref

where

Computing mass matrix = F is the matrix ¢jox
Computing stiffness matrix = F is the matrix V¢; - DV ¢
Computing b*' = F is the vector f¢;

AbstractAssembler
> Does everything above except provide the form of F
Abs. method: A method representing F

MassMatrixAssembler inherits from AbstractAssembler:
Implemented method: F returns the matrix ¢;¢«



Assembler classes: abstract base class

Define an (essentially) abstract class AbstractFeObjectAssembler, which is
templated over the dimensions, and also booleans saying whether the class will
assemble matrices (eg M, K) and/or vectors (eg b*®').

AbstractFeObjectAssembler<DIMs,CAN_ASSEMBLE_VEC,CAN_ASSEMBLE_MAT>
SetMatrixToBeAssembled (matrix)
SetVectorToBeAssembled(vector)
Assemble ()
> Loops over elements, computes elemental contribution by calling:
AssembleOnElement (. .)
> Computes element contribution by looping over quadrature
points, and at each quad point calling one or both of the
following:
ComputeMatrixTerm(. .)
> the function F for matrices
ComputeVectorTerm(. .)
> the function F for vectors




Assembler classes: example concrete classes

MassMatrixAssembler inherits from AbsFeObjectAssembler<false,true> :
Implemented method: ComputeMatrixTerm(. .)
> return matrix ¢j¢i (elemental-contribution, 3 by 3 matrix in 2D)




Assembler classes: example concrete classes

MassMatrixAssembler inherits from AbsFeObjectAssembler<false,true> :
Implemented method: ComputeMatrixTerm(. .)
> return matrix ¢j¢i (elemental-contribution, 3 by 3 matrix in 2D)

StiffnessMatrixAssembler inherits from AbsFeObjectAssembler<false,
true>:
Implemented method: ComputeMatrixTerm(. .)
> return matrix V ¢; - V oy (elemental-contribution)




Assembler classes: example concrete classes

MassMatrixAssembler inherits from AbsFeObjectAssembler<false,true> :
Implemented method: ComputeMatrixTerm(. .)
> return matrix ¢j¢i (elemental-contribution, 3 by 3 matrix in 2D)

StiffnessMatrixAssembler inherits from AbsFeObjectAssembler<false,
true>:
Implemented method: ComputeMatrixTerm(. .)
> return matrix V ¢; - V oy (elemental-contribution)

This designs allows new assemblers to be written fairly easily, and provides the
flexibility required of the code




Solver classes in Chaste

AbstractLinearPdeSolver:
SetupLinearSystem()
> Needs to be implemented in concrete class, and should fully set
up the linear system for the particular problem being solved
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Solver classes in Chaste

AbstractLinearPdeSolver:
SetupLinearSystem()
> Needs to be implemented in concrete class, and should fully set
up the linear system for the particular problem being solved

AbstractStaticPdeSolver inherits from AbstractLinearPdeSolver:
Solve()
> Calls SetupLinearSystem() and then solves linear system

AbstractDynamicPdeSolver inherits from AbstractLinearPdeSolver:
SetTimes(t0,t1)
SetInitialCondition(initialCondition)
Solve() p
> Repeatedly calls SetupLinearSystem() and solves linear sy
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The discretisation for the monodomain equation (cardiac electro-physiology)
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Example usage of the general design

The discretisation for the monodomain equation (cardiac electro-physiology)

(M + At K)V™™ = MV" + At MF" + Atc”

where only the highlighted terms are ‘assembled’.

Write concrete classes
@ MassMatrixAssembler for computing M
@ MonodomainAssembler for computing M + At K

o CorrectionTermAssembler for computing c”

MonodomainSolver inherits from AbstractDynamicPdeSolver:
Member var: mMassMatrixAssembler
Member var: mMonodomainAssembler
Member var: mCorrectionTermAssembler
Implemented method: SetUpLinearSystem()
> Uses the above assemblers to set up the linear system

Chaste



Example usage of the general design

An alternative discretisation (Crank-Nicolson, i.e. the trapezoidal rule)
1 n+1 1 n n n
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Example usage of the general design

An alternative discretisation (Crank-Nicolson, i.e. the trapezoidal rule)
1 n+1 1 n n n
I\/I+§AtK Vi =M~ 5Axer V" + At MF" 4 Atc

where the highlighted terms are ‘assembled’.

CrankNicolsonMonodomainSolver® inherits from AbsDynamicPdeSolver
Member var: mMassMatrixAssembler
Member var: mStiffnessMatrixAssembler
Member var: mCorrectionTermAssembler
Implemented method: SetUpLinearSystem()
> Uses the above assemblers to set up this linear system

Chaste

1 This class doesn't exist (yet), the point is that the design allows it to be implemented fairly
easily
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form AU” = B, where both A and B are ‘assembled’.
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Solver-assembler objects

For some problems and with simple discretisations the linear system is of the
form AU” = B, where both A and B are ‘assembled’.

For example, for the general elliptic problem V - (DVu) + f = 0 (with BCs),
the discretisation is KU = b as we have seen

Also, for the parabolic problem u; = V - (DVu) + f (with BCs), the
discretisation can be written as

AUn+1 - B
where

Ajk:/¢j¢k+AtV¢j'V¢de
Q

B‘,':/Q(Un-f-f)qﬁjdv-i-\/r ggzﬁde




Solver-assembler objects

The original Chaste design just considered such problems, and for these
problems solvers don’t need to own assemblers—solvers are assemblers. The
concrete ‘assembler-solver’ class for a particular problem needs to implement
ComputeMatrixTerm(), ComputeVectorTerm() etc. This design pattern is still
used:
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used:

SimpleLinearEllipticSolver essentially inherits from both
AbstractStaticPdeSolver and AbstractFeObjectAssembler<true,true>
and implements ComputeMatrixTerm(..) and ComputeVectorTerm(. .)

SimpleParabolicEllipticSolver essentially inherits from both
AbstractDynamicPdeSolver and AbstractFeObjectAssembler<true,true>
and implements ComputeMatrixTerm(..) and ComputeVectorTerm(..)




Solver-assembler objects

The original Chaste design just considered such problems, and for these
problems solvers don’t need to own assemblers—solvers are assemblers. The
concrete ‘assembler-solver’ class for a particular problem needs to implement
ComputeMatrixTerm(), ComputeVectorTerm() etc. This design pattern is still
used:

SimpleLinearEllipticSolver essentially inherits from both
AbstractStaticPdeSolver and AbstractFeObjectAssembler<true,true>
and implements ComputeMatrixTerm(..) and ComputeVectorTerm(. .)

SimpleParabolicEllipticSolver essentially inherits from both
AbstractDynamicPdeSolver and AbstractFeObjectAssembler<true,true>
and implements ComputeMatrixTerm(..) and ComputeVectorTerm(. .)

If you have linear, coupled (see later) set of PDEs and can write the
discretisation in this form, it is very easy to write a solver using this
design—see above classes and other examples in the code.




