
FEM for simple PDEs: Object-oriented implementation (introduction)



Template classes (C++)

C++ allows you to do:

template<int DIM>

class Node

{
// use DIM in some way

}

from which the compiler creates different versions of the class, depending on
which values of DIM is used. This is an alternative to having a member
variable mDimension inside the class.

Usage:
Node<3> 3d node;

Node<2> 2d node;

This kind of code would generally a compile error (which is good):
Node<3> node;

Mesh<2> mesh;

mesh.AddNode(node);
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The procedural approach



FEM for simple PDEs: Object-oriented implementation (general ideas)

Note that in the following:

We consider one possible approach - the appropriate design will depend
fundamentally on the precise nature of the solver required (eg, a solver for
a particular equation versus a general solver of several)

Related to Chaste design but heavily simplified

Purple represents an abstract class/method, red represents a concrete
class or implemented method, blue represents a self-contained class (no
inheritance).

Important members or methods of the classes will be given, but obvious
extra methods will be omitted, such as Get/Set methods
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Object-oriented design

What are the self-contained ‘concepts’ (objects) that form the overall
simulation code, and what functionality should each of these objects have?



Geometry

Node

Member var: mLocation

B a vector

Element

Member var: mNodes

B (Pointers to) the 3 nodes (assuming a 2d simulation) of this
element

Method: ComputeJacobian()

Method: ComputeJacobianDeterminant()

SurfaceElement

Member var: mNodes

B (Pointers to) the 2 nodes of this element
B Also has corresponding methods to the Jacobian methods above



Geometry - using templates

Node<SPACE DIM>

Member var: mLocation

B a vector of length SPACE DIM

Element<ELEM DIM,SPACE DIM>

Member var: mNodes

B (Pointers to) the nodes of this element
Method: ComputeJacobian() etc, depending on dimensions

Then:

Element<2,2> represents a volume element

Element<1,2> represents a surface element
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Geometry

Mesh<DIM>

mNodes

B a list of Node<DIM> objects
mElements

B a list of Element<DIM,DIM> objects
mBoundaryElements

B a list of surface elements (Element<DIM-1,DIM>) on the boundary
mBoundaryNodeIndices

Note:

There are other possibilities (nodes knowing whether they are a boundary
node, for example)

Here, boundary nodes/elements represent the entire boundary—‘mesh’
concept is self-contained and not dependent on PDE problem being solved.



Basis functions

If solving a problem with piece-wise linear basis functions:

LinearBasisFunction<ELEM DIM>

GetValues(xi)

B xi is a vector of size ELEM DIM, and this function returns the
vector [N1(ξ), . . . ,Nn(ξ)] = [φ1(x(ξ)), . . . , φn(x(ξ))]

GetTransformedDerivatives(xi, J)

B similarly, returns vector with entries ∇φi = J∇ξNi

There are again other possibilities, eg. just having GetDerivatives(xi) and
having calling code deal with multiplication by J, or doing:

AbstractBasisFunction<ELEM DIM>:
GetValues(xi)

GetTransformedDerivatives(xi, J)

and then having LinearBasisFunction and QuadraticBasisFunction
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Boundary conditions

There are various ways this could be implemented

Key point: the implementation requires that
Dirichlet BCs be defined at boundary nodes
Neumann BCs be defined on boundary elements (ie element interiors)

BoundaryConditions<DIM>

mDirichletBoundaryNodes

mDirichletValues

mNeumannBoundaryElements

mNeumannValues

AddDirichletBoundaryCondition(node,dirichletBcValue)

AddNeumannBoundaryCondition(boundaryElement,neumannBcValue)



A simple solver

Suppose we want to write a solver for Poisson’s equation ∇2u = f for general
forcing terms f (x) and general boundary conditions. The solver class could be
self-contained, and look like:

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)



A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Set up a LinearBasisFunction object

2 Set up stiffness matrix Kij =
R

Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() and
basis func.GetValues(xi) etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

R
Ω

f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
R

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system
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FEM for simple PDEs: Object-oriented implementation in Chaste



Mesh classes in Chaste

Node<SPACE DIM>

B data includes: location, index, whether it is a boundary node

AbstractElement<ELEM DIM,SPACE DIM>

B Contains nodes, not necessarily tetrahedral
AbstractTetrahedralElement<ELEM DIM,SPACE DIM>

B Methods to calculate the jacobian, etc
Element<ELEM DIM,SPACE DIM>

AbstractMesh<ELEM DIM,SPACE DIM>

B Contains nodes but not elements
AbstractTetrahedralMesh<ELEM DIM,SPACE DIM>

B Contains elements, access methods, and lots of functionality
TetrahedralMesh<ELEM DIM,SPACE DIM> and
DistributedTetrahedralMesh<ELEM DIM,SPACE DIM>

There are also MutableMesh, Cylindrical2dMesh (both for cell-based
simulations), QuadraticMesh, and more..



