
FEM for simple PDEs: Object-oriented implementation (introduction)



Template classes (C++)

C++ allows you to do:

template<int DIM>

class Node

{
// use DIM in some way

}

from which the compiler creates different versions of the class, depending on
which values of DIM is used. This is an alternative to having a member
variable mDimension inside the class.

Usage:
Node<3> 3d node;

Node<2> 2d node;

This kind of code would generally a compile error (which is good):
Node<3> node;

Mesh<2> mesh;

mesh.AddNode(node);



Template classes (C++)

C++ allows you to do:

template<int DIM>

class Node

{
// use DIM in some way

}

from which the compiler creates different versions of the class, depending on
which values of DIM is used. This is an alternative to having a member
variable mDimension inside the class.

Usage:
Node<3> 3d node;

Node<2> 2d node;

This kind of code would generally a compile error (which is good):
Node<3> node;

Mesh<2> mesh;

mesh.AddNode(node);



Template classes (C++)

C++ allows you to do:

template<int DIM>

class Node

{
// use DIM in some way

}

from which the compiler creates different versions of the class, depending on
which values of DIM is used. This is an alternative to having a member
variable mDimension inside the class.

Usage:
Node<3> 3d node;

Node<2> 2d node;

This kind of code would generally a compile error (which is good):
Node<3> node;

Mesh<2> mesh;

mesh.AddNode(node);



The procedural approach



FEM for simple PDEs: Object-oriented implementation (general ideas)

Note that in the following:

We consider one possible approach - the appropriate design will depend
fundamentally on the precise nature of the solver required (eg, a solver for
a particular equation versus a general solver of several)

Related to Chaste design but heavily simplified

Purple represents an abstract class/method, red represents a concrete
class or implemented method, blue represents a self-contained class (no
inheritance).

Important members or methods of the classes will be given, but obvious
extra methods will be omitted, such as Get/Set methods



FEM for simple PDEs: Object-oriented implementation (general ideas)

Note that in the following:

We consider one possible approach - the appropriate design will depend
fundamentally on the precise nature of the solver required (eg, a solver for
a particular equation versus a general solver of several)

Related to Chaste design but heavily simplified

Purple represents an abstract class/method, red represents a concrete
class or implemented method, blue represents a self-contained class (no
inheritance).

Important members or methods of the classes will be given, but obvious
extra methods will be omitted, such as Get/Set methods



FEM for simple PDEs: Object-oriented implementation (general ideas)

Note that in the following:

We consider one possible approach - the appropriate design will depend
fundamentally on the precise nature of the solver required (eg, a solver for
a particular equation versus a general solver of several)

Related to Chaste design but heavily simplified

Purple represents an abstract class/method, red represents a concrete
class or implemented method, blue represents a self-contained class (no
inheritance).

Important members or methods of the classes will be given, but obvious
extra methods will be omitted, such as Get/Set methods



Object-oriented design

What are the self-contained ‘concepts’ (objects) that form the overall
simulation code, and what functionality should each of these objects have?



Geometry

Node

Member var: mLocation

B a vector

Element

Member var: mNodes

B (Pointers to) the 3 nodes (assuming a 2d simulation) of this
element

Method: ComputeJacobian()

Method: ComputeJacobianDeterminant()

SurfaceElement

Member var: mNodes

B (Pointers to) the 2 nodes of this element
B Also has corresponding methods to the Jacobian methods above



Geometry - using templates

Node<SPACE DIM>

Member var: mLocation

B a vector of length SPACE DIM

Element<ELEM DIM,SPACE DIM>

Member var: mNodes

B (Pointers to) the nodes of this element
Method: ComputeJacobian() etc, depending on dimensions

Then:

Element<2,2> represents a volume element

Element<1,2> represents a surface element



Geometry - using templates

Node<SPACE DIM>

Member var: mLocation

B a vector of length SPACE DIM

Element<ELEM DIM,SPACE DIM>

Member var: mNodes

B (Pointers to) the nodes of this element
Method: ComputeJacobian() etc, depending on dimensions

Then:

Element<2,2> represents a volume element

Element<1,2> represents a surface element



Geometry

Mesh<DIM>

mNodes

B a list of Node<DIM> objects
mElements

B a list of Element<DIM,DIM> objects
mBoundaryElements

B a list of surface elements (Element<DIM-1,DIM>) on the boundary
mBoundaryNodeIndices

Note:

There are other possibilities (nodes knowing whether they are a boundary
node, for example)

Here, boundary nodes/elements represent the entire boundary—‘mesh’
concept is self-contained and not dependent on PDE problem being solved.