Mesh classes in Chaste

Node<SPACE DIM>

B data includes: location, index, whether it is a boundary node

AbstractElement<ELEM DIM,SPACE DIM>

B Contains nodes, not necessarily tetrahedral
AbstractTetrahedralElement<ELEM DIM,SPACE DIM>

B Methods to calculate the jacobian, etc
Element<ELEM DIM,SPACE DIM>

AbstractMesh<ELEM DIM,SPACE DIM>

B Contains nodes but not elements
AbstractTetrahedralMesh<ELEM DIM,SPACE DIM>

B Contains elements, access methods, and lots of functionality
TetrahedralMesh<ELEM DIM,SPACE DIM> and
DistributedTetrahedralMesh<ELEM DIM,SPACE DIM>

There are also MutableMesh, Cylindrical2dMesh (both for cell-based
simulations), QuadraticMesh, and more..



Mesh classes in Chaste

Node<SPACE DIM>

B data includes: location, index, whether it is a boundary node

AbstractElement<ELEM DIM,SPACE DIM>

B Contains nodes, not necessarily tetrahedral
AbstractTetrahedralElement<ELEM DIM,SPACE DIM>

B Methods to calculate the jacobian, etc
Element<ELEM DIM,SPACE DIM>

AbstractMesh<ELEM DIM,SPACE DIM>

B Contains nodes but not elements
AbstractTetrahedralMesh<ELEM DIM,SPACE DIM>

B Contains elements, access methods, and lots of functionality
TetrahedralMesh<ELEM DIM,SPACE DIM> and
DistributedTetrahedralMesh<ELEM DIM,SPACE DIM>

There are also MutableMesh, Cylindrical2dMesh (both for cell-based
simulations), QuadraticMesh, and more..



Basis functions and BCC in Chaste

LinearBasisFunction defined as above, (just static methods), and similarly,
QuadraticBasisFunction (no inheritance).

BoundaryConditionsContainer

B Same as the ‘BoundaryConditions’ class outlined above.
B Contains Dirichlet nodes and corresponding BC values
B Contains Neumann boundary elements and corresponding BC
B Method for applying the Dirichlet BCs to a supplied linear system



Some discretisations Chaste is required to solve

Consider the discretised heat equation

(M + ∆t K) Un+1 = MUn + ∆t bvol,n + ∆t bsurf,n

which requires M, K , bvol,n and bsurf,n to be ‘assembled’

The following is a discretisation that arises in cardiac electro-physiology

(M + ∆t K) Vn+1 = MVn + ∆t MFn + ∆t cn + ∆t dn
purkinje

where

Fn represents nodal ionic currents

cn is a correction term that improves accuracy

dn
purkinje is an integral over a 1D-sub-structure
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Solvers versus assemblers

The requirements of Chaste to solve a variety of problem (and using various
discretisations) suggest the following type of design:

Assembler classes

used to construct any ‘finite element’ matrix or vector, i.e. something that
requires a loop over elements (or surface-elements) etc, to be set up, such
as M, K etc.

Solver classes

these use assemblers to set up a particular linear system, then solve it
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Assembler concept

Consider computing any of the following

Mjk =

Z
Ω

φjφk dV

Kjk =

Z
Ω

∇φj · D∇φk dV

bvol
j =

Z
Ω

f φj dV

1 Loop over elements, for each compute the elemental contributions Kelem

or Melem or bvol
elem (3 by 3 matrices or 3-vector)

For this, need to compute Jacobian J for this element, and loop over
quadrature points

2 Add Kelem or Melem or bvol
elem to full matrix appropriately
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Assembler concept

In all cases we can write the integral over the element asZ
Kref

F(x , y , u, φ1, φ2, φ3,∇φ1,∇φ2,∇φ3) det J dξdη

where

Computing mass matrix ⇒ F is the matrix φjφk

Computing stiffness matrix ⇒ F is the matrix ∇φj · D∇φk

Computing bvol ⇒ F is the vector f φj

AbstractAssembler

B Does everything above except provide the form of F
Abs. method: A method representing F

MassMatrixAssembler inherits from AbstractAssembler:
Implemented method: F returns the matrix φjφk



Assembler classes: abstract base class

Define an (essentially) abstract class AbstractFeObjectAssembler, which is
templated over the dimensions, and also booleans saying whether the class will
assemble matrices (eg M, K) and/or vectors (eg bvol).

AbstractFeObjectAssembler<DIMs,CAN ASSEMBLE VEC,CAN ASSEMBLE MAT>

SetMatrixToBeAssembled(matrix)

SetVectorToBeAssembled(vector)

Assemble()

B Loops over elements, computes elemental contribution by calling:
AssembleOnElement(..)

B Computes element contribution by looping over quadrature
points, and at each quad point calling one or both of the

following:
ComputeMatrixTerm(..)

B the function F for matrices
ComputeVectorTerm(..)

B the function F for vectors



Assembler classes: example concrete classes

MassMatrixAssembler inherits from AbsFeObjectAssembler<false,true> :
Implemented method: ComputeMatrixTerm(..)