Basis functions

If solving a problem with piece-wise linear basis functions:

LinearBasisFunction<ELEM DIM>

GetValues(xi)

B xi is a vector of size ELEM DIM, and this function returns the
vector [N1(ξ), . . . ,Nn(ξ)] = [φ1(x(ξ)), . . . , φn(x(ξ))]

GetTransformedDerivatives(xi, J)

B similarly, returns vector with entries ∇φi = J∇ξNi

There are again other possibilities, eg. just having GetDerivatives(xi) and
having calling code deal with multiplication by J, or doing:

AbstractBasisFunction<ELEM DIM>:
GetValues(xi)

GetTransformedDerivatives(xi, J)

and then having LinearBasisFunction and QuadraticBasisFunction



Basis functions

If solving a problem with piece-wise linear basis functions:

LinearBasisFunction<ELEM DIM>

GetValues(xi)

B xi is a vector of size ELEM DIM, and this function returns the
vector [N1(ξ), . . . ,Nn(ξ)] = [φ1(x(ξ)), . . . , φn(x(ξ))]

GetTransformedDerivatives(xi, J)

B similarly, returns vector with entries ∇φi = J∇ξNi

There are again other possibilities, eg. just having GetDerivatives(xi) and
having calling code deal with multiplication by J, or doing:

AbstractBasisFunction<ELEM DIM>:
GetValues(xi)

GetTransformedDerivatives(xi, J)

and then having LinearBasisFunction and QuadraticBasisFunction



Boundary conditions

There are various ways this could be implemented

Key point: the implementation requires that
Dirichlet BCs be defined at boundary nodes
Neumann BCs be defined on boundary elements (ie element interiors)

BoundaryConditions<DIM>

mDirichletBoundaryNodes

mDirichletValues

mNeumannBoundaryElements

mNeumannValues

AddDirichletBoundaryCondition(node,dirichletBcValue)

AddNeumannBoundaryCondition(boundaryElement,neumannBcValue)



A simple solver

Suppose we want to write a solver for Poisson’s equation ∇2u = f for general
forcing terms f (x) and general boundary conditions. The solver class could be
self-contained, and look like:

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)



A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Set up a LinearBasisFunction object

2 Set up stiffness matrix Kij =
R

Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() and
basis func.GetValues(xi) etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

R
Ω

f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
R

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system



A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Set up a LinearBasisFunction object

2 Set up stiffness matrix Kij =
R

Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() and
basis func.GetValues(xi) etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

R
Ω

f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
R

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system



A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Set up a LinearBasisFunction object

2 Set up stiffness matrix Kij =
R

Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() and
basis func.GetValues(xi) etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

R
Ω

f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
R

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system



A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Set up a LinearBasisFunction object

2 Set up stiffness matrix Kij =
R

Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() and
basis func.GetValues(xi) etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

R
Ω

f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
R

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system



A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Set up a LinearBasisFunction object

2 Set up stiffness matrix Kij =
R

Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() and
basis func.GetValues(xi) etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

R
Ω

f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
R

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system



A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Set up a LinearBasisFunction object

2 Set up stiffness matrix Kij =
R

Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() and
basis func.GetValues(xi) etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

R
Ω

f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
R

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system



A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Set up a LinearBasisFunction object

2 Set up stiffness matrix Kij =
R

Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() and
basis func.GetValues(xi) etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

R
Ω

f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
R

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system



A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Set up a LinearBasisFunction object

2 Set up stiffness matrix Kij =
R

Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() and
basis func.GetValues(xi) etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

R
Ω

f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
R

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system



A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Set up a LinearBasisFunction object

2 Set up stiffness matrix Kij =
R

Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() and
basis func.GetValues(xi) etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

R
Ω

f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
R

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system



A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Set up a LinearBasisFunction object

2 Set up stiffness matrix Kij =
R

Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() and
basis func.GetValues(xi) etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

R
Ω

f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
R

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system



FEM for simple PDEs: Object-oriented implementation in Chaste



Mesh classes in Chaste

Node<SPACE DIM>

B data includes: location, index, whether it is a boundary node

AbstractElement<ELEM DIM,SPACE DIM>

B Contains nodes, not necessarily tetrahedral
AbstractTetrahedralElement<ELEM DIM,SPACE DIM>

B Methods to calculate the jacobian, etc
Element<ELEM DIM,SPACE DIM>

AbstractMesh<ELEM DIM,SPACE DIM>

B Contains nodes but not elements
AbstractTetrahedralMesh<ELEM DIM,SPACE DIM>

B Contains elements, access methods, and lots of functionality
TetrahedralMesh<ELEM DIM,SPACE DIM> and
DistributedTetrahedralMesh<ELEM DIM,SPACE DIM>

There are also MutableMesh, Cylindrical2dMesh (both for cell-based
simulations), QuadraticMesh, and more..



Mesh classes in Chaste

Node<SPACE DIM>

B data includes: location, index, whether it is a boundary node

AbstractElement<ELEM DIM,SPACE DIM>

B Contains nodes, not necessarily tetrahedral
AbstractTetrahedralElement<ELEM DIM,SPACE DIM>

B Methods to calculate the jacobian, etc
Element<ELEM DIM,SPACE DIM>

AbstractMesh<ELEM DIM,SPACE DIM>

B Contains nodes but not elements
AbstractTetrahedralMesh<ELEM DIM,SPACE DIM>

B Contains elements, access methods, and lots of functionality
TetrahedralMesh<ELEM DIM,SPACE DIM> and
DistributedTetrahedralMesh<ELEM DIM,SPACE DIM>

There are also MutableMesh, Cylindrical2dMesh (both for cell-based
simulations), QuadraticMesh, and more..



Mesh classes in Chaste

Node<SPACE DIM>

B data includes: location, index, whether it is a boundary node

AbstractElement<ELEM DIM,SPACE DIM>

B Contains nodes, not necessarily tetrahedral
AbstractTetrahedralElement<ELEM DIM,SPACE DIM>

B Methods to calculate the jacobian, etc
Element<ELEM DIM,SPACE DIM>

AbstractMesh<ELEM DIM,SPACE DIM>

B Contains nodes but not elements
AbstractTetrahedralMesh<ELEM DIM,SPACE DIM>

B Contains elements, access methods, and lots of functionality
TetrahedralMesh<ELEM DIM,SPACE DIM> and
DistributedTetrahedralMesh<ELEM DIM,SPACE DIM>

There are also MutableMesh, Cylindrical2dMesh (both for cell-based
simulations), QuadraticMesh, and more..



Basis functions and BCC in Chaste

LinearBasisFunction defined as above, (just static methods), and similarly,
QuadraticBasisFunction (no inheritance).

BoundaryConditionsContainer

B Same as the ‘BoundaryConditions’ class outlined above.
B Contains Dirichlet nodes and corresponding BC values
B Contains Neumann boundary elements and corresponding BC
B Method for applying the Dirichlet BCs to a supplied linear system



Some discretisations Chaste is required to solve

Consider the discretised heat equation

(M + ∆t K) Un+1 = MUn + ∆t bvol,n + ∆t bsurf,n

which requires M, K , bvol,n and bsurf,n to be ‘assembled’

The following is a discretisation that arises in cardiac electro-physiology

(M + ∆t K) Vn+1 = MVn + ∆t MFn + ∆t cn + ∆t dn
purkinje

where

Fn represents nodal ionic currents

cn is a correction term that improves accuracy

dn
purkinje is an integral over a 1D-sub-structure



Some discretisations Chaste is required to solve

Consider the discretised heat equation

(M + ∆t K) Un+1 = MUn + ∆t bvol,n + ∆t bsurf,n

which requires M, K , bvol,n and bsurf,n to be ‘assembled’