B return matrix φjφk (elemental-contribution, 3 by 3 matrix in 2D)

StiffnessMatrixAssembler inherits from AbsFeObjectAssembler<false,

true>:
Implemented method: ComputeMatrixTerm(..)

B return matrix ∇φj ·∇φk (elemental-contribution)

This designs allows new assemblers to be written fairly easily, and provides the
flexibility required of the code
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Assembler classes: example concrete classes
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Solver classes in Chaste

AbstractLinearPdeSolver:
SetupLinearSystem()

B Needs to be implemented in concrete class, and should fully set
up the linear system for the particular problem being solved

AbstractStaticPdeSolver inherits from AbstractLinearPdeSolver:
Solve()

B Calls SetupLinearSystem() and then solves linear system

AbstractDynamicPdeSolver inherits from AbstractLinearPdeSolver:
SetTimes(t0,t1)

SetInitialCondition(initialCondition)

Solve()

B Repeatedly calls SetupLinearSystem() and solves linear system



Solver classes in Chaste

AbstractLinearPdeSolver:
SetupLinearSystem()

B Needs to be implemented in concrete class, and should fully set
up the linear system for the particular problem being solved

AbstractStaticPdeSolver inherits from AbstractLinearPdeSolver:
Solve()

B Calls SetupLinearSystem() and then solves linear system

AbstractDynamicPdeSolver inherits from AbstractLinearPdeSolver:
SetTimes(t0,t1)

SetInitialCondition(initialCondition)

Solve()

B Repeatedly calls SetupLinearSystem() and solves linear system



Solver classes in Chaste

AbstractLinearPdeSolver:
SetupLinearSystem()

B Needs to be implemented in concrete class, and should fully set
up the linear system for the particular problem being solved

AbstractStaticPdeSolver inherits from AbstractLinearPdeSolver:
Solve()

B Calls SetupLinearSystem() and then solves linear system

AbstractDynamicPdeSolver inherits from AbstractLinearPdeSolver:
SetTimes(t0,t1)

SetInitialCondition(initialCondition)

Solve()

B Repeatedly calls SetupLinearSystem() and solves linear system



Example usage of the general design

The discretisation for the monodomain equation (cardiac electro-physiology)

(M + ∆t K) Vn+1 = MVn + ∆t MFn + ∆t cn

where only the highlighted terms are ‘assembled’.

Write concrete classes

MassMatrixAssembler for computing M

MonodomainAssembler for computing M + ∆t K

CorrectionTermAssembler for computing cn

MonodomainSolver inherits from AbstractDynamicPdeSolver:
Member var: mMassMatrixAssembler

Member var: mMonodomainAssembler

Member var: mCorrectionTermAssembler

Implemented method: SetUpLinearSystem()

B Uses the above assemblers to set up the linear system
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Example usage of the general design

An alternative discretisation (Crank-Nicolson, i.e. the trapezoidal rule)„
M +

1

2
∆t K

«
Vn+1 =

„
M − 1

2
∆t K

«
Vn + ∆t MFn + ∆t cn

where the highlighted terms are ‘assembled’.

CrankNicolsonMonodomainSolver1 inherits from AbsDynamicPdeSolver :
Member var: mMassMatrixAssembler

Member var: mStiffnessMatrixAssembler

Member var: mCorrectionTermAssembler

Implemented method: SetUpLinearSystem()

B Uses the above assemblers to set up this linear system

1This class doesn’t exist (yet), the point is that the design allows it to be implemented fairly
easily
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Solver-assembler objects

For some problems and with simple discretisations the linear system is of the
form AUn = B, where both A and B are ‘assembled’.

For example, for the general elliptic problem ∇ · (D∇u) + f = 0 (with BCs),
the discretisation is KU = b as we have seen

Also, for the parabolic problem ut = ∇ · (D∇u) + f (with BCs), the
discretisation can be written as

AUn+1 = B

where

Ajk =

Z
Ω

φjφk + ∆t ∇φj ·∇φk dV

Bj =

Z
Ω

(un + f )φj dV +

Z
Γ2

gφj dS
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Solver-assembler objects

The original Chaste design just considered such problems, and for these
problems solvers don’t need to own assemblers—solvers are assemblers. The
concrete ‘assembler-solver’ class for a particular problem needs to implement
ComputeMatrixTerm(), ComputeVectorTerm() etc. This design pattern is still
used:

SimpleLinearEllipticSolver essentially inherits from both
AbstractStaticPdeSolver and AbstractFeObjectAssembler<true,true>

and implements ComputeMatrixTerm(..) and ComputeVectorTerm(..)

SimpleParabolicEllipticSolver essentially inherits from both
AbstractDynamicPdeSolver and AbstractFeObjectAssembler<true,true>

and implements ComputeMatrixTerm(..) and ComputeVectorTerm(..)

If you have linear, coupled (see later) set of PDEs and can write the
discretisation in this form, it is very easy to write a solver using this
design—see above classes and other examples in the code.
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