The following is a discretisation that arises in cardiac electro-physiology

(M + ∆t K) Vn+1 = MVn + ∆t MFn + ∆t cn + ∆t dn
purkinje

where

Fn represents nodal ionic currents

cn is a correction term that improves accuracy

dn
purkinje is an integral over a 1D-sub-structure



Some discretisations Chaste is required to solve

Consider the discretised heat equation

(M + ∆t K) Un+1 = MUn + ∆t bvol,n + ∆t bsurf,n

which requires M, K , bvol,n and bsurf,n to be ‘assembled’

The following is a discretisation that arises in cardiac electro-physiology

(M + ∆t K) Vn+1 = MVn + ∆t MFn + ∆t cn + ∆t dn
purkinje

where

Fn represents nodal ionic currents

cn is a correction term that improves accuracy

dn
purkinje is an integral over a 1D-sub-structure



Some discretisations Chaste is required to solve

Consider the discretised heat equation

(M + ∆t K) Un+1 = MUn + ∆t bvol,n + ∆t bsurf,n

which requires M, K , bvol,n and bsurf,n to be ‘assembled’

The following is a discretisation that arises in cardiac electro-physiology

(M + ∆t K) Vn+1 = MVn + ∆t MFn + ∆t cn + ∆t dn
purkinje

where

Fn represents nodal ionic currents

cn is a correction term that improves accuracy

dn
purkinje is an integral over a 1D-sub-structure



Solvers versus assemblers

The requirements of Chaste to solve a variety of problem (and using various
discretisations) suggest the following type of design:

Assembler classes

used to construct any ‘finite element’ matrix or vector, i.e. something that
requires a loop over elements (or surface-elements) etc, to be set up, such
as M, K etc.

Solver classes

these use assemblers to set up a particular linear system, then solve it



Solvers versus assemblers

The requirements of Chaste to solve a variety of problem (and using various
discretisations) suggest the following type of design:

Assembler classes

used to construct any ‘finite element’ matrix or vector, i.e. something that
requires a loop over elements (or surface-elements) etc, to be set up, such
as M, K etc.

Solver classes

these use assemblers to set up a particular linear system, then solve it



Solvers versus assemblers

The requirements of Chaste to solve a variety of problem (and using various
discretisations) suggest the following type of design:

Assembler classes

used to construct any ‘finite element’ matrix or vector, i.e. something that
requires a loop over elements (or surface-elements) etc, to be set up, such
as M, K etc.

Solver classes

these use assemblers to set up a particular linear system, then solve it



Assembler concept

Consider computing any of the following

Mjk =

Z
Ω

φjφk dV

Kjk =

Z
Ω

∇φj · D∇φk dV

bvol
j =

Z
Ω

f φj dV

1 Loop over elements, for each compute the elemental contributions Kelem

or Melem or bvol
elem (3 by 3 matrices or 3-vector)

For this, need to compute Jacobian J for this element, and loop over
quadrature points

2 Add Kelem or Melem or bvol
elem to full matrix appropriately



Assembler concept

Consider computing any of the following

Mjk =

Z
Ω

φjφk dV

Kjk =

Z
Ω

∇φj · D∇φk dV

bvol
j =

Z
Ω

f φj dV

1 Loop over elements, for each compute the elemental contributions Kelem

or Melem or bvol
elem (3 by 3 matrices or 3-vector)

For this, need to compute Jacobian J for this element, and loop over
quadrature points

2 Add Kelem or Melem or bvol
elem to full matrix appropriately



Assembler concept

In all cases we can write the integral over the element asZ
Kref

F(x , y , u, φ1, φ2, φ3,∇φ1,∇φ2,∇φ3) det J dξdη

where

Computing mass matrix ⇒ F is the matrix φjφk

Computing stiffness matrix ⇒ F is the matrix ∇φj · D∇φk

Computing bvol ⇒ F is the vector f φj

AbstractAssembler

B Does everything above except provide the form of F
Abs. method: A method representing F

MassMatrixAssembler inherits from AbstractAssembler:
Implemented method: F returns the matrix φjφk



Assembler classes: abstract base class

Define an (essentially) abstract class AbstractFeObjectAssembler, which is
templated over the dimensions, and also booleans saying whether the class will
assemble matrices (eg M, K) and/or vectors (eg bvol).

AbstractFeObjectAssembler<DIMs,CAN ASSEMBLE VEC,CAN ASSEMBLE MAT>

SetMatrixToBeAssembled(matrix)

SetVectorToBeAssembled(vector)

Assemble()

B Loops over elements, computes elemental contribution by calling:
AssembleOnElement(..)

B Computes element contribution by looping over quadrature
points, and at each quad point calling one or both of the

following:
ComputeMatrixTerm(..)

B the function F for matrices
ComputeVectorTerm(..)

B the function F for vectors



Assembler classes: example concrete classes

MassMatrixAssembler inherits from AbsFeObjectAssembler<false,true> :
Implemented method: ComputeMatrixTerm(..)

B return matrix φjφk (elemental-contribution, 3 by 3 matrix in 2D)

StiffnessMatrixAssembler inherits from AbsFeObjectAssembler<false,

true>:
Implemented method: ComputeMatrixTerm(..)

B return matrix ∇φj ·∇φk (elemental-contribution)

This designs allows new assemblers to be written fairly easily, and provides the
flexibility required of the code



Assembler classes: example concrete classes

MassMatrixAssembler inherits from AbsFeObjectAssembler<false,true> :
Implemented method: ComputeMatrixTerm(..)

B return matrix φjφk (elemental-contribution, 3 by 3 matrix in 2D)

StiffnessMatrixAssembler inherits from AbsFeObjectAssembler<false,

true>:
Implemented method: ComputeMatrixTerm(..)

B return matrix ∇φj ·∇φk (elemental-contribution)

This designs allows new assemblers to be written fairly easily, and provides the
flexibility required of the code



Assembler classes: example concrete classes

MassMatrixAssembler inherits from AbsFeObjectAssembler<false,true> :
Implemented method: ComputeMatrixTerm(..)

B return matrix φjφk (elemental-contribution, 3 by 3 matrix in 2D)

StiffnessMatrixAssembler inherits from AbsFeObjectAssembler<false,

true>:
Implemented method: ComputeMatrixTerm(..)

B return matrix ∇φj ·∇φk (elemental-contribution)

This designs allows new assemblers to be written fairly easily, and provides the
flexibility required of the code



Solver classes in Chaste

AbstractLinearPdeSolver:
SetupLinearSystem()

B Needs to be implemented in concrete class, and should fully set
up the linear system for the particular problem being solved

AbstractStaticPdeSolver inherits from AbstractLinearPdeSolver:
Solve()

B Calls SetupLinearSystem() and then solves linear system

AbstractDynamicPdeSolver inherits from AbstractLinearPdeSolver:
SetTimes(t0,t1)

SetInitialCondition(initialCondition)

Solve()

B Repeatedly calls SetupLinearSystem() and solves linear system



Solver classes in Chaste

AbstractLinearPdeSolver:
SetupLinearSystem()

B Needs to be implemented in concrete class, and should fully set
up the linear system for the particular problem being solved

AbstractStaticPdeSolver inherits from AbstractLinearPdeSolver:
Solve()

B Calls SetupLinearSystem() and then solves linear system

AbstractDynamicPdeSolver inherits from AbstractLinearPdeSolver:
SetTimes(t0,t1)

SetInitialCondition(initialCondition)

Solve()

B Repeatedly calls SetupLinearSystem() and solves linear system



Solver classes in Chaste

AbstractLinearPdeSolver:
SetupLinearSystem()

B Needs to be implemented in concrete class, and should fully set
up the linear system for the particular problem being solved

AbstractStaticPdeSolver inherits from AbstractLinearPdeSolver:
Solve()

B Calls SetupLinearSystem() and then solves linear system

AbstractDynamicPdeSolver inherits from AbstractLinearPdeSolver:
SetTimes(t0,t1)

SetInitialCondition(initialCondition)

Solve()

B Repeatedly calls SetupLinearSystem() and solves linear system



Example usage of the general design

The discretisation for the monodomain equation (cardiac electro-physiology)

(M + ∆t K) Vn+1 = MVn + ∆t MFn + ∆t cn

where only the highlighted terms are ‘assembled’.

Write concrete classes

MassMatrixAssembler for computing M

MonodomainAssembler for computing M + ∆t K

CorrectionTermAssembler for computing cn

MonodomainSolver inherits from AbstractDynamicPdeSolver:
Member var: mMassMatrixAssembler

Member var: mMonodomainAssembler

Member var: mCorrectionTermAssembler

Implemented method: SetUpLinearSystem()

B Uses the above assemblers to set up the linear system



Example usage of the general design

The discretisation for the monodomain equation (cardiac electro-physiology)

(M + ∆t K) Vn+1 = MVn + ∆t MFn + ∆t cn

where only the highlighted terms are ‘assembled’.

Write concrete classes

MassMatrixAssembler for computing M

MonodomainAssembler for computing M + ∆t K

CorrectionTermAssembler for computing cn

MonodomainSolver inherits from AbstractDynamicPdeSolver:
Member var: mMassMatrixAssembler

Member var: mMonodomainAssembler

Member var: mCorrectionTermAssembler

Implemented method: SetUpLinearSystem()

B Uses the above assemblers to set up the linear system



Example usage of the general design

The discretisation for the monodomain equation (cardiac electro-physiology)

(M + ∆t K) Vn+1 = MVn + ∆t MFn + ∆t cn

where only the highlighted terms are ‘assembled’.

Write concrete classes

MassMatrixAssembler for computing M

MonodomainAssembler for computing M + ∆t K

CorrectionTermAssembler for computing cn

MonodomainSolver inherits from AbstractDynamicPdeSolver:
Member var: mMassMatrixAssembler

Member var: mMonodomainAssembler

Member var: mCorrectionTermAssembler

Implemented method: SetUpLinearSystem()

B Uses the above assemblers to set up the linear system



Example usage of the general design

An alternative discretisation (Crank-Nicolson, i.e. the trapezoidal rule)„
M +

1

2
∆t K

«
Vn+1 =

„
M − 1

2
∆t K

«
Vn + ∆t MFn + ∆t cn

where the highlighted terms are ‘assembled’.

CrankNicolsonMonodomainSolver1 inherits from AbsDynamicPdeSolver :
Member var: mMassMatrixAssembler

Member var: mStiffnessMatrixAssembler

Member var: mCorrectionTermAssembler

Implemented method: SetUpLinearSystem()

B Uses the above assemblers to set up this linear system

1This class doesn’t exist (yet), the point is that the design allows it to be implemented fairly
easily



Example usage of the general design

An alternative discretisation (Crank-Nicolson, i.e. the trapezoidal rule)„
M +

1

2
∆t K

«
Vn+1 =

„
M − 1

2
∆t K

«
Vn + ∆t MFn + ∆t cn

where the highlighted terms are ‘assembled’.

CrankNicolsonMonodomainSolver1 inherits from AbsDynamicPdeSolver :
Member var: mMassMatrixAssembler

Member var: mStiffnessMatrixAssembler

Member var: mCorrectionTermAssembler

Implemented method: SetUpLinearSystem()

B Uses the above assemblers to set up this linear system

1This class doesn’t exist (yet), the point is that the design allows it to be implemented fairly
easily



Solver-assembler objects

For some problems and with simple discretisations the linear system is of the
form AUn = B, where both A and B are ‘assembled’.

For example, for the general elliptic problem ∇ · (D∇u) + f = 0 (with BCs),
the discretisation is KU = b as we have seen

Also, for the parabolic problem ut = ∇ · (D∇u) + f (with BCs), the
discretisation can be written as

AUn+1 = B

where

Ajk =

Z
Ω

φjφk + ∆t ∇φj ·∇φk dV

Bj =

Z
Ω

(un + f )φj dV +

Z
Γ2

gφj dS



Solver-assembler objects

For some problems and with simple discretisations the linear system is of the
form AUn = B, where both A and B are ‘assembled’.

For example, for the general elliptic problem ∇ · (D∇u) + f = 0 (with BCs),
the discretisation is KU = b as we have seen

Also, for the parabolic problem ut = ∇ · (D∇u) + f (with BCs), the
discretisation can be written as

AUn+1 = B

where

Ajk =

Z
Ω

φjφk + ∆t ∇φj ·∇φk dV

Bj =

Z
Ω

(un + f )φj dV +

Z
Γ2

gφj dS



Solver-assembler objects

For some problems and with simple discretisations the linear system is of the
form AUn = B, where both A and B are ‘assembled’.

For example, for the general elliptic problem ∇ · (D∇u) + f = 0 (with BCs),
the discretisation is KU = b as we have seen

Also, for the parabolic problem ut = ∇ · (D∇u) + f (with BCs), the
discretisation can be written as

AUn+1 = B

where

Ajk =

Z
Ω

φjφk + ∆t ∇φj ·∇φk dV

Bj =

Z
Ω

(un + f )φj dV +

Z
Γ2

gφj dS



Solver-assembler objects

The original Chaste design just considered such problems, and for these
problems solvers don’t need to own assemblers—solvers are assemblers. The
concrete ‘assembler-solver’ class for a particular problem needs to implement
ComputeMatrixTerm(), ComputeVectorTerm() etc. This design pattern is still
used:

SimpleLinearEllipticSolver essentially inherits from both
AbstractStaticPdeSolver and AbstractFeObjectAssembler<true,true>

and implements ComputeMatrixTerm(..) and ComputeVectorTerm(..)

SimpleParabolicEllipticSolver essentially inherits from both
AbstractDynamicPdeSolver and AbstractFeObjectAssembler<true,true>

and implements ComputeMatrixTerm(..) and ComputeVectorTerm(..)

If you have linear, coupled (see later) set of PDEs and can write the
discretisation in this form, it is very easy to write a solver using this
design—see above classes and other examples in the code.



Solver-assembler objects

The original Chaste design just considered such problems, and for these
problems solvers don’t need to own assemblers—solvers are assemblers. The
concrete ‘assembler-solver’ class for a particular problem needs to implement
ComputeMatrixTerm(), ComputeVectorTerm() etc. This design pattern is still
used:

SimpleLinearEllipticSolver essentially inherits from both
AbstractStaticPdeSolver and AbstractFeObjectAssembler<true,true>

and implements ComputeMatrixTerm(..) and ComputeVectorTerm(..)

SimpleParabolicEllipticSolver essentially inherits from both
AbstractDynamicPdeSolver and AbstractFeObjectAssembler<true,true>

and implements ComputeMatrixTerm(..) and ComputeVectorTerm(..)

If you have linear, coupled (see later) set of PDEs and can write the
discretisation in this form, it is very easy to write a solver using this
design—see above classes and other examples in the code.



Solver-assembler objects

The original Chaste design just considered such problems, and for these
problems solvers don’t need to own assemblers—solvers are assemblers. The
concrete ‘assembler-solver’ class for a particular problem needs to implement
ComputeMatrixTerm(), ComputeVectorTerm() etc. This design pattern is still
used:

SimpleLinearEllipticSolver essentially inherits from both
AbstractStaticPdeSolver and AbstractFeObjectAssembler<true,true>

and implements ComputeMatrixTerm(..) and ComputeVectorTerm(..)

SimpleParabolicEllipticSolver essentially inherits from both
AbstractDynamicPdeSolver and AbstractFeObjectAssembler<true,true>

and implements ComputeMatrixTerm(..) and ComputeVectorTerm(..)

If you have linear, coupled (see later) set of PDEs and can write the
discretisation in this form, it is very easy to write a solver using this
design—see above classes and other examples in the code.



Solver-assembler objects

The original Chaste design just considered such problems, and for these
problems solvers don’t need to own assemblers—solvers are assemblers. The
concrete ‘assembler-solver’ class for a particular problem needs to implement
ComputeMatrixTerm(), ComputeVectorTerm() etc. This design pattern is still
used:

SimpleLinearEllipticSolver essentially inherits from both
AbstractStaticPdeSolver and AbstractFeObjectAssembler<true,true>

and implements ComputeMatrixTerm(..) and ComputeVectorTerm(..)

SimpleParabolicEllipticSolver essentially inherits from both
AbstractDynamicPdeSolver and AbstractFeObjectAssembler<true,true>

and implements ComputeMatrixTerm(..) and ComputeVectorTerm(..)

If you have linear, coupled (see later) set of PDEs and can write the
discretisation in this form, it is very easy to write a solver using this
design—see above classes and other examples in the code.


